ON THE BEHAVIOR OF AN ANALYTIC FUNCTION
ABOUT AN ISOLATED BOUNDARY POINT

MAKOTO OHTSUKA*

Introduction. Let D be an open set in the z-plane, C its boundary, 2 a
point on C, and f(z) a one-valued meromorphic function in D. Given a set
EC D+ C, we denote the intersection of E with G, ={0<{z—2z]| <7} by E,,
and the set of values {f(2); z&D,} by f(D,). The cluster set St of f(z) at
2, in D is defined by D[f (D;)1% where [ 1% denotes the closure of the set

in [ 1, and the range of values R.” is defined by N f(D,). Further the cluster
set SiY on E is defined by ﬂ[US&D’]“ where Si” at an inner point z is put

equal to f(z). In the theory of cluster sets relations between S..’, St., R are

pursued chiefly.” Here we refer to the following two principal theorems under
the assumption that z, is non-isolated :

(I) (Brelot”). (S{)’CS5, where ( )? denotes the boundary of the set
in ().

(II) (Kunugui [5]). Each component of Si2’ — Si’, with two possible ex-
ceptions, is contained in RZO , provided that D is a domain.*

It is always assumed that 2z, is non-isolated in these theorems, and the case
when 2z, is isolated is left to the well-known Picard’s theorem.

Above the cluster sets are defined for a function which takes values in a
plane. However, the definitions can be generalized to a function, which is de-
fined in a plane domain and takes values on an abstract Riemann surface, and
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* This work was done by the writer as a fellow of the Yukawa Foundation of Osaka
University.

b For various results and literatures, cf. [7].

?) See [2], Theorem in §6. The form of Brelot’s theorem is different from (I), but the
equivalency is proved as usual. Cf. [6], for instance.

) This theorem can be proved also in the case where D is any open set as follows:
Suppose that there exists a component Q of ng’ ~ 89 at least three points of which
do not belong to R‘:”_ Let wy be such an exceptional value. Since woe Séf’, we can
choose {zs}, zn—>zo, such that f(z.)—>wo. Among the inverse images in D of the

®w

segments {f(z»)wo} in Q, we can find an inverse image / in D terminating at zo. f(z)
has a limit w1eQ as z—>zo along /. Let D; be the component of D which contains /,
and C its boundary. Then S’V contains wi, and S{P >S.PY, S{V >8I0 RV SRYY.
The component €, which contains w, of S{I¥ — SV includes Q by (I). Hence R{Y
does not contain at least three values in Q;. This is contrary to (II).
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some results are obtained (cf. [8], Chap. V, §1). In this note we shall inves-
tigate the behavior of such an analytic function about an isolated boundary point
by making use of the methods in the theory of cluster sets.

1. Let D be a domain in the z-plane, 2, its isolated boundary point, i an
abstract Riemann surface in the sense of Weyl-Radd, and f(z) an analytic func-
tion mapping D into R. Setting {0< |z~ 2| <7}=G, and DNG,=D,, we
denote the set of values {f(2); 2z€D,} by ®,. The cluster set S5’ of f(z) in
D at 2, is defined by ND7, where Dy is the closure taken relatively to R of

9®,, and the range of values R is defined by ND,.”

We begin with the following lemma:
LEMMA. Swuppose that the cluster set S is not empty. Then S:’
of either a point on N or R itself.

consists

Proof. Suppose that the assertion is not true. Then there is a neighborhood
N on R of a boundary point P, of Si. such that S.)' N° Let 4:[t|<1bea
local parameter circle, corresponding to N and with ¢ =0 as the image of A,.
Consider the inverse image D; in D of N, and denote the composed function
t(f(z)) in Dy by t(z). Since P,€SS)’, we can find a sequence {z.} tending to
2o such that f(z,) > P,. Hence 2z, is a boundary point of D,. Further 2, is not
isolated, because there is a sequence {zn}, zn- 2o, outside D; such that f(zy)
tends to a certain point of S’ outside N. Thus D; is an open subset of D,
with 2, as its non-isolated boundary point. The cluster set of ¢(z) on the boundary
of D at z, consists of points on |¢| =1 but does not contain £ =0, whereas this
point belongs to the boundary of the cluster set of #(z) in D at 2. This con-
tradicts (I) in the introduction.

2. Let us suppose first that i is of genus finite. R is then conformally
equivalent to a subsurface of a certain closed Riemann surface . The trans-
formed function. which takes values on R, of f(z) will be denoted by F(z).
We shall use notations St,’ and R:,’ to represent the cluster set and the range
of values of F(z) respectively. Since S:’ is non-empty, it consists of a point
on R or of <N itself by the above lemma.

In case S’ consists of one point on R, the image ®, on N of D, con-
verges to an inner point of N or to a parabolic ideal boundary component of
R as 70

The case in which S{’ =% will be investigated in details in the sequel.
We shall denote the genus of 3t by .

Case: p=0. We suppose that R — R. contains at least three points,

# Notice that f(z), S{’ and R} take values on a Riemann surface here, though the same
notations as in the introduction are used.
5 As for the definition of a parabolic ideal boundary component, see [8], Chap. III, §5.
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say, Pi, P, P:. Since Pi€S.), there is a sequence {z.} tending to 2 such
that F(zx) > Pi. Connect every F(z.) with P; by a curve L, such that L, ap-
proaches P; as n— o, For a sufficiently large number 7, the inverse image
In, with z,, as its starting point must lie near z, and hence terminate at zo,
because {F(z); 2&1,} C L,~> Py as n—> . A part D, of D, near z, and cut by
Ly, can be regarded as an angular domain with the opening 27. F(z) tends to
avalue Py Ly, as z->2, on Iln,. Since F(z) % Pi, P:, Ps, near 2, F(z) tends to
P, uniformly as z- 2, in D, by Lindelof-Iversen’s theorem [3]. Thus SY’ ={ P,},
and a contradiction is lead. Therefore when R is of genus zero and S&’ =R,
then R contains all points of ® with two possible exceptions. This fact is
none other than Picard’s theorem.

Case: p=1. Suppose that R =S’ =R, and take a point PER — R.
In the mapping of the universal covering surface R of & onto the finite whole
w-plane, P; corresponds to an enumerably infinite number of points in the plane.
Similarly as in the preceding case we get a curve / terminating at 2, such that
F(z) tends to a value P, on R as z— 2z along I. In the angular domain D, cut
by /, any branch w(z) of the composed function w(F(z)) becomes one-valued
regular by monodromy theorem. It tends to respective definite limits along
both sides of / and does not take near 2z, the w-values corresponding to P..
Hence w(z) tends to a certain value uniformly in D, by Lindelsf-Iversen’s
theorem. This shows S’ ={P,}, contrary to the assumption that Si’ =%R.
Thus, when R is of genus one and S{2 =R, then R =R. -

Case: p=2. On mapping R onto |w|<1 it is shown from S’ =R as
above that RY’=R. R is made of planar character by p disjoint simple closed
curves {Ci} (i=1,2,..., b). By connecting infinitely many samples along the
opposite shores of {C:}, we obtain a Schottky covering surface R, of planar
character and having no relative boundary, over 3. I is mapped conformally
onto a domain outside a perfect set F in the w-plane and any image of C; is
a closed curve. For any P;e€ C; there exists a sequence {z.} tending to z
such that F(z,) = Pi. We may suppose that on C; there is no image of a double
point of F(z). We denote by C! a conjugate curve, which intersects C; merely
at P; and on which no image of a double point lies. Let I, be the inverse
image through z, of Ci;. If no /. terminates at zo, there exists a number
such that every I, for n=n, is a simple closed curve around 2,, because disjoint
inverse images of C: can not cluster in D and no image is a closed curve
surrounding a compact domain in D. Consider the inverse image l;;o of C1, which
starts from z,, and runs inside /- A domain near and inside /., corresponds to
one side of C; on R. Therefore I, can not intersect ls, again and hence must
terminate at z,. Thus the inverse image through z, of C, or C} terminates at
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2o for any large n. Without loss of generality we may suppose that an image
1 of C, terminates at 2z,. In the angular domain D, cut by /, any branch w(z)
of the composed function w(F(z)) becomes one-valued regular. Its cluster sets
S: and S: on the both sides of I at 2z, lie either on one and the same image I
of C, or on two images I1 and I: of C; respectively. In the former case S; N S:
is not empty and the cluster set S of w(z) at z, in D, coincides with S; U S: on
account of (I), (II), because w(z) does not take values of the perfect set F
whose points lie both outside and inside I. Hence S’ C Ci, but this contradicts
the assumption: S’ =R. The latter case is impossible too by (I), (II), because
S is a continuum but every component of the complement of I'1 U I contains
points of F. Hence it does not arise that S{.’ =R for R of genus P 2.

We have considered so far the case when the genus of the original R is
finite. Finally we suppose that R is of genus infinite. If there is >0 such
that ®, is of genus finite, the foregoing discussions apply. Consequently we
suppose that every ¥, is of genus infinite. We can then take a mutually non-
homotopic disjoint infinite sequence of loop cuts {C»}, CsCDynx, such that C»
does not divide R and approaches the ideal boundary of it as n— . As in the
preceding case we find an inverse image, which terminates at z,, of a certain
Cx or its conjugate loop cut Cr. The cluster set of f(z) along it is contained
in Cn or Cy and hence non-empty. Accordingly by Lemma in §1 Si’ =®R. By
considering the Schottky covering surface of R a contradiction will be lead as
before.

We now summarize the results in the following:

TuaeoreM 1. Let f(2) be a function, which is defined in a plane domain D
with an isolated boundary point z, and takes values on an abstract Riemann
surface N. Then either the image of the ring domain G,: 0< |z — 2| <7r con-
tained in D converges to an inner point of R or to a parabolic ideal boundary
component of RN as r—>0, or the range of values of f(2) in D at 2, is conformally
equivalent to a sphere with two possible exceptions or to a torus.

It is easy to find functions which realize these cases.

3. When R is of genus finite, Theorem 1 can be proved also by Ahlfors’
theory of covering surfaces [1]. We shall give an outline of the proof.

Since there exists a one-valued non-constant meromorphic function on R of
§2, R is conformally equivalent to a subsurface of a closed surface f,, which
covers the Riemann sphere ¢ touching the w-plane at w =0 and with diameter
of length 1. Denoting the composed function w(f(z)) by w(z), we consider the
Riemann surface Rw of the inverse function of w(z). If z=0 is removable for
w(z), the image on R, of G, converges to a point on N,. The image on N of G,
converges then to a point or to a parabolic ideal boundary component of R.



AN ANALYTIC FUNCTION ABOUT AN ISOLATED BOUNDARY POINT 107

Hence suppose that z=0 is an essential singularity of w(z). Similarly as for
Riemann surfaces of parabolic type, it is seen that Rw is regularly exhaustible.
Regard now RNw as a covering surface over R, and denote it by R,. Then Re
is still a regularly exhaustible covering surface over Rs, because the closed sur-
face M, covers ¢ only in finite times.

On the other hand, if the genus of R, is ¢=2, Ahlfors’ fundamental in-
equality gives

0=p2(2g-2)S(r) = hL(7),

where the usual notations are used; especially, S(») is the average covering
number over R, of the part of Rs corresponding to D — G%. Hence

L(l.)_;__z‘q_:z_
sH = 70

which contradicts the fact that R, is regularly exhaustible.

Next suppose that 3, is of genus one. If there is a number 7,> 0 such that
the part R of R corresponding to G, does not cover a point P of R, regard
R as a covering surface over R, =R, —{F). Applying Ahlfors’ inequality to
them, there follows L(7)/S(r) 21/h>0, which contradicts the regular exhausti-
bility of R,. As is known, Picard’s theorem is proved by the same method.

It is not comprehensible to me, however, how such a method can be utilized
in the case when 0 is of genus infinite.

4. 1In [8], Chap. III, §6, the following theorem was proved:

THEOREM 2. Let R be an abstract Riemann surface with universal covering
surface R= of hyperbolic type. In the mapping of N> onto U: |z| <1, the para-
bolic ideal boundary components of R and the classes of parabolic fixed points,
equivalent with respect to a Fuchsian group, on I':|z| =1 correspond to each
other in a one-to-one manner.

The proof in [8] was different from the usual one given for a plane domain
(e.g., [4], pp. 31-34). But once Theorem 1 is established, Theorem 2 can be
proved in the usual way.
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