ON THE VECTOR IN HOMOGENEOUS SPACES

MINORU KURITA

The main purpose of this paper is to investigate the parallelism of vec-
tors in homogeneous spaces. The definition of a vector and the condition for
spaces under which a covariant differential of a vector is also a vector were
given by E. Cartan [4] in a very intuitive way. Here [ formulate this in a
stricter way by his method of moving frame. Even if a homogeneous space
has the property that the covariant differential of a vector is of the same kind,
another definition of covariant differential may also have the required property.
I will give a necessary and sufficient condition under which the definition of
covariant differential is unique. Once the covariant differential has been de-
fined it is easy to introduce a parallelism of vectors in the space. But the
parallelism depends in general on the path along which we translate a vector.
The condition for the spaces with an absolute parallelism can be obtained. A
symmetric space in E. Cartan’s sense with an absolute parallelism is an affine
space with points as its elements, rotational part being a full linear group or
its subgroup. Next we define a geodesic in a space admitting a parallelism of
a vector and prove that under a certain condition the geodesic thus defined is
an extremal for any invariant integral of our homogeneous space. When our
space admits a Riemann metric which is invariant under the transformation of
our group we have two sorts of parallelism of a vector, namely the one de-
fined above and the one derived from the Riemann connection attached to our
Riemann metric, and two sorts of geodesics. We give a necessary and suf-
ficient condition in order that the two sorts of parallelism and geodesics coin-
cide. We get. in addition a sufficient condition for a homogeneous Riemann
space under which all the geodesics in the sense of Riemann metric are gener-
ated by a certain one-parametric subgroup.. In the last we define a space with
a connection associated with a homogeneous space from our point of view and
investigate some properties of the space. If such a space has not a torsion and
admits an absolute parallelism of a vector the space itself is a homogeneous
space which is different from the fundamental homogeneous space. Under a
certain condition the geodesic defined from the viewpoint of vector-translation
coincides with the extremal of the integral on our space corresponding to an
invariant integral of the fundamental space. This is the generalization of the
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well known fact that the geodesic of a Riemann space gives rise to a straight
line when we develop the geodesic in the euclidean space.

Throughout the whole we treat local problems only, and the word “group”
is often used in the sense of “group germ.”

1. Preliminaries

1.1 We quot from E. Cartan [2] [3] the matters necessary for our pur-
pose. Throughout the whole discussion let the indices run as follows,

i:jvk’lvh=1,2,---,n
&, B97=n+1, n+2,-..,1’
PaG,S,t,u,v=1,2,...,r

and let the summation ) range over all the permutations of ¢ and j while %3).
iJ

ranges over all the combinations of ¢ and j. Let the element of the 7-para-
metric Lie group & which operates transitively on a point ¥ = (%1, . . ., %) of
an 7n-d'mensional space be X =fi(%1, ..., Xn; a1, . . ., @) which we write in
short S;: #' =f(x; a). When S;=S:S: we have ¢ =¢(a; b) namely ¢, = ¢p(a,
ee.sars by, ..., b). Let S be an identity transformation. We put Sz'Ss+da
=S. and expand ¢= (e, ..., &) with respect to da=(dai, ..., da,). Then
the parts linear in da are relative components wp(a, da) of our group ®. These
are independent Pfaffians. Let

(Sex)i=2i+ 2 Xip(%)ep+ . .«
14
be expansion with respect to ¢, then

(S2'Szsdax)i = xi + 2, Xip(®)wp(a, da) + . . . .
v

1.2 The parameter of the product of two infinitesimal transformations
St x=f(x;8) Sqp:al=f(x";9)
is £+ 7 if we neglect the terms of higher order. In fact
S.S: : xi =fi(x'; p) =x,’-+§p]Xip(x’)m+ ..
=xi+§ijz‘p(x)$p+ cen +§X‘ip(3ﬁ+ S b P N
==xz'+2:JXm(X) Ept+mp)+ ... .
1.3 When we put S. = StSe, where ¢ is independent of @, we have Sz Sa +da
=S;'Ssrda. In other words w(d!, da') = wia, da) when a' =¢(a, t). On the

other hand if we put S» = S.S: where ¢ is independent of @, we get on account
of the relation Sz'Sw+de = Si'(Ss'Sa+da)St

(1.1) wpla, da') = D) tpe(H) oyl a, da)
q
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where (7pq(¢)) is a transformation of a linear adjoint group corresponding to
St. For an exterior differential of ws we have

(1. 2) d(l)s = (X;Cpqs[wpw(lj (Cpqs = = Caqps Const.).
vy
Putting > Xjp 2 _ X)) we get
[ ox;
(1-3) (X‘[), Xq) =ECPQSX5’

(1- 4) E(Cpauﬁust + CasuCupt + Csijuqt) =0.

w

Let the variation from a to o’ determined by Sz = SiS:, where ¢ is independent
of a, be 8, and an arbitrary variation be d. Then by 6 Si'Sa+de is transformed
into (SzS:) "'Sa+daS: = Si ' (Si'Sa+da)S:, while by d S 'Sarsa = S: is invariant. Ience
dwp(a, 6a) =0, and by the definition of an exterior derivative dwp = dw;(a, da)
— dwp(a, da) we have dws(a, da) = —%cpqseqmj,(a, da) where ¢, is a parameter

of Se. If Se=Si'Si+a: this is an infinitesimal transformation of a linear adjoint
group, so we have

(1.5) 3Tpg = D) Cuspi Tsq (0 = wu(t, dt)).

us

1.4 Between the coefficients of a transformation r = (rp4) of a linear ad-
joint group there exist the following relations

(1.6) SestaTpa = 2 CaqrpTasTr.
q ar

In fact if we put Ppst = > CstqTpq — D CqrpTasTrt We have 8Ppst = > CuvpPstvwiy’. On
q qr uy

the other hand for St=S, (rpg) is a unit matrix and so Pps = Cstp — Cstp = 0.
Hence Ppst = 0.

1.5 All the transformations of our group which fix a certain fixed point
of our space form a subgroup. We denote it by . Then we can attach to
each point of our homogeneous space a set of frames S,PR, where R is a
fundamental frame. For the transformation S, and Sz+4s belonging to § there
exist # lincarly independent combinations of relative components w, with con-
stant coefficients. Let these be w1, . .., ws anew. These are principal relative
components of our homogeneous space /9. Then we have the relations

(L.7) dw; = ;‘_mpji[wpw_;], €api = 0.
]
If we take (%1, <., Xn} %n+1, . . ., %) as parameters of our space we get
wi'-:zﬁij(xl, a2 ey Xn; Untly o o o ur)dxj.
J

For a transformation of a linear adjoint group which corresponds to S: belong-
ing to 9, which we assume connected hereafter, we have
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(1.8) Ti¢=0.

Hence if S» =S.S: principal relative components are transformed in such a
way that

(1.9) wild, da') = > tijwila, da)
F

and the infinitesimal transformation of w; = wila, da) is given by
(1.10) dwi = 2, corivalt, dt)or.

ak
Hence
(1.11) Otij = O, Cariwa(t, df)thj.

ak

The matrix group with v = (+;;) as its elements is called a linear group of iso-
tropy.

1.6 A transformation S, of our group & operates transitively on our homo-
geneous space &/9. We assume throughout the whole discussion that the only
transformation S, which fixes each point of our homogeneous space (/9 is an
identity transformation S,. namely & is effective on &/9.

1.7 Let o be an involutive automorphism of a Lie group &. All the ele-
ments of @ which are invariant under ¢ form a subgroup . If this subgroup
is closed and the homogeneous space &/$ has the property stated in 1.6 we
call this space a symmetric space. For the principal relative components o;

and the secondary relative components w, which we choose suitably we have
the relations

(1.12) dwi = > csjilwaw;], dos= ?‘_;)Ci;'c Lwiwi]+ %;. crralzrr],
oy (£3] [§: 291

namely we have in addition to ¢4 =0
(1.13) cijr="0
(114) Cgi,}=0.
2. Covariant differential of a vector

2.1 To any point of our homogeneous space we attach a frame S.R, and
let S;HYR be a set of frames attached to the point x. We transform a frame
from SuR to S¢R = S.StR where S; belongs to . Then we have

Sa—'lsn'a-da' = (SaSt)‘lsa*daSt+dt = S[’(SJ‘Sa+da)St’S;!St+dt,
hence by (1.1) and 1.2 we get
(2.1) op(d, da') =>4, da) + wp(t, db).
qQ

So if we put
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wp=wpla, da), wp=wp(d, da'), o} =wst, dt)

then by virtue of the relations w; =0 and i« =0 we have

(2.2) o= E,] T, @a= 2, Tepwp + 0l .
?

Here we state lemmas.
LemMmAa 1. For @), w. Siven by (2.2)

d&i = (2 cpii[c?paj] B do, = 2 C[)qa[ap(ﬁq] s
vJ) (

vg)

namley cpqr ave the same for wp and wp.
We can state in a more general form which will be used later.
LEMMA 2. Let rnp and 7p be Pfaffians such that
Tp= Eq]z'pqrrq-f- wp(t, dt)

where (tpq) is an element of a linear adjoint group and wy(t, dt) are relative
components corresponding to St (not necessarily an element of ©). Then putting

(2. 3) .Qp = dﬂ'p - ECqsp[ﬂq-’fs] » Ep = dﬁp - 2 Cqsp[fq, .7—':5‘]
lys) (qs)
we get
(2.4) ﬁp =22‘pq9q.
q

Proof. From the assumed equality we get by putting o} = w(t, dt)
dzp = %} [drpqral + % tpeldrq + doy’
[77s]= [; tqurn + 0, 503 oo + 0 1.
Hence
Op = drip — 2 cqsplrigns]

(qs)

= 2 qu(dn'q - z};b‘stq [7!'377[]) + 2( 2 CuvgTpg — 2 Cqu)fq;¢2‘sv)[7.'1¢7!'v:l
q (8¢ q qs

{uv)

0y (0
+ 2 [drpq — E‘.‘lcstpw;m?tq, rgl + dwy’ — )cqsp[wé ‘w1,
q s

(g8

By virtue of (1.6) (1.5) (1.2)
.?.)«_[) =Equgq.

qQ
If we notice that @, =0 leads to 2, =0 we get lemma 1.
2.2 To any point x of our m-dimensional homogeneous space we attach

an n-dimensional vector space yvhich we call a tangent space at x. Let SeHR
be a set of frames corresponding to the point x. Then by a frame transfor-
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mation from S;R to S.S:R, where S; belongs to 9, the principal relative com-
ponents undergo the transformation given by (1.9). Now we take in a tangent
space a frame (e, . . . , e,) corresponding to SzR and let a frame (&, . . . , &)
corresponding to S,S:R be given by e;= >,7;6;. Then the components of a
vector v in our tangent space undergo the transformation

(2.5) Ui = 23 Tijvj.
J

The relation (1.9) shows that the principal relative components w;’s are com-

ponents of an infinitesimal vector. Let the components of a vector v corre-

sponding to S.S:R be #:(¢). Then vi(¢) = > ¢;:(0), hence by (1.11) we get
J

for the components 2;(#) of the same vector the relation

(2.6) dvi — 2 Cojiwa(t, dt)vj=0.
ay

Now we take a vector field »(x) on our space &/9. Components of a
vector »(x) with respect to a frame S;R are functions of a. By a frame
transformation from SeR to SoR = S,StR, where S; is an element of 9 with vari-
able t, we have by (2.2)

(2.7) oi = 2) 10
7

(2.8) D= D) Taplp + 0.
-

We get on account of the relation (2.5)

(2.9) dwi = D) rijdv; + 2 drijv;.
J J

By (1.11) and (2.8)

. 0) ey
Avi = 2] 1ijdvj + 2 Cakiv thjvj = D2 1ijA0; + 2 Cakil e — D0 Tupodp) ThiV) -
P) aky 7 okj 4

Hence taking (2.5) into consideration we get

(2.10) dv; — Ekcaknﬁab’k = D3 1ijdUj ~— D) CakiTapThiopVs.
. a 3 akpj

It is quite natural to define a covariant differential of a vector »; by

(2.11) Dwi = dvi — > cariwatr,
ak

because by (2.6) it vanishes for a vector at a fixed point. But it is not always
a vector. Here it is important to remark that by the discussion of 2.1 cqki is
the same for wp and wp. In order that Dv is a vector (2.10) must be trans-
formed in the form

dv; — §; Caki®alk = 2, Tij{ AV =~ D) Cakjalt).
[:3 2 ak

So it is necessary and sufficient that the following relations hold,
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(2.12) %C(xﬁraarjk = 21 CakjTij
J J
(2.13) > ecujitantie = 0.
aj

Since cupi =0, 7ic =0 (2.12) holds identically by virtue of (1. 6). As for (2. 13)
we get on account of the non-singularity of (tjz) >, ¢sjitar =0. Now putting
o

Bjin = D\ cujitan We get by virtue of the relations . = 2, Crpel Ta
a Tp
0
0Bjin = Ecaji(;c‘r{safﬁh + 23 Crkatrr) O -
av k

Here

ECTﬁacaﬁT{xh = - 2( C3jkChvi + chkck{ti)Tﬁh = - ZCkriBjkh + ECkaBkih.
a8 kB P) k

And so
0Bjin = }9( - gchjkh + }:_\erkBkih + D CajiCrraThr) 0¥ .
ak

For S: =S, we have B;j5 =0. Hence the equality Bj; =0 is equivalent to

(2.14) zﬂ:caﬁcrku =0.

Now we assert that under the condition (2.14)
(2.15) matrices Cy = (cuij) (@ =n+1. ..., 7) are linearly independent.
In fact for the set of constants (iu+1, ..., A-) satisfying the relations > Aacqji
=0 for all 7 and j we consider Eu]/th. All of such infinitesimal op;rators
generate an invariant subgroup & of . [he verification runs as follows,
(Ea]AaXa. X;) = ;AaCaﬁ‘»'X'T
23 (23 Auasr)erij = = 25 AatyinCisj = 25 AaCianchpj = 0

(Eanda X;) = ExacdipX]) = Ealacai,%X'ﬁ

-3 op

2:_,(2/1(16«;3 YCajk = EM(%]C,«._;kcaia) = 0.

Each element of § leaves all the points of our homogeneous space &/ invari-
ant. Hence by the assumption of 1.6 (2.15) must be satisfied.
By (2.14) and (2.15) we get

(2. 16) Caipg = V.
This is equivalent to ry; =0. Thus
THEOREM 2.1 In order that Dv; = dvi — 2 caiwav; 1S @ component of a vec-
o

tor it is necessary and sufficient that c.i: =0 holds in our space.
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This result was obtained by E. Cartan in his paper [4]. But the discussion
there is too intuitive to be understood rigorously. Symmetric spaces satisfy
our condition (2.16).

2.3Y In the spaces where cu; =0 holds we can define a covariant differ-
ential which is also a vector. But in some cases it is not unique. The reason
is that for a given space relative components are not uniquely determined.
They admits the following three sorts of transformations

(1) wi = 21 Aijoj, ©.=0. (Ajix0)
J

(ii) i = i, Zl;a:%-‘Auﬁﬂ)ﬂ (IAaﬁ;i\:O)

(iii) Di=0i, Bs= 0+ 2 Asioj

where Ai;, As:, Aai are constants. Putting

dai = 2 cpeiLopor], dos = 2)Cpgalwpng]
vq)

(pk)

we can easily see that the condition c.i; =0 is equivalent to .3 =0 for the
transformations (i) and (ii). For the transformation (i) let a;; be numbers
such that w; = > aijw; then

2

doi = 2 Aijdw; = EL Aijeprilop, 2 ariwor].
J JUNK)

Hence
Caki = 2 AijCatjalk
Pl
Let v; be components of a vector v with respect to w;. Then it is natural to
define components #; of the same vector v with respect to w; by Ui = > Aijvj,
J

and we have

—_ - — — al
AV; = D) Cari@alte = 23 Aijdvi — 2, AijCatianwatr = > Aij(dv; — 2;3 Caliall).
ak F] aykl J @

So we see that (i) has no effect on the definition of covariant differential.
Next for (ii) let @s; be numbers such that ws = >)asw; and then
B

doi = dwi = D) cppilwpwr] = 2] cjriLwjor] + E; CakiLwawi]
(k) k) a.

= >\ cjriLwjor] + 2;4 Cati[ 20 @us3, wrl.
a. 3

k)

Hence Coki = 2\ Cakillap

a

~ - - Wl
Avi — 2] Carivak = dVi — 2, C3ki@3a0aVk = AV; — > C3ki03Vk «
ak fak sk

1) The discussio n and the results of this section are independent of the following sectons.
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(ii) has no effect on Duv;.
As for (iii)
do; = dwi = (}_J’:Cjki[ijk] + Zk cakiLoaor]
J a,
= ;MCJki[ijk] + z];cuki (o — 2] Asjwj, wrl.
¥ @ J
Hence Caki = Cakis
dvi — 23 Cajivat; = dvi — 25(2] Cajitrs + ZkCujiAakwk)'Uj
¥ 2 @ a
and so two sorts of covariant differentials (if they exist) would coincide when
and only when >)cqjid« =0. But then by virtue of (2.15) we would have Aq

=0. Hence if there exist two sorts of covariant differentials which are vectors,
they do not coincide. We seek for the condition under which for wi, w. and
o;. 0. related by (iii) two differentials are vectors each. Here

dos = dws + 2] Asidw;
= D) ¢iraLwjor] + 2 caxaLwpwr] + D0 c3va [wpor]
(3k) Rk B
+ ? Aa(?__} cyilwpw;]+ %iji Lwrw;]
¥ (k)
= (2;)8]7«1 [wjwel + %‘—_‘.caka [ — E‘A,ﬁw;, wr)
J
+ 2 esva @3 — 23 Asjwj, or — 2] Avror]
71 7 x
+ 23 Auil %} carilos — > Auon, wpd + ”‘Z crjiLorw;]).
13 h: ¥
Hence

(2. 17) Eﬂka = Cgks + Z CrsaATk + };Aaicﬁki .

For wi, we and o:. w, satisfying c¢.i; =0 and ¢.;; =0 we have

(2.18) gcwaArk + $CﬁkiAui =0,
Now we take infinitesimal operators such that g ApXe = X% ', then
(2.19) (Xs. XP) = (X, 2 AnXe) = 3 AsteyraXe

= %}CﬂkiAaiXa; =2icmX o,

so X® =3]A4X. generate an invariant subgroup of the group 9 generated
o

by X.’s. X are not necessarily linearly independent. By choosing transfor-
mations (i) and (ii) suitably we can assume without loss of generality that

(2.20) (An) = (% 8)
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where F is a unit matrix of degree ». In (2.20) 0’s in the second row and in
the second colomn may vanish. But the discussion is the same. By (2.20) we
get

XV =Xpr1, oo, XV =Xy, XM= . =X =0,

For 2=» we get by (2.19)
(X, X) = BewiX " = e Xoer.
On the other hand
(X, X9) = (X, Xuot) = 33 cpmen,oXr.

Hence we get the relations

Cs, n+k, n+i = C3ki (v, i2v)
(2.21) .

o, n+k, n+i =0 (k<y, i>v).
For 2> »

v X v
0=(X;, X*%)= .}?lc,zkiX“) = §CﬂkiXﬂ+i-

Hence
(2.22) ki =0 (k> v, i=v).

Denoting by C; the matrix with cs, as a coefficient of g-th row and p-th colomn
we get

f
(B, 0 z
- 0 n
(2.23) Cs = v
B;
0 :
0

where B; is a square matrix of degree ». For an element of a linear adjoint
group t = (7pq) corresponding to S;E$ we have by (1.5) dr = (31 Cuws)r. Hence

T is a matrix of the form (2.23). Conversely if r has this form we have Cpe
=csea by putting X =) A.iX, with A. given by (2.20). In fact we have

then (X, X™®) =esiX™, hence (2.18), and putting v = we + S, Asivi we get
[} i
Caks = Cpka. 1IN SUMMAry

THEOREM 2.2 Let w; and w, be principal and secondary relative components
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of a homogeneous space &/9 and Dv; = dvi ~ > cariwavr be covariant differential
ak

of a vector which is also a vector. In order that there exists another system

of principal and secondary relative components wi, w. of our space such that

Dy; = dv; — 2]Cariwa¥r for any vector U; is a component of a vector, it is meces-
ak

sary and sufficient that the following two conditions are satisfied in our space:

(@) the linear group of isotropy has an invariant linear subspace of di-
mension n—v. Let the matrix operating on the complementary linear subspace
of this invariant subspace be v with a certain choice of base.

(b) let the part of a linear adjoint group corresponding to an element S:
of 9 which operates on the secondarv relative components be vz, then for each
element of 9 v keeps a certain linear subspace of dimension v invariant and
with a suitable choise of base the matrix operating on this part coincides with t,.
As a consequence of (a) (b) D has a v-parametric invariant subgroup.

The conditions stated here are rather complicated, but we can get sufficient
conditions in simple forms.

THEOREM 2.3 If our space has the following properties, covariant differ-
ential of a vector, if exist, is uniquely determined;

(a) a linear group of isotropy is irreducible

(b) 9 has not an n-parametric invariant subgroup.

THEOREM 2.4 If our space has the following properties, covariant differ-
ential of a vector, if exist, is uniquely determined

(@) D has not an essential invariant subgroup

(b) a linear group of isotropy has not a 2n — r-dimensional invariant lincar
subsface.

In the homogeneous spaces which usually appear these conditions are satisfied.
But even in symmetric spaces these are not necessarily satisfied. An example
will be given in 3.3.

3. Space with absolute parallelism

3.1 We call hereafter a space with parallelism the one in which a covari-
ant differential is also a vector, namely c.i; =0 is satisfied. In such a space
it is natural to define a parallelism of a vector by

(3.1 Dv; = dv; — E’;cak;wwk =0,
It can be easily seen that by a suitable choise of functions ¢;(¢) (i=1, ..., n)

the solutions of the differential equations

wi(x, u, dx) = ci(t)dt, welx, 2, dx, du) =0
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give any curve in our space. With such a choice of frames attached to each
point of our curve components of vectors which are parallel along the curve
are constant.

3.2 When we translate a vector from one point p to another point g along
a curve in our space, the resulting vector depends on the path and is not
uniquely determined. We call the space, in which for any points » and q and
any choice of the initial vector the resulting vector does not depend on the
path from p to q, a space with absolute parallelism. We seek for necessary
and sufficient condition for such a space. This condition is obtained by taking
an exterior differential of (3.1), namely

— 2 ¢sjil[dvj, 0]+ dwavj) =0
aj

and putting (3.1) into this. Hence
zk](zfsjicskj Lwswsd + 2] cakiCpga Lwpwg])ve = 0.
aly

a(pq)

As the values of v, are arbitrary we get

DleajicariLwswa] + 2] Caripaa Lwpwqg] = 0,
ady a(pyg)

Putting the coefficients of [wjw;] to zero we get > cakiciia = 0. Hence by (2.15)
L3
(3.2) ¢jta = 0.
The coefficients of [wjw;] are zero on account of cjps =0. As to those of [wjws]
2l cajiCon = 2iCujiCaks + 23 CraiCer = — 25 (CobpCpui + Chaplpni + CanpCphi) =0.
J 2 14
So (3.2) is the required condition. This is equivalent to
3.3) (XiX;) =%cuka.
Moreover we have by virtue of (2.16)
(3.4) (X, X)) = Ecaij)(j-
J
Hence we get the following theorem.

THEOREM 3.1 The necessary and sufficient condition under which a homo-
geneous space &/ has the property of absolute parallelism of a vector is that
® is generated by 9 and an n-parametric invariant subgroup. This invariant
subgroup operates on our space simply transitively.

The latter half of our theorem can be easily verified.

3.3 Now we seek for a symmetric space with absolute parallelism. In a
symmetric space we have c¢;j» =0. Hence by (3.3) (XiX;) =0 and so the group
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generated by X; (i=1, 2,..., n) is commutative. By a suitable choice of

variables we get X,‘:—a—, Putting Xa-‘—'EXaj(x)—Q— we get by (3.4) X
ox; 3 ox;

= - gjcaijxi+ asj, hence

a ] ]
When we take

2] o

(3.6) Xi=2, X,= — ik

' o 421‘6 leaxj

instead of X; and X, given by (3.5) we obtain the same structure equation

(X:X;) = ;cu‘ka, (XaXi) = 2€aijXs, (XuX;) = ‘?cer
2

and the homogeneous spaces determined by these two sorts of X; and X, are
the same except for a transformation of variables. The space determined by
(3.6) is an affine space with points as its elements, though a rotation about a
point is not necessarily a full linear group. Thus

THEOREM 3.2 A symmetric space with an absolute parallelism is an affine
space with points as its elements, whose fundamental group & contains the
group of all translations, rotation about a point being not necessarily a full
linear group.

Another proof for this theorem can be given in the following way. We have
in our case

dwi = 2 cajilwenj], dws =) csralwpor].
aj (37)

Putting 7ji = — > cajia We get

U3

drji = — 2)¢qjidwe = — > CojiCpralwywr]

a a(3T)

E‘%ﬁjkckﬁi + D ejsmcrri) wpwr] = Zk}[ - gcm'kwr, - z;lcﬁkiwcj-
k

37

Hence dri =2\ [rjmii],  drji = >0 [rjemeil.

J k

i

This shows that our space can be imbedded into an affine space with points
as its elements preserving the group theoretical structure.

Example. Transformations
(3.7) K=x1+a, Xo=Ai+x+p

give an example of a space with absolute parallelism. Putting S. 'Susdax =X
+dx we get
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dx,=da, dx,=dp— Ada-+ x.dA.

[G] o o
= g == o, X5 = —
Hence X Sxy X 51a 3= X1 57
(Xle) = 0, (XxX'z) = Xz, (XzXa) =0
(3.8) oy =da, @=df—Ada, ws=di

da)1 = 07 dalz = [una):;] 5 dw:; = (.

A translation of a vector v = (v;, v2) is given by dvi =0, dv; = —div:, hence for
the frames such that A =0 we get dv =0, dv.=0. If we take w3 = w3+ cw in-
stead of w; where ¢ is an arbitrary constant, we get

dan = 0? d(v)z = [wlﬂigj y d53 = O.

Hence a translation of a vector is given by dvi =0, dve= — d(2+ ca)v; and for
the frames such that 1=0 we get dv; =0, dv: = — cdav, while for the frames
such that 4= —ca we have dv; =0, dv:=0. Thus two sorts of parallelism do

not coincide, though in each case absolute parallelism of vectors holds.

4. Geodesics

4.1 It is quite natural to define a geodesic in our space with parallelism

by a curve ;= xi(s) determined by a solution of differential equation
d [w; Wy W5

4.1 =] = 24Caij, - =0
(4.1) do <da) azz Y ds do
with a suitable choice of parameter ¢. This indicates that a vector with a di-
rection w; is always parallel along the curve. In appearance (4.1) seems to be
differential equation with # variables x; and u. but in fact it contains only »
variables x;, because the left side of (4.1) is invariant under the frame transfor-

mation about each point.
The solution of differential equation

(4.2) wix, u, dx) = cido, w«x, u, dx, du) =0

where ¢/s are arbitrary constants gives the solution of (4.1). In fact (4.2)
satisfies (4.1) and each solution x; = xi(¢), #%. = #.(s) of (4.2) gives rise to that
of (4.1) x;=2x:(s), initial point and initial direction being any assigned ones
with suitable choice of the values of ¢;. Thus all the geodesics are obtained
by solving (4.2). It can be easily seen that each solution of (4.2) gives rise
to a curve generated by one-parametric motion of our group. Hence

THEOREM 4.1 All the geodesics of our space are generated by one-parame-
tric motion of our group.

Not all the geodesics of our space are necessarily congruent under the motion
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of our group. If we transform frames at every point of our space by the same
element S: belonging to § we get by (2.14)

Oi = 2,Tij0j, Ba = 2)TepWp.
J [i]

Hence the curve obtained by solving w; = >, tijcids, ws =0 is congruent to that
J

obtained from (4.2). So if a linear group of isotropy operates transitively on
the direction of vector space all the geodesics are congruent, and the converse
is also true, Hence

THEOREM 4.2 In order that all geodesics are congruent it is necessary and
sufficient that the linear group of isotropy operates transitively on the direction
of a vector space.

We call the parameter ¢ appearing in (4.1) a canonical parameter. A canoni-
cal parameter is not uniquely determined but it is easily verified that between
two canonical ones ¢ and p there exists the relation ¢ =ap+ b (a, b const.).

If two sorts of parallelism are defined in our space the geodesics are defined
in two different ways. In the example given at the end of 3.3 one sort is a
straight line while the other sort is a parabola. This can be verified as follows.
If we put in (3.7) % =2 =0 we get X = a, x»=f[. Hence we can put by virtue
of (3.8)

w1=dX1, w2=dx2-/ldx1, w3 =di
and the geodesic corresponding to w:, w2, ws can be obtained by solving
w1=dx1=l.‘1dd, U)z=d5\f2’“ldx1=(/’zdd, w:;-—:dA:O

and we get a straight line. On the other hand the geodesic corresponding to
w3 = w3+ cwr can be obtained by solving

w1 =dx, = cdo, wy = d%: — Adx1 = ¢ado, E)’a=d(l+cx1)=0

and we get in general a parabola.

5. Invariants of a homogeneous space

5.1 Here we give attention to invariants of a homogeneous space. From
a differential dx = (dxy, . . . , dxn) we make exterior forms

(5. 1) [dx:‘, dXiz “ e dx;k] (i1<i2< . e <1k)

where i, &, ..., & iS any combination taken from 1, 2, ..., n. We denote
by Xi exterior form (5.1) which we arrange lexicographically, index / running

from 1 to N = (:), and by X a vector with X; as its components. This we

write in short X=[dx, ..., dx]. Similarly from relative components w; we
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make exterior forms
(5.2) 2 =Lwi, i « . . 0;,] ((1<i< ... <idp)

and denote by £ an N-dimensional vector with 2, as its components, and we
write in short 2=[w, ..., »]. For a matrix A = (aij) we denote by [AA ...
A]l, where the number of A is %, the matrix whose coefficients are the de-
terminants
A(;l1 ;22 z]'-ek) (<< .. <dhy, H<i<...<jr)

which are the minors of A where 71, ..., % and /i, ..., jr are any combi-
nations taken from 1, 2, ..., n. Let the coefficients of [AA ... A] be ar-
ranged in the lexicographical order of (7, . .., #) with respect to row and in
the same order of (ji, ..., jr) with respect to colomn. With these preparation
of notations we state a theorem.

THeOREM 5.1 Let x = (x1, ..., xx) be coordinates of a point of a homo-
geneous space. A homogencous polynomial of X = (X,. ..., Xx) with functions
of x=(x1, ..., %n) as tts coefficients, which is invariant under the transfor-
mation of our group. can be represented as a homogeneous polynomial of 2 = (24,

., Qy) with constant coefficients.

Proof. Let the paramaters of our space be ¥ and %, and the transformed
ones be ¥ and #. Then we have

wi(x, u, dx) =2 aij(x, w)dxj= 0i(%, #u, d%) = >, a;;(%, n)dx;
7 J

which is the property of relative components. We denote by A(x, #) the
matrix [A(x, #), ..., A(x, #)] where the number of A(x, #) = (aij(x, %)) is
the degree % of our polynomial in question. Then 2=[w, ..., w] where the
number of w is also 2 can be written in the following form

Q=lo,..., o]=TA(x, u), ..., Alx, @)1X=Ux, u)X.

Here 2 and X are the matrices with one colomn. As w/s are invariant under
the transformation of our group we get

(5.3) 2=Wx, ) X=UNE% u)X.
(5.4) X=Ux, u)0 X=U% w2

Non-singularity of %(x, #) can be verified by the fact that the inverse of A(x, «)
can be given by [A(x, »)™, ..., A(x, »)™*]. Now let the polynomial of X;
which is invariant be

(5.5) D i @XE XN =S (EXE X,
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Putting (5.4) into (5.5) we get
(5.6) Sy iz w0 O =SF . (F w)el . L. 2.

As our group operates simply transitively on x and #, ¥ and # can be put into
0. Hence (5.6) is equal to

(5.7) F,...iy(0,0008 . .. 2

and the proof is completed.

The converse of our theorem is not true. The form (5.7) is of course in-
variant under the transformation of our group but it depends on the parameter
% in general. It is an invariant of our homogeneous space when and only when
it is invariant under the transformation of a linear group of isotropy.

THEOREM 5.2 If a homogeneous space admits an invariant metric 3w
i

then the followings are also invariants of our space

Swiwi, 2D lwiwjord?, .. ., [wws . . . 0s]%
(i (ijk)

Proof. Let o= Pw be a transformation of a linear group of isotropy then
by our assumption P is an orthogonal matrix. Then [P, ..., Pl which is the
transformation matrix from [wi, ... wi] to [wi, ... @;] is also orthogonal.
It can be verified by making the product of [P, ..., PJ] with its transpose
[P, ..., P). Hence the invariance of the form in question is obtained.

TuroreM 5.3 Let A = (aij) be non-singulayr symmetric matrix and (Aw, w)

= >\a;wiw; be an invariant of a homogencous space. Then a quadratic form
i7

([A. ..., Alo, 2) in @ is also invariant, where = (21, . . ., 2x) is obtaired
from 2 =[wi, . .. wil.

Proof. By taking a suitable matrix T = (¢;) we get (4w, w) = (v, @) for
@ = Tw, hence A =T'T. By the previous theorem >,[@i, ... @;J) is invariant
and this can be transformed into

2, @=UT...T1e [(T...T12).

By calculation we get on account of A=T7'T

(r...7¥[T... T1=[A ... Al

and the theorem is proved.
An application will be given at the end of 7.1.

5.2 Let v=(v1, ..., vs) be a vector on the tangent space at a point in
a homogeneous space and P be a homogeneous polynomial in (Vi, ..., Vi)
which are components of a multivector V constructed from v =(v1, . .., ¥Un).
The necessary and sufficient condition in order that the polynomial P is in-
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variant under the transformation r = (r;;) of a linear group of isotropy is that,
when we put »; + dv;, where dv; is given by

(5.9) dvi = 2 cjiws(t, dt)v;,
ey

in place of »; in P, the part linear in dv; vanishes. Here w,’s are secondary
relative components of transformations of § and so they are independent
Pfaffians.

In a space with parallelism translation of a vector is determined by

dvi = D) cejivaa, da)v;
3

where w.(a, da) is relative component of a motion along a curve. As w.(t, dt)’s
in (5.9) are independent a form P which is invariant under the linear group

of isotropy is also invariant under the translation of vector along any curve.
Thus

TueoreM 5.4 Vector invariants with respect to linear group of isotropy
are also invariant under the translation of vectors.

For example if >,2f is an invariant of our space then the length of a vector
H

and the volume of a parallelpiped with 2 vectors as its edges are invariant
under the translation of vectors.

5.3 Let flw)=f(wi, ..., ws) be an invariant of our space &/ which is
a linear homogeneous function of w = (v, . . ., wx). Then 4f(w) vanishes for
an infinitesimal variation dw; = >, ¢spiecwr 0f w, namely
ok

(5.10) SV sieson = 0.

aki OW;
We will prove that any curve in &/ obtained by solving differential equation

(5.11) wi(x, u, dx) = cids, w,(x, u, dv, du) =0 (¢; const.)

is an extremal for the integral L = j‘f (w) under a certain condition.

Let a curve obtained by solving (5.11) be ¢ and any two points on it be
Py, P, for which the parameters are ¢, and o respectively. We consider a
one-paramefric family of curves joining P, and P and let the parameter of the
curves be ¢, e=0 being that of ¢. Then the coordinates of points on these
curves are functions of ¢ and ¢ and at P, and P, ¢’s are always ¢ and o1 re-
spectively. Now we denote the variation induced by the change of ¢ by d and
that induced by the change of ¢ by 8. Writing down the relation

dwi = 2\ ciril wjor] + 2 cori Loawr]
(Jk) ok
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more fully we get

dwi(8) — dwi(d) = EkICjkiwj(d)wk(a) + Ekcaki(wa(d)wk(S) — we(8)wr(d)).
J al

(5.11) means (wi(d))e=o = cido, (0a(d))e=0 =0, hence we have

(5.12) (Swild))e=0= _chjkicjdo(ﬂ)k(a))z:O
J
-+ azkcaki(ahz(a))s=ockdd + (dwi(a))sﬂ)-

Now we have

(8L)e-o = (5S:1f(a>))e=o = S:L(af(w))m -{"5(Zowta), .

oy ow;

As f(w) is linear homogeneous 585 is a2 homogeneous function of degree zero,
(]

N _F (N : :
hence (aw;)e:o—_aw,‘(c) = o (¢1, -« « 5, cn). By virtue of (5.12) we get

(0L ens= = Seies L O (010 e-sdo + D2 @casienf (0u(0))ewods

o aki a

+ $§i(c)gol(dwi(6))s=o-

Oo

The second term on the -second side vanishes on account of the relation (5. 10)
and the third term vanishes as

3”:‘(@,-(5))5:0 = [(wi(8))e=adt = 0.

Hence we have
(8L)e=0 = —ECjkiCj'ai(C)S l(a)k((?))a:()dd
Jki ow; o

and this vanishes when
(5.13) Zc]-kicj-;al (c)=0.
78 ow;

We call geodesic a curve in &/9 obtained by solving (5.11) which in the space
with parallelism is the geodesic already defined in 4.1. Then we get
TueoreM 5. 5 Let f(w) be an invariant of &/ which is linear and homo-

geneous in w="(wi, ..., won) and satisfies the relation E‘}Cjkiwjgji =0. Then
J Wi

all the geodesics are extremals with respect to the invariant integral L = S fw).

These extremals are gencrated by onec-parametric subgroup.
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In general there may be several invariant integrals. Then geodesics are ex-

tremals of these integrals at the same time. Examples will be given in 7.1.

If our space ®/9 has an invariant Riemann metric > w; we can take f(w)
i

=vV> 0. Then (5.13) reduces to >, cjricici =0, hence ¢ji = — Cirj as ¢i's are
¢ Jt
arbitrary constants. Thus we get
THEOREM 5.6 If cijk is a trivector and D, w; is an invariant Riemann met-
{

7ic all the geodesics with respect to this metric are generated by one-parametric
subgroups of ®.

6. Homogeneous Riemann space

6.1 When a linear group of isotropy is orthogonal cur space has an in-
variant Riemann metric >, w}. Owing to the relation drij = > capiwatr; a linear
i ak

group of isotropy is orthogcnal! when and only when
(6.1) Caki = = Cqik.

If the orthogonal matrix r = (1) is reducible our space has invariant Riemann
metrics whose number is equal to the number of irreducible parts of the linear
group of isotropy, hence any linear combination of these metrics with constant
coefficients is also invariant.

6.2 We calculate the parameters of the Riemannian connection of our
space with a Riemann metric

(6.2) ds® = ;.

T
Let the parameters of the Riemannian conneciion be w;j, then

(6.3) dwi = 2[wjw;i]  (wij= = wji).
J
On the other hand by the structure equation of our group

(6.4) do; = (Z)Cpﬁ Lwsw;] = (kE)iji Lorwi] + 2 esjilwaw)]
rJ J .l
=2[wj, — LS cniion — S eaival.
2 2 k 2
From (6.3) and (6.4) we get

D Lwjwiil = 23 Lwj, —- ; Chjiwk — 23 Cajins].
2 2 a

I

Hence

1
wii = = ; Chjiwk — 20 Cajiws + 23 Ajikwk
-1 K
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where Ajir = Arij.

By the relations wij+ wji =0 and (6.1) we get

0= — —;—% (crji + Crij) wr + Ekl (Ajir + Aije) wor,
hence Ajie + Aijr = é— (Crji + Crij),
similarly Aipj + Apij = %( Cjik + Ciki)

Arji + Ajri = ‘%—(Ciki + cije).

Adding the first two of these equations and subtracting the third and dividing
by 2 we get

Ajik = % (¢jie + crij).
Thus we obtain
(6.5) wji = — 2 Cajitda + %E{" (cjie + crij + ciki) ok.

6.3 We investigate the relation between the parallelism hitherto studied
and the parallelism determined by the Riemannian connection (6.5). We as-
sume that a homogeneous space with parallelism has a Riemann metric (6.2)
and call the covariant differential of a vector »; a covariant differential in
Klein connection and denote by Dxv;, namely

(6.6) Dy = dvi — > Cojiwal;.
aj
On the other hand denoting a covariant differential of »; in Riemann con-
nection by Dgzy; we have
(6.7) Dprvi = dvi + 2 wjiv;
J
1
= dvi — 2 Cajivelj + 5 kZ(Cjik + Chij + Ciki)wrV; .
aj 7
In order that Dxv; and Dzv; coincide it is necessary and sufficient that the
following relations hold
Ciik + Chij + Ciki = 0.
Adding this and

Ckji + Cijk + Crij =0
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we get crij =0.

As c¢.i;=0 holds in our space we get a symmetric space on account of 1.7.
We call a frame corresponding to w; and w;; determined by (6.2) and (6.5)
an adapted frame. Thus

THEOREM 6.1 [y order that in a homogeneous space with parallelism the
covariant differential in Klein connectin and the covariant differential in Riemann
connection corresponding to an adapted frame coincide, it is necessary and suf-
ficient that the space is symmetric.

The equation of the geodesic in Klein connection is by (4.1)

(6.8) d“;(dd) Sewii 325 =0,

and the equation of the geodesic in Riemann connection is

d/w wji w; diw Wq W] WE ©j
6.9 o L . i J k= -- =0
(6.9) a’s(ds) +;ds ds a’s<ds) EJ Jigsds T EB’ ds ds
where
(6.10) Bjix = é—— (cjir + Crij + Cjri).

From (6.8) we get

L(5(2)) =23 L() mp3ic, 0 <

hence

E(%)z = const.

Similarly we get from (6.9) E(;”;)Z = const.

So if two sorts of geodesics obtained by solving (6.8) and (6.9) coincide the
ratio of ds and do is constant, and we get by comparing (6.8) and (6.9)

kW) _
%Bﬂbd as =

Hence Bjit + Brij =0. We get by (6.10)
(6.11) Cikj = — Cijk.
Thus the following theorem is obtained (cf. theorem 5.5).

THEOREM 6.2 In order that the geodesic in Klein connection and that in
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Riemann connection coincide, it is necessary and sufficient that cijr is a trivector.

Example. Let & be a group generated by the differential operators Xj,
X2, Xs, X, and D.be a subgroup generated by Xi, where

(X%X) =X, (X%BX) =X, (XiX:)=cXs
(XX = - X, (XiX)=X1, (XuXs)=0.
Then the structure equations of a space &/9 are
dow; = Lwews] + Lwws], dw: =Laww] - Low], dws=cdwws], dw,=0.
Putting w; — ws= 0 we get
dwy =[wmwl, do:=lwwd, do=clew.l.

Now we take the case ¢>0. Then Vcwi, Vcws, o satisfy the structure equa-
tions of a rotation group of dimension 3. Hence c(wi+ w3) is a line element
of a 2-dimensicnal sphere, and by a suitable choice of variables we have

c(ol + w3) = db* + sin® 6d¢*
Ve =cosa ol —sinasin6de, Ycw,=sina df + cos « sin 0 do.
Hence w= —cosfdy+da, wi=db.
By putting a + 8 =¢ we get
ws = —cosf dy + dy.

Thus the line element of our Riemann space is
ds* = % (db® + sin® 0 dg?) + (cos 0 dp ~ dp)*.

In this space the condition (6.11) is not satisfied if ¢ =1, so two sorts of geo-
desics do not coincide. This space was given by E. Cartan in his book [5] as
an example of the space in which a linear group of isotropy is a rotation group
about an axis.

6.4 'The discussion in 6.2 is independent of a Klein connection. If (6.1)
is satisfied, we have an invariant Riemann metric (6.2). If (6.11) is satisfied
the equation of the geodesic is

ajwiy _ Qe OF _
ds(ds) azac“”ds ds 0

and the solution of this equatin is obtained by solving
w; =¢ids, wg=0

and so the geodesic in Riemann connection is a curve generated by one-
parametric subgroup of §. Hence we get again (cf. theorem 5.6)
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THEOREM 6.3 If cijr is a trivector the geodesic of a Riemann space wilh
the metric Z}aff is generaied by one-parawetric subgroup.

An analogous theorem was obtained by E. Carian in his book [5] in the case
of a group space itself by the use of canonical coordinates. The proof here
given is applicable to the case of E. Cartan. In our case the condition that
c¢ijx 1S a trivector is not necessary. In fact even though ci is a trivector ci
is not always a trivector after the transformation (iii) (T)c::w(,-f-’Z'_A..w,- con-

sidered in 2. 3.

7. Examples

7.1 Two examples will be given here about the discussion hitherto done.

Let the orthonormal system of vectors be e, €z, . . . , €, and their infinitesimal

change be de; = > wije;. Let e be a matrix with one colomn whose coefficients
]

are e, €, . . . , €5 and £ be (w;j), then we can write the above relation in the
form de = Qe. If we take a new system of orthonormal vectors € = Pe, where
P is an orthogonal matrix, and put dé = 2¢, we get
(7.1) Q= PQP +dP-P'.
This is the special case of (2.1).

The transformation F, which keeps invariant a k-dimensional plane pass-
ing through the origin and containing e, €z, . . . , €, is of the form P= (5‘19)

2

where P, is an orthogonal matrix of degree k. Corresponding to this we put

2=y 0)
Then we get by (7.1)
(7.2) 8, = P2.,P;
(7.3) 21 = PO P+ dP P, O:=P,2:P;+dPyPi.

Hence the principal relative components of a homogeneous space with k-dimen-
sional planes through the origin as its elements, namely a Grassmann manifold,
are £,. If we denote in general the product of matrices 2 = (wip), I = (7pu)
with Pfaffians or differential forms as its coefficients by [QII] = (Lwipnps]) and
the exterior differential of £ by d2 = (dwip) we can write the structure equation
in the form d@ =[28] which in our case reduces to

d2 =[2:21+ (221, d0 =[2:2]-[220], d2 =[2:.2]1-[22].

Hence by (1.13) (1.14) a Grassmann manifold is symmetric, as is well known.
A vector in this space has components V written in matric form and after
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a frame transformation V is transformed into V = P,VP;. Hence
AV -2V 4+ V0 =P(dV - V+ V2,) P}

and the covariant differential of V' is

(7.4) DV=dV -2,V + V&..
The equation of the geodesic is
d (2 19y | 2o 22
7.5 == =10,
(7.5) ) antan="

and the solution of this equation is obtained by solving

(7.6) =Cdo, £:=0, £2:=0

where € is a mairix with constant coefficients. As C has invariants under
the transfomation C = P.CP} of linear group of isotropy, not all the geodesics

are congruent in a Grassmann manifold (cf. theorem 4.2).
Ry the transformation V = PVP; |VV’ ~AE| is invariant and if we put

V=(vis) (=1,...,k a=k+1,...,n)
we have vector invariants (cf. W, Blaschke [1] p. 12)

s .12
8 1Vie Vi
}va E . R
’ @ Ivis Vjp
(23)

9 o e o o

By the discussion of 5.2 these are invariant by the parallel translation of vec-
tor. As our spacc is symmetric the parallelism of a vector in the sense of
Klein connection here stated and that in the sense of a Riemannian connection
associated with the metric ZOJm are the same. (7.6) gives an extremal of
gv’;—‘zﬁ?}ﬂ as well as of S\/L “a’)w Z)’nm etc. by the theorem 5.5.
Wy 78
As for the case n=4, k=2 we have two sorts of Riemann metrics

gam W14,
;23 0)24

2 2 2 2
w3+ w1y + was 4 wa4, = W13W21 — W23W14.

Hence o5+ ol + wis+ wss + 2 ¢ wiswes — wmw) with arbitrary constant ¢ is in-
variant and we get by the theorem 5.3 two invariants which are polynomials
of degree 2 in ¢. Coefficients of each degree in ¢ are invariant. Thus we get
the following invariants.

Lwpwid + Lowwes] = dow, Losws]+ Louwd = dwx

[01130)24]2 + [wma)za]z -2 [wlawx.xj [0723(024] -2 [wxaw;’.ﬂ[wzswu]

Lwswriwzs 1 + Lwmnwnwii ]’ + Lowouws]’ + [wsnowis]®

[w130)24w14] [0J13w24w23] - [wl !w23‘013][0)1 xwzawu]
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[wlawuwzaa)zﬂ .

7.2 Let x-= (%o, %1, . .., %) and %' = (%), %1, . . . , %) be homogeneous
cocrdinates of points in an zn-dimensional projective space and a projective
transformation be x' = Px where P is a matix with the determinant [P|= = 1.
Let the frame be a set of »+ 1 analytic points A = (Ao, A1, ..., Ax). Then

dA = QA where 2= (wi) and %wii=0. We consider a set of quadratic sur-
faces obtained from 2;x?= 0 by projective transformations. The transforma-

tions which leave invariant %x?:(} are orthogonal. Principal relative com-
ponents of a homogeneous s;;:;.ce with quadratic sufaces as its elements are £
+ ' = (wij + wji). Putting II'= -;—(!2+.Q’), = %(!)-—.Q’) we get by virtue of
(7.1)

(7.6) I = PIIP', X =PIP'+dP-P

A symmetric matrix V which is transformed in such a way that V= PVP' is
a vector and its covariant differential is given by

(7.7) DV=dV-2ZV+ V2.
The equation of a geodesic is

d (1 rn oz
7. Ry e P R T
{7.8) do(da) do da+da do 0

and its solution can be obtained by solving
(7.9) I=Cds, 2=0

where C is a constant symmetric matrix. By a suitable orthogonal matrix
C is transformed into a diagonal form. Then by solving dA = CdsA we get
Ai=aie®’A”. The equations of quadratic surfaces corresponding to the equa-

tion i_ox,gz 0 with respect to A =(A4,, A;, ..., As) are ioa;'ze‘”i"x? =0 with

respezc_t to a fixed frame. This is the geodesic. The strucz';ure equations are
ann=Lxal+nxl, dr=0nml+[x]

and our space is symmetric. The invariants of a vector are given by the coef-

ficients of a polynomial in 4 |V ~ AE].

8. Space with Klein connection

8.1 Now we treat a vector in a space with Klein connection. Two-di-
mensional space with euclidean connection can be determined by giving two
independent Pfaffians =:(a, da), m(a, da) and r1:(a, da) in two variables a = (ay,
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a:), and the development into a euclidean plane can be given by integrating
(8.1) dA =me; + me:, de;=mpes, dei= — res.

Let A = (%, x2), e1= (cos 0, sin§), e2= ( —sinf, cos ). Then (8.1) can be writ-
ten in the form

(8.2) dxicos 0+ dx:sinf =m(a, da), —dxisinf+ dx;cosb =ria, da),
db = r12(a, da).

It is easy to formulate a space with Klein connection from this point of view.
Let the relative components of a homogeneous space &/9 be w; = wi(x, u,
dx) and we = w.{x, u, dx, du). Then

(8.3) dwi = 2 cpjilwpwil,  dwa = 2] epgelwpwq].
(v3) (vq)

Let us consider an n-dimensional differentiable manifold with ¢ = (a1, a2, . . . ,
a») as coordinates of a point, and attach to each point of the manifold » in-
dependent Pfaffians ni(a, da) and r — n Pfaffians n.(a, da). We integrate the
differential equation

(8.4) wilx, u, dx) =nila, da), o.(x, u, dx, du) = n.(a, da)

along a curve a =a(s) in our manifold with the initial condition ;= x", u.

=uy" at ¢=0. The curve thus obtained in the homogeneous space is called a
development of a curve a=al(a).
By the frame transformation from S;R to S;S:R where S; is an elemen® of

9 relative components are transformed into

(8.5) w; = %_}Tija)j, Wy = }y]r,,gwp + ws(t, dt).

So if we take in the place of = and m.

(8.6) Fi= g‘z‘iﬂrj, Fy = SP_JTapﬂ'p + wa(2, dt)

ard solve

(8.7 wix, u, dx) =7a, t, da), wx, u, dx, du) =7.(a, t, da, dt)

where a =a(s), t=1(q), we get a curve congruent to the solution of (8.4) in
&/9H. We call a differentiable manifold of dimension n with Pfaffians =i(a, da),
@, da) a space with Klein connection and &/9 a fundamental space. We
speak of mi(a, da), n.(a, da) in relation with a frame R and if we take another
frame R=S;R (S:€9) we attach to a point @ #; and %, determined by (8.6)
in the place of #; and #,. Let us call #;, =« parameiers of Klein connection
and (8.6) the transformation of these parameters. 7; and 7. are called genzr-
alized parameters.
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8,2 We attach to each point of a space with Klein connection a vector
space and let the transformation of a lirnear adjoint group of isotropy be a
transformation in our vector space. In general we define a tensor by a set
of numbers attached to a frame SR which are transiormed by a group of
linear transformation homomorphic to © in accordance with a frame traasfor-
mation S;. Especially » ={v, ..., v»), whose transformation is given by ¥;
= 2;1';,'1;,‘, is a vector in our sense. Then putting

(8.8) Qi =dri — 2ocpiilnsni], Qo =dre — 2 Cpealrpms]
(p3) (vq)

we get the following theorem.

TreoreEM 8.1 9 is a tensoyr and 9; is a vector. If the fundamenial homo-
geneous space is a space with parallelism 2. is also a tensor.

Proof. The assertion that £, is a tensor is lemma 2 in 2. 1. £; is a vector
on account of the relation &= >)7;%2; because of 7i.=0. In a space with
J

parallelism v, =0 holds and sc 2. = 2,7, which shows that 2. is a tensor.
5

We call 2; a torsion vector of a space with a Klein connection and if the
fundamental space is a space with parallelism we call . a curvature tensor.

A space whose torsion vanishes is called @ space without torsion. In such
a space 2. is a tensor, which we call a curvainre tensor as in the previous
case.

It is often convenient to take

(8.9) Fi= 20T, e = 20 Taplp + 0o, @F)
7 14

in the place of ni, me. If we consider a=(ay, ..., @) and = (Fns1, « oo, &)
as independent variables 7, 7, are independent Pfaffians. If 2; and £. vanish
the relations

(8.10) A7 = 200p5il 7p%51,  dFe= 2 Cpg0 FpTig]

P2 vy

hold for #;, #, as well as for n;, .. Hence %; and %, are relative components
of our homogeneous space. Thus

TraeoreM 8.2 A space with Klein connection coisncides with the funda-
mental homogencous space when and only when torsion vector and curvature
{enzoy vanish.

Next we take exterior differential of the equations

. A
dri= 2} epjilmpnil+ i, drs= 2 cpqalmpmed+ 24
(vj) (pq)

and substitute in them the right side of these equations in the place of dr;,
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dr.. Then owing to the group property of & the terms not containing 2i, 2«
vanish. Hence we get

aQi+ 2 ¢ojilmiQ:] - Z,} Cojilma ;] — Zk cirilmiQe] =0
aj @ 2

dQ2s — 2 cpga[7p21 = 0.
rq

If our space has not torsion we get

(8.11) SeejilniR.1=0
ay
(8.12) dQs — gcm (a1 + E;Cgiu [m:2:1=0.

The latter is the generalization of Bianchi’s identity.

8.3 We consider a vector field v = v(a) on a space with Klein connection.
Let the components of »(a) with respect to a frame R be (v1, ..., vs). Now
we take 7; and 7, defined by (8.6) instead of n; and 7., and denote them by
7n; and 7, anew. S0 r;, 7, are Pfaffians in variables a;, . . ., @n, tn+1s « - « 5 Lr.
We define a covariant differential of a vector v by

(8.13) Dv; = dv; — Zcujm,vj.
@

Then by the same arguement with that of theorem 2.1 we get

THEOREM 8.3 In order that in a space with Klein connection Dv; definzd
by (8.13) is a component of a vector it is necessary and sufficient that the
Sundamental homogeneous space is a space with parallelism, namely cqiz =0.

Proof. In 2.2 structure equations for wi, w. and i, ws which in our case
correspond to zi, 7. and 7i, %« were not used, and only the relation (2.2) and
the property of linear adjoint group were used. Hence the discussion there is
applicable to the present case.

Under the assumption c.;; =0 a translation of a vector can be defined by

(8.14) Dv; = dvi — ZjCajin'uvj =0
and a geodesic by the solution of

4 (m\_ e T _
(8, 15) do <do') %Caﬂdo‘da .

If we take generalized parameters ri(a, t, da), n.(a, t, da, dt) the discussion
of 4.1 is applicable to our space. Hence the solution of (8.15) can be given
by solving

(8.16) ni(a, t, da) = cids, nsla, t, da, dt) =0.

When we develop the geodesic thus defined in the space with Klein connection
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into the fundamental homogeneous space we get a geodesic of the space. The
vector invariants with respect to the linear group of isotropy are alsc invariant
under the translation of vectors. For example if our space has an invariant
Riemannian metric the length of a vector is invariant by a translation, as is
well known.

8.4 Now we treat a space with Klein connection which admits an absolute
parallelism of a vector. Then the differential equation

Avi — D) Cojimatj =0
@7

is completely integrable, hence taking an exterior differential of this equation
and substituting dv; = > cqjinavj We get
ay

(8.17) Qo= — ?T' citaLmjmr]
)

by a calculation analogous to that of 3.2. As cji. =0 is a necessary and suf-
ficient condition for the fundamental space to admit an absolute parallelism
we obtain the following

TueoreM 8.4 In order that a space with Klein connection admits an abso-
lute parallelism of a vector it is necessary and sufficient that (8.17) and cqiz =0
hold. In particular if the fundamental homogeneous space admits an absolute
parallelism of a vector the space with Klein connection admilting an absolute
parallelism has a vanishing curvature and if moreover it has not torsion it is
nothing but the fundamental homogeneous space.

Now we investigate a space without torsion which admits an absolute par-
allelism of a vector. For such a space we have

dri= 2 cpilmpmil, drs= ETC{;Tu. [mamsd.
wn ™

If we take 7; =mi(a, t, da), 7T = nsla, t, da, di) determined by (8.9) instead of
7i, 7« yet we have

(8.18) dii= 2.cp5il7p75),  dfe = 2 Caval7arr]
(rd) (37)
because 2. = — > ¢ji[77] holds after the transformation. This relation can
(%13}

be verified by the relations 2.= >,7t.3%:, 7= 21Tij7j, ETapCj}B::kZCkhaTijh[.
3 7 i3 h

As ¢pys’s are constants 7;, T, are relative components of a certain homogeneous

space by virtue of (8.18). Hence we get

THEOREM 8.5 A space without torsion which admils an absolute parallel-
ism of a vector is a homogeneous space with an absolute parallelism which is
different from the fundamental homogeneous space.
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In a space without torsion we have by (8.11) E;caji[nj!)a]=0 and so for a

space with an absolute parallelism we get by (8.17)

) cktaCasi Lmjmem] = 0.
ajki

Hence on account of the independence of n; we get

(8.19) S CrisCoji + CliaCaki + CikaCati) =0
and so
(8.20) zh'.(Ckz;.Chji + CijnChri + Cirncnti) = 0.

Conversely if (8.20) is satisfied we easily see that there exists a homogeneous
space with

Cijk = Cijks  Cija =0, Coji = Caji
Caiz = Caiz =0, Cupi = Capi = 0, Copr= Ca3r
as structure constants. In fact among the identities between cpqgs's

Z(Cpqscstu -+ CqtsCspu + Ct[)scsqu) =0
8

those containing c;j.’s are
S cijpCor + CirpCoit + CripCpit) =0
»

D CrinChia + ClinChia + CiknChte) =0
h

D CijaCapr + 2 CiskCrit + 2 CpikChir = 0
a k 13

and these are satisfied even when we put cij: to zero. Hence Cpes's defined
above are structure constants of a certain group and determine a certain homo-
geneous space. This space can be considered as a space with Klein connection
whose fundamental space is &/9 and which has not torsion and admits an ab-
solute parallelism.

TueoreM 8.6 In order that there exists a space with Klein connection
which has not torsion and admits an absolute parallelism of a vector il is neces-
sary and sufficient that the fundamental homogeneous space has the property
that there exists a group which has cijr as structure constants.

In particular there exists a space which has a symmetric space as its
fundamental space and admits an absolute parallelism of a vector. This space
was treated in 3.2. For example there exists a space with spherical connection
which has not torsion and admits an absolute parallelism of a vector. This
space is nothing but a euclidean space.
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8.5 The result in 5.3 can be extended to the case of the space with Klein
connection which has not torsion. In 5.3 we called a geodesic of &/ the
curve obtained by solving (5.11). Now we call a geodesic of our space a curve
which can be developed into a geodesic of the homogeneous space &/9. Such
a curve can be obtained by solving

ni(a, t, da) =cids, m.(a, t, da, dt) =0 (c; const.)

where 7; and 7. are the generalized ones, namely %, 7. given by (8.6).
As our space has not torsion we have

dri = MZH ciriLmjme] + §k] Cokilmamrl.
a,

Hence the discussion of 5.3 can be applicable to our case by the same calcu-
lation. Thus we get
THEOREM 8.7 Let flw) = flw1, . .., ws) be an invariant of a homogeneous
space ®/9 which is linear and homogeneous in principal relative components
and satisfies the relation Ecykza)] af =0. Then all the geodesics of a space with
l
Klein connection, whose fundamental space is &/9 and which has not torsino,

are extremals of the integral Sf(r:) =Sf(m, e ey Tn)e

If the fundamental space satisfies the relation ¢ijr =0 our condition is al-
ways satisfied. A symmetric space is such a space. If the fundamental space
is a euclidean space we get the well known theorem that the curve of a
Riemann space which in development gives a straight line is a geodesic in the
sense of the Riemann metric, whose proof is usually accomplished by the calcu-
lation rather roundabout.

8.6 A space with Klein connection whose fundamental homogeneous space
has the property c.ij = — Cji admits a Riemann metric >,#; which is invariant
i

under the linear group of isotropy. If the space has not torsion we have
dr; = Ek)cjki Crjmed + 2 cajilrami].
{J @z

Hence by the same argument with that of 6.2 we get the parameter m;; of the
Riemannian connection associated with the metric Er:? and so

(8.21) Tji = — 2, Cajita + %Bz‘ikﬂk
where

(8.22) Bjir = -é— (¢jir + Crij + Cjri).
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By calculation we get a Riemannian curvature tensor

(8.23) Qij = drij — Zk] Crigmes]
= — DVcaij(Ra + %})cma [E7%72)]
+ %‘;( g cneBijie + ; BjpnBrii — sz BienBrjn) Lanmi].

Hence a space without torsion which admits an absolute parallelism and has

an invariant Riemann metric, is not always a Riemann space without a curva-

ture. For such a space we have .Qa—i-El]Cjza [7jm1]=0 and only the first term
[P0

on the right side of (8.23) vanishes.

Concerning the relation between the parallelisms of a vector and the geo-
desics in the sense of Klein connection and in the sense of Riemann connec-
tion the results are quite the same with those of 6. 3.

Let ®/9 be a homogeneous space which admits a Riemann metric >} of.

For a Riemann space arbitrarily given it is not always possible to introduce a
Klein connection without torsion which has ®/9 as its fundamental homogene-
ous space. It is possible when and only when (8.21) holds, where =;; is a pa-
rameter of the Riemannian connection determined by a suitable decomposition
of the Riemann metric ds*=2>1zi. For a general Riemann space only a eu-

clidean connection and a spherical connection without torsicn are possible.
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