
ON THE VECTOR IN HOMOGENEOUS SPACES
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The main purpose of this paper is to investigate the parallelism of vec-
tors in homogeneous spaces. The definition of a vector and the condition for
spaces under which a covariant differential of a vector is also a vector were
given by E. Cartan [4-3 in a very intuitive way. Here I formulate this in a
stricter way by his method of moving frame. Even if a homogeneous space
has the property that the covariant differential of a vector is of the same kind,
another definition of covariant differential may also have the required property.
I will give a necessary and sufficient condition under which the definition of
covariant differential is unique. Once the covariant differential has been de-
fined it is easy to introduce a parallelism of vectors in the space. But the
parallelism depends in general on the path along which we translate a vector.
The condition for the spaces with an absolute parallelism can be obtained. A
symmetric space in E. Car tan's sense with an absolute parallelism is an affine
space with points as its elements, rotational part being a full linear group or
its subgroup. Next we define a geodesic in a space admitting a parallelism of
a vector and prove that under a certain condition the geodesic thus defined is
an extremal for any invariant integral of our homogeneous space. When our
space admits a Riemann metric which is invariant under the transformation of
our group we have two sorts of parallelism of a vector, namely the one de-
fined above and the one derived from the Riemann connection attached to our
Riemann metric, and two sorts of geodesies. We give a necessary and suf-
ficient condition in order that the two sorts of parallelism and geodesies coin-
cide. We get. in addition a sufficient condition for a homogeneous Riemann
space under which all the geodesies in the sense of Riemann metric are gener-
ated by a certain one-parametric subgroup.. In the last we define a space with
a connection associated with a homogeneous space from our point of view and
investigate some properties of the space. If such a space has not a torsion and
admits an absolute parallelism of a vector the space itself is a homogeneous
space which is different from the fundamental homogeneous space. Under a
certain condition the geodesic defined from the viewpoint of vector-translation
coincides with the extremal of the integral on our space corresponding to an
invariant integral of the fundamental space. This is the generalization of the
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well known fact that the geodesic of a Riemann space gives rise to a straight
line when we develop the geodesic in the euclidean space.

Throughout the whole we treat local problems only, and the word '"group79

is often used in the sense of "group germ."

1. Preliminaries

1.1 We quot from E. Cartan [2] [3] the matters necessary for our pur-
pose. Throughout the whole discussion let the indices run as follows,

t, j \ h, /, h = 1, 2, . . . , n
•a, 0, r = Λ + l, n + 2, . . . , r
p, q, s, t, u, υ = 1, 2, . . . , r

and let the summation Σ range over all the permutations of i and j while Σ
ij UJ)

ranges over all the combinations of i and /. Let the element of the r-para-
metric Lie group © which operates transitively on a point x~ (xι, . . . , xn) of
an -/̂ -dimensional space be x'i=fi(xi, . . . , xn'> aι, . . , ar) which we write in
short Sj ' xf —fix a). When Sc = SbSa we have c = <f{a\ h) namely cp = ψpiai,
. . . , ar\ bι, . . . , br). Let So be an identity transformation. We put SaΊSa+da
= Sε and expand ε = (ei, . . . , εr) with respect to da = (cfai, . . β , ώr)» Then
the parts linear in da are relative components ωp(a, da) of our group ®, These
are independent Pfaffiansβ Let

be expansion with respect to εp, then

(Sa1Sa+daX)i--=Xi-\~'ΣXip(x)ύ)p(a9 d a ) + « . . .

1.2 The parameter of the product of two infinitesimal transformations

S- : * ' = / ( * ; ς) Sη : x"=f(x'; η)

is ? + γ if we neglect the terms of higher order. In fact

1. 3 When we put Sa* = S/Sβ? where / is independent of a, we have Sa^Sa'+da*
~SάλSa+da* In other words ω(a', daf) — ω(a, da) when af~φ(a, t). On the

other hand if we put S& = SaSt where t is independent of a, we get on account
of the relation Sa^Sa'+da' = SΓί{Sa1Sa+da)Sr

(1.1)
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where {τPq(ί)) is a transformation of a linear adjoint group corresponding to

St. For an exterior differential of ωs we have

(1.2) dωs = Σ cpqsίωpωq] (cpqs = — cqps const.).

Putting Σ # / > ~ =X/> we get
OX

(1.3) Uί,x

(1. 4) ^{CpηnCust + CqsuCupt + CspnCuqt) = 0β

Let the variation from a to α' determined by Sa>~SaSε, where ε is independent

of a, be δ, and an arbitrary variation be d. Then by 3 Sa^^Sa+da is transformed

into (SaSs)"ιSai-daSs = Sel{Sa1Sa+da)Si, while by dSalSaϊδa = S? is invariant Hence

dωp(a, δa) = 0, and by the definition of an exterior derivative dωp~dωp{a, da)

— δωp(a9 da) we have 3ωs(a, da) = —^ΣiCpqseqωp{a, da) where ^ is a parameter

of Ss. If Sg = SϊιSt^dt this is an infinitesimal transformation of a linear adjoint

group, so we have

(1.5) δvpa ^Σcuspω^τ*, (<C - ωu{t, dt)).
us

1.4 Between the coefficients of a transformation τ = (r/,α) of a linear ad-

joint group there exist the following relations

(1.6) Σ CstqTpq =

In fact if we put Ppst = Σ^s/^r^ — ΣCqrpτqsτrt we have &/̂ s* = ΣcUvρPstv<ύu\ On

the other hand for St = So (τpQ) is a unit matrix and so Ppst~cstp — cstp~O«

Hence Ppst = 0.

1.5 All the transformations of our group which ήx a certain fixed point

of our space form a subgroup. We denote it by €>. Then we can attach to
each point of our homogeneous space a set of frames Saξ>R, where R is a

fundamental frame. For the transformation Sa and Sa+da belonging to £> there

exist n lineirly independent combinations of relative components ωp with con-

stant coefficients. Let these be ωχ9 . . . , ωn anew. These are principal relative

components of our homogeneous space ®/£>. Then we have the relations

(1.7) diθi = Σ c#, [ω/>ω/], Cφ = 0.
(j

If we take (ΛΓI, . . , X»; % + I , . . . , wr) as parameters of our space we get

l, . . - , Xn\ Un+i, . - , Ur)dXjΛ
3

For a transformation of a linear adjoint group which corresponds to Si belong-

ing to ©, which we assume connected hereafter? we have
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(1.8) Γ/tf = 0.

Hence if $?> = SaSt principal relative components are transformed in such a

way that

(1.9) wiiaf, daD^'Σiτijcύjia, da)

and the infinitesimal transformation of ω, = α), (α? da) is given by

(1.10) dctfi = ΣCvkiωΛU dt)ωk.

Hence

(1.11) dnj = Σcdwωβ(f, dthkj.
ak

The matrix group with r = (r/y) as its elements is called a linear group of iso-

tropy.

1.6 A transformation Sα of our group & operates transitively on our homo-

geneous space ®/£>. We assume throughout the whole discussion that the only

transformation Sα which fixes each point of our homogeneous space ($/£> is an

identity transformation S)9 namely (S is effective on @/ξ>.

lβ 7 Let α be an involutive automorphism of a Lie group ®, All the ele-

ments of ® which are invariant under α form a subgroup £>. If this subgroup

is closed and the homogeneous space &/ξ> has the property stated in 1. 6 we

call this space a symmetric space. For the principal relative components on

and the secondary relative components w* which we choose suitably we have

the relations

(1.12) dωi = Σ c<χji Zα)α<0jl, dυ)Λ = Σ Cijα Lωiωβ + Σ ^ τ̂« Lω^ωrl,

namely we have in addition to Cφ = 0

(1.13) Cijk = Q

(1.14) c« ? = 0.

2. Covariant differential of a vector

2.1 To any point of our homogeneous space we attach a frame S,ιR, and

let Sαξ>R be a set of frames attached to the point x. We transform a frame

from SαR to Sα>R = SαStR where St belongs to £>• Then we have

Sα+-dαSt~dt = St \Sα Sα+dα)St*S

hence by (1.1) and 1.2 we get

(2.1) ωp(α', do!) ^ Σ f / W ^ dα) + ωP(t, dt).

So if we put
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ωp = ωp(a, da), ωp = ωp(af, da1), ωp] = ωp(t, dt)

then by virtue of the relations ωf] = 0 and r/β = 0 we have

(2.2) ω* ==Σr*yω;, ωΛ = Σ
3 V

Here we state lemmas.

LEMMA 1. For ωj, ωΛ given by (2.2)

namley cpqr are the same for ωp and ωp.

We can state in a more general form which will be used later.

LEMMA 2. Let πp and πp be Pfaffians such that

r.p = ΣτpqKq + ωp(t, dt)

where {τpq) is an element of a linear adjoint group and ωp(t, dt) are relative

components corresponding to St {not necessarily an element of ξ>). Then putting

(2. 3) Ωp~ dr.p — Σ CqspZftqKsl, Ωp = dπp — Σ CqsjLπq p TTs]
(y»» (qβ)

ive get

(2.4) S^ΣrΛ

Proof. From the assumed equality we get by putting ωp

0) ~ωp(t, dt)

dl:p = Σ Ldτpqκq] 4- Σ Tpqdπq -f rfωp0)

Cτf<ι7fs] = C Σ Γ̂wTΓ ί + ω!f0), Σ "CsvKυ

Hence

]?/> = dπp - Σ <̂z
iqβ)

By virtue of (1.6) (1.5) (1.2)

Ωp = Σ r ^ β

If we notice that Ωp = 0 leads to 5^ = 0 we get lemma 1.

2.2 To any point x of our w-dimensiona! homogeneous space we attach

an //-dimensional vector space which we call a tangent space at x. Let Sα ζ>/?

be a set of frames corresponding to the point x. Then by a frame transfor-
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mation from S(JR to SaStR, where St belongs to •£, the principal relative com-

ponents undergo the transformation given by (1.9). Now we take in a tangent

space a frame (e ι ? . . . , en) corresponding to SaR and let a frame (eJ ? . . . , e«)

corresponding to SaStR be given by e / ^ Σ π i e * . Then the components of a

vector υ in our tangent space undergo the transformation

(2.5) Vi = ΈjτijVj.
j

The relation (1.9) shows that the principal relative components co 's are com-

ponents of an infinitesimal vector. Let the components of a vector υ corre-

sponding to SaStR be vat). Then viit) =Σπyv, (0), hence by (1.11) we get
j

for the components Vi(t) of the same vector the relation

(2.6) dvi -*Σcajiωa{t, dt)vj = 0.

Now we take a vector field υ(x) on our space <S/£. Components of a

vector v(x) with respect to a frame SaR are functions of a. By a frame

transformation from SaR to Sa'R=SaStR, where St is an element of 0 with vari-

able t, we have by (2.2)

(2.7)
3

(2.8) ωα = Σ rα/>ω/> -f ω(

α

0).

We get on account of the relation (2. δ)

(2.9) dϋi = Σ Tijdvj + Σ dn

By (1.11) and (2.8)

tffa'j = Σ Tijdvj 4- ΣcΛkiωT'τkjVj - Σ πy^z y -h Σc aki(ωΛ - Στ*pωp)τkiVj.

Hence taking (2.5) into consideration we get

(2.10) dϋi - Σ CakϊωaVk = Σ r/̂ rfiy; - Σ cΛkiτapτkiωpυj.

<tk j akpj

It is quite natural to define a covariant differential of a vector υ% by

( 2. 11) DVi = ^ / ~ Σ CakiCOaVk ,

ah

because by (2.6) it vanishes for a vector at a fixed point. But it is not always

a vector. Here it is important to remark that by the discussion of 2.1 caki is

the same for ωp and ωp. In order that Dv is a vector (2.10) must be trans-

formed in the form
dΰi — Σ CakiώaVk - Σ TijidVj — Σ CakjCOaVk).

αfc j αfc

So it is necessary and sufficient that the following relations hold,
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( 2. 12 ) Σ C^jiZ^aTjk = Σ Ca

(2.13) Σc«/ί

Since cαβ; = 0, τ, Λ = 0 (2.12) holds identically by virtue of (1. 6). As for (2. 13)
we get on account of the non-singularity of (r#) Σ£*./ΪΓ«A = 0. NOW putting

α

Bjih = ΈjCΛjiτ(ih w e g e t b y v i r t u e o f t h e r e l a t i o n s δτah = ' Σ ^

k

Here

"ΐp

τίϊoΓiϊ/ι -j- Σ )

ββ w

And so

O&jih = JLΛ — jLjCkri&jkh ~r ΛΔ

V k k αfc

For S* = So we have Bφt = 0. Hence the equality Bjih - 0 is equivalent to

(2.14) Σ<?*/ *τ* = 0.

a

Now we assert that under the condition (2.14)

(2.15) matrices Ca — (caij) (<x ~ n + h . . . , r) are linearly independent.

In fact for the set of constants U«+i, . . . , λr) satisfying the relations Σ^^y/
a

= 0 for all i and i we consider ΣΛ<*Xt. All of such infinitesimal operators
a

generate an invariant subgroup & of ®. The verification runs as follows,

Σ ( Σ λ<tC*°ιr)Cχij — — Σ λ<tC$ihChzj — Σ λaCiahChpj ~ 0
T h

?^V Σc,v^cx/>) = 0.
β cc a β

Each element of $ leaves all the points of our homogeneous space ©/£> invari-
ant. Hence by the assumption of 1.6 (2.15) must be satisfied.

By (2.14) and (2.15) we get

(2.16) C*it=0.

This is equivalent to τ> = 0. Thus

THEOREM 2.1 In order that Dm ~- dυL - Σ cajtωavj is a component of a vec-
aj

tor it is necessary and sufficient that c*i? = 0 holds in our space.
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This result was obtained by E. Cartan in his paper [4]. But the discussion
there is too intuitive to be understood rigorously. Symmetric spaces satisfy
our condition (2.16).

2. 3 υ In the spaces where c ^ = 0 holds we can define a covariant differ-
ential which is also a vector. But in some cases it is not unique. The reason
is that for a given space relative components are not uniquely determined.
They admits the following three sorts of transformations

(i) ωi = Σ Aijcϋj, ω<χ. = ωΛ (\Aij 1 =*F 0)
j

{ii) ωi = ωi, ωd = Σ A^ω^ (] Aap j % 0)

1 iii) ω/ = ωi, α>tf = ίθα 4- Σ -Aβ/fl)/
t

where A;, A*?, Aa; are constants, Putting

dώi = Σ Cpki Lωpωkl, </ω« = Σ c ^

we can easily see that the condition cai$ = 0 is equivalent to Fai? = 0 for t h e

transformations (i) and (i i). For the transformation (i) let au be n u m b e r s

such that α>, = Σ cnjωj then

don = Σ Aijdωj = Σ AijCpkj Lωp, Σ aktwl.

Hence

Let Vi be components of a vector z; with respect to ωi. Then it is natural to
define components In of the same vector v with respect to ω~i by ^ = ΣA;^%

and we have

= Σ A ^y — Σ AijCafjaikωaϋk = Σ Aijidvj — *
j ajkl i

So v/e see that (i) has no effect on the definition of covariant differential.
Next for (ii) let a^ be numbers such that ωa-'Σa^ω^ and then

P

dώi = dωi = *ΣcpkiLωpωkl — ̂ ΣcjkiLωjωkl + 'Σcakiΐ.ωaωkl
(pk) (jk) ak

= Σ Cjki Loyωkl -f Σ Cakj C Σ aaμύ?, ωύ.

Hence ĉ jt* = Σ cakia^

The discussi o n and the results of this section are independent of the following sectons,
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(ii) has no effect on Dvi.

As for (iii)

dωi = dϋ)i = Σ Cjki LtOjίύkl 4- Σ Caki LuJttCukl
(jk) ak

= Σ Cjki Z<Oj(0kl 4" Σ Caki Cω<χ — Σ AajίOj,

Hence caki-caki9

j i j j
aj j <x ak

and so two sorts of covariant differentials* (if they exist) would coincide when

and only when *ΣcajiΆ*k-0. But then by virtue of (2.15) we would have A*u

= 0. Hence if there exist two sorts of covariant differentials which are vectors,

they do not coincide. We seek for the condition under which for ωi, ω* and

ω-, ωΛ related by (iii) two differentials are vectors each, Here

dωΛ = duj& 4- Σ AaidίOi
i

= Σ Cjka LcOjωkl -I" Σ Cpka Z(Op(ukl + Σ C?"<t Lu>p(Orl
(Jk) pfc (βT)

4- Σ A*i(Σ Ctfi ίω?ωjl 4- Σ Ckji Zωk<θjl
i ?j ikj)

= Σ O^α Cωyωjfe] 4- Σ Cpk* Lωn — Σ A^ωi, ωfe]

j , ό>τ ~ Σ >l

4- Σ-A«f(Σ

Hence

( 2 . 1 7 ) Cpfctf = c4ϊjfetf 4- Σ cr?aArk + Σ A*iCx%ki.
r ί

For ω, , ωΛ and w-. α>Λ satisfying cai? - 0 and cαι p = 0 we have

(2.18) Έcy?aArk 4- Σ^wA.,- = 0.
T f

Now we take infinitesimal operators such that *ΣA*kX* = X{k), then
a

(2.19) (Xt. X{k)) = iXf,

so X{k) -^ΣiAakXa generate an invariant subgroup of the group ξ> generated
ct

by X*'s. X(ί) are not necessarily linearly independent. By choosing transfor-

mations (i) and (ii; suitably we can assume without loss of generality that

(2.20) (A« ) =
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where E is a unit matrix of degree v. In (2.20) 0's in the second row and in

the second colomn may vanish. But the discussion is the same. By (2.20) we

get
v d) v v<v) _ v v ( v + 1 ) _ _ γ(n) _ /\

Λ, — v i j + i , . . . ? Λ. — yi#f+vj -A — ••• — Λ, — U .

For k^v we get by (2.19)

(k))

On the other hand

i, X

(Ap, X ) = (Aj?, Xn+k) —

Hence we get the relations

Cp, n+k, n+i = C(̂ / {k *=P, i ύv)

Cp, n+k, n+i = 0 (/? ^ z/, ί > z/).

For k>v

(2.21)

0 =

Hence

(2.22) CjjΛf = 0

Denoting by Cp the matrix with c^7 as a coefficient of #-th row and >̂-th colomn
we get

t

(2.23)

B>, 0

0 n

«- n .->

where B$ is a square matrix of degree p. For an element of a linear adjoint
group T = (τpq) corresponding to S/Eiξ) we have by (1.5) dτ = (ΣC<*ωα)r. Hence

α

r is a matrix of the form (2.23). Conversely if r has this form we have c^k*
= c?k* by putting A ( / ) = Σ A α , Aα with Aa% given by (2.20). In fact we have

a

then (X?X
ιk)) ^'ΣctfiX"'*, hence (2.18), and putting o)a = ωΛ + Σ A β , ω/ we get

cpibβ = Cpfcα I n s u m m a r y

THEOREM 2. 2 Z f̂ ω/ <ίWίi ωΦ be principal and secondary relative components



ON THE VECTOR IN HOMOGENEOUS SPACES 11

of a homogeneous space ®/ξ> a?ιd Dvt = dvi ~ Σ CakicoaVk be covariant differential
ak

0/" « vector which is also a vector. In order that there exists another system
of principal and secondary relative components ω/, ω* of our space such that
Dvi-dvi-*ΣiCΛki<iy<tVk for any vector v'i is a component of a vector, it is neces-

ak

sary and sufficient that the following two conditions are satisfied in our space:
(a) the linear group of isotropy has an invariant linear subspace of di-

mension n — v. Let the matrix operating on the complementary linear subspace
of this invariant subspace be τι with a certain choice of base.

(b) let the part of a linear adjoint group corresponding to an element St
of ξ> which operates on the secondary relative components be r2, then for each
element of £) r2 keeps a certain linear subspace of dimension v invariant and
with a suitable choise of base the matrix operating on this part coincides with TΊ.
As a consequence of (a) (b) <ξ> has a vparametric invariant subgroup.

The conditions stated here are rather complicated, but we can get sufficient
conditions in simple forms.

THEOREM 2.3 If our space has the following properties, covariant differ-
ential of a vector, if exist, is uniquely determined;

(a) a linear group of isotropy is irreducible
{b) £> has not an n-parametric invariant subgroup.

THEOREM 2.4 If our space has the following properties, covariant differ-
ential of a vector, if exist, is uniquely determined

(a) ξ> has not an essential invariant subgroup

(b) a linear group of isotropy has not a 2n — r-dimensional invariant linear

subspace.

In the homogeneous spaces which usually appear these conditions are satisfied.
But even in symmetric spaces these are not necessarily satisfied. An example
will be given in 3.3.

3. Space with absolute parallelism

3.1 We call hereafter a space with parallelism the one in which a covari-
ant differential is also a vector, namely c^ - 0 is satisfied. In such a space
it is natural to define a parallelism of a vector by

(3. 1) DVi = dVi - Σ CakiOlaVk = 0.
ak

It can be easily seen that by a suitable choise of functions d(t) (ί = l, . . ., n)

the solutions of the differential equations

, u, dx) ~a(t)dt, ϋ)*(x, ti, dx, du) =0
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give any curve in our space. With such a choice of frames attached to each

point of our curve components of vectors which are parallel along the curve

are constant.

3.2 When we translate a vector from one point p to another point q along

a curve in our space, the resulting vector depends on the path and is not

uniquely determined. We call the space, in which for any points p and q and

any choice of the initial vector the resulting vector does not depend on the

path from p to q, a space with absolute parallelism. We seek for necessary

and sufficient condition for such a space. This condition is obtained by taking

an exterior differential of (3.1), namely

~ *ΣcΛji(ZdVj\ ωJ + dωΛυj) = 0

and putting (3.1) into this. Hence

= 0.

As the values of Vk are arbitrary we get

"Σ Σ = 0.

Putting the coefficients of Zωjωβ to zero we get Σcdfcίέ/fe^O Hence by (2.15)
Of

(3.2) c,vβ = 0.

The coefficients of Zωjω?l are zero on account of cj?9 = 0. As to those of

Σ CajiCfikj — Σ CzJiCvkj ~h Σ CrkiCfaX = ~ Σ (c$kpCp*i + CkapCptf -f CappCpki) = 0.
i i τi

So (3.2) is the required condition. This is equivalent to

(3.3)

Moreover we have by virtue of (2.16)

(3.4) (XaXύ^ΊlctuXj.
3

Hence we get the following theorem.

THEOREM 3.1 The necessary and sufficient condition under which a homo-

geneous space ®/£) has the property of absolute parallelism of a vector is that

& is generated by ξ> and an n-parametric invariant subgroup. This invariant

subgroup operates on our space simply transitively.

The latter half of our theorem can be easily verified.

3. 3 Now we seek for a symmetric space with absolute parallelism. In a

symmetric space we have c/# = 0. Hence by (3.3) (XiXj) =0 and so the group
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generated by Xi (ι = l, 2, . . . , n) is commutative. By a suitable choice of

s we get X; = —
δ;

*ijXi -f- a<,j, hence

variables we get X/ = ̂ - . Putting Xβ = ΣX*;(*) — we get by (3.4) X*j
oXi j dXj

(3.5) Xa = - Σ w f
tj dXj

When we take

off; ij axj

instead of Xi and X* given by (3.5) we obtain the same structure equation

(XiXj) = Σcί/A

and the homogeneous spaces determined by these two sorts of Xi and Xa are
the same except for a transformation of variables. The space determined by
(3.6) is an affine space with points as its elements, though a rotation about a
point is not necessarily a full linear group. Thus

THEOREM 3. 2 A symmetric space with an absolute parallelism is an affine
space with points as its elements, whose fundamental group © contains the
group of all translations, rotation about a point being not necessarily a full
linear group.

Another proof for this theorem can be given in the following way. We have
in our case

dωi = Σ c*ji Lωaωβ, do)* = Σ Cf?τ<χ
<tj (PT)

Putting ,τ/ί= -Σtfcyϊωβ we get

dπji = -^ΣiCajidωa = - Σ ^7Cβ

= Σ(Σ^τifeCfeβι -f *ΣcjtkCkri)Zωtωrl = Σ C —
l iT) /c A: A: T

Hence dm = Σ 11̂ /̂11, dπji =

This shows that our space can be imbedded into an affine space with points
as its elements preserving the group theoretical structure.

Example. Transformations

(3.7) x[ = xi + a, x'2 = λxι + xt + β

give an example of a space with absolute parallelism. Putting SaXSaτdaX - x

Λ-dx we get
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d%\ = da, dxi = d@

(3.8) ωι = dct9 ω2 = dβ~ λda, ω^ = dλ

don = 09 Jo)2 = Cωiωa] , dωa = 0β

A translation of a vector v — (v\9 #2) is given by ίM = 05 dvz = —dλvi, hence for

the frames such that λ = 0 we get d&Ί = 0? cte = 0. If we take ω$ = 073+ cωi in-

stead of o)3 where c is an arbitrary constant, we get

d(jύ\ = 0 ? ί/ί»)2 = Cit>lO)3] , dϋ)3 = 0 .

Hence a translation of a vector is given by dυ\~% <fe = —d(λ + ca)vι and for

the frames such that λ = 0 we get GΓ#I = 0, ίfe = — CίfatΊ while for the frames

such that λ = — cα- we have ί/e i = 0, dih = 0. Thus two sorts of parallelism do

not coincide, though in each case absolute parallelism of vectors holds.

4, Geodesies

4.1 It is quite natural to define a geodesic in our space with parallelism

by a curve Xi-Xi(a) determined by a solution of differential equation

(4.1) | ( f ) Σ < W ^
aσsdσ/ <*j dado

with a suitable choice of parameter <?. This indicates that a vector with a di-

rection an is always parallel along the curveβ In appearance (4.1) seems to be

differential equation with r variables Xi and u* but in fact it contains only n

variables Xi9 because the left side of (4,1) is invariant under the frame transfor-

mation about each point.

The solution of differential equation

(4.2) ωi(x, u, dx) - adσ, ω«(x, u, dx, du) =0

where c, 's are arbitrary constants gives the solution of (4.1). In fact (4.2)

satisfies (4.1) and each solution #/ = #/(<?), u*-uAa) of (4.2) gives rise to that

of (4βl) Xi = Xi(σ), initial point and initial direction being any assigned ones

with suitable choice of the values of ct . Thus all the geodesies are obtained

by solving (4.2). It can be easily seen that each solution of (4,2) gives rise

to a curve generated by one-parametric motion of our group. Hence

THEOREM 4* 1 All the geodesies of our space are generated by one-parame-

tric motion of our group.

Not all the geodesies of our space are necessarily congruent under the motion
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of our group, If we transform frames at every point of our space by the same
element Si belonging to ξ) we get by (2,14)

o)i = Σ Tijωj, ωa = Σ

Hence the curve obtained by solving ωι = Σ wcjdσ, ω(i = 0 is congruent to that

obtained from (4.2). So if a linear group of isotropy operates transitively on
the direction of vector space all the geodesies are congruent, and the converse
is also true, Hence

THEOREM 4.2 In order that all geodesies are congruent it is necessary and
sufficient that the linear group of isotropy operates transitively on the direction
of a vector space.

We call the parameter c appearing in (4.1) a canonical parameter. A canoni-
cal parameter is not uniquely determined but it is easily verified that between
two canonical ones a and p there exists the relation a — ap-\-b (a, h const.).

ϊf two sorts of parallelism are defined in our space the geodesies are defined
in two different ways. In the example given at the end of 3.3 one sort is a
straight line while the other sort is a parabola. This can be verified as follows*
If we put in (3.7) X\ = x$ = 0 we get x[ — a, x'o — β* Hence we can put by virtue
of (3.8)

on = dxt, W2 = dX'i — λdx\, α)3 = dλ

and the geodesic corresponding to ωi9 α)2, ωz can be obtained by solving

an ~ dxi = Cιda9 ω 2 = dx* ~~* λdxx = c%dύ9 0)3 = dλ = 0

and we get a straight line. On the other hand the geodesic corresponding to
<03 = cos + cωi can be obtained by solving

ω\ = dx\ = Cιda9 ω2 = dx% - λdxi = c-idό, ω3 = d(λ 4- cxi) = 0

and we get in general a parabola,

5. Invariants of a homogeneous space

5.1 Here we give attention to invariants of a homogeneous space. From
a differential dx = (dxi9 . . , <&«) we make exterior forms

(5.1) ίdxi, dXi2 . . . d%ik~\

where h, h, . . , 4 is any combination taken from 1, 2, . . . , # . We denote
by Λi exterior form (5.1) which we arrange lexicographically, index / running

from 1 to JV = r!\ and by X a vector with Xι as its components. This we

write in short X^Zdx9 . . . , i/x]e Similarly from relative comχx)nents ω , we
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make exterior forms

(5.2) £/ = lωit o)i2 . . o)ikl (it<H< . .

and denote by Ω an iV-dimensional vector with Ωι as its components, and we
write in short Ω - ίω, . . . , ωl. For a matrix A = (a j) we denote by LA A . . .
Al, where the number of A is k, the matrix whose coefficients are the de-
terminants

yι j2 - - .

which are the minors of A where i\9 . . . , 4 and j \ , . . . , /& are any combi-
nations taken from 1, 2, . . . , #. Let the coefficients of D4A . . . Λ] be ar-
ranged in the lexicographical order of (/i, . . . , ik) with respect to row and in
the same order of (jι, . . . , jk) with respect to colomn. With these preparation
of notations we state a theorem.

THEOREM 5.1 Let x ~ (x\, . . . , xn) be coordinates of a point of a homo-
geneous space. A homogeneous polynomial of X - (Xu . . . , Xv) with functions
of x ~ (χι, . . . , xn) as its coefficients, which is invariant under the transfor-
mation of our group, can be represented as a homogeneous polynomial of Ω = (Ω\9

. . . , Ωs) with constant coefficients.

Proof. Let the paramaters of our space be x and u, and the transformed
ones be % and ΰ. Then we have

ωiix, u, dx) = Σ « y U , u)dxj = o)i(x\ ΰ, dx) = Sey(x, u)dxj
j j

which is the property of relative components. We denote by %{x, u) the
matrix ZAίx, u), . . . , A(x, u)l where the number of A{x, u) = (aij(x, u)) is
the degree k of our polynomial in question. Then Ω = LOJ, . . . , OJ] where the
number of ω is also k can be written in the following form

Ω = [ω, . . . , ωl =. tA(x, u), . . . , A(x, u)lX= %(x, u)X.

Here Ω and X are the matrices with one colomn. As co/s are invariant under
the transformation of our group we get

(5.3) £ = SU, u)X=%(x, u)X.

(5.4) X=%(x, u)~ιΩ9 X^%{x, ΰΓxΩ.

Non-singularity of 2l(*, u) can be verified by the fact that the inverse of 91 ύ , u)
can be given by ίA(x9 u)~\ . . . , A(x, u)"1!. Now let the polynomial of Xι
which is invariant be

(5.5) Έfiι...iχ(x)Xi1. . . X
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Putting (5.4) into (5.5) we get

(5.6) S ί f L . ^ v U u)Ω[ι. . . tf/ = ΣFί1...«*O?, u)Ω\ι. . . i» v .

As our group operates simply transitively on x and u, x and ΰ can be put into
0. Hence (5.6) is equal to

(5.7) ΣΛ ι...ι\v(0 f0)Si1. .. Ωψ

and the proof is completed.

The converse of our theorem is not true. The form (5.7) is of course in-
variant under the transformation of our group but it depends on the parameter
u in general. It is an invariant of our homogeneous space when and only when
it is invariant under the transformation of a linear group of isotropy.

THEOREM 5.2 If a homogeneous space admits an invariant metric Σω/
ί

then the fallowings are also invariants of our space

. . . , Zωiω2 . . ω w ] 2 .Σy, Σ

Proof Let ώ = Pω be a transformation of a linear group of isotropy then
by our assumption P is an orthogonal matrix. Then [P, . . . , Pi which is the
transformation matrix from [cô  . . . ωikl to [ωZl . . . ω, fc] is also orthogonal.
It can be verified by making the product of [P7 . , . , Pi with its transpose
LP, . . . , P] f . Hence the invariance of the form in question is obtained.

THEOREM 5.3 Let A = (aij) be non-singular symmetric matrix and {Aω, ω)
— ^Σa jωiωj be an invariant of a homogeneous space. Then a quadratic form

([A, . . . , AlΩ, Ω) in Ω is also invariant, where Ω- (Ωi, . . . , ΩN) is obtained
from Ωι ~ Cω;, . . , ω^J.

Proof. By taking a suitable matrix T = (Uj) we get (Aω, ω) = (ω, ω) for
ω = Tω, hence A = TfT. By the previous theorem ΣCωit . . . ωikl

2 is invariant
and this can be transformed into

(fl, Ω) = (IT . . . Γ]fi, IT . . . T1Ω).

By calculation we get on account of A = Γ T

[T . . . T] '[Γ . . . T] = [A . . . Al

and the theorem is proved.
An application will be given at the end of 7.1.

5. 2 Let v = (tfi, . . . , v») be a vector on the tangent space at a point in
a homogeneous space and P be a homogeneous polynomial in (Vι, . . . , Kv)
which are components of a multivector V constructed from v = (vι, . . . , #n).
The necessary and sufficient condition in order that the polynomial P is in-
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variant under the transformation τ =• (r/y) of a linear group of isotropy is that,
when we put Vi + dvi, where dvi is given by

(5.9) dvi = Σ cxJiωa(t, dt)vj,

in place of Vi in P, the part linear in dυi vanishes. Here «vs are secondary
relative components of transformations of © and so they are independent
Pfaffians.

In a space with parallelism translation of a vector is determined by

dvi — ̂ LjCctjjωAa, da)vj
σ.j

where ωa(a, da) is relative component of a motion along a curve. As ωa(t, dtYs
in (5.9) are independent a form P which is invariant under the linear group
of isotropy is also invariant under the translation of vector along any curve.
Thus

THEOREM 5.4 Vector invariants with respect to linear group of isotropy
are also invariant under the translation of vectors.

For example if Σ ^ i is an invariant of our space then the length of a vector
i

and the volume of a paralle3piped with n vectors as its edges are invariant
under the translation of vectors.

D. 3 Let f(ω) -f(ωi, . . . , ωn) be an invariant of our space ($/ξ> which is
a linear homogeneous function of ω = (ωi, . . . , ωn). Then Δfiω) vanishes for
an infinitesimal variation Jω; — Σcakieaωk of ω, namely

() Σ?.wi
αfcί Oίύi

We will prove that any curve in (S/Φ obtained by solving differential equation

(5.11) coax, u, dx) = Cidσ, ωΛx, u, dx, du) =0 (cf const.)

is an extremal for the integral L= \f(ω) under a certain condition.

Let a curve obtained by solving (5.11) be c and any two points on it be
Po, PI, for which the parameters are <7ΰ and a\ respectively. We consider a
one-parametric family of curves joining Pύ and Pi and let the parameter of the
curves be ε, ε - 0 being that of c. Then the coordinates of points on these
curves are functions of a and ε and at Po and Pi σ's are always σ0 and β\ re-
spectively. Now we denote the variation induced by the change of a by d and
that induced by the change of ε by d. Writing down the relation

dωi = Σ Cjki Lωjωkl H~ Σ caki Lω^ωk]
(jk) ate
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more fully we get

dωι{δ) - δcύi(d) = Σcy«ω;(rf)ωjfe(δ) + Σc*Jfeί(ωβ(d)ω*(δ) - ωΛ(δ)ωk(d)).
jk αfc

(5.11) means (ωi(d))ζ~Q~ Cida, (ωa(d))ξ^o = 0, hence we have

(5.12) (

Now we have

As f(ω) is linear homogeneous ~ - is a homogeneous function of degree zero,
θ(ΰi

hence f ^ ) =&-(c) = & (cly . . . , cM)β By virtue of (5,12) we get

Σ^jb,^|
3ki OWi

The second term on the second side vanishes on account of the relation (5.10)

and the third term vanishes as

Hence we have

UL) ε=o= -
jki

and this vanishes when

(5.13) Έcjkicj^ (c)=0.
ji OCϋi

We call geodesic a curve in ©/£> obtained by solving (5.11) which in the space

with parallelism is the geodesic already defined in 4.1. Then we get

THEOREM 5. 5 Let f(ω) be an invariant of ®/ξ> which is linear and homo-

geneous in ω - (ωi, . . . , ωn) and satisfies the relation ^Σcjkiωj-^- =0. Then

all the geodesies are extremals with respect to the invariant integral L- \/(ω).

These extremals are generated by one-parametric subgroup.
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In general there may be several invariant integrals. Then geodesies are ex-

tremals of these integrals at the same time. Examples will be given in 7.1.

ϊf our space ©/© has an invariant Riemann metric *Σω] we can take f(ω)
i

= v Σ ί y i Then (5.13) reduces to Σc/fc*W = 0, hence cjki= — Cikj as cfs are
i 3i

arbitrary constants. Thus we get

THEOREM 5.6 If Cjjk is a trivector and Σ m is an invariant Riemann met-

ric all the geodesies tυith respect to this metric are generated by one-parametric

subgroups of ©.

6. Homogeneous Riemann space

6.1 When a linear group of ίsotropy is orthogonal our space has an in-

variant Riemann metric Σ ω / . Owing to the relation dπj -Σw/ω«:/y a linear
i α/c

group of isotropy is orthogonal when and only when

(6. 1) Caki— —Caik.

If the orthogonal matrix r = (τ,y) is reducible our space has invariant Riemann

metrics whose number is equal to the number of irreducible parts of the linear

group of isotropy, hence any linear combination of these metrics with constant

coefficients is also invariant.

6.2 We calculate the parameters of the Riemannian connection of our

space with a Riemann metric

(6.2) &* = Σω?.
i

Let the parameters of the Riemannian connection be ωij, then

(6. 3) dωi = ΣCω/αyiD (ωij — — ω#).

On the other hand by the structure equation of our group

(6. 4) dωi = Σ cpji Lωpωj} = Σ Ckji Lωkojβ -f Σ c*ji Lωaωβ

= Σ ίωj, - —- Σ Ckjiωk - Σ c<χjiω<J.
j 2 k 3

From (6.3) and (6.4) we get

> i LωjωjiJ = ^ j Lωj, 2_j Ckjiωk -~ i j Cajiϋ)<tΛ
J J 2 k a

Hence

ωji = — ~ Σ Ckjiωk — Σ cΛjiωa + Σ Ajikωk
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where A#k = Akij.

By the relations ω,7 + ω/, = 0 and (6.1) we get

0 = ~ ~ - Σ (ckji + Ckij)ωk -f Σ (Ajik + Aijk)ωk,
2 k k

hence A^ fe + -Aj/jb = — (cjy, -f Ckij) 9

similarly Aikj + -Ajwy = -r- (cjik + cyw)

Akji + -Ayw = -jricikj -f Ciyjb),

Adding the first two of these equations and subtracting the third and dividing

by 2 we get

Thus we obtain

(6. 5) αy/ = — Σ Cβjiίΰβ + - r - Σ (cy/jfe -f- Ckij + cjkdωk.

β, δ We investigate the relation between the parallelism hitherto studied

and the parallelism determined by the Riemannian connection (6.5). We as-

sume that a homogeneous space with parallelism has a Riemann metric (6.2)

and call the covariant differential of a vector v% a covariant differential in

Klein connection and denote by DκV%, namely

( 6. 6 ) DKVi = dVi ~ Σ CajiOJaVj.

On the other hand denoting a covariant differential of v% in Riemann con-

nection by DsVi we have

(6. 7) DRVi = dυi +

= Λ>ι - Σ CajitOaVj -f 7-

In order that Dκi>i and D«z;/ coincide it is necessary and sufficient that the

following relations hold

Cjik + Ckij + Cjki = 0.

Adding this and

£&y; -f Cίyjfe + Ckij = 0
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we get Ckij-Q.

As Caip = 0 holds in our space we get a symmetric space on account of 1. 7.
We call a frame corresponding to an and ωij determined by (6.2) and (6.5)
an adapted frame. Thus

THEOREM 6.1 j n order that in a homogeneous space with parallelism, the
covariant differential in Klein connectin and the covariant differential in Rie?nann
connection corresponding to an adapted frame coincide, it is necessary and suf-
ficient that the space is symmetric.

The equation of the geodesic in Klein connection is by (4.1)

fa Q\ d (ωΛ KTΛ ωa(θj Λ

(6.8) — ί -- j - 2jCβy, ~ -- = 0,

da^da' *j da da

and the equation of the geodesic in Riemann connection is

(£ cΛ d (Cΰi \ , xr\Wji (ΰj __ d (0)i \ ^-Λ ωa Cΰj , "SΓ̂  r>. ωk (?j_ _ n

as^cίS' i as as as^as' «.? as as jfc as as

where
(6.10) £*'* = ~ (cy/Λ + c/2/y + cyjw).

2
From (6.8) we get

da\ i \da' / t da da^da' *& da aJιda da

hence

"~" /fl"-j = const.

Similarly we get from (6.9) Σ ί ~ ) 2 = const.
\dS'

So if two sorts of geodesies obtained by solving (6.S) and (6.9) coincide the
ratio of ds and da is constant, and we get by comparing (6.8) and (6.9)

ds ds

Hence Bjik + Bkij = 0. We get by (6.10)

(6.11) Cikj— —Cijk.

Thus the following theorem is obtained (cf. theorem 5.5).

THEOREM 6.2 In order that the geodesic in Klein connection and that in
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Riemann connection coincide, it is necessary and sufficient that djk is a trivector.

Example. Let % be a group generated by the differential operators Xi,
X2, Xz, XA and ©-be a subgroup generated by Xi, where

(X2Xz) = Xi, (XzXi) = X2, (X1X2) = cXz

(XiXt) = -X2, (XiX2)^Xi, (X4X*) = 0.

Then the structure equations of a space ®/ξ> are

ί&in = CoJacosI] + [0)40)2] ? do)2 = Lωzωi} — [ωiωj , Jo)3 = cCcuio^], dω\ = 0.

Putting 0)3 — 0)4 = ω we get

Jα i = L(02(θl9 dω2 = C^ωJ, dω = ̂ [071^2].

Now we take the case c>Q. Then yjcωi, >/cω2, ω satisfy the structure equa-
tions of a rotation group of dimension 3. Hence c{ω\ +ω\) is a line element
of a 2-dimensional sphere, and by a suitable choice of variables we have

c(ω\ -f- ωΐ) = dβ2 -f sin2 Odψ2

Vc o)i = cos αr α5 — sin a sin 0 dψ9 Vc ω2 = sin a dd + cos α: sin 0 cfy>.

Hence ω = - cos β dψ -f cfα:, o)4 = ί/jS.

By putting a + β = φ we get

o)3= - cos θ dψ + dψ.

Thus the line element of our Riemann space is

ds2 = i (ί/02 + sin2 θ dψ2) + (cos d dψ - φ ) 2 .

In this space the condition (6.11) is not satisfied if c-%1, so two sorts of geo-
desies do not coincide. This space was given by E. Cartan in his book [5] as
an example of the space in which a linear group of isotropy is a rotation group
about an axis.

6.4 The discussion in 6.2 is independent of a Klein connection. If (6.1)
is satisfied, we have an invariant Riemann metric (6.2). If (6.11) is satisfied
the equation of the geodesic is

d ίωΛ sr-* ωΛ ωj n

ds\ds' aj ds ds

and the solution of this equatin is obtained by solving

COa = 0

and so the geodesic in Riemana connection is a curve generated by one-
parametric subgroup of ©. Hence we get again (cf. theorem 5.6)
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THEOREM 6,3 If Cijk is a trivector the geodesic of a Riemann space with

the metric Σ ω i is generated by one-parametric subgroup.
i

An analogous theorem was obtained by E« Carcan in his book [5] in the case

of a group space itself by the use of canonical coordinates., The proof here

given is applicable to the case of E» Cartan, In our case the condition that

ask is a trivector is not necessary, ϊn fact even though Cijk is a trivector Cijk

is not always a trivector after the transformation (iii) ω* = ωtf-f-ΣA«ωί con-

sidered in 2.3.

73 Examples

7.1 Two examples will be given here about the discussion hitherto done.

Let the orthonormal system of vectors be eι, e2ί, . . . , e« and their infinitesimal

change be det:=Σβ>tfe/. Let e be a matrix with one colomn whose coefficients
i

are ei? Q%9 . . * 9 en and Ω be (ωy), then we can write the above relation in the

form de = Ωe. If we take a new system of orthonormal vectors e = Pe? where

P is an orthogonal matrix, and put de = Ωe, we get

(7.1) Ω^PΩP' + dP-P'.

This is the special case of (2/1),

The transformation P, which keeps invariant a ^-dimensional plane pass-

ing through the origin and containing ei, e2, . . . , ek, is of the form P - \c\lp )

where Pi is an orthogonal matrix of degree /?. Corresponding to this we put

Then we get by (7.1)

(7.2) '

(7.3) 5i

Hence the principal relative components of a homogeneous space with ^-dimen-

sional planes through the origin as its elements, namely a Grassmann manifold,

are i20. If we denote in general the product of matrices Ω~(ωip), Π-(πpu)

with Pfaffians or differential forms as its coefficients by lΩΠl = (ίωipπpnl) and

the exterior differential of Ω by dΩ = Wω//>) we can write the structure equation

in the form dΩ = [j2J?] which in our case reduces to

Hence by (1.13) (1.14) a Grassmann manifold is symmetric, as is well known.

A vector in this space has components V written in matric form and after
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a frame transformation V is transformed into V~PiVPf

2. Hence

and the covariant differential of V is

(7.4) D F = dV-ΩiVΛ VΩ2«

The equation of the geodesic is

(7 5) 4 (%) ^®1®2 4 ®1®2 _ ~
da\da' da da da da

and the solution of this equation is obtained by solving

(7,6) Ωo~CdσP Ωi = 0, j22 = 0

where C is a matrix with constant coefficients. As C has invariants under
the transfomation C = P1CP2 of linear group of isotropy, not all the geodesies
are congruent in a Grassmann manifold ίcf. theorem 4.2).

By the transformation V = PχVP[ WV1 — λE\ is invariant and if we put

V^ (via) U = l, . . , kl a = ft-f 1, . . . , n)

we have vector invariants (cf» W. Blasehke El] p. 12)

%- Ί 2 5

i , sε ('

By the discussion of 5,2 these are invariant by the parallel translation of vec-
tor, As our space is symmetric the parallelism of a vector in the sense of
Klein connection here stated and that in the sense of a Riemannian connection
associated with the metric Σα/L are the same, (7.6) gives an extremal of

> ϊ , as well as of iil^\ωu ω<*\* etc by the theorem 5.5,

As for the case n = 43 k = 2 we have two sorts of Riemann metrics

Hence o?u-Y ωii f C0I3 + ωL-f 2 c(cwisω2i — ω23θ>n) with arbitrary constant c is in-
variant and we get by the theorem 5.3 two invariants which are polynomials
of degree 2 in c. Coefficients of each degree in c are invariant. Thus we get
the following invariants,

233M ~~ 2 Ci*)l3(0l4] Lft)23tt>243 — 2 C
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7. 2 Let x-= (xo, Xi, . . . , Xn) and #' = (ΛΓO, # { , . . . , *«) be homogeneous

coordinates of points in an ^-dimensional protective space and a projective

transformation be xf — Px where P is a matix with the determinant \P\ = ±1.

Let the frame be a set of w-f 1 analytic points A= (ΛQ, ΛI, . . . , An). Then
n

dA = ΩA where Ω = (ωij) and Σω» = 0. We consider a set of quadratic sur-
o

Σ
* =o

?
faces obtained from Σ#*? = 0 by projective transformations. The transforma-

i = 0
n

tions which leave invariant Σ # / = 0 are orthogonal. Principal relative com-
t = 0

ponents of a homogeneous space with quadratic sufaces as its elements are Ω

+ £' = (ωij + ωji). Putting ZΓ=—(£ + £'), Σ = --(Ω-Ω9) we get by virtue of

(7.1)

(7.6) ϊϊ = P7ZP', 1 = PZP' + t/P P'.

A symmetric matrix V which is transformed in such a way that V = PVP' is

a vector and its covariant differential is given by

(7.7) DV=dV-ΣV+VΣ.

The equation of a geodesic is

(7.8) i i ( £ ) _ * . * + £ . * β 0

da^da' da da da da

and its solution can be obtained by solving

(7.9) Π=Cda, Σ=0

where C is a constant symmetric matrix. By a suitable orthogonal matrix

C is transformed into a diagonal form. Then by solving dA = C^A we get

At = aieCi°Ai°\ The equations of quadratic surfaces corresponding to the equa-
n n

tion Σ * ? = 0 with respect to A = (A), Au . . . , An) are Σ0fV"2c<β*? = 0 with
« = 0 i = 0

respect to a fixed frame. This is the geodesic. The structure equations are

dΠ = [277] 4- LΠΣ2, dΣ = [7777] + iΣΣl
and our space is symmetric. The invariants of a vector are given by the coef-

ficients of a polynomial in λ |V-/is | .

8. Space with Klein connection

8.1 Now we treat a vector in a space with Klein connection. Two-di-

mensional space with euclidean connection can be determined by giving two

independent Pfaffians πi(a, da), τr2(β, da) and πn(a, da) in two variables a = (#i,
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a2), and the development into a euclidean plane can be given by integrating

(8.1) dA = 7nei +

Let A = (xι, x2), ei = (cos θ, sin θ), e2 = ( - sin 0, cos θ). Then (8.1) can be writ-

ten in the form

(8.2) dxi cos θ + JΛΓ2 sin 0 = τn(β, <άz), - dxi sin 0 + flfcacos θ = 7r2(α, dβ),

dθ = πi2(a, da).

It is easy to formulate a space with Klein connection from this point of view.

Let the relative components of a homogeneous space (S/ξ> be an = an(x, u,

dx) and ωa~ωa(x9 u, dx, du). Then

(8.3) dω% — Σ Cpji L<opa)j~], dωΛ = Σ CpqΛ Lωpωql.
(PJ) (PQ)

Let us consider an w-dimensional diίϊerentiable manifold with a = (aι, a2, . . . ,

Λ») as coordinates of a point, and attach to each point of the manifold n in-

dependent Pfafϊians m(a, da) and r — n Pfaffians πa{a, da). We integrate the

differential equation

(8.4) coi(x, u, dx) =πi(a, da), oja(x, u, dx, du) —πΛ(a, da)

along a curve a = a(σ) in our manifold with the initial condition x% = xγ\ u*

= nT at a = 0. The curve thus obtained in the homogeneous space is called a

development of a curve a-a(σ).

By the frame transformation from SCR to ScStR where St is an element of

H) relative components are transformed into

(8. 5) ωi = Σ ϊ'lyωy, α)<* = Σ *̂αi>̂ /) -\- (θa(t, dt).
•j v

So if we take in the place of τ:, and 7rtt

(8. 6) 7τ/ = Σ τ*y7ry, JTc* = Σ «̂ίπp + ωΛ(ί, Ji)

and solve

(8.7) a>ί(#, w, dx) -7Γi(a< t, da), ω*(x, u, dx, du) =πa(a, t, da, dt)

where a = a(σ), t = t(σ), we get a curve congruent to the solution of (8.4) in

©/©. We call a differentiate manifold of dimension n with Pfaffians rcAa, da),

rcΛa, da) a space ivith Klein connection and ©/€> a fundamental space. We
speak of m(a, da), πa(a, da) in relation with a frame R and if we take another

frame R = StR (StE:%>) we attach to a point a πι and πΛ determined by (8.6)

in the place of τr, and 7τα. Let us call /r, , τrα parameters of Klein connection

and (8.6) the transformation of these parameters. τr, and ?:* are called ijewzr-

alized parameters.
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8, 2 We attach to each point of a space with Klein connection a vector
space and let the transformation of a linear adjoint group of isotropy be a
transformation in our vector space- In general we define a tensor by a set
of numbers attached to a frame StR which are transformed by a group of
linear transformation homomorphic to £> in accordance with a frame transfor-
mation St. Especially v = (υι, . . . , vn), whose transformation is given by Vi
= Σ v y ^ , is a vector in our sense* Then putting

j

{8,8) Ωi — dm — Σ cpji Lπpπjl, Ωa = dπa — Σ cpqΛ Lπpπq]
(pj) ipq)

we get the following theorem,

THEOREM 8,1 Ωp is a tensor and Ωi is a vector. If the fundamental homo-
geneous space is a space with parallelism ΩΛ is also a tensor.

Proof, The assertion that Ωp is a tensor is lemma 2 in 2*1, Ωi is a vector
on account of the relation Ωi = Σ rijΩj because of rf β = 0o In a space with

_ J

parallelism τΛj = 0 holds and so Ω&~>°Στ*?Ωp which shows that ΩΛ is a tensor.
We call Ωi a torsion vector of a space with a Klein connection and if the

fundamental space is a space with parallelism we call Ω* a curvature tensor,
A space whose torsion vanishes is called a space without torsion. In such

a space ΩΛ is a tensor, which we call a curvainre tensor as in the previous
case.

It is often convenient to take

(8,9) πi ~ ΣTijπj, πΛ = Σ τΛpπp -f ωa(t9 dt)
j p

in the place of m, πa* If we consider a = (aχ9 . β . , β») and ί-•= (ί»+ ι, . . . , tr)
as independent variables πi, π* are independent Pfaffians, If Ωi and Ωa vanish
the relations

ί 8,10) ?̂τ, = Σ Cpji ίTiprjl, dr. a, -•= Σ c>αβ [^7?^]

hold for τr, , jfΛ as well as for πi, π* Hence πi and 7ia are relative components
of our homogeneous space. Thus

THEOREM 8,2 A space ivitk Klein connection coincides with the funda-
mental homogeneous space when and only ivhen torsion vector and curvature
tensor vanish.

Next we take exterior differential of the equations

dπi = Σ Cpji Zπpπjl + Ωi, dπΛ = Σ CpQΛ LπpπQl -f - Ωa
(pj) (pq)

and substitute in them the right side of these equations in the place of
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dπ*. Then owing to the group property of © the terms not containing Ωι, ΩΛ

vanish. Hence we get

ΣΛjiίjal Σ Λ j i * β Σ j k i l j ύ = 0

dΩa - Σ CpQa lπpΩq~] = 0.
pq

If our space has not torsion we get

(8.11)

(8.12) dΩΛ - Σ£βτ* [τrpJ2τ] + ΣCjii. Dr, flJ = 0.

The latter is the generalization of Bianchi's identity.

8. 3 We consider a vector field v~via) on a space with Klein connection-

Let the components of via) with respect to a frame R be (vx, . . . , ι/«). Now

we take 7f, and πa defined by (8.6) instead of m and πa, and denote them by

m and πa anew. So 7r,, 7:<χ are Pfaffians in variables ai, . . . , an, tn+i, . . . , tr

We define a covariant differential of a vector t; by

(8.13) Dvi = Je;, - Σ cajinavj.

Then by the same arguement with that of theorem 2.1 we get

THEOREM 8.3 In order that in a space with Klein connection Dvi deftn?d

by (8.13) is a component of a vector it is necessary and sufficient that the

fundamental homogeneous space is a space with parallelism, namely cai? = 0,

Proof. In 2.2 structure equations for ωf , ω* and ω, , ω* which in our case

correspond to 7r,? πa and 7f, , πa were not used, and only the relation (2.2) and

the property of linear adjoint group were used. Hence the discussion there is

applicable to the present case.

Under the assumption caip = 0 a translation of a vector can be defined by

(8.14) Dvi = dvi - ΣcajiπΛVj = 0

and a geodesic by the solution of

(8.15) jg)-Σcβ;7^=o.
da \da' <tj da da

If we take generalized parameters πi(a, t, da), π*(a, t, da, dt) the discussion

of 4,1 is applicable to our space. Hence the solution of (8.15) can be given

by solving

(8.16) mia, t, da) = ada, π*(a, t, da, dt) = 0.

When we develop the geodesic thus defined in the space with Klein connection
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into the fundamental homogeneous space we get a geodesic of the spaceβ The

vector invariants with respect to the linear group of isotropy are also invariant

under the translation of vectors. For example if our space has an invariant

Riemannian metric the length of a vector is invariant by a translation, as is

well known.

8. 4 Now we treat a space with Klein connection which admits an absolute

parallelism of a vector. Then the differential equation

dVi -^CejiKaVj = 0

is completely integrable, hence taking an exterior differential of this equation

and substituting dvi = Σ cΛjiπΛVj we get

(8.17) Ώa= - Σ θ ϊ α l > , 7Γ/]

by a calculation analogous to that of 3. 2. As CJU = 0 is a necessary and suf-

ficient condition for the fundamental space to admit an absolute parallelism

we obtain the following

TPIEOREM 8.4 In order that a space with Klein connection admits an abso-

lute parallelism of a vector it is necessary and sufficient that (8.17) and ca/p = 0

hold. In particular if the fundamental homogeneous space admits an absolute

parallelism of a vector the space with Klein connection admitting an absolute

parallelism has a vanishing curvature and if moreover it has not torsion it is

nothing but the fundamental homogeneous space.

Now we investigate a space without torsion which admits an absolute par-

allelism of a vector. For such a space we have

dm = Σ Cpji Zπpπf], dπ* = Σ C,ΛT* ίπ^πrl.
(W) (ι*Ό

If we take Wi = m(a, t, da), πa~πa(a, t, da, di) determined by (8.9) instead of

7Γi, 7τβ yet we have

(8β 18) dΰi = Σ Cpji tπpπjl, dπa = Σ c?Ύa Dr^r]
ίpj) (ίiT)

because Ω* = —'ΣcjiaZπjπβ holds after the transformation. This relation can

be verified by the relations wQtt = Σ f « β ^ , πϊ = Σ Πitf/, Σ repcy/p = Σ CkhaTkjτhi.

As cpqs's are constants πi, πa are relative components of a certain homogeneous

space by virtue of (8.18). Hence we get

THEOREM 8.5 A space without torsion which admits an absolute parallel-

ism of a vector is a homogeneous space ivith an absolute parallelism which is

different from the fundamental homogeneous space.
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In a space without torsion we have by (8.11) Σ cΛji ίπjΩal ~ 0 and so for a

space with an absolute parallelism we get by (8.17)

Σ CklaCaji \jΐjπkπ{] = 0.
ajkl

Hence on account of the independence of m we get

(8. 19) Σ(c« β C β yf + CljaCaki + CjkaCali) = 0

and so

(8. 20) *Σ(CklhChji + CljhChki + CjkhChli) = 0.
h

Conversely if (8.20) is satisfied we easily see that there exists a homogeneous
space with

Cijk — Cijk 9 Cijtt = = v j Cftji = = Caji

Cat? = C<ti? z=z 0 , Caξti = <7Λβf = 0 9 Ca$r = ^α?T

as structure constants. In fact among the identities between cpQs&

*Σ(CpQsCstu -f CqtsCspu + CtpsCSqu) = 0

those containing ajaS are

CjkpCpil + CkipCpjl) = 0

»/tt + CljhChk* + CjkhChla) = 0

Σ CijaCapt + Σ t'j$kCkiT 4" Σ CfckCkjr = 0
α fc 7c

and these are satisfied even when we put c,y* to zero. Hence r^s's defined
above are structure constants of a certain group and determine a certain homo-
geneous space. This space can be considered as a space with Klein connection
whose fundamental space is ©/€> and which has not torsion and admits an ab-
solute parallelism.

THEOREM 8.6 In order that there exists a space with Klein connection
which has not torsion and admits an absolute parallelism of a vector it is neces-
sary and sufficient that the fundamental homogeneous space has the property
that there exists a group which has ajk as structure constants.

In particular there exists a space which has a symmetric space as its
fundamental space and admits an absolute parallelism of a vector, This space
was treated in 3* 2. For example there exists a space with spherical connection
which has not torsion and admits an absolute parallelism of a vector. This
space is nothing but a euclidean space.
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8. 5 The result in 5. 3 can be extended to the case of the space with Klein
connection which has not torsion. In 5. 3 we called a geodesic of ©/£> the
curve obtained by solving (5.11). Now we call a geodesic of our space a curve
which can be developed into a geodesic of the homogeneous space ®/ί>. Such
a curve can be obtained by solving

πi(a, t, da) -ada, πΛ(a, t, da, dt) = 0 (a const.)

where πi and πΛ are the generalized ones, namely πi, πΛ given by (8.6).
As our space has not torsion we have

dm = Σ Cjki Zπjπkl ~h Σ Cctki Zπaπύ.
(jk) ak

Hence the discussion of 5. 3 can be applicable to our case by the same calcu-
lation. Thus we get

THEOREM 8.7 Let f(ω) =/(ωi, . . . , ωn) be an invariant of a homogeneous
space ®/£> which is linear and homogeneous in principal relative components

and satisfies the relation Σcyfc/ω;-^- = 0. Then all the geodesies of a space with
}i OCOi

Klein connection, whose fundamental space is ®/φ and which has not torsino,

are extremals of the integral \f(π) = \f{πι, . . . , πn).

If the fundamental space satisfies the relation Cijk = 0 our condition is al-
ways satisfied. A symmetric space is such a space. If the fundamental space
is a euclidean space we get the well known theorem that the curve of a
Riemann space which in development gives a straight line is a geodesic in the
sense of the Riemann metric, whose proof is usually accomplished by the calcu-
lation rather roundabout.

8.6 A space with Klein connection whose fundamental homogeneous space
has the property caij = -caji admits a Riemann metric Σπ? which is invariant

i

under the linear group of isotropy. If the space has not torsion we have

dm = Σ Cjki Zπjπkl + Σ caji Zπaπjl.

Hence by the same argument with that of 6.2 we get the parameter τr,y of the
Riemannian connection associated with the metric Σ T ? and so

(8.21) πji = - Σ Cφπ* + Σ Bjikπk
a k

where

(8.22) Bjik = ~ (cjik + Ckij + Cjki).
Δ
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By calculation we get a Riemannian curvature tensor

(8.23) Ωij = dπij - Σ ίπikπkjl

= ~ Σ CaijiΩ* + Σ Chϊa
i

Σ
{hi)

-f *ΣCΣcMkBjik -f 'ΈjBjkhBkii - *ΣBikhBkji)ίπhπιl.
(M) k k k

Hence a space without torsion which admits an absolute parallelism and has
an invariant Riemann metric, is not always a Riemann space without a curva-
ture. For such a space we have Ωa + 'ΣcjuZπjπϊi = 0 and only the first term

(ji) '

on the right side of (8.23) vanishes.
Concerning the relation between the parallelisms of a vector and the geo-

desies in the sense of Klein connection and in the sense of Riemann connec-
tion the results are quite the same with those of 6. 3.

Let ®/ξ> be a homogeneous space which admits a Riemann metric Σ ω L
i

For a Riemann space arbitrarily given it is not always possible to introduce a
Klein connection without torsion which has ®/ξ) as its fundamental homogene-
ous space. It is possible when and only when (8.21) holds, where mj is a pa-
rameter of the Riemannian connection determined by a suitable decomposition
of the Riemann metric <&2 = Σ π ? . For a general Riemann space only a eu-
clίdean connection and a spherical connection without torsicn are possible.
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