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ON THE QUADRATIC EXTENSIONS AND THE EXTENDED

WITT RING OF A COMMUTATIVE RING

TERUO KANZAKI

Let B be a ring and A a subring of B with the common identity
element 1. If the residue A-module B/A is inversible as an A-A-
bimodule, i.e. B/A ®A Hom^ (B/A, A) « Hom^ (B/A, A) ®A B/A « A, then
B is called a quadratic extension of A. In the case where B and A are
division rings, this definition coincides with in P. M. Cohn [2], We can
see easily that if B is a Galois extension of A with the Galois group G
of order 2, in the sense of [3], and if ΎrG(B) = {ΣσeGσ(&) ' b e B} = A, B
is a quadratic extension of A. A generalized crossed product Δ(f,A,Φ,
G) of a ring A and a group G of order 2, in [4], is also a quadratic
extension of A.

In this note, we study the case of commutative quadratic extensions,
where A is a commutative ring and B is an A-algebra. Let A be a
commutative ring with the identity element 1. We shall say that B is
a quadratic extension of A if B is a ring extension of A with the com-
mon identity element and B is a finitely generated protective A-module
of rank 2 so that B is a commutative ring. We denote by Q(A) (resp.
QS(A)) the set of all A-algebra isomorphism classes of quadratic (resp.
separable quadratic) extensions of A. It is known that QS(A) forms a
group under a certain product, and in [1], [6] and [7], the group QS(A)
is investigated. In this note, in § 1, we define a product in Q(A), which
coincides with the product defined in [1], [6] and [7] in the subset QS(A).
Then, Q(A) forms an abelian semi-group containing the subsemi-group
QS(A) which is a group, and an element [B] in Q(A) is contained in QS(A)
if and only if [B]2 = [B][B] is the identity element of Q(A). In §2, we
give a generalization of a quadratic module and define A-isomorphisms
between them. Then, we can consider a category consisting of these
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extended quadratic modules and A-isomorphisms. From this category

we can construct a commutative ring W*(A). In § 3, we shall show that

W*(A) is a commutative ring with the identity element, and there exists a

ring homomorphism of the Witt ring W(A) to TF*(A) for which the image

is an ideal of W*(A). Especially, if 2 is inversible in A, then W(A)

and W*(A) are isomorphic. In § 4, we shall give a group homomorphism.

of QS(A) to the unit group U(W*(A)) of W*(A).

1. Quadratic extension.

Let A be an arbitrary commutative ring with the identity element 1. A

commutative extension ring B of A is called a quadratic extension of A if B

is a finitely generated projective A-module of rank 2 and B has the same

identity element 1. If B is a quadratic extension of A, then there exist a

finitely generated projective A-module U of rank 1 and quadratic forms

q: U -• A and q':U-> Uι) such that 5 = A Θ ?7 and x2 = #(&) + g'(a) for

all a; in [7.

LEMMA 1. Let U be a finitely generated projective A-module of rank

1, and qf: U —> U a quadratic form. Then there exists an A-homomor-

phism f:U->A such that q\x) = f(x)x for all x in U.

Proof. For the quadratic form q/: U —» U, there exists a bilinear

form B:U X U -> U such that g'O) = B(x,x) for all α in U, (cf. (2.3)

in [2]). We may consider that B is an element in Hom^ (U ®A U9 U).

Then by the following natural isomorphisms HomA (U ®A U> U) «

(UΘAU, A)®AUπ Horn,(U, A) ®AHom^(C7, A) ®^ U « Hom^ ([7, A>

A, there exist / 4 in Hom^ (Z7, A) and αt in A, i = 1,2, n such that

x,y) = Σi-iMχ)aiV f o r a 1 1 « a n d 2/ i n f7- P u t / = Σ?-i»</< i n

(U, A), then we have q'(x) = B{x, x) — f{x)x for all x in U.

LEMMA 2. Let U be a finitely generated projective A-module of

rank 1, and f and g elements in Hom^ (£7, A). // f(x)x — g(x)x for all

x in U, then f = g.

Proof. If f(x)x = g(x)x for all x in U, then we have alsα

/ (g) /(ίc)a; = g ® I(x)x for all x in C7m = Z7 (x) Am and for every maximal

ideal m of A. For the local ring A, this lemma is clear, therefore we

get easily / = g.

cf. p. 490 in [5].
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Thus, for a given quadratic extension B of A there exist a finitely
generated protective A-module U of rank 1, an A-homomorphism f:U-+A
and a quadratic form q: U —> A such that B = A φ £7 and #2 = /(#)# + <?(#)
for all x in [7. Conversely, if a finitely generated protective A-module U
of rank 1, A-homomorphism / : U -> A and a quadratic form g: £7 —> A
are given, then a quadratic extension B = A 0 £7 of A is constracted by
#2 = f(x)x + #(#) for # in Z7. We denote such a quadratic extension of
A by B = (U,f,q).

In general, we can define as follows:

DEFINITION. Let P be a finitely generated projective and faithful
A-module, f:P->A an A-homomorphism and q: P-> A a quadratic form.
Let T(P) = A 0 P 0 P(g)A P0... be the tensor algebra of P over A. We
denote by (P,/, g) the residue ring T(P)/(x (x) x — f(x)x — <?(#) x e P) of
Γ(P) by the ideal generated from the set {x®x — f(x)x — q(x) ;xeP}.2)

PROPOSITION 1. Let (U,f,q) and (Ό',f',qf) be quadratic extensions
of A. Then (U,f,q) and (U',f',qf) are A-algebτa4somorphίc if and only
if there exist an A-isomorphίsm σx: U-» V and an A-homomorphism g: U
—» A satisfying the following identities

where fg, g2 and qΌσι are defined by fg(x) = f(x)g(x)y g\x) = g(x)2 and
qfOQ^X) — q;{σλ{x)) for x in U.

Proof. Let σ: (J7,/f q) = A 0 U -> (C/7,/7, αθ - A © ^ be an A-
algebra-isomorphism. Then there exist an A-isomorphism σι:U-*ϋ' and
an A-homomorphism g: U -> A such that σ(x) = flf(a ) + σi(aθ for x in
ί7. Since σ satisfies σ{x2) = σ(x)2 for α? in C7, we get the following identity

f(x)g(x) + q(x) + f(x)σί(x) - g(x)2 + q'iβ^x)) + (fiσ^x)) + 2g(x))σί(x)

for all x in U. Therefore we have

f(x)g(x) + q(x) = 9(x)2 + q\σλ{x)) ( 1 )

f(x)σi(x) = (/'(^(a;)) + 2g(x))σι(x) (2 >
2) The composition of natural homomorphisms A © U =—> Γ(C7) -• T(U)/(x (g) α —

g(aj) sc e C7) is an A-isomorphism as A-modules. For any quadratic extension
C = A 0 U satisfying x2 = /(α )α + (̂ί») for all x e C/, C « T(U)/(x®x- f(x)x- q(x); xeU}
as A-algebras.
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for all x in U. From (2) we have f(x)x = (/ 'OIO)) + 2g(x))x for x in
U, and by Lemma 2, we get f(x) = f'ia^x)) + 2g(x) for x in U. Thus,
we have the identities of this proposition. The converse is obvious.

LEMMA 3. Let {JJufi9qd and (JJi,fi,qO be A-algebra-isomorphic
quadratic extensions of A, i— 1,2. Γ&βw (Z7X®A U2,fi®/2>/i2® ft + ft ®/2

2

+ 2gx®g2) and ( t ^ ® ^ U',,f{® fζ,f(2® q'2 + gί®/2

/2 + 2«ί® q£) are aίso
A-algebra-isornorphic, where /12® ft + ft ®/2

2 + 2ft<8><72 (%®y) = fi(%)2q2(y)
^ f t + ft®/2

2 + 2ft ® g2 (2>=1 x, ® y,) =

+ ^qι(χi)q2(yi)) + Σΐ<j ( / i W / i W ^ , ^ )
j) + 2Bqi(xi9 Xj)Bq2(yif y3)), (n > 1), ami /

(cf. (2.8) m [5]).3)

Proof. By Proposition 1, there exist A-isomorphisms ^ : Z7X —> ί/ί
and σ2: Z72 -> J7£, and Λ-homomorphisms ^ : Z7X —> A and ^2: C72 -> A such
that <rί°tfi = fλgγ + ft - SΊ2, / / o ^ = /! - 2gl9 and g^σ, = /2g2 + q2 - g2\
f^oσ2 = f2 — 2g2. By the computation, we get the following:

For any element x^)ymU1(S)A U2, (//2(8)ft' + q[®f? + 2q[®q$ o {σλ®σ2)
ax) - 2gi(x))2(f2(y)g2(y) + q2(y) - g2(y)2) + (f^g^x) + qx(x) -
- 2g2(y))2 + KAWg^x) + ftW - g1(x)2Xf2(y)g2(y) + q2(y) -

/) + Λ(»)/2(2/) - 2gi(x)g2(y))
- (f1(x)g2(y) + gMfM - 2

- 2g1®gi) + (/ί ®ft + ft®/| + 2^ ® q j f
— 2^! ® ̂ 2)

2](x (x) 7/). Using the identities
Bqfaixj σάxj)) = Mxjgάxj) + fiixjgάxt) + Bqi(xi9Xj) - 2g1(xί)gι(χJ)

and Bφ^ydiσlyj)) = f2(yi)g2(yj) + flyί)g2(yd + Bq2(yi9yj) - 2g2(yί)g2(yj)
for ^ ® ̂  and ^ ® ̂  in ^ ®^ £72, we get as follows fίiσ^x^fϋσ^Xj))

(xd, ^(x^f^iy^f^iyj)) + 2Bq,(σ1(xi), σι(xj))
- 2g1(xt))(f1(xJ) - 2g1(xj))(fi(yt)g2(yJ) + f2(Vj)g2(y0

+ Bq2(yu yj) - 2g2(yi)g2(yj)) + (MxJgXxj) + ΛixMixΰ + Bqi(xu Xj) -
2g1(xί)gι(xj))(f2(yί) - 2g2(ydXflvi) - 2g2(yj)) + 2(f1(xί)g1(xj) + f^x^gM)
+ Bqi(xi9 Xj) - 2g1(xί)g1(xj))(f2(yί)g2(yj) + f2(yί)g2(yd + Bqa(yi9 yd) - 2g2(yί)

MiVj) + 9ιixj)f2{yj) - 2gί{xj)g2{yj)) + Λix^Uyj)
~ 2g1(xί)g2(yί)) + UxdUx^B^y^y^ + Bqχ(xί9x3)

3) P(x)q' and f2® qf are defined by /2(x)q'(Σ Xί®yύ=Σi fteiPq'iyύ + Σt<j f
Bq<Vi,Vj) and f2®q'(Σxi®Vi)= Σi 2f(x
in M (gu M7.
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(xi9 Xj)Bq2(yi9 y3) - 2(f1(xi)g2(yί) + gι{xι)f2{yτ) - 2gx{xz)

+ fi^j)g2(yj) - 2g1(xj)g2(yj)). Accordingly, we get

2 Λ ® <?2) + (Λ2 ® g2 + ft ®f2

2 + 2ft ® g2) + (/2 ® g2 - 2 Λ ® ^2)
2]

(Σ?-i χi ® 2/i) f o r a 1 1 Σι̂ =i »t ® ^ in Όx ®A U2. Put G = Λ ® Λ + Λ ® /2 -

2ft ® ft, then G is an A-homomorphism of Uλ ®Λ U2 to A, σγ ® σ2 is an

A-isomorphism of U1 ®^ C72 to U[ ®A U'2, and these satisfy (/Γ ^ ^ +

αί ® Λ/f + 2^ί ® g7

2) o (^ ® σ2) = (Λ ® /2)G + (Λ2 ® g2 + qx ^ / | + 2ft ® q2) + G2,

and ( / 1

/ ® / J

/ ) o ( σ 1 ® σ 2 ) = / 1 ® / 2 - 2 G .

By Proposition 1, we have (Z7X ® 4 f/2, /x <g) /2, Λ
2 ® g2 + ft ® /I + 2qγ ® q2)

and ( C / ί ® ^ ^ , / / ® / ^ , / / 2 ® ^ + 4ί®/ 2

/ 2 + 2gJ® gί) are isomorphic as A-

algebras.

DEFINITION. We denote by Q(A) the set of all A-algebra-isomorphism

classes [U,f, q] of quadratic extensions (U,f,q) of A.

PROPOSITION 2. Q(A) forms an abelίan semi-group with unit ele-

ment [A, 1, 0] by the product [U, f, q]-[U', f, q'] = [U®ΛU',f<8> f,

f2 (x) q' + q' (x) / / 2 + 2^ ® g'], where (A, α, 6) denotes a quadratic extension

A 0 Aw ŝ cfc that v2 =: av + b, a and b in A, i.e. f(v) = a, q(v) — &.

Proof. By Lemma 3, the product in Q(A) is well defined. The as-

sociative law is easily seen as follows; ([U,f,q][U',f',q'])[U",f",q"] =

[U ®A U
f®A ϋ", f ®f ® f", Γ ® fn® q" + f2 ® qf ®f"2 + q®f2®fm +

2(q®q;^f//2 + q®f'2®q" + f®qf®q") + 4g ® «7 ® g;/] - [ϋ,f,q]

DEFINITION. Let P be a finitely generated projective and faithful

A-module? f:P->A an A-homomorphism and q: P —> A a quadratic form.

For the A-algebra (P,/, g) = T(P)/(x ®x- f(x)x - q(x) xeP), we con-

sider a symmetric bilinear form Df>q:P x P-+A defined by DftQ(x,y) =

f(x)f(y) + 2B40,7/) for », 7/ in P, where SαO, 2/) = q(x + y) — q(x) - q(y)

for x, y in P. Then we shall call the bilinear A-module (P,Df)q) the

discriminant of (P,f,q).

Remark 1. If 2 is inversible in A, then we have that (P,f,q) is a

separable algebra over A if and only if (PfDf>q) is a non-degenerate

bilinear A-module, i.e. P —» Hom^ (P, A) a? ̂ - > Df>q(x, -) is an isomor-

phism.
4) (ςr ® /2) (x) <z; - q (x) (/2 δ) ςfO, (P ® ςfO ® ̂ ;/ - f2 ® (̂ r ® 9").
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Proof, d = f2 + 4g is a quadratic form of P to A, and satisfies

d(x) = f(x)2 + 2Bq(x, x) = Df>q{x, x). In the tensor algebra T(P), we put

P' = {x- (1/2)f(x) eAΘPa TiP) xeP}, then the map P-^Pf\x — > x

— (1/2)fix) is an A-isomorphism. We denote by h the inverse isomor-

phism of it. For the ideal of TiP) generated by the set {x <g) x — fix)x

- <?(aθ ; ^ e P } = {^(x)x- dihix/2)) x e P'}, we have (P, /, g) = TiP) /(x ® a?

- /(aθα - g(s) α e P) == TiP')/ix®x - d(h(x)/2)) ;xePί) = (P', 0, do (l/2)fe),

since Γ(P) = T(P'). But, (P',0,<Zo(l/2)Λ) is a Clifford algebra Cl(P',cZo(l/2)h)

of a quadratic module iP', d o (1/2)Λ). It is known that Cl iP', d o (1/2)h) is

a separable algebra over A if and only if (P', do(l/2)fe) is non-degenerat-

ed. Since (P,d) and (P/,do(1/2)h) are isometric, we get this remark.

THEOREM 1. Let U be a finitely generated protective A-module of

rank 1, / : U —>A an A-homomorphίsm, q:U —»A a quadratic form, and

(ϋyf9q) the quadratic extension of A. Then the following conditions

are equivalent:

1) iU,f,q) is a separable algebra over A.

2) iU9DftQ) is a non-degenerate bilinear A-module.

3) [U,f,qr = [A,l,Ol

Proof. 1) ̂  2): To prove the equivalence of the conditions 1) and

2), we may assume that A is a local ring. Let A be the local ring.

Then U^Au and (17,/, q) « A[X]/(X2 - aX - 6), where α = fiu), b = qiu).

Hence, (£7, /, q) is separable over A if and only if a2 + 4b — f2 + Aqiu)

— Df>qiu,u) is inversible in A. On the other hand, iU,Dffq) is non-

degenerated if and only if Df>qiu,u) is inversible in A. Therefore, we

obtain the equivalence.

2)-* 3): Assume that iU,Dftq) is non-degenerate. Then the A-

isomorphism U —> Hom^ (Ϊ7, A) # -~-» Df>qix, -) induces an A-isomorphism

£>/,* :C/(x)^C/-^A;x(x)^ —-» DftQ(x, y). Put σx = Df,q and # = - i^. Then

we have loax — Df>q = / ® / + 2 ^ = / (x) / — 2g. Furthermore, we can

prove the following identity:

(/ ® f)9 + (f2« Q + Q δi Γ + 2q ® g) - g2 - 0 .

Because, by the localizations of A and C7 by every maximal ideal m of

A, we can check that quadratic forms f^ξ) q + q<$ f2 — Bq-f® f: U ®AU

-* A, and 2g (x) g — β^ : JJ®A U -* A are equal to 0. Thus, by Proposi-

tion 1 we get [U,f,q]2 - [U®AU, / ® / , /2(x)g + g « / 2 + 2g(x)g] =
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[A, 1,0].

3)->2): Let [U,f, q\2 = [A, 1,0]. To prove the condition 2) it is

sufficient to show that for any maximal ideal m of A, Dffq(u,u) is in-

versible in Am, where Um = Amu. Now, we assume A is a local ring with

maximal ideal m and U — An. We shall show Df>q(u, u) = fiu)2 +

2Bq(u,u) = /W 2 + 4q(u)£ m. From [£/,/, <?]2 = [A, 1,0], there exist an

A-homomorphism g:U®AU -» A and an A-isomorphism ^ : Z7 ®^ £7 -* A

such that ^(x <g) y) = f(x)f(y) - 2#O (x) #) and 0 = f(x)f(y)g(x <8)y) +

f(x)2q(y) + q(x)f(y)2 + ±q(x)q{y) + g(x (8) yf for all x®yeϋ®AU. Espe-

cially, taking x — y — u, we get

and

0 - f(u)2g(u ®u) + 2f(u)2q(u) + 4q(u)2 - g(u®u) ( 4 ) .

El iminat ing/^) 2 from (3) and (4), we get (σ^u^u) + 2g(u®u))g(u®ιι)

+ 2(σ1(u ®u) + 2g(u ® ^))g(^) + 4g(^)2 — ^(^ (x) u)2 = 0, and so

fafa (x) w) + ^(^ ®u) + 2q(u))(g(u ® u) + 2q(u)) = 0 .

If g(u®u) + 2q(u) is contained in m, then from σ^utgϊiOem, σx(u®u)

+ g(u®u) + 2q(u) is inversible in A. Therefore, we have g(u®u) +

2q(u) = 0, and Df>q(u, u) = f(u)2 + Aq(u) = f(u)2 — 2g(u ® u) = ^ ( ^ (x) w)

is inversible in A. If g(u®u) + 2q(u)<£m, then σ^u^u) + g(u®u) +

2q(u) = 0. From (3) and 2σx(u ® u) + 2g(u ® u) + 4g(w) = 0, we get

u) + f(u)2 + 4q(u) == 0, accordingly, DftQ(u, u) = f(u)2 + 4tq(u) =

) is inversible in A.

COROLLARY 1. 27*,β set QS(A) of A-algebra-ίsomorphίsm classes of the

separable quadratic extensions of A forms an abelian group with expo-

nent 2.

PROPOSITION 3. Let (U,f,q) be a quadratic extension of A. The

map τf: (E7,/, q) —> (U,f, q) a + x ^^> a + f(x) — x is an A-algebra-iso-

morphism such that τ/ = /. // (U,f,q) and (U',/',^) are quadratic ex-

tensions of A and σ: (U,f,q) -> (£/', f',qf) is an A-algebra-isomorphim,

then we have the following commutative diagram
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(U,f,q) (#

Q

(V,f,q) -—+(ϋ',f',q') .

Proof. From Proposition 1, there exist g in Hom^ (E7, A) and A-

isomorphism σλ\Ό ->Όf such that <;(#) — #0) + σxix) and f'iσxix)) — fix)

— 2g(x) for all x in Γ7. Therefore, τ'rOO)) = g(x) + τ/riσxix)) = g(x) +

fiσ^x)) - σxix) = g{x) + fix) - 2g(x) - σxix) = /(») - (flfaO + ̂ (α?)) =

/(&) - σ(aθ = σ(/(x) - x) = σiτfix)), for all α in E7.

Remark 2.

1) In Proposition 3, if we take σ — I, then τy = τ^.

2) If iU,f,q) is a separable algebra over A, then τ7 is the unique

A-algebra-automorphism of (U,f,q) which is not the identity.

Let B = iU,f,q) and Bf = (E77,/7, g') be separable quadratic exten-

sions of A. Then G = {τ/?/} and G/ = {τ̂ /,/} are the groups of auto-

morphisms of B over A and Bf over A, respectively. In [1], [3] and [4],

the product B*B' of quadratic extensions B and B' was defined as the

fixed subalgebra iB <g) AB
f)τf®τfr = {x e B ®AB' τf® τ'f(x) = x) oί B ®A B'

by τ7 (x) τ'r. But this product coincides with our one.

PROPOSITION 4. Let (U,f,q) and iU'9f',q
f) be separable quadratic

extensions of A. Then we have [(U,f,q)<g)Λ(U',f',q'yf®τ'f'] = [U>f,q]

lU',f'9q'] in QXA).

Proof. For B = iU,f,q) and £ ' = (Ϊ7',/', <?'), B®AB' is expressed

as a direct sum 5 ®A B' = A 0 C7 0 C/7 0 Z7 ®A U'. Put 7 = {Σi fixdVt +

fiyτ)Xi -2xί®yieU®U'@U®AU'; for all £ , ̂  ® ̂  in [/ (x)̂  C/̂ . Then

F is an A-submodule of B ®A B'9 which is A-isomorphic to U ®A U' by

the isomorphism θ: U ®AU' -* V x®y —-> fix)y + f;iy)x — 2x®y. It

is easily seen that the A-submodule C = A 0 F of B®AB
; generated by

V and A is contained in B®AB
/T'®τ'f. To show C = £ ®4B

/Γ'®Γ/', we

shall prove first that the map 61': (U ®A U', f ® / ' , f ® qf + q® f2 +

2q (g) ρ') = A 0 Ϊ7 ®A U' -> C = A 0 V α + x ® 7/ —-> α + 6>(x ® 2/) is an A-

algebra-isomorphism. We can easily compute that for any x®y in

U ®A U\ ffix (x) yf = ifix)y + fiy)x - 2x <g> ?/)2 = /(x)2^/2 + f'iy)W +

4Λ;2 ® ?/2 + 2fix)fiy)x ®y - Af(x)x ®y2 - 4f'iy)x2 (x) y = fix)\fiy)y +

f'iy)zifix)x + qix)) + 4(/(a?) + q{x))®ifiy)y + q\y)) + 2fix)f\y)
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x ® y - 4f(x)x ® (f'(y)y + q'(y)) - 4f'(y)(f(x)x + q(x)) ®y = f(x)f'(y)(f(x)y

+ f'(y)x -2x® y) + f{x)2q\y) + f'(y)2q(x) + 4tq(x)q'(y) = / <

(a? ®j/) + (/2 ® g' + g ® fn + 2q ® gr')(a <g> #) = 0'[(/ ® /'(a?

(/2 ^ q' + q ® / / 2 + g ® gθ(» ® y)] = θ'((x ® I/)2), and for χt ® i/,, α, ® ^ in

U', 2θ'(xi®yi).θ'(xj ® ^ ) - 2(f(xί)yi

X,- - 2xj®yj) - fixύfXy

2B,(x,, Xj)Bq,(yi9 yj) = ffifixdf'iyύXj ® yj + f(Xj)f'(yj)Xt ® yd + f(x
Bq.{yi9ys) + f\yι)f'{yj)Bq(xuxj) + 2Bq(xi,xj)Bq,(yί,yj).

Therefore, we have ^ ( Σ ^ x , ® ^ ) 2 = fl'CCX;,α,<g>y^2) for any Σi

in C7 ®^ ί/7. Accordingly, θ' is an A-algebra isomorphism. Thus, C is

also a separable algebra over A. Since B®AB' is a finitely generated

protective A-module, B ®A Bf is also finitely generated projective over

C. Therefore, C is a direct summand of B ®A £>', and hence also a

direct summand of B ®A B'τf®τr as C-module. But, rank (C: A) =

rank (B ®A B/τ'®τ'r: A) = 2, hence we have B ®A Bfτ^τ'r = C = A 0 7 «

(17 ®A 17', f®ff,f2®qf + q® f2 + 2q ® gθ as A-algebra.

2. Extended quadratic module.

In this section, we give a generalization of quadratic module. Let

A be an arbitrary commutative ring with unit element. Let M be an

A-module, f:M—>A an A-homomorphism, and q: M —> A a quadratic

form. Then, we call the triple (M., f, q) an extended quadratic module

DEFINITION. Let <M,f,qy and (M',f,q'y be extended quadratic

modules. If there exist an A-isomorphism σ: M —> M' and A-homomor-

phism g: M —> A satisfying g; o σ = g + 2fg — 2^2 and / ' o σ = / — 2g,

then we call that (M,f,q) and (M',f\q'y are A-isomorphic, and denote

by (<x, g):(M,f, q}-^{M\f\ q'} the A-isomorphism of extended quadratic

modules, or simply <M,/, q} « Qί\f\qfS).

Then we have easily

1) (7, 0) is identity,

2) (σ', gf)(σ, g) = (σΌσ,g + gΌ σ) and

3) (σ,^)- 1 ^ (σ"1, -goσ-1).

Thus, we can consider a category Qua* (A) in which objects are extended

quadratic modules and morphisms are A-isomorphisms of extended quad-

ratic modules. Then, Qua* (A) includes the category Qua (A) of the
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ordinaly quadratic modules as a sub-category. Because, (σ, g): (M, 0, q}
-* (M'9 0, q'y is an A-isomorphism in Qua* (A) if and only if σ: (M, q) —>
(IT, gθ is an A-isomorphism in Qua (A), therefore we may regard as
<M, 0, q) = (M, g) and (σ, 0) = σ in Qua (A).

DEFINITION. Let (M,f,qy be an extended quadratic module, and let
Bf>q: M x M -* A be a symmetric bilinear form defined by Bf>q(x,y) =
f(%)f(y) + -Bite, 2/) for a? and y in ilί. Then, we call the bilinear module
{M,Bf>q) the associated bilinear module with (M,f,qy. If (M,BftQ) is a
non-degenerate bilinear module, then (M, f, q} is called a non-degenerate
extended quadratic module.

LEMMA 4. // (<?, #): (M, /, g) —» (M\ f, q/s) is an A-isomorphism in
Qua* (A), then we have Bf,fq,(σ(x),σ(y)) = BfΛ(x,y) for all x and y in
M, that is, σ: (M,Bftq) —• (M',Bf,)Q,) is an A-isomorphίsm of bilinear
"modules.

Proof. Since the A-isomorphism σ:M—>M' and the A-homomorphism
g: M ~> A satisfy /'oσ = / — 2g and qΌσ — q + 2fg — 2g2, we have
Br,q,(σ(x), σ(y)) = fiσ{x))f\σ{y)) + Bq,(σ(x), σ(y)) - (f(x) - 2g(x))(f(y) -
2g(y)) + Bq{x,y) + 2(f(x)g(y) + f(y)g(x)) - 4g(x)g(y) = f(x)f(y) +Bq(x,y)
= BftQ(x,y).

COROLLARY 2. If (M,f,q) « <M',ff,qfy and <M,/, g> is non-degen-
erate, then (Mf, f, qfy is also non-degenerate.

DEFINITION. Let (Ml9fl9q^ and <M2,/2, g2> be extended quadratic
modules. We define the orthogonal sum J_ and the tensor product (8) of
extended quadratic modules as follows:

<Muf» ?i> ± <MιJ2, q2y = <M, Θ M2,/2 1 U 9i J_ 2̂ - /i X /2> ( 5 ) ,

< / 1

2 ® g 2 + ^ 0 / 1 + ftΘft) ( 6 ) ,

where fγ J_ /2 is defined by the A-homomorphism M1 0 M2 -> A xx 0 α;2
-^-> /i(^i) + /2(^2)? and /x X f2 the quadratic form Mx © M2 -^ A x1 0 α;2

LEMMA 5. Lei <M<,/<,?<> and <ilί{,//, q£> 6e extended quadratic
modules, and (σi9 gt): <Mt, /<, ĝ > -> <M , //, g > an A-isomorphίsm in
Qua* (A) for i = 1,2. Γ/̂ en we feα^e ίfee following A-isomorphisms in
Qua* (A)
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(σι θ σ2, gx J_ g2): <M19flf q1} ± <M2, f2, q2} -> <Mί,//, <?ί> J_ <MJ, /,', tf > ( 7) ,

(*i ® ^2, fι®92 + gx®f2- 2gλ <8> g2): <Λf i, /i, ?i> ® < ^ 2 , / 2 , 42>

- <Mί, //, gί> <g) <M$, /;, tf> ( 8) .

Proo/. The proof of (7). We shall show t h a t (σ, θ σ2, g, J_ g2):

X θ M^Λ J_ /2, ft JL g2 - Λ x /2> -> <Mί φ M'i9fi J_ //, gί ± gί - // x //>
is an A-isomorphism in Qua* (A). For x1 0 x2 in -MΊ θ ^2^ we have

(«ί ± (Tί - // X //) o (̂ 1 θ σ2)(x1 θ x2) - ffί(αi(αi)) + <?2

= Qi(Xi) + 2f1(x1)g1(x1) - 2g1(x1)
2 + q2ix2) + 2f2(x2)g2(x2) - 2g2(x2)

2

2g1(x1))(f2(x2) - 2g2(x2)) = (ft ± q2 ~ f, X f2)(xλ θ x2) + 2(f, ± f2)(gx _[_ g2)

(Xi θ ^2) - 2(0! _J_ ^2)
2(^χ θ x2), and

The proof of (8) is obtained by similar computations the proof of Lemma
3. We omit this proof.

DEFINITION. We denote by Bf$q J_ Bf,>q, the associated bilinear form
with <ilί,/, q} J_ <M/,//, g7), and by #/,« ® #/',«' the associated bilinear
form with <M,/, g> ® <M/,//, g7>, that is, Bf>ql_Bf,>q, =
and Bf>q® Bf,fQ> =

PROPOSITION 5. ΓΛe orthogonal sum and the tensor product of ex-
tended quadratic modules <M,/, g> cmcϊ ζM'9f>q'y induce the following
identities between the associated bilinear modules with them

(M θ Jlί', 5 / f ί JL BrΛ.) = (M, Bf,q) ± (M', Bf.,q,) ( 9 ) ,

i.e. Bf>q _L Bf,tq,(x ®x',y® y') = S/,Q(^, 1/) + β/^,^^', 2/0 /or s 0 ^
1/θί/7 in I 0 M ' , and

(M (x) M\ Bf>q (x) Bf,tq>) = ( M , B / f < z ) (x) (M', Bf,tQ,) (10) ,

/__ιi x i, ̂ ~y *^i an>a y x * y * \Q) y j %n> IVJ. iX' ^ ^

Proof. The proof of (9): BJΛ 1 Bf.Λ.(x ®x',y® y')=(f JL / ' (* ® x'))

+ BίJLί.(a! Φ a;', y φ i/O - B / x Λ(a; θ x', y φ 1/0 = /(x)/(2/) + f'(x')f'{y') +
f(x)f'(y') + Bq(x, y) + Bq,(x', y') - (f(x)f'(y') + f(y)f'(x')) =

c» 2/) + B},Λ,(x', y'), for any xφx' and ]/ φ ί/' in M φ M'.
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The proof of (10): S

%i® *ί- Σ^Vj®V'j)=f® f'(Σi
^ ® ̂  Σί ^ ® »y) = (Σ /

ΣVs®y'ι> + B«®AΣ«t®*ί» ΣΣ

Bq(xi,yj)Bq.(x'i,y
>j)) = Σi,]BfΛ(xt,yj)BrΛ,(x'i,y'}), for Σ«i®^ί and

in Λί(x)M'.

COROLLARY 3. 7/ <M, /, g> and ζM', f, q'y are non-degenerate ex-

tended quadratic modules, then ζM,f,q)X_ζM',f',q'y is also non-degen-

erate. Furthermore, if M and M' are finitely generated protective A-

modules, then <M,f,q)(g)<M',f',q''y is non-degenerate.

Remark 3. If 2 is inversible in the ring A, then the category

Qua* (A) is equivalent to the category Qua (A), i.e. for any object (M,f, q)

in Qua* (A), <M,f, q> « <M, 0,q + (l/2)/2>.

Remark 4. Let (Mι,f1,q1}, <M2,f2, q2} and (M3,f3,q3} be extended

quadratic modules. Then we get the following natural isomorphisms in

Qua*(A)

1) <Mitfu q1y 1 (M2, U q2) « (M2, f2, q2}

2) <M1( flt qι> ® <M2, f2, q2y « <M2, f2, q2}

3) «Λflf / „ ?,> _L <M2, f2, q2}) _L <M3, / „ qz} « <M1 ; / „ ? 1 > JL

4) « M U /„ 9 l > ® <M2, f2, q2y) ® <M3, /„ g3>

3,/3,g3»,
5) «M 1 ( /„ ffl> _L <M2, /2, Q2» ® <M3, /„ ^3> « « M U / 1 ; ?1> ® <M3, /„ g3»

6) <M1,/1, ?,> ® <A,7,0>

Proof. We shall show only 5). For the other isomorphisms, we can

see easily. To prove it, it is enough to show the identity

_(/i JL / ^ ® 93 + (?i ± «2 -_/i X /2) ®/I + (ft J_ ft - /i X Λ) ® 9s =

(/ί® Qz + ?1 ® /s + 01 ® 9s) ± (fi ®Q3+Q2® ft + 02 <8> 0s)_- (/l ® Λ) X
For any Σt(«i + »i) ® z* i n W θM 2 ) ® M3, (/, J_/2)

2®03 + (0,

02 - /. x /2) ® 03(Σί (*i © 2/i) ® *i
? + 2(0ι(α!1)
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+ 2qί(xi)q3(zί)) +

+ 2q2(3fi)qi(zi)) - U

= (Λ2 ® <z3 + ίi ® /I + Qi ® 9s) _L (/ί

x (/2 ® /)(Σ ( ® ) ® )

DEFINITION. An extended quadratic module (M,f, q} is called

hyperbolic if the associated bilinear module (M,Bftq) with (M,f, g> is

hyperbolic, i.e. there exists an A-module ΛΓ such that M ~ N ® Nf for

some A-submodule N', f(N) = q(N) = 0 and N = NH= {xeM; BftQ(xyN)

= 0}).

From Proposition 5 and the well known properties on bilinear

modules, we get the following proposition.

PROPOSITION 6.

1) If <M,/, q} and <M', / ' , q'} are hyperbolic, then so is also (M,f, q}

2) If M is a finitely generated protective A-module and <M,/, g>

is hyperbolic then (M, f, q} is non-degenerate.

3) // (M, fy q) and (M', f, qry are non-degenerate and (M> f, g> is

hyperbolic, then <Λf,/, g>® <M/, f, q'y is also hyperbolic.

3. Extended Witt ring W*(A).

From the argument in § 2, we can construct a commutative ring

W*(A). Let Quap* (A) be a full subcategory of Qua* (A) consisting of

non-degenerate extended quadratic modules with finitely generated pro-

jective modules. In the category Quap* (A), as well as the construction

of the Witt ring W(A), we consider the full subcategory HQuaP* (A)

consisting of hyperbolic extended quadratic modules. And, using the

notation of K-theory in [1], we define the extended Witt ring TF*(A) by

W*(A) = Coker (Z 0(HQua/ (A)) -> K0(Qua/ (A))). Thus, it can be easily

checked that W*(A) is a commutative ring with sum and product induced

by orthogonal sum _[_ and tensor product ®. We denote by [<P,/, ?>]

the class of <P,f,q) in W*(A).

THEOREM 2. The extended Witt ring W*(A) has always the identity

element [<A,7,0>], and there exists a ring homomorphism of the Witt

ring W(A) to W*(A). Then, the image of W(A) becomes an ideal of
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W*(A). If 2 is inversible in A, then it is an isomorphism W(A) —^

W*(A).

Proof. Let Quap (A) be the full subcategory of Qua (A) consisting

of non-degenerate quadratic modules (P, q) with finitely generated pro-

jective A-module P, and HQuap (A) the full subcategory of Quap (A)

whose objects are hyperbolic in Quap (A). Consider the functor

Φ: Qua,, (A) -> Qua/ (A) (P, q) — > <P, 0, q}, then we have the following

commutative diagram

X0(HQuap* (A)) -> K0(Qua/ (A)) -* W*(A) -> 0

Z0(HQuap (A)) — K0(Q\mp (A)) -+ Tf (A) -> 0

where two rows are exact.

Thus, the ring homomorphism K0(Φ) induces a ring homomorphism

<o: W(A) -» W*(A). Then, Im ω becomes an ideal of W*(A), for [<P,/, α>]

[<Pr, 0, ̂ 7>] = [<P (x) P r , 0, g (x) qr + / 2 « gr>] in W*(A). If 2 is inversible

in A, by Remark 3, K0(Φ) is an isomorphism, therefore, so is also

4. The unit group of JV*(A) and QS(A).

In this section, we consider a relation between the separable quad-

ratic extension group QS(A) and the unit group U(W*(A)) of the extend-

ed Witt ring W*(A).

THEOREM 3. There exists a group homomorphism of QS(A) to

ϋ(W*(A))

Θ: QS(A) • U(W*(A)) [J7,/, q] — > [<JJ,f, 2q>] .

Proof. Let [U,f,q] be an element in Q£A). By Theorem 1, the

bilinear module (U9Dftq), called the discriminant of [C7,/, q], is non-

degenerate. Since DftQ(x, y) = f(x)f(y) + 2Bq(x, y) = f(x)f(y) + B2q(x, y)

= Bft2q(x, y) for any a? and 2/ in U, we have D ^ = Bft2q. Therefore,

<t/,/,2g> is in Quap* (A). Now, we shall show that θ is well defined:

If [£/,/, g] = [f/7,/7, g;] is in QS(A), then there exist an A-isomorphism

σ: Z7 —> C77 and an A-homomorphism g:U^>A such that q'°σ = q + fg — g2

and f'°σ = f — 2g. Then, we get 2g'oσ = 2q + 2fg - 2g2 and fΌσ =
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f-2g, that is, <£/,/, 2g> « <£/',/', 2g'> in Qua/(A). Thus, the map

θ : Q,(A) -> Tf*(A) [U, / , q] — > [<J7, / , 2g>] is well defined. Furthermore,

we have

θ([U,f,q][U',f',q']) = Θ([U®U',f®f',f2®q' + q® / ' 2 + 2gr<g>g']) =

'[<[/ ®U',f® / ' , Γ ® 2qf + 2q® p + 2q® 2q'>] = [<C7, / , 2q}] [<JJ', f, 2g'>],

and Θ([A,/,O]) = [<A,/,0>]. Accordingly, ImΘ is contained in U(W*(A))

and Θ: QS(A) —> C7(VF*(A)) is a group homomorphism.

Remark 5.

1) if ίC is a field with the characteristic Φ2, then U(W*(A)) =

U(W(A)) « U(K)/U(K)2, QS(K) « U(K)/U(K)2 and Θ is an isomorphism.

2) If X is a field with characteristic 2, then Θ is a zero homo-

morphism.
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