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Introduction. The concept of semi-local rings was introduced by C. Che-

valley [iy\ which the writer has generalized in a recent paper [7] by removing

the chain condition. The present paper aims mainly at the study of completions

of semi-local rings. First in § 1 we investigate semi-local rings which are subdi-

rect sums of semi-local rings, and we see in § 2 that a Noetherian semi-local

ring R is complete if (and only if) R/p is complete for every minimal prime

divisor p of zero ideal, together with some other properties. Further we con-

sider in § 3 subrings of the completion of a semi-local ring. § 4 gives some

supplementary remarks to [7], Chapter II, Proposition 8.

TERMS. A ring means a commutative ring with identity and under the term

"subring" we mean a subring having the same identity. Semi-local rings or

local rings are those in the sense of Nagata [7] (or [6]). So, (semi )local rings

in the sense of Chevally [1] (or Cohen [2]) are called Noetherian (semi-)local

rings.

1. Subdirect sums of semi-local rings.

LEMMA 1.1. Let R and R* be a subdirect sum and the direct sum of rings

Ri, i?2, . . . , Rn respectively, and suppose that R is quasi-senii-locah1' We denote

by ifi the natural homomorphism of R onto Ri, by n* the kernel of ψt and by

m, m*, m, the J-radicals2) of R, R*, Ri respectively (* = 1, 2, . . , . , « ) . Then we

have (1) m* = m#*, (2) m*Π#=m, (3) m* = m1-f-m2+ . . . H-m«, (4) ψi(mfc) = xtiik

(A? = l,2, . , .), (5) (rti+n,) ((m*)*n^)S(itj+n2)in* (* = 1, 2, . . .) provided w = 2.

Proof. (1), (2) and (3) are almost evident.5" To prove (4), let pl9 . . . , ph

be the totality of maximal ideals of R. Then it follows mk-pιkΓ\. . .f\Phk

=fc* . . .phfc and pr J(m, *) = (fc*+m) Π . . Π (PΛ*H-Π, ) = (p,*+n, ) . . . (pA*+m)

This proves (4). Finally, assume that n-2, and consider an element bx of

Received March 13, 1951.

°> Numbers in brackets refer to the bibliography at the end.
J ) A quasi-semi-local ring is a ring which has only a finite number of maximal ideals cf. [9],
2> J-radical (Jacobson radical) of a ring is the intersection of all maximal ideals in the ring.
3) Cf. [9, Lemma 2].
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(m*)kΓ[R. Then we can choose an element b* from m^ so that ψι(bι)=ψι(bo)9

i.e., ^ = ̂ j~^ 2 e(m f e +π 2 )Ππj (by virtue of (3) just above). Then we have (ttj-f n2)#

= ni6Eπ1((mAί-fΠ2)Ππi)Eπim\ which proves (5).

Next we cite lemmas due to Chevalley:

LEMMA 1.2. Let R be a complete Noetherian semi-local ring. If every an is

an open ideal (w = l, 2, . . .) and if Π^«=(0), then {an n = l,2, . . .} is a sys-

tern of neighbourhoods of zero. [1, §11, Lemma 7]

LEMMA 1.3. Let R be a Noetherian semi-local ring with J-radical m and let

c be an element of R which is not a zero divisor. Then {tn* : cR; n-\9 2, . . .}

forms a system of neighbourhoods of zero. [1, § II, Lemma 9]

Now we prove

THEOREM 1. Let a Noetherian semi-local ring R be a subdirect sum of two

rings R} and Ri. Let m be the kernel of natural homomorphism ψi of R onto Ri

(ί = l, 2). If Πj+τi2 contains a non-zero-divisor c, then R is a subspace of the

direct sum iv?* of Rι and Ri. (/?* is clearly a Noetherian semi-local ring.)

Proof. Let m and m* be the J-radicals of R and 2?* respectively. Then we

have m*g(m*)*Πff» s i n c e tn = m * Π # b y Lemma 1.1. On the other hand, it

follows from Lemma 1.1 also that c({m*)kC\R)^™k, i.e., (m*)kΓ\R<^mk : cR.

These prove our assertion by virtue of Lemma 1.3.

COROLLARY. Let R be a Noetherian semi-local ring. If the intersection of

ideals c\l9 . . . , qn are zero and if qt : qy = (|/ for every pair *'#/, then R is a

subspace of the direct sum of rings R/(\ι, . . . , R/qn ', in fact, these assumptions

for q]5 . . . , c\n are satisfied if QJΠ Γ\Qn is a shortest representation of zero

ideal as an intersection of primary ideals and if zero ideal has no imbedded

prime divisor.

On the other hand, we have

THEOREM 2. Let a Noetherian semi-local ring R be a subdirect sum of {Noe-

iherian semi-local) rings Rj9 . . . , RH. We denote by m the kernel of natural

homomorphism ψi of R onto Ri for each i. Let R be the completion of R. Then

R is a subspace of the direct sum R* of R}, . . . , Rn if and only if f\mR= (0).

Proof. We denote by i?* the completion of Λ* and by πι, w, m*, nΐ* the

J-radicals of R9 R, R*, J?* respectively.

If R is a subspace of 2\?*, it is evident that Π n , ^ = ( 0 ) . Conversely, assume
i = l

n —,.

that Γ\niR= (0). Then R is a subdirect sum of completions Ri of Ri (ί = I, 2, . . . , n)
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by the natural way.4) Whence {{m*)kp[R; k = l, 2, . . .} forms a system of
neighbourhoods of zero in R by virtue of Lemma 1.2, that is, for any positive
integer k there exists a positive integer n(k) such that (m*)n{k)C\R^kmk. Whence
{m*)n{k)Γ\R^mk, which shows that R is a subspace of R*.

COROLLARY 1. If a Noetherian semi-local ring R is complete and if πj9 . . ., nn
n

are ideals in R such that Ππ< = (0), then R is a subspace of the direct sum of

j ? . . . , R/tln.

COROLLARY 2. Let R be a Noetherian semi-local ring, and let there be ideals

<\i (*'=1, 2, . . . , n) in R such that q, : (]/=(]/ for every pair i^j. Then we have
n n

, where R denotes the completion of R.t = 1 i = I

Proof, This is an immediate consequence of our Theorem 2 and Corollary

to Theorem 1.

THEOREM 3. Let a semi-local ring R be a subdirect sum of semi-local rings

i?j, . . . , Rn. If R is a subspace of the direct sum R* of Ri9 . . . , Rn, then R

is a closed subspace of R*. In particular, if moreover R* is complete, i.e., if

every R t is complete, then so is R too.5)

Proof Let (α, = α, j+ . . +Λι«) (CH&R, aik&Rk) (f=l, 2, . . .) be a con-

vergent sequence in R with limit c = Cj-h . . . -fc« (Ck&Rk) in 2?*. Suppose that

c φ £ Let ar be, for each i, an element of R which is mapped on a by the
w

natural homomorphism ψi of /? onto 2?, . Then we would have Π^i/+π/ = ̂ B),

where n/ denotes the kernel of ψi. Since every semi-local ring is a normal

space and since each m is closed in R, there exists, for each i, an open set Ui
n

in R such that Uj^cZ+m and f\Ui-θ. This contradicts to our assumption
i = J

that c is the limit of the sequence (#,•) in ί?? and we have cG/?,

2, Completeness of a semi-local ring,

LEMMA 2.1. Let R be a semi-local ring and α a closed ideal in 2?, Then R

is complete if both R/a and α are complete,

Proof, Let if? be the completion of R. Since α is complete, it follows that

aR~a and α is closed in R, Further, since R/a is complete, it follows R/aR

= R/a,7) and this proves our assertion.
4 > Cf. [1, II, Proposition 13] or [7, Chapter II, Proposition 1].
5 ) If R is complete, then R* is complete without the assumption that R is a subspace of R*.
6> θ denotes the empty set.
Ί) Cf. I.e. note 4).
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LEMMA 2.2. Let R be a Noetherian semi-local ring. Let c be an element

of R such that c2 = 0. Then R is complete whenever R/cR is complete.

Proof By virtue of preceding lemma, we have only to prove that cR iβ

complete. Let (can) (n = l, 2, . . .) (an&R) be a convergent sequence in R

such that c(βn-ΰ»+i)εmw (Λ = 1, 2, . . .), where m denotes the J-radical of R.

Setίί« = mw : cR (n = l, 2, . . .) and b=(0) : £/?. Then we have ΠQ/* = k because

Πmw=(0). Since /?/b is complete, {q«/b n~l, 2, . . .} forms a system of

neighbourhoods of zero in R/b, by virtue of Lemma 1.2, this shows that (<zw)

is a convergent sequence in R/b. Let « be its limit, then ca is the limit of

(can). This proves our assertion.

THEOREM 4. Zeί R be a Noetherian semi-local ring with p-radicaΨ) n. Then

R is complete whenever R/n is complete.

This is an immediate consequence of Lemma 2.2.

THEOREM 5. Let R be a Noetherian semi-local ring, Let pif . . ., ph be the

totality of minimal prime divisors of zero ideal in R. Then R is complete when-

ever every R/pi is complete.

This follows immediately from Corollary to Theorem 1 and Theorems 3, 4.

3. Subrings of the completion of a semi-local ring.

Let R be a ring and m its ideal. Suppose that Π^ w =(0). Then Miscalled

an m-adic ring if R is topologized by taking {mn n = l9 2, . . .} as a system of

neighbourhoods of zero.

THEOREM 6. Let R be a semi-local ring and let R be its completion. Let m

and nϊ be the J-radicals of R and R respectively. If R* is a subring of R contain-

ing R and if we set m' = mfV?', then we have Rdm'k = mk (*=1, 2, . . .)• Con-

sequently, R is a subspace of m'-adic ring R'.

Proof. Since R is an ίϊϊ-adic ring, /?' becomes an m'-adic ring. Since clearly

m = m'Π#, we have mk<^m'kf\R. On the other hand, it follows from mkC\R=mk

that mk = (n\kΓ\R')C\REm'kΠR, because m' = πΐΠ#. These prove our assertion.

THEOREM 7. Let R be a semi-local ring and R its completion. If a subring

Rf of R containing R is finite with respect to R, then R' is a semi-local ring and

R is a subspace of Rr, but (the semi-local ring) R' is not a subspace of R unless

8> The />-radical of a ring R is the intersection of all prime ideals in R; cf, [8]. If JR is
Noetherian, it is the largest nilpotent ideal.
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Rf coincides with R.

Proof. Let m, m' and m be the J- radicals of R, R' and R respectively. Put

further m" = mn#'. Then it follows from Theorem 5 that (m")k(~\R=mk (* = 1,

2, . . .), while we have clearly that mΛΈm'ϋ nr", which shows that R is a

subspace of R\ Since R/m~R/m, we have R/m=R'/m". Suppose now that Rf

is a subspace of R9 then xnRf-mRC\R'— m", because mRr is (open whence)

closed in/?'. We have therefore R+xnR~Rf9 which implies R — Rf by virtue of

[6? Appendix, Corollary to Proposition 4].

Remark. As was shown in the above proof, we have also that mi?'#m" if

COROLLARY 1. Let R and R be the same as in Theorem 6. Then R is not

finite with respect to R whenever R*?R.

COROLLARY 2. Let R be a Noetherian semi-local ring and let R' be a semi-

local ring in which R is contained as a subring as well as a subspace. Then

R is closed in Rf whenever Rf is finite with respect to R.

We prove, by the way, some properties of m-adic rings.

PROPOSITION 3.1. If an m-adic ring R is a subspace as well as a subring of

an m'-adic ring R' and if both m and m' are semi-prime ideals93 in R and R'

respectively, then we have m'Γ[R=n\.

Proof. Since m'Γ\R is an open semi-prime ideal in R, we have m'ni?ϋm.

On the other hand, since we can find a natural number k so that mu(m')*n#

ϋ(tnYV?)* a n c * since m is a semi-prime ideal, we have mBm'Γ\R.

PROPOSITION 3.2. Let R be an m-adic ring, and suppose that m is a finite

intersection of maximal ideals pl9 . . . , ph of R. Let S be the complementary
h

set of \Jpi with respect to R. Then the ring Rs of quotients of S with respect
i = J

to i? in the sense of H. Grell [4] is definable and is a semi-local ring. Further

R is a dense subset of Rs.m

Proof. S is clearly multiplicatively closed. S contains no zero divisor, be-

cause mΓ\S=09 every mn (w = l, 2, . . .) is an intersection of primary ideals and

* = (0).1J) Therefore i?5 is definable. Further, since mnRaΠR=mn, Rs is a semi-

9> A semi-prime ideal in a ring R is an ideal which is an intersection of prime ideals in

R; cf. [8].
1<}) Cf. [11, §7].

"> Cf. [7, Chapter I, Lemma 3].
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local ring and R is a subspace of Rs. Now we prove that R is dense in Rs.

That ({b/a) + mnRs)Γ\R*Θ {b&R, #eS) is equivalent to that b-acn&mn for a

suitable cn^R. Since a&S, a is unit in R/mn, and this shows the existence of

such cn (for each n). This completes our proof.

Remark. Set S' = {β(e/?); β-lεm}. Then #5 coincides with the ring of

quotients of S' with respect to R, because every element of S is unit in /?/m.10)

4. Supplementary remarks to [7, Chapter II, Proposition 8].

First we prove

PROPOSITION 4.1.I2) Let R be a ring in which every maximal ideal is princi-

pal. Then the following five conditions for R are equivalent to each other:

(1) R is a direct sum of a finite number of principal ideal rings each of

which is einartig.13)

(2) R is a principal ideal ring.

(3) R is Noetherian.

(4) R is a subdirect sum of a finite number of einartig rings.

(5) Zero ideal of R is an intersection of a finite number of primary ideals

qi, , . . (\s such that np Λ = 9/ f° r a n y maximal ideal p containing qf (for each i).

Before proving this, we state some lemmas:

LEMMA 4.1. If a ring R is a subdirect sum of a finite number of Noetherian

rings, then R is Noetherian, too.

Proof, Let R be a subdirect sum of Noetherian rings Ru . . . , Rn. Let α

be an ideal in R. Let αj be the natural image of 0 in i?j. Then there exists a

finite basis (0/, . . . , a/) for α, in /?,. Let #/ be, for each i, an element of α

whose i?rcomponent is a{. Then clearly <*=(#,, . . . , βr) + αΠ(ft+ . . . + #»).

Thus we can prove our assertion by induction on n.

LEMMA 4.2. Every local ring with principal maximal ideal is an einartig

principal ideal ring. [7, Chapter II, Proposition 8.]

LEMMA 4.3. An einartig ring R is a principal ideal ring whenever every

maximal ideal is principal.

For, R is Noetherian by virtue of [3, Theorem 2].

Proof of Proposition 4.1. It is clear that (2), (3), (4) and (5) follows from

(1) and that (3) follows from (2). (3) follows from (4) by virtue of Lemmas

12^ As for the equivalence of (1), (2) and (3), cf, [5, Theorem 9].
13> A ring R is said to be einartig if every proper prime ideal is maximal.
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4.1 and 4.3. To prove that (1) follows from (3), let (\if\ . . . f\qn be a shortest

representation of zero ideal in R as an intersection of primary ideals, Let p be

a maximal ideal in R9 then the ring of quotientsI4) of p with respect to R is a

local ring, whence an einartig principal ideal ring. This shows that p contains

only one q, and R/qi is einartig.j5) It follows from this that R is the direct sum

of R/qι9 . . . , R/(\n each of which is, by virtue of Lemma 4.3, an einartig princi-

pal ideal ring. That (4) follows from (5) is easy if we observe the following

LEMMA 4.4. If a principal ideal aR in a ring R contains properly a prime

ideal p, then p%C\anR»

Proof* Since aRZDp, we have p~apf for an ideal pf in R« Since aφp\ we

have p = p\ This shows that p = anp, which proves our assertion.

Next we construct a semi-local ring R which is not Noetherian? but every

maximal ideal in R is principal:

EXAMPLE, Let K be a field and let x9 y and z be indeterminates, Let Rx be

the subring of K(x9 y) generated by K[x, y\ and y/x. Then Ri*K(x9 y) and

xRi is a maximal ideal in Rι. Let R2 be the ring of quotients of xR with respect

to Rι. Let S be the intersection of complementary sets of xR*X_z] and zR<£z"}

with respect to i? 2 H Then the ring R of quotients of S with respect to R£_z~\

is a required ring.

In fact, R has only two maximal ideals xR and zR, while i? is semi-local

because p\znR = (0),
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