ON THE ABSOLUTE IDEAL CLASS GROUPS
OF RELATIVELY META-CYCLIC NUMBER
FIELDS OF A CERTAIN TYPE

TAIRA HONDA

Notations. The following notations will be used throughout this paper.
¢ : the identity of a finite group.
@ : the rational number field.
P : an algebraic number field of finite degree, fixed as the ground field.
! : a prime number.
¢; : a primitive /-th root of unity.
For any algebraic number field %, and for any cyclic extension 2’ of %,
k™. the multiplicative group of all the non-zero elements of %'.
I @ the class number of 4.
8% : the absolute ideal class group (briefly the class group) of k.
ar'/r: the number of ambigous classes of Z'/k.
R 0 the subgroup of & composed of all the ambigous classes of %'/k.
k° : the absolute class field of k.
For any finite multiplicative abelian group &,
f™: the n-fold direct product of .
,f{ﬁi: the direct product of £, ..., fx.

§ = & means that the subgroup of § composed of all the elements whose

orders are prime to an integer u is isomorphic to the corresponding sub-
group of & (briefly, & is u-isomorphic to {').

Introduction
Let @ be a finite group which contains a subgroup $ with the following
property : § N pHo~' is reduced to {¢} for any element p of @ which does not
belong to . Then, by a theorem of Frobenius, the elements of & which do
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not belong to any conjugate of 9 constitute together with the identity a normal
subgroup N of . In the case where N,  are both cyclic, let us call such a
group & meta-cyclic of type F, and write &, T instead of N, H respectively.

» In the present paper we shall first investigate the structure of the (absolute
ideal) class group £ of a normal extension L of P with a meta-cyclic Galois
group & of type F. (Such an extension L/P will be called also meta-cyclic of
tvpe F.) Let K, £ be the intermediate fields of L/P corresponding to S, T
respectively, and put s=(L : K)=order of € and t= (L : Q) =order of 3.
Then our result is as follows: if a,x =1, we have &, = 8%. Here f/q is iso-
morphic to a subgroup ®; of §¢ and the factor group Kq/fg is a cyclic group
of order (KN P° : P). In the case where a./x =1, the analogous assertion holds
by replacing “isomorphic” by “shg-isomorphic”. This result is a generalization
of the main theorem of author’s previous paper [4], and its proof is given by
a slight modification of the previous one.

In §1 we shall study some properties of a meta-cyclic group of type F and
of abelian groups which have such a group as operator domain. In §2 we shall
give a proof of the fact mentioned above by the method in [4].

Now, let L, . .., L,, be meta-cyclic fields of type F over P with a common
maximally abelian intermediate field K, and M be their composite. If (L; : K)
=1 for 1<i<m, we can combine our result with Nehrkorn's result on the
class groups of abelian fields of prime exponent to study the structure of &x.
In particular this can be applied to a Kummer’s field M=P(¢, Vai, . .., Vam)
where ai, . .., am are arbitrary elements of P*, and, as will be shown in §3,
we can reduce the study of &x to the study of the class groups of fields of type
P("W«) (a €P) in the sense of Ihx-isomorphism, where K =P(¢;). In particu-
lar, we shall show that, if the class number of the cyclotomic field (&) is
equal to 1, there exist an infinite number of Kummer’s fields (in Kummer’s
original sense) whose class groups are (/- 1)-fold direct products of some

abelian groups.

§ 1. Meta-cyclic groups of type F
Let & be a meta-cyclic group of type F and &, £ be the subgroups with
the same meaning as in the introduction. Denote by s, ¢ their orders and by

s, v their generators respectively. Put

ot = 6%, 1<ass-1.
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Then the structure of & is perfectly determined by s, ¢, and . Let us call
(s, t, @) an invariant of @. (Note that, for given &, « is not always determined
uniquely. It may change by taking another generator of ¥).

As for the structure of &, we have

Lemma 1. Let & be a meta-cyclic group of type F with an invariant (s, t, @)
and with subgroups S, T as above. Then I is a complete system of representa-

tives of 8/E, the commutator group D(®) of ® coincides with €, and we have
(a'—1,s)=1  for 1<i<t—1

Proof. By the definition of type F, we obtain =83 and SNT={¢}).

Therefore 8/Z is isomorphic to ¥ and the first assertion is clear. Next, as
rig™ = plglati for 1<:<t-1, 1551,

we obtain by the definition of type F

(ai-1
g

Y, for 1Si<t-1 1=j<s—1,

and so (a'—1,s)=1 for 1<i<t—1 Finally it is clear that D(®) C &. On

the other hand, because  'sto™'=¢"""' is a generator of &, & is contained in

D{®), hence coincides with D(®). This completes our proof.

LEMMA 2. Let (s, t, @) be an invariant of a meta-cyclic group & of type F.

For any prime divisor p of s, we have

p=1 (mod t).
In particular we have

(s, 1) =1.

Proof. Let S, be the (only) subgroup of S of order p. Because & is a
normal subgroup of @, any conjugate of S, is contained in & and so coincides
with S,. Thus S, is a normal subgroup of . Now we divide &, into conju-
gate classes. It can easily be seen from Lemma 1 that the centralizer of any
element of €, other than ¢ coincides with &. Therefore every class of &, other
than the class of the identity contains just ¢ elements, from which follows the
assertion of the lemma.

We shall now study the structure of a finite multiplicative abelian group &
which has a meta-cyclic group of type F as operator domain.

The identity of & will be denoted by 1. Assume that the identity of &
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operates on § as the identity mapping and that for any ¢;, o€ ® and for C= &
CPIPZ — (CPL)Pz_

For any element C of § and for any element o of & of order m, we denote
cHrr ™ by N, C

As in [4], we put ,R={Cef®|N,C=1} and &, ={Cef[C*' =1} for any
element p of @. Let 4 be the product of s and of the order of &, and denote
by R, the subgroup of & of all the elements whose orders contain only prime

divisors of .
LemMa 3. If C€ & and C'™° € R,, we must have

CeR..
Proof. As

N, C=C"o" 7" e @, C Ry
we obtain by the assumption
C'e Ry
and therefore
Cefy,
which was to be proved.

The following two theorems are generalizations of Theorem 3 and Theorem
4 in [4] respectively.

TuEOREM 1. For any finite abelian group & with a meta-cyclic group & of

tvpe F as operator domain we have
=1
N g-ioift = {1}.
=0 i

Here 1 is defined as above. In particular, if 8, = {1}, we have

t-1
N o-izoif = {1}.
i=0

In this case ® need not be finite.

THaEOREM 2. Dually to theorem 1, the product of subgroups S, Ks-1z0, . .

Ro-tt-1z0t-1 28 p-isomorphic to their direct product. If K,= {1}, “u-isomorphic”

can be replaced by “isomorphic” and in this case { need not be finite.

Proof of Theorem 1 and Theorem 2. If &, ={1}, the proof of Theorem 3
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and Theorem 4 in [4] can be word for word applied here by using Lemma 1
in the present paper instead of Lemma 2 in [4]. In the case where £, {1},
replace ® by its subgroup & of all the elements whose orders are prime to s,
then we can apply the above results to this &, because (&), = {1} by Lemma 3.

Thus we obtain the assertions to be proved.

§ 2. Structure of the absolute ideal class groups of meta-cyclic fields of
type F

First we shall give a generalization of Theorem 2 in [4].
LemMa 4. For any cyclic field Bk, ar i is a multiple of he/ (B NE° : k).

Proof. Let pi, ..., b, be the prime divisors in %k ramifying in %/, and e,
. ., ex be their ramification exponents. The number of ambigous classes of
k'/k is given by
heIle;
TR Lot S
= (B RY (22 N(0))
where ¢ stands for units in &, and ¢ for elements in % whose norms N(6)

= Ny (8) are units in £ Our lemma asserts that
I1e;
i=1

(' FNEY(e: N(6))

is an integer. Now a unit ¢ in % is the norm of an element in %' if and only if

(& f;/k):l for 1=j=u

Because of the product formula of norm residue symbol we can replace these #

equations by arbitrary # —1 of them. As the number of distinct values taken

’

by ( & f'/k ) when ¢ runs over all the units in % is a divisor of e;, T1ei/(¢: N(§))
7

is a multiple of each e;, hence is a common multiple of e, . . ., ex. On the

other hand, the Galois group of Z'/(k' N k°) is generated by the inertia groups
of vy, ..., d,. As E'/k is cyclic, its order is the least common multiple of e,
., ex. Thus fle,- is divisible by (k' : ' N E°) (¢ : N(#)). This completes
our proof. -
Now let L/P be a meta-cyclic field of type F with the Galois group &, and

K, 2 be the intermediate fields corresponding to 3, T respectively. Because of
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Lemma 1 K is characterized as the maximally abelian intermediate field of L/P.

LemMmA 5. The Galois group of LN 2°/2 is canonically isomorphic to that
of KNP°/P. In particular we have

(LNQ°: 2)=(KNP°:P).

Proof. Because (KN P°)Q is an unramified extension of 2 contained in L.
it is a subfield of LN Q°. Moreover, as KN Q=P, the Galois group of
(KN P°)Q/Q is canonically isomorphic to that of KN P°/P. Hence we have
only to prove

(KNP°:PY=(LNL°:Q),

for it implies (K NP°)2 =L N 2°. Let 3, be the subgroup of I corresponding
to LN Q°. If ;=T ~3,, all the conjugates of r; do not belong to the inertia
group of any prime divisor in L with respect to P. Therefore the inertia group
of an arbitrary prime divisor in L with respect to P is contained in &%, and
the intermediate field of K/P corresponding to €%, is unramified over P. As
this field is contained in K M P° and the order of &%, is equal to s(L : L N 0°),
we obtain in fact

st

(KNP°: P)= S(L L"ﬁ:qa) = (Lf\ 0° gy,

Now put 2; = 2° and denote by 97 and L° respectively the maximum inter-
mediate fields of 29/9; and of L°/L such that the degrees (27 : ©;) and (L° : L)

are prime to shy. With these notations we can state our main result as follows:

TueoREM 3. 1. The fields LQ°, L2°, . .., L2-, are independent over L, and
their composite coincides with L°.
=1 5
2. =11 SPL/g)i = Sé'(l,/lgg.
Shigi=0

Here S0, is she-isomorphic to a subgroup §o of Ko such that Sao/$o is cyclic
and of order (KN P° : P).

-t
3. The rational number hL{ (Kﬁ%" . P) } contains only prime divisors of

ShK.

In the case where arx =1, we can replace 97 by 27 and L° by L° in 1, and

shx by 1 in 2 and 3.

We can perform the proof of this theorem quite in the same manner as in
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the proof of the main theorem in [4] by using Theorem 1 and Theorem 2 in
this paper instead of Theorem 3 and Theorem 4 in [4], and Lemma 4 in this
paper i_nstead of Theorem 2 in [4]. Thereby we have only to notice that a
prime divisor of ayx divides shx, and that (LN QE°: 2)=(KNP°:P) by
Lemma 5.

It is easy to see that absolute class fields such as were treated in [4] are
meta-cyclic fields of type F. Conversely, if L/P is a meta-cyclic field of type
F with the maximally abelian intermediate field K and L is the absolute class
field of KX, we must have ag,p = 1. For, as is seen from the proof of Lemma 1,
the centralizer of r coincides with . If we regard ¥ as the Galois group of
K/P, this implies because of Artin’s reciprocity law that no absolute class other
than the principal class in & is invariant by .

There are another kind of meta-cyclic fields of type F obtained in a natural
way, that is, fields generated by meta-cyclic equations of prime degree. The

case of binomial equations of prime degree will be treated in the next section.

§3. Application to Kummer’s fields with a prime exponent
Theorem 3 in §2 can be applied to the splitting field L of a binomial equation

¥ —a=0, asP”

with respect to P. The extension L/P is in fact meta-cyclic of type F, since
L is generated by arbitrary two of the roots of this binomial equation. The
maximally abelian intermediate field of L/P is K =P{¢;). Hence we can reduce
the study of the class group of the field L to the study of that of the field
P('Y a ) in the sense of lhx-isomorphism. (Note that /kx depends only on [ and

the ground field P, and not on «.) In particular we have

THEOREM 4. Assume that the class number of the cyclotomic field Q(&;) is
equal to 1. Then, if a prime number q has the order | —1 in the reduced residue
class group mod I°, the class group of the field Q(%, 'V q) is isomorphic to the
(1—1)-fold direct product of that of the field QN q).

Proof. Put K=Q(&) and L=Q(, Vq). As KNQ°=Q, it suffices to
prove that one and only one prime divisor in K ramifies in L. Then we shall
obtain ayx =1 (cf. §3, [4]). Since ¢ is a primitive root mod /, the prime ideal

(@) in @ remains prime in K. Moreover the prime divisor [ of (!) in K does
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not ramify in L. For g is I-primary for { by the criterion XI in Hasse [1], §9,
considering that g is an I-th power residue mod !% hence @ fortiori mod (9%,
Thus the prime divisor ramifying in L/K is only (g). This completes our proof.

Now let K be anew an algebraic number field of finite degree,and L,, . . . ,
L,, be independent cyclic extensions of degree / over K. Put M=L, - Ly
and denote by Li, . . ., Lmu, Lm+1, ..., Ly n intermediate fields of degree I of
M/K, where n=(I"-1)/(I-1).

Then, by a theorem in Nehrkorn [2], we have

Sy = H R,

lhgi=1

(In truth we have a somewhat stronger assertion. We can regard $x as a sub-

group of & and of R, in the sense of /-isomorphism. In this sense we have
Ru/fx El’ _];[1914-/31\'-

For the proof of this result, see Kuroda [3].) In the case where K is a cyclic
extension of P, and each L; is a meta-cyclic extension of P of type F with the
maximally abelian intermediate field X, we can further reduce the class groups

R, by Theorem 3 in the sense of lhk-isomorphism. In particular we can apply

this reduction to the class group of a Kummer’s field P(&, Vau, . . ., ‘Vam) with
the exponent /, where «y, . . ., amw=P”. In this way we have

THEOREM 5. Let ai, . . ., an be elements of P* multiplicatively independent
modulo P*', and denote by 2., ..., Q. all the distinct fields ( =P) of form
P(Vaf - - - ai) where n=1"—1)/(I—1) and %\, . . . , ¥m be integers. More-
over, put K=P(¢) and d= (K : P). Then, for the class group of the Kummer's
field M=P(¢, Nau, ..., Vam), we have

Y~ - !
fu = Hﬁgi).

lhgi=1

Here lhk depends only on [ and the ground field P, and not on oy, . . ., am.
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