UNITARY REPRESENTATIONS OF SOME LINEAR GROUPS II

SEIZÔ ITÔ

§0. Introduction. In his preceding paper [2], the author determined the types of irreducible unitary representations and cyclic unitary representations of the group of all euclidean motions in 2-space E^2 . The purpose of the present paper is to determine the types of irreducible unitary representations and cyclic ones of the group of all euclidean motions in *n*-space E^n for $n \ge 3$.^{1),2)} In this paper, we shall make use of the results of the preceding paper [2], but notations are independent of those in [2].

§1. Preliminaries and main theorems. Let G be the group of all euclidean motions in *n*-space E^n . Then G has a compact subgroup $K \cong SO(n)$ and a normal subgroup V isomorphic to the vector group R^n , and

(1.1)
$$\begin{cases} \mathbf{G} = \mathbf{V} \cdot \mathbf{K}, \quad \mathbf{V} \cap \mathbf{K} = \{e\} \quad (e = \text{the identity of } \mathbf{G}) \\ \mathbf{G}/\mathbf{V} \cong \mathbf{K}. \end{cases}$$

Let X be the character group of V, and χ_0 be the identity of X; then $X \cong R^n$. Hereafter g, g', ... denote elements of G, especially a, b, c, ... of K, x, y, ... of V; and χ, χ', \ldots elements of X. (χ, x) denotes the value of character χ at $x \in V$. We denote by M_a the orthogonal matrix which realize the element $a \in K$ and by M_a^* its conjugate matrix, and define that $M_a x$ means to operate M_a to x as a vector in R^n while ax and xa mean the multiplications as elements of the group G. We shall denote briefly χ_a instead of $M_a^* \chi$. Then, if

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
, $\chi = (\chi_1, \ldots, \chi_n)$ and $M_a = \begin{pmatrix} a_{11} \ldots a_{1n} \\ \vdots \\ a_{n1} \ldots a_{nn} \end{pmatrix}$,

Received August 12, 1952.

¹⁾ The author wrote in [2] that it seemed to be difficult to solve such problem for $n \ge 3$. But he could solve this problem after he finished the proof-reading of the paper [2].

²⁾ Prof. G. W. Mackey kindly informed to the author that the result of [2] was inculuded in the result of his paper [3] which the author had overlooked. Recently more general cases have been treated in [4] and [5]. However, the results of the papers [3], [4] and [5] seem to be not so explicit as the result of our present paper.

we have

$$(\chi, M_a x) = (\chi a, x) = \exp(\sqrt{-1}\sum_{ij}a_{ij}\chi_i x_j).$$

 $\widetilde{X} = X - \langle \chi_0 \rangle$ is the product space of the unit sphere $S = S^{n-1}$ in \mathbb{R}^n and $T = \{0 \le t \le \infty\}$ as topological spaces; we denote $\chi \in \widetilde{X}$ by $\chi = \langle s, t \rangle$ ($s \in S$, $t \in T$). Then $\chi a = \langle sa, t \rangle$ by the above definitions.

S may be considered as the factor space \mathbf{K}/\mathbf{K}' of right \mathbf{K}' -cosets where $\mathbf{K}' \cong SO(n-1)$. Hereafter a', b', c', \ldots denote elements of \mathbf{K}' . We shall denote by s_b the image of $b \in \mathbf{K}$ under the natural mapping of \mathbf{K} onto S. For every $s \in S$, we fix an inverse image c_s of s under the natural mapping, where we do not demand the B-measurability etc. of the mapping $s \rightarrow c_s$. Every $b \in \mathbf{K}$ is uniquely expressible in the form $b = b'c_s, b' \in \mathbf{K}'$, as far as the system $\{c_s\}$ is fixed. We shall consider the Haar measures db on \mathbf{K} and db' on \mathbf{K}' and the measure ds on S invariant under \mathbf{K} such that

$$(1.2) ds \cdot db' = db.31$$

Let $\{\tilde{U}^{\lambda}(a') = \|\tilde{u}_{pq}^{\lambda}(a')\|$ $(p, q = 1, \ldots, \tilde{n}(\lambda)); \lambda = 1, 2, \ldots\}$ be a system of irreducible unitary representations of the compact group **K'** constructed by selecting a unitary representation from each class of mutually equivalent irreducible representations of **K'**, and $\{U^{\alpha}(a) = \|u_{ij}^{\alpha}(a)\| (i, j = 1, \ldots, n(\alpha)); \alpha = 1, 2, \ldots\}$ be a system of irreducible unitary representations of the compact group **K** constructed by the same method as above. Then $U^{\alpha}(a'), a' \in \mathbf{K'}$, may be considered as a unitary representation of **K'** and hence, by the complete reducibility, we may assume that $U^{\alpha}(a')$ is of the form:

(1.3)
$$U^{\alpha}(a') = \begin{pmatrix} \widetilde{U}^{\lambda(\alpha,1)}(a') & 0 \\ \cdot & \cdot \\ 0 & \cdot \\ 0 & \cdot \\ \widetilde{U}^{\lambda(\alpha,m_{\alpha})}(a') \end{pmatrix}.$$

We fix such systems $\{U^{\alpha}(a)\}$ and $\{\tilde{U}^{\lambda}(a')\}$. We denote the number $\tilde{n}(\lambda(\alpha, 1))$ + ... + $\tilde{n}(\lambda(\alpha, m-1))$ by $N_m(\alpha)$ or simply by N_m $(m=1, \ldots, m_{\alpha})$. Hereafter *i*, *j*, *k* run over $\{1, \ldots, n(\alpha)\}$ while *p*, *q*, *r* — $\{1, \ldots, \tilde{n}(\lambda(\alpha, m))\}$ for α and *m* being considered. Then, if $\mu = \lambda(\alpha, m)$, we have

(1.4)
$$u^{\alpha}_{N_{m}+p,j}(b'a) = \sum_{a} \tilde{u}^{\mu}_{pq}(b') u^{\alpha}_{N_{m}+q,j}(a) \qquad (by \ (1.3)).$$

We put for any λ and p

$$\mathfrak{S}_{p}^{\lambda} = \left\{ u_{\mathfrak{N}_{m}+p,j}^{\alpha}(b) \middle| \begin{array}{c} j=1,\ldots, \ n(\alpha), \ \mathrm{and} \ \langle \alpha, \ m \rangle \ \mathrm{runs} \ \mathrm{over} \right\} \\ \mathrm{all \ couples \ such \ that} \ \lambda(\alpha, \ m) = \lambda \end{array} \right\}$$

and

$$\mathfrak{H}_p^{\lambda} = \mathfrak{L}[\mathfrak{S}_p^{\lambda}]$$

80

³⁾ For the precise meaning of this equality, see [6], pp. 42-45.

where $\mathfrak{Q}[\mathfrak{S}]$ denotes the closed linear subspace of $L^2(\mathbf{K})$ spanned by \mathfrak{S} . Then $\mathfrak{S}_{p}^{\lambda}$ is a complete orthogonal basis in $\mathfrak{H}_{p}^{\lambda}$, and

(1.5)
$$L^{2}(\mathbf{K}) = \bigoplus_{\lambda=1}^{\infty} \bigoplus_{p=1}^{\widetilde{n}(\lambda)} \mathfrak{H}_{p}^{\lambda}.$$

Making use of these notions, we state here the main theorems.

THEOREM 1.1. Fix an arbitrary element $t \in T$ and natural numbers λ and p $(1 \leq p \leq \tilde{n}(\lambda))$, and define unitary operators $U_t(g)$, $g \in G$, in the Hilbert space \mathfrak{H}_p^{λ} by

(1.6)
$$U_t(g)f(b) = U_t(xa)f(b) = (\langle s_b, t \rangle, x)f(ba) \quad (f \in \mathfrak{H}_p^{\lambda} \subset L^2(\mathbf{K}))$$

for $g = xa^{(4)}$ Then $\{\mathfrak{H}_p^{\lambda}, U_t(g)\}$ is an irreducible unitary representation of **G**; and, for any sequence of complex numbers: $\{\mathfrak{F}_j^{am}/j=1,\ldots,n(\alpha); \lambda(\alpha,m)=\lambda\}$ such that $\sum_{\lambda(\alpha,m)=\lambda} \sum_{j} |\mathfrak{F}_j^{am}|^2 = 1$, the function

(1.7)

$$\begin{aligned}
\varphi(g) &\equiv \varphi(xa) \\
&= \int_{S} \langle \langle s, t \rangle, x \rangle \Big\{ \sum_{\lambda(\alpha, m) = \lambda(\beta, l) = \lambda} \sum_{jk} \xi_{j}^{\alpha m} \overline{\xi_{k}^{\beta l}} \times \\
&\times \sum_{ri} u_{Nm+r, i}^{\alpha}(c_{S}) u_{ij}^{\alpha}(a) \overline{u_{Nl+r, k}^{\beta}(c_{S})} \Big\} ds^{5}
\end{aligned}$$

is a normal elementary⁶⁾ $p. d.^{7)}$ function on **G** corresponding to the above irreducible unitary representation.

1.2. For any fixed t and λ , the unitary representations $\{\mathfrak{H}_p^{\lambda}, U_t(g)\}$ (defined in 1.1). $p = 1, \ldots, \tilde{n}(\lambda)$, are mutually unitary equivalent; while $\{\mathfrak{H}_p^{\lambda}, U_t(g)\}$ and $\{\mathfrak{H}_q^{\mu}, U_t(g)\}$ are not mutually unitary equivalent for any p and q if $\lambda \neq \mu$.

1.3. If $t_1 \neq t_2$, then $\{\mathfrak{H}_p^{\lambda}, U_{t_1}(g)\}$ and $\{\mathfrak{H}_q^{\mu}, U_{t_2}(g)\}$ are not mutually unitary equivalent for any λ , μ and p, q.

1.4. Put $\tilde{\mathfrak{H}}_k^r \equiv \mathfrak{L}[\{u_{kj}^a(b) \mid j=1,\ldots,n(\alpha)\}]$ for any fixed α and k $(1 \leq k \leq n(\alpha))$, and define the unitary operator U(g) in $\tilde{\mathfrak{H}}_k^a$ by

(1.8)
$$U(g)f(b) = U(xa)f(b) = U(a)f(b) = f(ba) \quad (f \in \tilde{\mathfrak{H}}_k^a \subset L^2(\mathbf{K}))$$

for g = xa. Then $\{\tilde{\mathfrak{P}}_{k}^{\sharp}, U(g)\}$ is an irreducible unitary representation of G; and

(1.9)
$$\boldsymbol{\varphi}(g) = \boldsymbol{\varphi}(xa) = \sum_{ij} \boldsymbol{\xi}_i \, \overline{\boldsymbol{\xi}}_j \, \boldsymbol{u}_{ij}^a(a), \quad \sum |\boldsymbol{\xi}_i|^2 = 1,$$

is a corresponding normal elementary p. d. function on G.

⁴⁾ Any element $g \in G$ is uniquely expressible in this form by virture of (1.1).

⁵⁾ The function in $\{ \}$ in the right-hand side is a B-measurable function of s independent of the special choice of the system $\{c_s\}$; — see Lemma 1 (§ 2).

⁶⁾ See [1], § 15.

 $^{^{(}i)}$ p. d. = positive definite.

1.5. $\{\tilde{\mathfrak{g}}_k^a, U(g)\}, k = 1, \ldots, n(\alpha)$, are mutually unitary equivalent for any α ; while, if $\alpha \neq \beta$, $\{\tilde{\mathfrak{g}}_k^a, U(g)\}$ and $\{\tilde{\mathfrak{g}}_j^a, U(g)\}$ are not mutually unitary equivalent for any k and j.

1.6. Every irreducible unitary representation of **G** is unitary equivalent to one of the above stated types. Consequently any normal elementary p. d. function on **G** is expressible in the form (1.7) or (1.9).

THEOREM 2. Let σ be the Haar measure on the compact group K and ρ be a measure on T such that $\rho(T) < \infty$, and define the unitary operator U(g), $g \in \mathbf{G}$, in the Hilbert space $L^2 \equiv L^2(\mathbf{K} \times T, \sigma \otimes \rho)^{\otimes}$ by

$$U(g)f(b, t) = U(xa)f(b, t) = (\langle s_b, t \rangle, x)f(ba, t) \quad (f \in L^2)$$

for g = xa.

2.1. Let Δ_{ν}^{λ} , $\nu = 1, \ldots, N(\lambda)$ ($\leq \infty$); $\lambda = 1, 2, \ldots$, be subsets of T such that $\rho(\Delta_{\nu}^{\lambda}) > 0$, and $\mathfrak{M}_{\nu}^{\lambda}$ be the totality of functions $\varphi(b, t)$ on $\mathbf{K} \times \Delta_{\nu}^{\lambda}$ of the form:

$$\varphi(b, t) = \sum_{\lambda(\alpha, m) = \lambda} \sum_{j} u^{\alpha}_{Nm+1, j}(b) \varphi^{\alpha m}_{j}(t) \quad (convergence \ in \ L^2)$$

where

$$\sum_{\lambda(\alpha,m)=\lambda}\sum_{j}\int_{\Delta_{\nu}^{\lambda}}|\varphi_{j}^{\alpha m}(t)|^{2}\,d\rho(t)<\infty.$$

Then \mathfrak{M}^{λ} is a closed linear subspace of L^2 invariant under $U(g), g \in \mathbf{G}$.

2.2. Let $\{f_{\nu j}^{\alpha m}(t)/j=1,\ldots,n(\alpha); \lambda(\alpha,m)=\lambda; \nu=1,\ldots,N(\lambda); \lambda=1, 2,\ldots\}$ be a sequence of functions satisfying:

- $1^{\circ}) \sum_{\lambda} \sum_{\nu} \sum_{\lambda(\alpha, m)=\lambda} \sum_{j} \int_{\Delta_{\nu}^{\lambda}} |f_{\nu j}^{\alpha m}(t)|^{2} d\rho(t) < \infty,$ $2^{\circ}) \sum_{\lambda(\alpha, m)=\lambda} \sum_{j} |f_{\nu j}^{\alpha m}(t)|^{2} > 0 \text{ for } \rho - a. a. t \in \mathcal{A}_{\nu}^{\lambda} \quad (a. a. = almost all),$
- 3°) for any fixed λ , there is no function $\psi_{\nu\nu'}(t)$ for $\nu \neq \nu'$ as follows: $f_{\nu j}^{am}(t) = \psi_{\nu\nu'}(t) f_{\nu' j}^{am}(t)$ for all j and all $\langle \alpha, m \rangle (\lambda(\alpha, m) = \lambda)$ for $\rho - a$. $a. t \in \mathcal{A}_{\lambda}^{\lambda} \cap \mathcal{A}_{\lambda'}^{\lambda};$

and put

$$f_{\vee}^{\lambda}(b, t) = \sum_{\lambda(\alpha, m) = \lambda} \sum_{j} u_{N_m+1, j}^{\alpha}(b) f_{\nu j}^{\alpha m}(t) \quad (convergence \ in \ L^2).$$

Put $\mathfrak{N}^{\alpha}_{\nu} = \tilde{\mathfrak{G}}^{\alpha}_{1}$ (defined in Theorem 1.4) for $\nu = 1, \ldots, N'(\alpha)$ ($\leq \infty$) and define unitary operators $U(g), g \in \mathbf{G}$, by (1.8) and let $\{\xi^{\alpha}_{\nu j} | j = 1, \ldots, n(\alpha); \nu = 1, \ldots, N'(\alpha), \alpha = 1, 2, \ldots\}$ be a sequence as follows:

$$4^{\circ}) \quad \sum_{\alpha} \sum_{\nu} \sum_{j} |\xi^{\alpha}_{\nu j}|^{2} < \infty,$$

⁸⁾ $\sigma \otimes \rho$ denotes the product measure of σ and ρ .

- 5°) $\sum_{j} |\xi_{\nu j}^{\alpha}|^2 > 0$ for any α and ν ,
- 6°) for any fixed α , there is no constant $\eta_{\nu\nu'}$ for $\nu \neq \nu'$ such that $\xi^a_{\nu j} = \eta_{\nu\nu'} \xi^a_{\nu j}$ for any j;

and put

$$h^{\alpha}_{\nu}(b) = \sum_{j} \xi^{\alpha}_{\nu j} u^{\alpha}_{1j}(b).$$

Let $\{\lambda\}'$ and $\{\alpha\}'$ be subsequences of the sequence $\{1, 2, \ldots\}$ and define the unitary representation $\{\mathfrak{H}, U(g)\}$ of G as the direct sum;

(1.10)
$$\{\mathfrak{H}, U(g)\} = \left[\bigoplus_{\langle \lambda \rangle'} \bigoplus_{\nu} \{\mathfrak{M}^{\lambda}_{\nu}, U(g)\} \right] \oplus \left[\bigoplus_{\langle \alpha \rangle'} \bigoplus_{\nu} \{\mathfrak{N}^{\alpha}_{\nu}, U(g)\} \right]$$

and put

(1.11)
$$f^{0} = \sum_{\langle \lambda \rangle'} \sum_{\nu} f^{\lambda}_{\nu} + \sum_{\langle \alpha \rangle'} \sum_{\nu} h^{\alpha}_{\nu}.$$

Then $\{\mathfrak{H}, U(g), f^0\}$ is a cyclic unitary representation of G; the corresponding p. d. function $\Psi(g)$ is expressible as follows:

$$\Psi(g) \equiv \Psi(xa)$$

$$= \sum_{\langle \lambda \rangle'} \sum_{\nu} \int_{\Delta_{\nu}^{\lambda}} d\rho(t) \int_{S} \left\{ \sum_{\lambda(\alpha, m) = \lambda(\beta, l) = \lambda} \sum_{j,k} f_{\nu j}^{\alpha m}(t) \overline{f_{\nu k}^{\beta l}(t)} \times (\langle s, t \rangle, x) \sum_{ri} u_{N_{m}+r,i}^{\alpha}(c_{s}) u_{ij}^{\alpha}(a) \overline{u_{N_{l}+r,k}^{\beta}(c_{s})} ds + \sum_{\langle \alpha \rangle'} \sum_{\nu} \sum_{j} \xi_{\nu j}^{\alpha} \overline{\xi_{\nu j}^{\alpha}} u_{ij}^{\alpha}(a).$$

2.3. If we replace $u_{N_m+1,j}^{\alpha}(b)$ in the definition of $\mathfrak{M}_{\nu}^{\lambda}$ in 2.1 by $u_{N_m+p,j}^{\alpha}(b)$ and $\tilde{\mathfrak{H}}_{1}^{\alpha}$ in 2.2 by $\tilde{\mathfrak{H}}_{k}^{\alpha}$ where p may depend on ν and $\lambda = \lambda(\alpha, m)$, and k—on α and ν , then we obtain a cyclic unitary representation of \mathbf{G} which is unitary equivalent to the original one.

2.4. Every cyclic unitary representation of G is unitary equivalent to that of above stated type, and any p. d. function on G is expressible in the form (1, 12).

THEOREM 3. (Generalization of Bochner's theorem) Any p. d. function $\Psi(g)$ on G is expressible by means of normal elementary p. d. functions in the following form:

$$\Psi(g) = \sum_{\lambda=1}^{\infty} \sum_{\nu=1}^{\infty} \hat{\varsigma}_{\nu}^{\lambda} \int_{\Delta_{\nu}^{\lambda}} \boldsymbol{\emptyset}_{\nu}^{\lambda}(g; t) d\rho(t) + \sum_{\alpha=1}^{\infty} \sum_{\nu=1}^{\infty} \eta_{\nu}^{\alpha} \boldsymbol{\emptyset}_{\nu}^{\alpha}(g)$$

where $\Phi_{\nu}^{\lambda}(g, t)$ and $\Phi_{\nu}^{\alpha}(g)$ are normal elementary p. d. functions (cf. (1.7), (1.9) and (1.12)), $\Delta_{\nu}^{\lambda} \subset T$ and $\hat{\xi}_{\nu}^{\lambda}, \eta_{\nu}^{\alpha} \ge 0, \sum_{\lambda \neq \nu} \hat{\xi}_{\nu}^{\lambda} \rho(\Delta_{\nu}^{\lambda}) < \infty, \sum_{\alpha \neq \nu} \eta_{\nu}^{\alpha} < \infty$.

We shall prove these theorems in \$4 by making use of results of \$\$2 and 3.

Remark. The argument in this paper may be applied to any Lie group G of the following type: G has a closed normal subgroup V isomorphic to a vector group and the factor group G/V is compact.

§2. Unitary representations of G in $L^2(\mathbf{K})$. We fix an element $t_0 \in T$ and denote $(\langle s, t_0 \rangle, x)$ by (s, x) briefly, and define unitary operators U(g), $g \in \mathbf{G}$, in the Hilbert space $L^2(\mathbf{K})$ as follows:

$$U(g)f(b) = U(xa)f(b) = (s_b, x)f(ba) \quad (f \in L^2(\mathbf{K})) \quad \text{for} \quad g = xa.$$

We shall use notations defined in §1, but, in this paragraph, (.,.) and $\|.\|$ denote respectively the inner product and the norm in $L^2(\mathbf{K})$.

The following lemma may be verified by making use of (1.4) and the orthogonality-relation of the system $\{\tilde{u}_{pq}^{\lambda}(b')\}$ in $L^{2}(\mathbf{K}')$.

LEMMA 1. For any $a \in \mathbf{K}$ and any $s \in S$, it holds that

$$=\begin{cases} \sum_{k'} u_{N_m+p,j}^{\alpha}(b'c_s a) \overline{u_{N_l+q,k}^{\dagger}(b'c_s)} db' \\ = \begin{cases} \sum_{r_i} u_{N_m+r,j}^{\alpha}(c_s) u_{ij}^{\alpha}(a) u_{k,N_m+r}^{\alpha}(c_s^{-1}) / \tilde{n}(\lambda(\alpha, m)) \\ & if \quad \lambda(\alpha, m) = \lambda(\beta, l) \quad and \quad p = q, \\ 0 & if \quad not; \end{cases}$$

and consequently, for any a, the function of the form in the right-hand side of above equality is a B-measurable function of s independent of the special choice of the system $\{c_s\}$ (see §1).

Next, if we put $\overline{\mathfrak{H}}_{p}^{\lambda} = \mathfrak{Q}[\{U(g)f \mid f \in \mathfrak{H}_{p}^{\lambda}, g \in \mathbf{G}\}]$, then we have

LEMMA 2. If $\lambda \neq \mu$ or $p \neq q$, then $\overline{\mathfrak{F}}_{p}^{\lambda}$ and $\overline{\mathfrak{F}}_{q}^{\mu}$ are mutually orthogonal in $L^{2}(\mathbf{K})$.

Proof. It is sufficient to prove that $(U(g)\varphi, \psi) = 0$ for any $\varphi \in \mathfrak{H}_p^{\lambda}$, $\psi \in \mathfrak{H}_q^{\mu}$ and any $g \in \mathbf{G}$. φ, ψ and g are expressible in the form:

$$\varphi = \sum_{\lambda(\alpha, m) = \lambda} \sum_{j} \hat{\varsigma}_{j}^{\alpha m} u_{N_{m}}^{\alpha} p_{j}, \quad \psi = \sum_{\lambda(\beta, l) = \mu} \sum_{k} \eta_{k}^{\beta l} u_{N_{l}+q,k}^{\beta}, \quad g = xa.$$

Hence we have

$$(U(g)\varphi, \psi) = \int_{\mathbf{K}} (s_b, x)\varphi(ba)\overline{\psi(b)}db$$
$$= \int_{s} (s, x)ds \int_{\mathbf{K}'} \varphi(b'c_s a)\overline{\psi(b'c_s)}db' = 0$$

by (1.2) and Lemma 1, q.e.d.

COROLLARY. $\overline{\mathfrak{H}}_{p}^{\lambda} = \mathfrak{H}_{p}^{\lambda}$; consequently $\mathfrak{H}_{p}^{\lambda}$ is a subspace of $L^{2}(\mathbf{K})$ invariant under $U(g), g \in \mathbf{G}$.

This fact is proved from (1.5) and Lemma 2.

LEMMA 3. For any given λ and p, we fix a couple $\langle \alpha, m \rangle$ such that $\lambda(\alpha, m) = \lambda$ and put $k = N_m(\alpha) + p$. If $\varphi \in \mathfrak{H}_p^{\lambda}$ and if the p. d. function $(U(g)\varphi, \varphi)^{(9)}$ on \mathbf{G} is a minorant¹⁰ of the p. d. function $(U(g)u_{kk}^{\alpha}, u_{kk}^{\alpha})$, then $\varphi = \xi u_{kk}^{\alpha}, \xi$ being a complex number.

Proof. By the assumption and by Corollary of Lemma 2, there exists an element $\psi \in \mathfrak{H}_p^{\lambda}$ such that

(2.1)
$$(U(g)\varphi, \varphi) + (U(g)\psi, \psi) = (U(g)u_{kk}^{\pi}, u_{kk}^{\pi}),$$

especially, putting $g = a \in \mathbf{K}$, we have

$$\int_{\mathbf{K}} \varphi(ba) \overline{\varphi(b)} db + \int_{\mathbf{K}} \psi(ba) \overline{\psi(b)} db = u_{kk}^{\alpha}(a)/n(\alpha).$$

Each term of the left-hand side is p. d. function of $a \in \mathbf{K}$, while $u_{kk}^{a}(a)$ is an elementary p. d. function on **K**. Hence we have¹¹

(2.2)
$$\begin{cases} \int_{\mathbf{K}} \varphi(ba) \overline{\varphi(b)} db = \eta u_{kk}^{*}(a) / n(\alpha) \\ \int_{\mathbf{K}} \psi(ba) \overline{\psi(b)} db = (1 - \eta) u_{kk}^{*}(a) / n(\alpha) \end{cases}$$

On the other hand, φ is expressible in the form :

$$\varphi = \sum_{\lambda(\beta, l) = \lambda} \sum_{j} \hat{\varsigma}_{j}^{\beta l} u_{N_{l}+p,j}^{\beta}.$$

Hence it follows from the orthogonality-relation of $\langle u_{ij}^{*}(b) \rangle$ that

$$\int_{\mathbf{K}} \varphi(ba) \overline{\varphi(b)} db = \sum_{\lambda(\beta, 4) = \lambda} \sum_{ij} \hat{\varsigma}_{j}^{aj} \overline{\varsigma}_{i}^{aj} u_{ij}^{a}(a) / n(\beta).$$

From this equality and (2,2), we get

$$\sum_{l}^{\lambda_{(3,l)}=\lambda} |\hat{z}_{j}^{3l}|^{2} = \eta \delta_{\alpha\beta} \delta_{kj} \quad (\delta: \text{ Kronecker's delta})$$

where $\sum_{l}^{\lambda(3, l) = \lambda}$ means the summation for all l such that $\lambda(\beta, l) = \lambda$ for fixed β . Hence φ may be expressible as follows:

(2.3)
$$\varphi(b) = \sum_{l}^{\lambda(\alpha, l)=\lambda} \xi_{l} u^{\alpha}_{N_{l}+p, k}(b), \qquad \sum_{l}^{\lambda(\alpha, l)=\lambda} |\xi_{l}|^{2} = \eta.$$

Similarly we get

- ¹⁰) See [1], § 11; of couse, we do not mean the trivial one: the function identically equal to zero.
- ¹¹⁾ See Theorem 7 in [1].

⁹⁾ See [1], §7.

SEIZÔ ITÔ

(2.3')
$$\psi(b) = \sum_{l}^{\lambda(a, l)=\lambda} \eta_l u_{N_l+p, k}^{\alpha}(b), \qquad \sum_{l}^{\lambda(a, l)=\lambda} |\eta_l|^2 = 1 - \eta.$$

Consequently

(2.4)
$$\sum_{l=1}^{\lambda(\alpha, l)=\lambda} \{|\xi_l|^2 + |\eta_l|^2\} = 1.$$

If we put $g = x \in V$ in (2.1), we have (by (1.2))

$$\begin{split} \int_{s} (s, x) ds \int_{\mathbf{K}'} |\varphi(b'c_{s})|^{2} db' + \int_{s} (s, x) ds \int_{\mathbf{K}'} |\psi(b'c_{s})|^{2} db' \\ &= \int_{s} (s, x) ds \int_{\mathbf{K}'} |u_{kk}^{*}(b'c_{s})|^{2} db'. \end{split}$$

Since $\varphi(b)$ and $\psi(b)$ are continuous by (2.3) and (2.3'), and since $x \in V$ is arbitrary in the above equality, we obtain for any $s \in S$

$$\int_{\mathbf{K}'} |\varphi(b'c_s)|^2 db' + \int_{\mathbf{K}'} |\psi(b'c_s)|^2 db' = \int_{\mathbf{K}'} |\boldsymbol{u}_{kk}^{*}(b'c)|^2 db'$$

Putting $s = s_e$ (whence we may put $c_s = e$) in this equality, we have

(2.5)
$$\int_{\mathbf{K}'} |\varphi(b')|^2 db' + \int_{\mathbf{K}'} |\psi(b')|^2 db' = \int_{\mathbf{K}'} |u_{kk}^{\alpha}(b')|^2 db'$$
$$= \tilde{u}_{pp}^{\lambda}(e)/\tilde{n}(\lambda) \neq 0.$$

By (1.3) and by the assumption: $k = N_m(\alpha) + p$,

$$u^a_{N_l+p,k}(b') \equiv 0$$
 on **K'** for $l \neq m$.

Hence, from (2.3), (2,3') and (2.5), we get

$$|\hat{s}_m|^2 + |\eta_m|^2 = 1.$$

From this and (2.4), we obtain $\xi_l = \eta_l = 0$ for $l \neq m$, and hence $\varphi = \xi_m u_{N_m + \hat{p}, k}^{\alpha}$ by (2.3), q.e.d.

LEMMA 4. Let α , m and k be as in Lemma 3 for any given λ and p. Then $\{\mathfrak{H}_p^{\lambda}, U(g), u_{kk}^{\alpha}\}$ is a cyclic unitary representation of G.

Proof. For any β , l and any i, j $(1 \le i, j \le n(\beta))$ it holds that

$$u_{N_l+p,i}^{\mathfrak{s}} \in \mathfrak{Q}[\{U(a)u_{N_l+p,j}^{\mathfrak{s}} \mid a \in \mathbf{K}(\subset \mathbf{G})\}]$$

by the irreducibility of $U^{3}(a)$ as a representation of K. By virtue of this fact and Corollary of Lemma 2, it suffices to prove that $\lambda(\beta, l) = \lambda$ implies

(2.6)
$$u_{N_l+p,1}^{\beta} \in \mathfrak{Q}[\{U(g)u_{k_j}^{\alpha} \mid j=1, \ldots, n(\alpha); g \in \mathbf{G}\}].$$

Now, if $\lambda(\beta, l) = \lambda = \lambda(\alpha, m)$, then, by Lemma 1, the functions $\varphi_j(s)$ $(j = 1, \ldots, n(\alpha))$ defined by

86

$$\varphi_j(s) \equiv \widetilde{n}(\lambda) \int_{\mathbf{K}'} u_{Nl+p,1}^{\beta}(b'c_s) \cdot \overline{u_{Nm+p,j}^{\alpha}(b'c_s)} db'$$
$$= \sum_q u_{Nl+q,1}^{\beta}(c_s) u_{j,Nm+q}^{\alpha}(c_s^{-1})$$

are bounded B-measurable functions on S and it holds for any $r (1 \le r \le \tilde{n}(\lambda))$ and any $s \in S$ that

$$\sum_{j} u_{N_{m}+r,j}^{\alpha}(c_{s})\varphi_{j}(s) = \sum_{q} \sum_{j} u_{N_{m}+r,j}^{\alpha}(c_{s}) u_{j,N_{m}+q}^{\alpha}(c_{s}^{-1}) u_{N_{l}+q,1}^{\beta}(c_{s})$$
$$= \sum_{q} u_{N_{m}+r,N_{m}+q}^{\alpha}(e) u_{N_{l}+q,1}^{\beta}(c_{s}) = u_{N_{l}+r,1}^{\beta}(c_{s}).$$

Hence, by means of the relation: $u_{N_l+p, N_l+q}^{\beta}(b') = \tilde{u}_{pq}^{\lambda}(b') = u_{N_m+p, N_m+q}^{\alpha}(b')$, we get (for $b = b'c_s$)

$$u_{N_{l}+p,1}^{\mathfrak{g}}(b) = \sum_{r} u_{N_{l}+p,N_{l}+r}^{\mathfrak{g}}(b') u_{N_{l}+r,1}^{\mathfrak{g}}(c_{s})$$
$$= \sum_{ri} u_{N_{m}+p,N_{m}+r}^{\mathfrak{g}}(b') u_{N_{m}+r,j}^{\mathfrak{g}}(c_{s}) \varphi_{j}(s) = \sum_{j} u_{N_{m}+p,j}^{\mathfrak{g}}(b) \varphi_{j}(s).$$

On the other hand, there exist complex numbers $\xi_{j\nu}$ and elements $x_{j\nu}$ of V ($\nu = 1, \ldots, N(j)$) for any $\varepsilon > 0$ and every j such that

$$\int_{S} |\varphi_{j}(s) - \sum_{\nu} \xi_{j\nu} \cdot (s, x_{j\nu})|^{2} ds < \varepsilon^{2}/n(\alpha)^{2},$$

since $\varphi_j(s)$, $j = 1, \ldots, n(\alpha)$, are bounded and B-measurable on S. Therefore, by simple calculation, we get

$$\|u_{N_l+p,1}^{\beta}-\sum_{j\nu}\xi_{j\nu}U(x_{j\nu})\cdot u_{N_m+p,j}^{\alpha}\|<\varepsilon.$$

This result shows (2.6), q.e.d.

PROPOSITION 1. $\{\mathfrak{H}_{p}^{\lambda}, U(g)\}$ is an irreducible unitary representation of G for any λ and p $(1 \le p \le \tilde{n}(\lambda))$.

This proposition is clear by Corollary of Lemma 2, Lemmas 3 and 4, and Theorem 7 in [1].

COROLLARY. i) If a unitary operator U in \mathfrak{H}_p^{λ} is permutable with any U(g), $g \in G$, then $U = \xi I$, $|\xi| = 1$; consequently ii) If φ , $\psi \in \mathfrak{H}_p^{\lambda}$ and $(U(g)\varphi, \varphi) = (U(g)\varphi, \varphi)$ ψ) for any $g \in G$, then $\psi = \xi \varphi$, $|\xi| = 1$.

These are immediate results of Proposition 1.

PROPOSITION 2. For any fixed λ , the unitary representations $\{\mathfrak{H}_p^{\lambda}, U(g)\}, p = 1, \ldots, \tilde{n}(\lambda)$, are mutually unitary equivalent.

Proof. We fix a couple $\langle \alpha, m \rangle$ such that $\lambda(\alpha, m) = \lambda$. Then $\{\mathfrak{F}^{\lambda}_{p}, U(g), u^{\sigma}_{N_{m}+p,1}\}, p = 1, \ldots, \tilde{n}(\lambda)$, are cyclic unitary representations of G (by Lemma

SEIZÔ ITÔ

4). Hence it is sufficient to prove that p. d. functions $(U(g)u_{N_m+\hat{p},1}^{\alpha}, u_{N_m+\hat{p},1}^{\alpha}), p = 1, \ldots, \tilde{n}(\lambda)$, are mutually identical. For any $g = xa \in \mathbf{G}$, we have by (1.2) and Lemma 1

$$(U(g)u_{N_{m}+p,1}^{\alpha}, u_{N_{m}+p,1}^{\alpha}) = \int_{s} (s, x) ds \int_{\mathbf{K}'} u_{N_{m}+p,1}^{\alpha} (b'c_{s}a) \overline{u_{N_{m}+p,1}^{\alpha}(b'c_{s})} db'$$
$$= \int_{s} (s, x) \left\{ \sum_{qi} u_{N_{m}+q,i}^{\alpha} (c_{s}) u_{11}^{\alpha}(a) u_{1,N_{m}+q}^{\alpha}(c_{s}^{-1}) / \tilde{n}(\lambda) \right\} ds;$$

this is independent of p, q.e.d.

PROPOSITION 3. If $\lambda \neq \mu$, then the unitary representations $\{\mathfrak{H}_p^{\lambda}, U(g)\}$ and $\{\mathfrak{H}_q^{\mu}, U(g)\}$ are not mutually unitary equivalent for any p and q.

Proof. By Proposition 2, it suffices to prove this for p = q = 1. We denote the operator U(g) considered in \mathfrak{H}_1^{λ} and \mathfrak{H}_1^{μ} by $U_1(g)$ and $U_2(g)$ respectively. If $\{\mathfrak{H}_1^{\lambda}, U_1(g)\}$ is unitary equivalent to $\{\mathfrak{H}_1^{\mu}, U_2(g)\}$, then there exists a unitary transformation U of \mathfrak{H}_1^{λ} onto \mathfrak{H}_1^{μ} such that $U_2(g) = U \cdot U_1(g) \cdot U^{-1}$. We fix a couple $\langle \alpha, m \rangle$ such that $\lambda(\alpha, m) = \lambda$, and put $k = N_m(\alpha) + 1$. Then $u_{kk}^{\alpha} \in \mathfrak{H}_1^{\lambda}$ and $f = U \cdot u_{kk}^{\alpha} \in \mathfrak{H}_1^{\mu}$. The element f is expressible in the form : $f = \sum_{\lambda(\beta, 1) = \mu} \sum_{j} \mathfrak{L}_j^{\alpha} u_{N_l+1,j}^{\beta}$, and hence for any $\alpha' \in \mathbf{K}'$

$$(U_2(a')f, f) = \sum_{\lambda(\beta, l) = \mu} \sum_{i,j} \hat{\varsigma}_j^{\beta l} \tilde{\varsigma}_i^{\delta l} u_{ij}^{\mathfrak{g}}(a') / n(\beta)$$

= $\sum_{\mu q} \tilde{u}_{pq}^{\mu}(a') \sum_{\lambda(\beta, l) = \mu} \hat{\varsigma}_{N_l + q}^{\beta l} \tilde{\varsigma}_{N_l + p}^{\delta l} / n(\beta)$ (by (1.3)).

On the other hand

$$(U_2(a')f, f) = (U \cdot U_1(a') \cdot U^{-1}f, f)$$

= $(U_1(a')u_{kk}^a, u_{kk}^a) = \tilde{u}_{11}^{\lambda}(a')/n(\alpha).$

This is a contradiction, because $\lambda \neq \mu$ implies that $\tilde{u}_{pq}^{\mu}(a')$ and $\tilde{u}_{11}^{\lambda}(a')$ are mutually orthogonal in $L^2(\mathbf{K}')$ for any p and q, q.e.d.

§3. Unitary representations of G in $L^2(\mathbf{K} \times T, \sigma \otimes \rho)$. Let Δ be a subset of T and $\mathfrak{M}_{\rho}^{\lambda}(\Delta)$ be the totality of functions $\varphi(b, t) \in L^2 \equiv L^2(\mathbf{K} \times \Delta, \sigma \otimes \rho)$ of the form

$$\varphi(b, t) = \sum_{\lambda(a, m) = \lambda} \sum_{j} u_{N_m + \hat{p}, j}^{*}(b) \varphi_{\hat{p}j}^{am}(t), \quad \sum \sum_{j} |\varphi_{\hat{p}j}^{am}(t)|^2 d\rho(t) < \infty.$$

We may prove easily the following

LEMMA 5. Any function $\varphi(b, t) \in L^2(\mathbb{K} \times T, \sigma \otimes \rho)$ is uniquely expressible in the form:

(3.1)
$$\varphi(b, t) = \sum_{\mu} \sum_{p} \sum_{\lambda(\alpha, m)} \sum_{\mu \neq j} u^{\alpha}_{Nm+p,j}(b) \varphi^{\alpha m}_{pj}(t) \quad (convergence \ in \ L^2)$$

where

(3.2)
$$\varphi_{bj}^{am}(t) = \int_{\mathbf{K}} \varphi(b, t) \overline{u_{N_m+p,j}^a(b)} db;$$

and consequently

(3.3)
$$\sum_{\mu}\sum_{p}\sum_{\lambda(\alpha,m)=\mu}\sum_{j}\int_{T}|\varphi_{pj}^{\alpha m}(t)|^{2}d\rho(t)=\int_{\mathbf{K}\times T}|\varphi(b,t)|^{2}dbd\rho(t).$$

PROPOSITION 4. $\mathfrak{M}_{p}^{\lambda}(\Delta)$ is a closed linear subspace of $L^{2}(\mathbb{K} \times T, \sigma \otimes \rho)$ invariant under $U(g), g \in \mathbb{G}$, defined in Theorem 2.1.

It is clear from the definition of U(g) and by Lemma 2 that $\mathfrak{M}_{\rho}^{\lambda}(\mathcal{A})$ is a linear subspace of $L^{2}(\mathbb{K} \times T, \sigma \otimes \rho)$ invariant under $U(g), g \in \mathbb{G}$. The closedness of $\mathfrak{M}_{\rho}^{\lambda}(\mathcal{A})$ may be proved by virtue of Lemma 4.

Thus $\{\mathfrak{M}_p^{\lambda}(\Delta), U(g)\}, p = 1, \ldots, \tilde{n}(\lambda); \lambda = 1, 2, \ldots, \text{ may be considered}$ as unitary representations of **G**.

LEMMA 6. If $f_1 \in \mathfrak{M}_p^{\lambda}(\mathfrak{A}_1)$, $f_2 \in \mathfrak{M}_p^{\mu}(\mathfrak{A}_2)$ and if p. d. functions $(U(g)f_1, f_1)$ and $(U(g)f_2, f_2)$ have a common minorant,¹²⁾ then there exist a Borel set $\mathfrak{A}_0 \subset \mathfrak{A}_1$ $\cap \mathfrak{A}_2$ such that $\rho(\mathfrak{A}_0) > 0$ and a B-measurable function $\omega(t)$ defined on \mathfrak{A}_0 such that $0 < |\omega(t)| < \infty$ and $f_1(b, t) = \omega(t)f_2(b, t)$ for σ -a. a. $b \in \mathbf{K}$ for ρ -a. a. $t \in \mathfrak{A}_0$; consequently $\lambda = \mu$.

Proof. Let $\Psi(g)$ be a common minorant of $(U(g)f_1, f_1)$ and $(U(g)f_2, f_2)$. Then, by Theorem 5 in [1], $\Psi(g)$ is expressible as follows:

 $(3.4) \qquad \Psi(g) = (U(g)\psi_1, \ \psi_1) = (U(g)\psi_2, \ \psi_2), \ \psi_1 \in \mathfrak{M}_p^{\lambda}(\mathcal{A}_1), \ \psi_2 \in \mathfrak{M}_p^{\mu}(\mathcal{A}_2);$

furthermore there exist $\varphi_1 \in \mathfrak{M}_p^{\lambda}(\mathcal{A}_1)$ and $\varphi_2 \in \mathfrak{M}_p^{\nu}(\mathcal{A}_2)$ such that

$$(3.5) \qquad \int_{\mathbf{K}\times\mathbf{T}} \langle \langle s_b, t \rangle, y \rangle \langle \langle s_b, t \rangle, x \rangle f_{\mathcal{Y}}(ba, t) \overline{f_{\mathcal{Y}}(b, t)} db d\rho(t)$$

$$= \int_{\mathbf{K}\times\mathbf{T}} \langle \langle s_b, t \rangle, y \rangle \langle \langle \langle s_b, t \rangle, x \rangle \psi_{\mathcal{Y}}(ba, t) \overline{\psi_{\mathcal{Y}}(b, t)} + \langle \langle s_b, t \rangle, x \rangle \psi_{\mathcal{Y}}(ba, t) \overline{\psi_{\mathcal{Y}}(b, t)} \rangle db d\rho(t), \quad \nu = 1, 2,$$

for any $y, x \in V$ and $a \in K$ (we put $f(b, t) \equiv 0$ on $K \times (T - A_{\gamma})$ for any function $\in \mathfrak{M}_{p}^{\lambda}(A_{\gamma})$). For any Borel set $A \subset T$, the characteristic function of the set $K \times A$ may be approximated in $L^{2}(K \times T, \sigma \otimes \rho)$ by means of linear combinations of "characters" ($\langle s_{b}, t \rangle, y$). Hence (3.5) implies that

(3.6)
$$\int_{\mathbf{K}} (\langle s_b, t \rangle, x) f_{\gamma}(ba, t) \overline{f_{\gamma}(b, t)} db$$
$$= \int_{\mathbf{K}} (\langle s_b, t \rangle, x) \psi_{\gamma}(ba, t) \overline{\psi_{\gamma}(b, t)} db + t$$

¹²⁾ See the foot-note 10).

$$+\int_{\mathbf{K}} \langle \langle s_b, t \rangle, x \rangle \varphi_{\nu}(ba, t) \varphi_{\nu}(b, t) db, \quad \nu = 1, 2,$$

for any $x \in V_0$ and $a \in K_0$ for ρ —a. a. $t \in T$ where V_0 and K_0 are dense subsets of V and K respectively such that $\overline{V}_0 = \overline{K}_0 = S_0$; and hence, by Lebesgue's convergence theorem, (3.6) is true for any $x \in V$ and $a \in K$ for ρ —a. a. $t \in T$. Similar argument shows that (3.4) implies

(3.7)
$$\int_{\mathbf{K}} (\langle s_b, t \rangle, x) \psi_1(ba, t) \overline{\psi_1(b, t)} db$$
$$= \int_{\mathbf{K}} (\langle s_b, t \rangle, x) \psi_2(ba, t) \overline{\psi_2(b, t)} db$$

for ρ -a. a. $t \in T$. Each term in (3.6) and (3.7) expresses a p. d. function of g = xa; especially the left-hand side of (3.6) expresses an elementary p. d. function corresponding to the irreducible unitary representation $\{\mathcal{D}_{p}^{\lambda}, U_{t}(g)\}$ or $\{\mathcal{D}_{p}^{\mu}, U_{t}(g)\}$ stated in §2 if $\nu = 1$ or $\nu = 2$ respectively. Hence, by Theorem 7 in [1], there exists a function $\omega_{0}(t) \ge 0$ such that

$$\int_{\mathbf{K}} (\langle s_b, t \rangle, x) f_1(ba, t) \overline{f_1(b, t)} db$$
$$= \omega_0(t) \int_{\mathbf{K}} (\langle s_b, t \rangle, x) f_2(ba, t) \overline{f_2(b, t)} db$$

for any $x \in V$ and $a \in K$ for a. a. $t \in T$, and hence, by Proposition 3 and Corollary of Proposition 1, we obtain that $\lambda = \mu$ and that

 $f_1(b, t) = \omega(t)f_2(b, t)$ for σ —a. a. b

for ρ —a. a. t for a certain $\omega(t) (|\omega(t)|^2 = \omega_0(t))$, which is B-measurable in t by Fubini's theorem. If we put

$$\mathcal{A}_{0} = \left\{ t \Big/ \int_{\mathbf{K}} |\psi_{1}(b, t)|^{2} db = \int_{\mathbf{K}} |\psi_{2}(b, t)|^{2} db \neq 0 \right\} \quad (\text{see } (3.7)),$$

then we may easily show that the set Δ_0 and the function $\omega(t)$, considered on Δ_0 , have the properties stated in Lemma 6, q.e.d.

PROPOSITION 5. The unitary representations $\{\mathfrak{M}_{p}^{\lambda}(\Delta), U(g)\}$ and $\{\mathfrak{M}_{q}^{\lambda}(\Delta), U(g)\}$ are mutually unitary equivalent for any p and q $(1 \leq p, q \leq \tilde{n}(\lambda))$.

This fact is easily verified from the definition of $\mathfrak{M}_p^{\lambda}(\mathcal{A})$ and by Proposition 2.

PROPOSITION 6. If $\lambda \neq \mu$, then, for any p, q, any Δ_1 , Δ_2 , and any $f_1 \in \mathfrak{M}_p^{\lambda}(\Delta_1)$ and $f_2 \in \mathfrak{M}_q^{\mu}(\Delta_2)$, the p. d. functions $(U(g)f_1, f_1)$ and $(U(g)f_2, f_2)$ are mutually disjoint.¹³⁾

¹³) See [1], §12.

This proposition is evident by Lemma 6, Proposition 5 and the definition of $\mathfrak{M}_{\rho}^{\lambda}(\varDelta)$.

PROPOSITION 7. Assume that $f_1 \in \mathfrak{M}_p^{\lambda}(\Delta_1)$ and $f_2 \in \mathfrak{M}_p^{\lambda}(\Delta_2)$. In order that the p. d. functions $(U(g)f_1, f_1)$ and $(U(g)f_2, f_2)$ are not mutually disjoint, it is necessary and sufficient that there exist a Borel set $\Delta \subset \Delta_1 \cap \Delta_2$ such that $\rho(\Delta) > 0$ and a B-measurable function $\omega(t)$ defined on Δ such that $0 < |\omega(t)| < \infty$ and that $f_1(b, t) = \omega(t)f_2(b, t)$ for σ -a. a. $b \in \mathbf{K}$ for ρ -a. a. $t \in \Delta$.

Proof. The necessity is clear by Lemma 6.

To prove the sufficiency, we put $\omega_1(t) = \min\{1, |\omega(t)|\}$ on Δ and define

$$f(b, t) = \begin{cases} \omega_1(t)f_1(b, t) & \text{on } \mathbf{K} \times \mathbf{\Delta}, \\ 0 & \text{on } \mathbf{K} \times (T - \mathbf{\Delta}). \end{cases}$$

Then we may prove that $f \in \mathfrak{M}_p^{\lambda}(\mathcal{A}) \subset \mathfrak{M}_p^{\lambda}(\mathcal{A}_1) \cap \mathfrak{M}_p^{\lambda}(\mathcal{A}_2)$ and that p. d. function (U(g)f, f) is a common minorant of $(U(g)f_1, f_1)$ and $(U(g)f_2, f_2)$, q.e.d.

PROPOSITION 8. In order for $\{\mathfrak{M}_p^{\lambda}(\Delta), U(g), f\}$ $(f \equiv f(b, t) \in \mathfrak{M}_p^{\lambda}(\Delta))$ to be a cyclic unitary representation of **G**, it is necessary and sufficient that f(b, t) $\equiv 0$ as an element of $\mathfrak{H}_p^{\lambda}(\mathbb{C}L^2(\mathbf{K}))$ for $\rho - a$. a. $t \in \Delta$.

Proof. The necessity is clear by the definition of U(g). We shall prove the sufficiency. Put

$$\mathfrak{M}' = \mathfrak{L}[\{U(g)f \mid g \in \mathbf{G}\}]$$

and let φ be any element of $\mathfrak{M}_p^{\lambda}(\mathcal{A}) \ominus \mathfrak{M}'$. Then

$$\int_{\mathbf{K}\times\Delta} (\langle s_b, t \rangle, x) f(ba, t) \overline{\varphi(b, t)} db d\rho(t) = 0 \quad \text{for any } x \text{ and } a.$$

By the similar argument as in the proof of Lemma 6, it follows from the above equality that

$$\int_{\mathbf{K}} (\langle s_b, t \rangle, x) f(ba, t) \overline{\varphi(b, t)} db = 0 \quad \text{for any } x \text{ and } a$$

for ρ —a. a. $t \in \Delta$. Since the unitary representation $\{\mathfrak{H}_{\rho}^{\lambda}, U_{t}(g)\}$ is irreducible for any t (Proposition 1) and since $f \neq 0$ in $\mathfrak{H}_{\rho}^{\lambda}$ for ρ —a. a. $t \in \Delta$ by the assumption, we get $\varphi(b, t) \equiv 0$ in $\mathfrak{H}_{\rho}^{\lambda}$ for ρ —a. a. $t \in \Delta$, and hence $\varphi(b, t) \equiv 0$ in $\mathfrak{M}_{\rho}^{\lambda}(\Delta)$. Thus we obtain $\mathfrak{M}' = \mathfrak{M}_{\rho}^{\lambda}(\Delta)$, q.e.d.

§4. Proof of Theorems. Throughout this paragraph, we notice that the space $\mathfrak{M}^{\lambda}_{\nu}$ defined in Theorem 2 is identical with the space $\mathfrak{M}^{\lambda}_{\nu}(\mathcal{J}^{\lambda}_{\nu})$ in the notation stated in §3 for any λ and ν .

Theorems 1.1 and 1.2 have been proved in \$2-----the formula (1.7) may

be shown by calculating $\varphi(g) \equiv (U(g)f, f), f = \sum_{\lambda(\alpha,m)=\lambda} \sum_{j} \hat{\varsigma}_{jm}^{\alpha} u_{\lambda m+\dot{p},j}^{\alpha}$. Theorems 1.4 and 1.5 are evident from the fact $G/V \cong K$ and by Peter-Weyl's theory. (Theorem 1.3 shall be proved after the proof of Theorems 2.1--2.3.)

Next, let $\mathfrak{M}^{\lambda}_{\nu}$ and f^{λ}_{ν} ($\nu = 1, \ldots, N(\lambda)$; $\lambda = 1, 2, \ldots$) be as stated in Theorem 2. Theorem 2.1 have been proved in §3 (Proposition 4). By the conditions 1°) and 2°), we have $f^{\lambda}_{\nu} \in \mathfrak{M}^{\lambda}_{\nu}$ and $f^{\lambda}_{\nu}(b, t) \equiv 0$ in $\mathfrak{S}^{\lambda}_{\nu}(\mathbb{C}L^{2}(\mathbf{K}))$ for ρ —a. a. $t \in \mathcal{A}^{\lambda}_{\nu}$. Hence the unitary representation $\{\mathfrak{M}^{\lambda}_{\nu}, U(g), f^{\lambda}_{\nu}\}$ is cyclic by Proposition 8 for every λ and ν . The p. d. functions $(U(g)f^{\lambda}_{\nu}, f^{\lambda}_{\nu}), \nu = 1, 2, \ldots$, are mutually disjoint from the condition 3°) and by Proposition 7. Hence, by Theorem 8 in [1], the direct sum $\{\bigoplus_{\nu} \mathfrak{M}^{\lambda}_{\nu}, U(g), f^{\lambda}\}, f^{\lambda} = \sum_{\nu} f^{\lambda}_{\nu}$, is a cyclic unitary representation of **G**. We may further show by Proposition 6 that the p. d. functions $(U(g)f^{\lambda}, f^{\lambda})$ and $(U(g)f^{\mu}, f^{\mu})$ are mutually disjoint for $\lambda \neq \mu$. Similar argument is possible for $\{\mathfrak{N}^{\mu}_{\nu}, U(g)\}, \nu = 1, \ldots, N'(\alpha); \alpha = 1, 2, \ldots$. Therefore, by the same argument as in the proof of Theorem 2 in [2], we may prove that the unitary representation $\{\mathfrak{H}, U(g), f^{0}\}$ stated in Theorem 2.2 is cyclic. The formula (1.12) may be verified by calculating $\Psi(g) = (U(g)f^{0}, f^{0})$.

We now prove Theorem 1.3. If $\{\hat{\mathfrak{D}}_{p}^{\lambda}, U_{t_{1}}(g)\}$ and $\{\hat{\mathfrak{D}}_{q}^{\mu}, U_{t_{2}}(g)\}$ $(t_{1} \neq t_{2})$ are mutually unitary equivalent, there exist $f_{1} \in \hat{\mathfrak{D}}_{p}^{\lambda}$ and $f_{2} \in \hat{\mathfrak{D}}_{q}^{\perp}$ such that $(U_{t_{1}}(g)f_{1}, f_{1}) = (U_{t_{2}}(g)f_{2}, f_{2})$ for any $g \in \mathbb{G}$, and hence the direct sum $\{\hat{\mathfrak{D}}_{p}^{\lambda} \oplus \hat{\mathfrak{D}}_{q}^{\mu}, U(g), f_{1} + f_{2}\}$ $(U(g) = U_{t_{1}}(g) \oplus U_{t_{2}}(g))$ is not cyclic by Theorem 8 in [1]. But we may prove by means of Theorems 2.2 and 2.3 verified above that $\{\hat{\mathfrak{D}}_{p}^{\lambda} \oplus \hat{\mathfrak{D}}_{q}^{\mu}, U(g), f_{1} + f_{2}\}$ is a cyclic unitary representation of **G**. That is a contradiction.

In order to prove Theorems 1.6 and 2.4, we first modify Lemma 2 in [2] to the following form:

LEMMA 7. Let \tilde{X} , S, T and K be as stated in §1 and $F(\Lambda)$ ($\Lambda \subset \tilde{X} \equiv S \times T$) be a measure on \tilde{X} such that $F(\tilde{X}) < \infty$, and assume that there exists a nonnegative function $u(a; \chi)$ on $K \times \tilde{X}$, measurable in $\langle a, \chi \rangle$ and summable on \tilde{X} with respect to F for every $a \in K$, such that

(4.1)
$$F(\Lambda a) = \int_{\Lambda} u(a; \chi) dF(\chi) \quad (\Lambda a = \{\chi a \mid \chi \in \Lambda\})$$

for any $\Lambda \subset \widetilde{X}$ and any $a \in \mathbf{K}$. Then there exist a non-negative B-measurable function $\omega(s, t)$ on $\widetilde{X} \equiv S \times T$ and a measure $\rho(\Delta)$ on T, $\rho(T) < \infty$, such that

(4.2)
$$F(\Lambda) = \int_{\Lambda} \omega(s, t) ds d\rho(t) \quad \text{for any} \quad \Lambda \subset \widetilde{X},$$

ds being the invariant measure on S defined in §1.

Proof. We put $B_{\lambda} = \{\langle b, t \rangle | \langle s_b, t \rangle \in A\} \subset \mathbb{K} \times T$ (see §1) for any $A \subset \tilde{X} = S \times T$, and define a measure $F^*(B)$ on $\mathbb{K} \times T$ by the formula:

(4.3)
$$\int_{\mathbf{K}\times T} \varphi(b, t) dF^*(b, t) = \int_{S\times T} dF(s, t) \int_{\mathbf{K}'} \varphi(b'c_s, t) db' \quad (\text{see } \$1)$$

for any continuous function $\varphi(b, t)$ on $\mathbf{K} \times T$ with compact carrier. Then we have

(4.4)
$$F^*(B_{\Lambda}) = F(\Lambda)$$
 for any $\Lambda \subset \widetilde{X}$,

and (4.1) implies

$$F^*(Ba) = \int_B u^*(a; b, t) dF^*(b, t) \quad (Ba = \{\langle ba, t \rangle / \langle b, t \rangle \in B\})$$

where $u^*(a; b, t) = u(a; \langle s_b, t \rangle)$ is non-negative, B-measurable in $\langle a, b, t \rangle$ and summable (in $\langle b, t \rangle$) on $\mathbf{K} \times T$ with respect to F^* for any $a \in \mathbf{K}$. Therefore, by the same argument as the proof of Lemma 2 in [2], we may show that there exist a non-negative B-measurable function $\omega^*(s, t)$ on $\mathbf{K} \times T$ and a measure ρ on T, $\rho(T) < \infty$, such that

$$F^*(B) = \int_B \omega^*(b, t) db d\rho(t)$$
 for any $B \subset \mathbf{K} \times T$.

Hence we obtain from (4, 4), (1, 2) and by simple calculation that

$$F(\Lambda) = \int_{\Lambda} ds d\rho(t) \int_{\mathbf{K}'} \omega^* (b' c_s, t) db' \text{ for any } \Lambda \subset \widetilde{X},$$

and hence we get (4.2) by putting $\omega(s, t) = \int_{\mathbf{K}'} \omega^*(b'c_s, t) db'$, q.e.d.

Hereafter the indices j and k may run over all natural numbers, not following after the rule defined in §1.

Now let $\{\mathfrak{H}, U(g), f^0\}$ be a cyclic unitary representation of **G**. Then, making use of Lemma 7, we can achieve the same argument as in [2]—from the beginning of §3 (p. 6) to L. 14 in p. 10—, and obtain the following result:

 $\{\mathfrak{H}, U(g)\} = \{\mathfrak{N}, U(g)\} \oplus \{\mathfrak{M}, U(g)\}; \{\mathfrak{N}, U(g)\}$ is equivalent to a cyclic unitary representation of the group $\mathbf{K}(\cong \mathbf{G}_i \mathbf{V})$, and $\{\mathfrak{M}, U(g)\}$ is given as follows: there exists a unitary space \mathfrak{H}_0 of all sequences of complex numbers: $\{\mathfrak{f}_1, \ldots, \mathfrak{f}_n\}$, $n \le \infty$, such that $\|\mathfrak{f}\|^2 = \sum_{j=1}^{\infty} \|\mathfrak{f}_j\|^2 < \infty$ (if $n = \infty$), and exists a matrix of functions $M(a; s, t) = \|u_{jk}(a; s, t)\|$ whose elements $u_{jk}(a; s, t)$ ($j, k = 1, \ldots, n$) are B-measurable in $\langle a, s, t \rangle$; and every $f \in \mathfrak{M}$ is realized as a \mathfrak{H}_0 -valued function $\mathbf{f}(s, t) \equiv \{f_1(s, t), \ldots, f_n(s, t)\}$ defined on $\widetilde{X} \equiv S \times T$, and $f \sim \mathbf{f}(s, t)^{14}$ implies that

$$\begin{cases} \|f\|^2 = \int_{s \times T} \|\mathbf{f}(s, t)\|^2 ds d\rho(t) & (\|\mathbf{f}(s, t)\|^2 = \sum_j |f_j(s, t)|^2), \\ U(x)f \sim (\langle s, t \rangle, x)\mathbf{f}(s, t) & \text{for any } x \in \mathbf{V}, \\ U(a)f \sim M(a; s, t)\mathbf{f}(sa, t) & \text{for any } a \in \mathbf{K}; \end{cases}$$

¹⁴⁾ $f \sim \mathbf{f}(s, t)$ means that f is realized as $\mathbf{f}(s, t)$.

 ρ being a measure on T such that $\rho(T) < \infty$ (obtaind from Lemma 7).

Next, for any B-measurable function f(s, t) on $S \times T$, we define a function $f^*(b, t)$ on $\mathbf{K} \times T$ by

$$f^*(b, t) \equiv f(s_b, t)$$

and put $M^*(a; b, t) \equiv ||u_{jk}^*(a; b, t)||$. Then, as is easily seen, the above result concerning $\{\mathfrak{M}, U(g)\}$ is translated into the following form: every $f \in \mathfrak{M}$ is realized as a \mathfrak{H}_0 -valued function $\mathbf{f}(b, t)$ defined on $\mathbf{K} \times T$ and $f \sim \mathbf{f}(b, t)$ implies that

$$\begin{cases} \|f\|^2 = \int_{\mathbf{K}\times\mathbf{T}} \|\mathbf{f}(b, t)\|^2 db d\rho(t), \\ U(x)f \sim \langle \langle s_b, t \rangle, x \rangle \mathbf{f}(b, t) \text{ for any } x \in \mathbf{V}, \\ U(a)f \sim M^*(a; b, t) \mathbf{f}(ba, t) \text{ for any } a \in \mathbf{K}; \end{cases}$$

moreover, if $M_1^*(a; b, t) = M_2^*(a; b, t)$ as operators in \mathfrak{M} , then $M_1^*(a; bc, t) = M_2^*(a; bc, t)$ in the same sense for any $c \in \mathbf{K}$ —see p. 10 in [2].

Starting from this result, we can achieve the similar argument to that in [2]—from p. 10, L. 15 to p. 11, L. 15.¹⁵⁾ Thus \mathfrak{M} may be realized as a subspace of the direct sum of at most countable number of $L^2(\mathbf{K} \times \mathbf{T}, \sigma \otimes \rho)$, and $f \sim \{\psi_v(b, t)\} \equiv \{\psi_1(b, t), \psi_2(b, t), \ldots\}$ implies

$$\begin{cases} \|f\|^2 = \sum_{\nu=1}^n \int_{\mathbf{K}\times T} |\psi_\nu(b, t)|^2 db d\rho(t), & n \leq \infty, \\ U(x)f \sim \{(\langle s_b, t \rangle, x) \psi_\nu(b, t)\} & \text{for any } x \in \mathbf{V}, \\ U(a)f \sim \{\psi_\nu(ba, t)\} & \text{for any } a \in \mathbf{K}. \end{cases}$$

Since $L^2(\mathbf{K} \times T, \sigma \otimes \rho) = \bigoplus_{\lambda=1}^{\infty} \bigoplus_{p=1}^{\widetilde{n}(\lambda)} \mathfrak{M}_p^{\lambda}(T)$ by Lemma 5 and Proposition 4 (§3), it follows that \mathfrak{M} may be expressible in the form:

$$\mathfrak{M} = \bigoplus_{\lambda=1}^{\infty} \bigoplus_{p=1}^{\widehat{n}(\lambda)} \bigoplus_{\nu=1}^{n(\lambda, p)} \mathfrak{M}_{\nu p}^{\lambda} \quad (n(\lambda, p) \leq \infty), \quad \mathfrak{M}_{\nu p}^{\lambda} \subset \mathfrak{M}_{p}^{\lambda}(T) \quad \text{for any} \quad \nu,$$

and every $\mathfrak{M}_{\flat p}^{\lambda}$ is a closed linear subspace of \mathfrak{M} invariant under U(g), $g \in \mathbf{G}$. Put

$$f^0 = f + h$$
, $f \in \mathfrak{M}$ and $h \in \mathfrak{N}$,

and

$$f = \sum_{\lambda} \sum_{p} \sum_{\nu} f_{\nu p}^{\lambda}, \quad f_{\nu p}^{\lambda} \in \mathfrak{M}_{\nu p}^{\lambda} \quad (\subset \mathfrak{M}_{p}^{\lambda}(T)).$$

Then $\{\mathfrak{M}, U(g), f\}$ is — and consequently every $\{\mathfrak{M}_{\nu p}^{\lambda}, U(g), f_{\nu p}^{\lambda}\}$ is a cyclic unitary representation of **G**. We put

¹⁵ Such argument is impossible without extending functions on $S \times T$ to those on $K \times T$ as stated above. The author owes to Mr. S. Murakami's suggestion for this improvement.

$$\mathcal{A}_{\nu p}^{\lambda} = \left\{ \left. t \right/ \int_{\mathbf{K}} |f_{\nu p}^{\lambda}(b, t)|^2 db \neq 0 \right\} \ (\mathbb{C}T).$$

Then $\{\mathfrak{M}_{\nu\rho}^{\lambda}, U(g), f_{\nu\rho}^{\lambda}\}$ is cyclic if and only if $\mathfrak{M}_{\nu\rho}^{\lambda} = \mathfrak{M}_{\rho}^{\lambda}(\mathcal{A}_{\nu\rho}^{\lambda})$ by Proposition 8. We may consider by Proposition 5 that $\mathfrak{M}_{\nu\rho}^{\lambda} = \mathfrak{M}_{1}^{\lambda}(\mathcal{A}_{\nu\rho}^{\lambda})$ and $f \in \mathfrak{M}_{1}^{\lambda}(\mathcal{A}_{\nu\rho}^{\lambda})$. Exchanging indices, we denote for any λ

$$A_{\nu}^{\lambda}$$
 and f_{ν}^{λ} , $\nu = 1, \ldots, N(\lambda) \ (\leq \infty)$

instead of

$$\mathcal{A}_{\lambda p}^{\wedge} \quad \text{and} \quad f_{\lambda p}^{\wedge}, \\ \nu = 1, \ldots, n(\lambda, p) \quad (\leq \infty); \quad p = 1, \ldots, \tilde{n}(\lambda) \quad (< \infty);$$

and put $\mathfrak{M}_{\nu}^{\lambda} = \mathfrak{M}_{1}^{\lambda}(\mathcal{A}_{\nu}^{\lambda})$. Then we may consider that

(4.5)
$$\{\mathfrak{M}, U(g)\} = \bigoplus_{\lambda=1}^{\infty} \bigoplus_{\nu=1}^{N(\lambda)} \{\mathfrak{M}_{\nu}^{\lambda}, U(g)\}, \quad f = \sum_{\lambda} \sum_{\nu} f_{\nu}^{\lambda},$$

and

$$f_{\nu}^{\lambda} \in \mathfrak{M}_{1}^{\lambda}(\mathcal{A}_{\nu}^{\lambda}), f_{\nu}^{\lambda}(b, t) \equiv 0 \text{ in } \mathfrak{H}_{1}^{\lambda} \text{ for } \rho - a. a. t \in \mathcal{A}_{\nu}^{\lambda}.$$

Hence

$$f_{\nu}^{\lambda}(b, t) = \sum_{\lambda(\alpha, m) = \lambda} \sum_{j} u_{N_{m+1}, j}^{\alpha}(b) f_{\nu j}^{\alpha m}(t) \quad (\text{convergence in } L^{2}(\mathbf{K} \times T, \sigma \otimes \rho))$$

for any λ and ν where the series of functions

$$\begin{cases} f_{\nu j}^{\alpha m} \middle| \begin{array}{l} j = 1, \ldots, n(\lambda); \lambda(\alpha, m) = \lambda; \\ \nu = 1, \ldots, N(\lambda); \lambda = 1, 2, \ldots \end{cases}$$

satisfies the conditions 1°) and 2°) in Theorem 2.2. Since $\{\mathfrak{M}, U(g), f\}$ is cyclic, it follows from (4.5) and by Theorem 8 in [1] that p. d. functions $(U(g)f_{\nu}^{\lambda}, f_{\nu}^{\lambda}), \nu = 1, \ldots, N(\lambda), \lambda = 1, 2, \ldots$, are mutually disjoint. Hence the series $\{f_{\nu f}^{\nu m}\}$ satisfies the condition 3°) by Propositions 6 and 7. Therefore $\{\mathfrak{M}, U(g), f\}$ must be of form stated in Theorem 2.2. Similar argument may be achieved for $\{\mathfrak{N}, U(g), h\}$. Consequently we obtain (1.10), (1.11) and (1.12) by simple calculations. Theorem 2.4 is thus proved.

Next, assume that the cyclic unitary representation $\{\mathfrak{H}, U(g), f^0\}$ is irreducible. (Notice that any irreducible representation is cyclic.) Then only one couple $\langle \lambda, \nu \rangle$ or $\langle \alpha, \nu \rangle$ may be appear in (1.10). In the case $\{\mathfrak{H}, U(g)\} = \{\mathfrak{M}^{\lambda}_{\nu}, U(g)\}$, by the irreducibility, there exists a point $t_0 \in T$ such that $\rho(T - \{t_0\}) = 0$. Hence $\{\mathfrak{H}, U(g)\}$ must be of the form stated in Theorem 1.1 or 1.4. Thus we obtain Theorem 1.6.

Finally, Theorem 3 is easily seen from Theorems 1 and 2.

LITERATURE

[1] R. Godement: Les fonctions de type positif et la theorie des groupes, Trans. Amer.

Math. Soc. 63, No. 1 (1948) pp. 1-84.

- [2] S. Itò: Unitary representations of some linear groups: Nagoya Math. Journ. 4 (1952) pp. 1-13.
- [3] G. W. Mackey: Imprimitivity for representations of locally compact groups I, Proc. Nat. Acad. Sci. 35, No. 9 (1949) pp. 537-543.
- [4] G. W. Mackey: On induced representations of groups, Amer. J. Math. 73, No. 3 (1951) pp. 576-592.
- [5] G. W. Mackey: Induced representations of locally compact groups I, Ann. of Math. 55, No. 1 (1952) pp. 101-139.
- [6] A. Weil: L'intégration dans les groupes topologiques et ses applications, Act. Sci. Ind. Paris, 869 (1940).

Mathematical Institute, Nagoya University