T. Kanzaki Nagoya Math. J. Vol. 49 (1973), 127-141

ON THE QUADRATIC EXTENSIONS AND THE EXTENDED WITT RING OF A COMMUTATIVE RING

TERUO KANZAKI

Let *B* be a ring and A a subring of *B* with the common identity element 1. If the residue A-module *B/A* is inversible as an *A-A-* $\text{bimodule, i.e. } B/A \otimes_A \text{Hom}_A(B/A, A) \approx \text{Hom}_A(B/A, A) \otimes_A B/A \approx A$, then *B* is called a quadratic extension of A. In the case where *B* and *A* are division rings, this definition coincides with in P. M. Cohn [2], We can see easily that if *B* is a Galois extension of *A* with the Galois group *G* of order 2, in the sense of [3], and if $Tr_G(B) = \{\sum_{g \in G} \sigma(b) : b \in B\} = A$, B is a quadratic extension of A. A generalized crossed product *Δ(f,A,Φ, G)* of a ring A and a group *G* of order 2, in [4], is also a quadratic extension of A.

In this note, we study the case of commutative quadratic extensions, where A is a commutative ring and B is an A-algebra. Let A be a commutative ring with the identity element 1. We shall say that *B* is a quadratic extension of A if *B* is a ring extension of A with the com mon identity element and B is a finitely generated projective A -module of rank 2 so that *B* is a commutative ring. We denote by *Q(A)* (resp. *QS (A))* the set of all A-algebra isomorphism classes of quadratic (resp. separable quadratic) extensions of A . It is known that $Q_s(A)$ forms a group under a certain product, and in [1], [6] and [7], the group $Q_s(A)$ is investigated. In this note, in $\S 1$, we define a product in $Q(A)$, which coincides with the product defined in [1], [6] and [7] in the subset $Q_s(A)$. Then, *Q(A)* forms an abelian semi-group containing the subsemi-group $Q_s(A)$ which is a group, and an element *[B]* in $Q(A)$ is contained in $Q_s(A)$ if and only if $[B]^2 = [B][B]$ is the identity element of $Q(A)$. In §2, we give a generalization of a quadratic module and define A-isomorphisms between them. Then, we can consider a category consisting of these

Received April 24, 1972.

Revised September 4, 1972.

128 TERUO KANZAKI

extended quadratic modules and A-isomorphisms. From this category we can construct a commutative ring $W^*(A)$. In § 3, we shall show that $W^*(A)$ is a commutative ring with the identity element, and there exists a ring homomorphism of the Witt ring $W(A)$ to $W^*(A)$ for which the imageis an ideal of $W^*(A)$. Especially, if 2 is inversible in A, then $W(A)$ and $W^*(A)$ are isomorphic. In §4, we shall give a group homomorphism. of $Q_s(A)$ to the unit group $U(W^*(A))$ of $W^*(A)$.

1. Quadratic extension.

Let A be an arbitrary commutative ring with the identity element 1. A commutative extension ring *B* of A is called a quadratic extension of A if *B* is a finitely generated projective A-module of rank 2 and *B* has the same identity element 1. If *B* is a quadratic extension of A, then there exist a finitely generated projective A-module *U* of rank 1 and quadratic forms $q: U \to A$ and $q': U \to U^{\text{th}}$ such that $B = A \oplus U$ and $x^2 = q(x) + q'(x)$ for all x in U .

LEMMA 1. *Let U be a finitely generated projective A-module of rank* $1,$ and $q': U \rightarrow U$ a quadratic form. Then there exists an A-homomor*phism f:* $U \rightarrow A$ *such that* $q'(x) = f(x)x$ *for all x in U.*

Proof. For the quadratic form $q' : U \to U$, there exists a bilinear form $B: U \times U \rightarrow U$ such that $q'(x) = B(x, x)$ for all x in U, (cf. (2.3) in [2]). We may consider that *B* is an element in $\text{Hom}_A(U \otimes_A U, U)$. Then by the following natural isomorphisms; $\text{Hom}_A(U \otimes_A U, U) \approx$ $\operatorname{Hom}_{A}(U \otimes_{A} U, A) \otimes_{A} U \approx \operatorname{Hom}_{A}(U, A) \otimes_{A} \operatorname{Hom}_{A}(U, A) \otimes_{A} U \approx \operatorname{Hom}_{A}(U, A)$ A, there exist f_i in $\text{Hom}_A(U, A)$ and a_i in $A, i = 1,2, \dots n$ such that $f(x,y) = \sum_{i=1}^n f_i(x)a_iy$ for all x and y in U. Put $f = \sum_{i=1}^n a_i f_i$ $\text{Hom}_{A}(U, A)$, then we have $q'(x) = B(x, x) = f(x)x$ for all x in U.

LEMMA 2. *Let U be a finitely generated projective A-module of rank* 1, and f and g elements in $\text{Hom}_{A}(U, A)$. If $f(x)x = g(x)x$ for all $x \text{ in } U$, then $f = g$.

Proof. If $f(x)x = g(x)x$ for all x in U, then we have also $f \otimes I(x)x = g \otimes I(x)x$ for all x in $U_{\mathfrak{m}} = U \otimes A_{\mathfrak{m}}$ and for every maximal ideal m of A . For the local ring A , this lemma is clear, therefore we get easily $f = g$.

¹⁾ cf. p. 490 in [5].

Thus, for a given quadratic extension *B* of A there exist a finitely generated projective A-module U of rank 1, an A-homomorphism $f:U\to A$ and a quadratic form $q: U \to A$ such that $B = A \oplus U$ and $x^2 = f(x)x + q(x)$ for all x in U. Conversely, if a finitely generated projective A-module U of rank 1, A-homomorphism $f: U \to A$ and a quadratic form $q: U \to A$ are given, then a quadratic extension $B = A \oplus U$ of A is constracted by $x^2 = f(x)x + q(x)$ for x in U. We denote such a quadratic extension of A by $B = (U, f, q)$.

In general, we can define as follows:

DEFINITION. Let P be a finitely generated projective and faithful A-module, $f: P \to A$ an A-homomorphism and $q: P \to A$ a quadratic form. Let $T(P) = A \oplus P \oplus P \otimes_A P \oplus \cdots$ be the tensor algebra of *P* over *A*. We denote by (P, f, q) the residue ring $T(P)/(x \otimes x - f(x)x - q(x); x \in P)$ of $T(P)$ by the ideal generated from the set $\{x \otimes x - f(x)x - q(x) \colon x \in P\}$.

PROPOSITION 1. *Let (U,f,q) and (Ό',f',q^f) be quadratic extensions of* A . Then (U, f, q) and (U', f', q') are A -algebra-isomorphic if and only *if there exist an A-isomorphism* $\sigma_1: U \rightarrow U'$ and an A-homomorphism $g: U$ \rightarrow A satisfying the following identities;

$$
q' \circ \sigma_1 = fg + q - g^2
$$

$$
f' \circ \sigma_1 = f - 2g
$$

where fg, g^2 and $q' \circ \sigma_1$ are defined by $fg(x) = f(x)g(x)$, $g^2(x) = g(x)^2$ and $q' \circ \sigma_1(x) = q'(\sigma_1(x))$ for x in U.

Proof. Let $\sigma: (U, f, q) = A \oplus U \rightarrow (U', f', q') = A \oplus U'$ be an A algebra-isomorphism. Then there exist an A-isomorphism $\sigma_1: U \to U'$ and an A-homomorphism $g: U \to A$ such that $\sigma(x) = g(x) + \sigma_1(x)$ for x in U. Since σ satisfies $\sigma(x^2) = \sigma(x)^2$ for x in U, we get the following identity

$$
f(x)g(x) + q(x) + f(x)\sigma_1(x) = g(x)^2 + q'(\sigma_1(x)) + (f'(\sigma_1(x)) + 2g(x))\sigma_1(x)
$$

for all *x* in *U.* Therefore we have

$$
f(x)g(x) + q(x) = g(x)^{2} + q'(\sigma_{1}(x))
$$
\n(1)

$$
f(x)\sigma_1(x) = (f'(\sigma_1(x)) + 2g(x))\sigma_1(x)
$$
 (2)

²⁾ The composition of natural homomorphisms $A \oplus U \longrightarrow T(U) \rightarrow T(U)/(x \otimes x$ $f(x)x - q(x); x \in U$ is an A-isomorphism as A-modules. For any quadratic extension $C = A \oplus U$ satisfying $x^2 = f(x)x + q(x)$ for all $x \in U$, $C \approx T(U)/(x \otimes x - f(x)x - q(x);$ $x \in U)$ as A-algebras.

for all x in U. From (2) we have $f(x)x = (f'(\sigma_1(x)) + 2g(x))x$ for x in U, and by Lemma 2, we get $f(x) = f'(a_1(x)) + 2g(x)$ for x in U. Thus, we have the identities of this proposition. The converse is obvious.

LEMMA 3. Let (U_i, f_i, q_i) and (U'_i, f'_i, q'_i) be A-algebra-isomorphic quadratic extensions of A, $i=1,2$. Then $(U_1 \otimes_A U_2, f_1 \otimes f_2, f_1^2 \overline{\otimes} q_2 + q_1 \overline{\otimes} f_2^2)$ $+ 2q_1 \otimes q_2$ and $(U'_1 \otimes_A U'_2, f'_1 \otimes f'_2, f_1'^2 \otimes q'_2 + q'_1 \otimes f_2'^2 + 2q'_1 \otimes q'_2)$ are also A-algebra-isomorphic, where $f_1^2 \overline{\otimes} q_2 + q_1 \overline{\otimes} f_2^2 + 2q_1 \otimes q_2$ $(x \otimes y) = f_1(x)^2 q_2(y)$ $+ q_1(x) f_2(y)^2 + 4 q_1(x) q_2(y), f_1^2 \overline{\otimes} q_2 + q_1 \overline{\otimes} f_2^2 + 2 q_1 \otimes q_2 (\sum_{i=1}^n x_i \otimes y_i) =$ $\sum_{i=1}^n (f_1(x_i)^2 q_i(y_i) + q_1(x_i) f_2(y_i)^2 + 4q_1(x_i) q_2(y_i)) + \sum_{i=1}^n (f_1(x_i) f_1(x_j) B_{q_2}(y_i, y_j))$ $+ B_{q_1}(x_i, x_j) f_2(y_i) f_2(y_j) + 2B_{q_1}(x_i, x_j) B_{q_2}(y_i, y_j)),$ $(n > 1)$, and $f_1 \otimes f_2$ $(\sum_{i=1}^n x_i \otimes y_i) = \sum_{i=1}^n f_1(x_i) f_2(y_i)$ for $\sum_{i=1}^n x_i \otimes y_i$ and $x \otimes y$ in $U_1 \otimes_A U_2$, $(cf. (2.8) in [5])$.³⁾

Proof. By Proposition 1, there exist A-isomorphisms $\sigma_1: U_1 \to U'_1$ and $\sigma_2: U_2 \to U'_2$, and A-homomorphisms $g_1: U_1 \to A$ and $g_2: U_2 \to A$ such that $q'_1 \circ q_1 = f_1 g_1 + q_1 - g_1^2$, $f'_1 \circ q_1 = f_1 - 2g_1$, and $q'_2 \circ q_2 = f_2 g_2 + q_2 - g_2^2$, $f'_1 \circ \sigma_2 = f_2 - 2g_2$. By the computation, we get the following:

For any element $x \otimes y$ in $U_1 \otimes_A U_2$, $(f_1'^2 \otimes q'_2 + q'_1 \otimes f_2'^2 + 2q'_1 \otimes q'_2) \circ (q_1 \otimes q_2)$ $(x \otimes y) = (f_1(x) - 2g_1(x))^2(f_2(y)g_2(y) + q_2(y) - g_2(y)^2) + (f_1(x)g_1(x) + q_1(x)$ $g_1(x)^2$ $(f_2(y) - 2g_2(y))^2$ + $4(f_1(x)g_1(x) + q_1(x) - g_1(x)^2)(f_2(y)g_2(y) + q_2(y)$ $g_1(y)^2 = f_1(x) f_2(y) (f_1(x)g_2(y) + g_1(x) f_2(y) - 2g_1(x)g_2(y)) + (f_1(x)^2 g_2(y) +$ $q_1(x) f_2(y)^2 + 4q_1(x) q_2(y) - (f_1(x)g_2(y) + g_1(x) f_2(y) - 2g_1(x)g_2(y))^2 = [(f_1 \otimes f_2)]$ $(f_1 \otimes g_2 + g_1 \otimes f_2 - 2g_1 \otimes g_2) + (f_1^2 \otimes q_2 + q_1 \otimes f_2^2 + 2q_1 \otimes q_2) - (f_1 \otimes g_2 + g_1 \otimes f_2)$ $-2g_1\otimes g_2^2(x\otimes y)$. Using the identities

 $B_{q_i}(\sigma_1(x_i), \sigma_1(x_j)) = f_1(x_i)g_1(x_j) + f_1(x_j)g_1(x_i) + B_{q_i}(x_i, x_j) - 2g_1(x_i)g_1(x_j)$ and $B_{q_3}(\sigma_2(y_i), \sigma_2(y_j)) = f_2(y_i)g_2(y_j) + f_2(y_j)g_2(y_i) + B_{q_3}(y_i, y_j) - 2g_2(y_i)g_2(y_j)$ for $x_i \otimes y_i$ and $x_j \otimes y_j$ in $U_1 \otimes_A U_2$, we get as follows; $f'_1(\sigma_1(x_i)) f'_1(\sigma_1(x_j))$ $B_{q_3}(\sigma_2(y_i), \sigma_2(y_j)) + B_{q_3}(\sigma_1(x_i), \sigma_1(x_j)) f_2'(\sigma_2(y_i)) f_2'(\sigma_2(y_j)) + 2B_{q_3}(\sigma_1(x_i), \sigma_1(x_j))$ $B_{q_3}(\sigma_2(y_i), \sigma_2(y_j)) = (f_1(x_i) - 2g_1(x_i))(f_1(x_j) - 2g_1(x_j))(f_2(y_i)g_2(y_j) + f_2(y_j)g_2(y_j))$ $+ B_{q_2}(y_i, y_j) - 2g_2(y_i)g_2(y_j)) + (f_1(x_i)g_1(x_j) + f_1(x_i)g_1(x_i) + B_{q_2}(x_i, x_j) 2g_1(x_i)g_1(x_j))(f_2(y_i) - 2g_2(y_i))(f_2(y_j) - 2g_2(y_j)) + 2(f_1(x_i)g_1(x_j) + f_1(x_i)g_1(x_i))$ $+ B_{q_1}(x_i, x_j) - 2g_1(x_i)g_1(x_j))(f_2(y_i)g_2(y_j) + f_2(y_j)g_2(y_i) + B_{q_2}(y_i, y_j) - 2g_2(y_i)$ $g_2(y_j) = f_1(x_i) f_2(y_i) (f_1(x_j) g_2(y_j) + g_1(x_j) f_2(y_j) - 2g_1(x_j) g_2(y_j)) + f_1(x_j) f_2(y_j)$ $(f_1(x_i)g_2(y_i) + g_1(x_i)f_2(y_i) - 2g_1(x_i)g_2(y_i)) + f_1(x_i)f_1(x_j)B_{g_2}(y_i, y_j) + B_{g_1}(x_i, x_i)$

³⁾ $f^2 \overline{\otimes} q'$ and $f^2 \otimes q'$ are defined by $f^2 \overline{\otimes} q'(\sum x_i \otimes y_i) = \sum_i f(x_i)^2 q'(y_i) + \sum_{i \leq j} f(x_i)f(x_j)$ $B_{q'}(y_i, y_j)$ and $f^2 \otimes q'(\sum x_i \otimes y_i) = \sum_i 2f(x_i)^2 q'(y_i) + \sum_{i < j} B_{f^2}(x_i, x_j) B_{q'}(y_i, y_j)$ for $\sum x_i \otimes y_i$ in $M \otimes_A M'$.

QUADRATIC EXTENSIONS 131

 $(x_i, x_j)B_{q_2}(y_i, y_j) - 2(f_1(x_i)g_2(y_i) + g_1(x_i)f_2(y_i) - 2g_1(x_i)$ $+ f_1(x_j)g_2(y_j) - 2g_1(x_j)g_2(y_j)$. Accordingly, we get $(f_i'^{\mathbf{a}}\ \overline{\otimes}\ q'_1 + q'_1 \overline{\otimes} f_2'^{\mathbf{a}} + 2q'_1 \otimes q'_2) \circ (\sigma_1 \otimes \sigma_2)(\sum_{i=1}^n x_i \otimes y_i) = [(f_1 \otimes f_2)(f_1 \otimes g_2 + g_1'^{\mathbf{a}})(f_2 \otimes g_2)]$ $2 g_1 \otimes g_2 \rangle + (f_1^2 \, \overline{\otimes} \, q_2 \, + \, q_1 \, \overline{\otimes} \, f_2^2 \, + \, 2 q_1 \otimes q_2) \, + \, (f_1 \otimes g_2 - 2 g_1 \otimes g_2)^2]$ $(\sum_{i=1}^n x_i \otimes y_i)$ for all $\sum_{i=1}^n x_i \otimes y_i$ in $U_1 \otimes_A U_2$. Put $G = f_1 \otimes g_2 + g_1 \otimes f_2$ - $2g_1 \otimes g_2$, then G is an A-homomorphism of $U_1 \otimes_A U_2$ to A, $\sigma_1 \otimes \sigma_2$ is an A-isomorphism of $U_1 \otimes_A U_2$ to $U_1' \otimes_A U_2'$, and these satisfy $(f_1^{\prime 2} \otimes q_2' + g_1 \otimes g_2')$ $\overline{\otimes} f_2'^{\,2} + 2q'_1 \otimes q'_2 \rangle \circ (\sigma_1 \otimes \sigma_2) = (f_1 \otimes f_2)G + (f_1^2 \,\overline{\otimes}\, q_2 + q_1 \,\overline{\otimes}\, f_2^{\,2} + 2q_1 \otimes q_2) + G^2,$ and $(f'_1 \otimes f'_2) \circ (\sigma_1 \otimes \sigma_2) = f_1 \otimes f_2 - 2G$.

By Proposition 1, we have $(U_1 \otimes_A U_2, f_1 \otimes f_2, f_1^2 \otimes q_2 + q_1 \otimes f_2^2 + 2q_1 \otimes q_2)$ and $(U_1' \otimes_A U_2', f_1' \otimes f_2', f_1'^{\,2} \overline{\otimes} q_2' + q_1' \overline{\otimes} f_2'^{\,2} + 2q_1' \otimes q_2')$ are isomorphic as A algebras.

DEFINITION. We denote by *Q(A)* the set of all A-algebra-isomorphism classes *[U,f, q]* of quadratic extensions *(U,f,q)* of A.

PROPOSITION 2. *Q(A) forms an abelίan semi-group with unit element* [A, 1, 0] by the product $[U, f, q] \cdot [U', f', q'] = [U \otimes_A U', f \otimes f',$ $f^2\,\overline{\otimes}\, q' + q'\,\overline{\otimes}\, f'^2 + 2q\,{\otimes}\, q'$], where (A, a, b) denotes a quadratic extension $A \oplus Av$ such that $v^2 = av + b$, a and b in A, i.e. $f(v) = a$, $q(v) = b$.

Proof. By Lemma 3, the product in $Q(A)$ is well defined. The associative law is easily seen as follows; $([U, f, q]][U', f', q')]U''$, f'', q'' $\int [U \otimes_A U' \otimes_A U'', f \otimes f' \otimes f'', f^2 \overline{\otimes} f'^2 \overline{\otimes} q'' + f^2 \overline{\otimes} q' \overline{\otimes} f''^2 + q \overline{\otimes} f'^2 \overline{\otimes} f''^2 +$ $2 (q \otimes q' \,\overline{\otimes}\, f''^2 \; + \; q \,\overline{\otimes}\, f'^2 \otimes q'' \; + \; f^2 \,\overline{\otimes}\, q' \otimes q'') \; + \; 4 q \otimes q' \otimes q''] \; = \; [U,f,q]$ $([U', f', q'] [U'', f'', q''])$.⁴⁾

DEFINITION. Let *P* be a finitely generated projective and faithful A-module, $f: P \to A$ an A-homomorphism and $q: P \to A$ a quadratic form. For the A-algebra $(P, f, q) = T(P)/(x \otimes x - f(x)x - q(x); x \in P)$, we consider a symmetric bilinear form $D_{f,q}: P \times P \to A$ defined by $D_{f,q}(x,y) =$ $f(x)f(y) + 2B_q(x, y)$ for x, y in P, where $B_q(x, y) = q(x + y) - q(x) - q(y)$ for x, y in P. Then we shall call the bilinear A-module $(P, D_{f,q})$ the *discriminant* of *(P,f,q).*

Remark 1. If 2 is inversible in A, then we have that *(P,f,q)* is a separable algebra over A if and only if $(P, D_{f,q})$ is a non-degenerate bilinear A-module, i.e. $P \to \text{Hom}_{A}(P, A)$; $x \to D_{f,q}(x, -)$ is an isomorphism.

 q^4) $(q\ \overline{\otimes}\ f^2) \otimes q' = q \otimes (f^2 \ \overline{\otimes}\ g'), \ (f^2 \ \overline{\otimes}\ g') \otimes q'' = f^2 \ \overline{\otimes}\ (q' \otimes q'').$

Proof. $d = f^2 + 4q$ is a quadratic form of P to A, and satisfies $d(x) = f(x)^2 + 2B_q(x, x) = D_{f,q}(x, x)$. In the tensor algebra $T(P)$, we put $P' = \{x - (1/2)f(x) \in A \oplus P \subset T(P) \text{ ; } x \in P\}$, then the map $P \to P'$; $x \to x$ $-(1/2)f(x)$ is an A-isomorphism. We denote by h the inverse isomorphism of it. For the ideal of $T(P)$ generated by the set $\{x \otimes x - f(x)x\}$ $q(x)$; $x \in P$ } = { $x \otimes x - d(h(x/2))$; $x \in P'$ }, we have $(P, f, q) = T(P) / (x \otimes x)$ $(f(x)x - q(x); x \in P) = T(P')/(x \otimes x - d(h(x)/2)); x \in P' = (P', 0, d \circ (1/2)h),$ since $T(P) = T(P')$. But, $(P', 0, d \circ (1/2)h)$ is a Clifford algebra $Cl(P', d \circ (1/2)h)$ of a quadratic module $(P', d \circ (1/2)h)$. It is known that Cl $(P', d \circ (1/2)h)$ is a separable algebra over A if and only if $(P', d \circ (1/2)h)$ is non-degenerated. Since (P, d) and $(P', d \circ (1/2)h)$ are isometric, we get this remark.

THEOREM 1. Let U be a finitely generated projective A-module of *rank* 1, $f: U \rightarrow A$ an A-homomorphism, $q: U \rightarrow A$ a quadratic form, and (U, f, q) the quadratic extension of A . Then the following conditions *are equivalent:*

- 1) *iU,f,q) is a separable algebra over* A.
- 2) $(U, D_{f,q})$ is a non-degenerate bilinear A-module.
- 3) $[U, f, q]^2 = [A, 1, 0].$

Proof. 1) \geq 2): To prove the equivalence of the conditions 1) and 2), we may assume that A is a local ring. Let A be the local ring. Then $U = Au$ and $(U, f, q) \approx A[X]/(X^2 - aX - b)$, where $a = f(u), b = q(u)$. Hence, (U, f, q) is separable over A if and only if $a^2 + 4b = f^2 + 4q(u)$ $D_{f,q}(u,u)$ is inversible in A. On the other hand, $(U,D_{f,q})$ is nondegenerated if and only if $D_{f,q}(u,u)$ is inversible in A. Therefore, we obtain the equivalence.

 $2) \rightarrow 3$: Assume that $(U, D_{f,q})$ is non-degenerate. Then the Aisomorphism $U \to \text{Hom}_A(U, A)$; $x \to D_{f,q}(x, -)$ induces an A-isomorphism $D_{f,q}: U \otimes_A U \to A$; $x \otimes y \longrightarrow D_{f,q}(x, y)$. Put $\sigma_1 = D_{f,q}$ and $g = -B_q$. Then we have $I \circ \sigma_1 = D_{f,q} = f \otimes f + 2B_q = f \otimes f - 2g$. Furthermore, we can prove the following identity:

$$
(f \otimes f)g + (f^2 \overline{\otimes} q + q \overline{\otimes} f^2 + 2q \otimes q) - g^2 = 0.
$$

Because, by the localizations of A and U by every maximal ideal m of A , we can check that quadratic forms $f^2\,\overline{\otimes}\, q + q\,\overline{\otimes}\, f^2 - B_q\!\cdot\! f\otimes f\!:\! U\otimes_{A} U$ $A,$ and $2q \otimes q - B_q^2$: $U \otimes_A U \rightarrow A$ are equal to 0. Thus, by Proposi- $\text{tion 1 we get } [U, f, q]^2 = [U \otimes_A U, f \otimes f, f^2 \overline{\otimes} q + q \overline{\otimes} f^2 + 2q \otimes q] =$

3) \rightarrow 2): Let [U, f, q]² = [A, 1, 0]. To prove the condition 2) it is sufficient to show that for any maximal ideal m of A, $D_{f,q}(u, u)$ is inversible in $A_{\mathfrak{m}}$, where $U_{\mathfrak{m}} = A_{\mathfrak{m}} u$. Now, we assume A is a local ring with maximal ideal m and $U = Au$. We shall show $D_{f,q}(u, u) = f(u)^2 +$ $2B_q(u, u) = f(u)^2 + 4q(u) \in \mathfrak{m}$. From $[U, f, q]^2 = [A, 1, 0]$, there exist an A-homomorphism $g: U \otimes_A U \to A$ and an A-isomorphism $\sigma_1: U \otimes_A U \to A$ such that $\sigma_1(x \otimes y) = f(x)f(y) - 2g(x \otimes y)$ and $0 = f(x)f(y)g(x \otimes y) +$ $f(x)^2q(y) + q(x)f(y)^2 + 4q(x)q(y) + g(x\otimes y)^2$ for all $x\otimes y \in U\otimes_A U$. Especially, taking $x = y = u$, we get

$$
\sigma_1(u\otimes u)=f(u)^2-2g(u\otimes u)\qquad \qquad (3)
$$

and

$$
0 = f(u)^2 g(u \otimes u) + 2f(u)^2 q(u) + 4q(u)^2 - g(u \otimes u) \qquad (4).
$$

Eliminating $f(u)$ ² from (3) and (4), we get $(\sigma_1(u \otimes u) + 2g(u \otimes u))g(u \otimes u)$ $+ 2(\sigma_1(u \otimes u) + 2g(u \otimes u))q(u) + 4q(u)^2 - g(u \otimes u)^2 = 0$, and so

$$
(\sigma_1(u\otimes u)+g(u\otimes u)+2q(u))(g(u\otimes u)+2q(u))=0.
$$

If $g(u \otimes u) + 2q(u)$ is contained in m, then from $\sigma_1(u \otimes u) \notin \mathfrak{m}$, $\sigma_1(u \otimes u)$ $+ g(u \otimes u) + 2q(u)$ is inversible in A. Therefore, we have $g(u \otimes u)$ + $2q(u) = 0$, and $D_{f,q}(u, u) = f(u)^2 + 4q(u) = f(u)^2 - 2g(u \otimes u) = \sigma_1(u \otimes u)$ is inversible in A. If $g(u \otimes u) + 2q(u) \notin \mathfrak{m}$, then $\sigma_1(u \otimes u) + g(u \otimes u) +$ From (3) and $2\sigma_1(u \otimes u) + 2g(u \otimes u) + 4q(u) = 0$, we get $2q(u) = 0.$ $\sigma_1(u \otimes u) + f(u)^2 + 4q(u) = 0$, accordingly, $D_{f,q}(u, u) = f(u)^2 + 4q(u) =$ $-\sigma_1(u\otimes u)$ is inversible in A.

COROLLARY 1. The set $Q_s(A)$ of A-algebra-isomorphism classes of the separable quadratic extensions of A forms an abelian group with exponent 2.

PROPOSITION 3. Let (U, f, q) be a quadratic extension of A. The map $\tau_i: (U, f, q) \to (U, f, q)$; $a + x \to a + f(x) - x$ is an A-algebra-isomorphism such that $\tau_i^2 = I$. If (U, f, q) and (U', f', q') are quadratic extensions of A and $\sigma: (U, f, q) \to (U', f', q')$ is an A-algebra-isomorphim, then we have the following commutative diagram;

$$
(U, f, q) \xrightarrow{\sigma} (U', f', q')
$$

\n
$$
\begin{array}{ccc}\n\downarrow & \nearrow & \nearrow \\
\downarrow & \nearrow & \nearrow & \nearrow\n\end{array}
$$

Proof. From Proposition 1, there exist g in $\text{Hom}_{A}(U, A)$ and Aisomorphism $\sigma_1: U \to U'$ such that $\sigma(x) = g(x) + \sigma_1(x)$ and $f'(\sigma_1(x)) = f(x)$ *—* 2g(x) for all x in U. Therefore, $\tau'_{f'}(g(x)) = g(x) + \tau'_{f'}(g_1(x)) = g(x) +$ $f'(\sigma_1(x)) - \sigma_1(x) = g(x) + f(x) - 2g(x) - \sigma_1(x) = f(x) - (g(x) + \sigma_1(x)) =$ $f(x) - \sigma(x) = \sigma(f(x) - x) = \sigma(\tau_f(x))$, for all x in U.

Remark 2.

1) In Proposition 3, if we take $\sigma = I$, then $\tau_f = \tau'_{f'}$.

2) If (U, f, q) is a separable algebra over A, then τ_f is the unique A-algebra-automorphism of *(U,f,q)* which is not the identity.

Let $B = (U, f, q)$ and $B' = (U', f', q')$ be separable quadratic exten sions of A. Then $G = {\tau_f, I}$ and $G' = {\tau'_{f'}, I}$ are the groups of auto morphisms of *B* over *A* and *B*^{\prime} over *A*, respectively. In [1], [3] and [4], the product $B*B'$ of quadratic extensions B and B' was defined as the $\int f(x) \, dx \, dx$ subalgebra $(B \otimes_A B')^{\tau_f \otimes \tau_{f'}} = \{x \in B \otimes_A B' ; \tau_f \otimes \tau_{f'}'(x) = x\}$ of $B \otimes_A B'$ by $\tau_f \otimes \tau'_{f'}$. But this product coincides with our one.

PROPOSITION 4. *Let (U,f,q) and iU'⁹ f',q^f) be separable quadratic extensions of A. Then we have* $[(U, f, q) \otimes_A (U', f', q')^{r_f \otimes r_{f'}}] = [U, f, q]$ $[U', f', q']$ in $Q_s(A)$.

Proof. For $B = (U, f, q)$ and $B' = (U', f', q')$, $B \otimes_A B'$ is expressed as a direct sum $B \otimes_A B' = A \oplus U \oplus U' \oplus U \otimes_A U'$. Put $V = \{ \sum_i f(x_i)y_i +$ $f'(y_i)x_i - 2x_i \otimes y_i \in U \oplus U' \oplus U \otimes_A U'$; for all $\sum_i x_i \otimes y_i$ in $U \otimes_A U'$. Then V is an A-submodule of $B \otimes_A B'$, which is A-isomorphic to $U \otimes_A U'$ by the isomorphism $\theta: U \otimes_A U' \to V$; $x \otimes y \longrightarrow f(x)y + f'(y)x - 2x \otimes y$. It is easily seen that the A-submodule $C = A \oplus V$ of $B \otimes_A B'$ generated by *V* and *A* is contained in $B \otimes_A B'^{r_f \otimes r'_f}$. To show $C = B \otimes_A B'^{r_f \otimes r'_f}$, we shall prove first that the map θ' : $(U \otimes_A U', f \otimes f', f^2 \overline{\otimes} q' + q \overline{\otimes} f'^2 + q$ $2q\otimes q')=A\oplus U\otimes_{A} U'\to C=A\oplus V\, ;\, a+x\otimes y\longrightarrow a+\theta(x\otimes y)\,$ is an $A\cdot$ algebra-isomorphism. We can easily compute that for any $x \otimes y$ in $U \otimes_A U'$, $\theta'(x \otimes y)^2 = (f(x)y + f'(y)x - 2x \otimes y)^2 = f(x)^2y^2 + f'(y)^2x^2 +$ $4x^2 \otimes y^2 + 2f(x)f'(y)x \otimes y - 4f(x)x \otimes y^2 - 4f'(y)x^2 \otimes y = f(x)^2(f'(y)y) +$ $f'(y)^{2}(f(x)x + q(x)) + 4(f(x) + q(x)) \otimes (f'(y)y + q'(y)) + 2f(x)f'(y)$

 $x \otimes y - 4f(x)x \otimes (f'(y)y + q'(y)) - 4f'(y)(f(x)x + q(x)) \otimes y = f(x)f'(y)(f(x)y)$ $+ f'(y)x - 2x \otimes y) + f(x)^2 q'(y) + f'(y)^2 q(x) + 4q(x)q'(y) = f \otimes$ $(x \otimes y) + (f^2 \,\overline{\otimes}\, q' \,+\, q \,\overline{\otimes}\, f'^2 \,+\, 2q \otimes q')(x \otimes y) \,=\, \theta'[(f \otimes f'(x))$ $(f^2\,\overline{\otimes}\, q'+q\,\overline{\otimes}\, f'^2+q\otimes q')(x\otimes y)]=\theta'((x\otimes y)^2), \text{ and for }x_i\otimes y_i,\, x_j\otimes y_j\text{ in }$ *U'*, $2\theta'(x_i \otimes y_i) \cdot \theta'(x_j \otimes y_j) = 2(f(x_i)y_i)$ $x_j - 2x_j \otimes y_j) = f(x_i)f'(y)$ $(f(x_i)y_i + f'(y_i)x_i - 2x_i \otimes y_i) + f(x_i)f(x_j)B_{q'}(y_i, y_j) + f'(y_i)f'(y_j)B_{q}(x_i, x_j) +$ $2B_q(x_i, x_j)B_{q'}(y_i, y_j) = \theta'(f(x_i)f'(y_i)x_j \otimes y_j + f(x_j)f'(y_j)x_i \otimes y_i) + f(x_j)f'(y_j)x_j \otimes y_j$ $B_{q'}(y_i, y_j) + f'(y_i)f'(y_j)B_{q}(x_i, x_j) + 2B_{q}(x_i, x_j)B_{q'}(y_i, y_j).$

Therefore, we have $\theta'(\sum_{i} x_i \otimes y_i)^2 = \theta'((\sum_{i} x_i \otimes y_i)^2)$ for any \sum_{i} in $U \otimes_A U'$. Accordingly, θ' is an A-algebra isomorphism. Thus, C is also a separable algebra over A. Since $B \otimes_A B'$ is a finitely generated projective A-module, $B \otimes_A B'$ is also finitely generated projective over *C*. Therefore, *C* is a direct summand of $B \otimes_A B'$, and hence also a direct summand of $B \otimes_A B'^{r_f \otimes r'_{f'}}$ as *C*-module. But, rank $(C: A)$ = $rank (B \otimes_A B'^{r_f \otimes r'}_{f'} : A) = 2$, hence we have $B \otimes_A B'^{r_f \otimes r'}_{f'} = C = A \oplus V \approx$ $(U\otimes_A U', f\otimes f', f^2\,\overline{\otimes}\, q' + q\,\overline{\otimes}\, f'^2 + 2q\otimes q') \ \ \text{as} \ \ A\text{-algebra}.$

2. Extended quadratic module.

In this section, we give a generalization of quadratic module. Let A be an arbitrary commutative ring with unit element. Let *M* be an A-module, $f: M \to A$ an A-homomorphism, and $q: M \to A$ a quadratic form. Then, we call the triple *(M., f, q)* an *extended quadratic module*

DEFINITION. Let $\langle M, f, q \rangle$ and $\langle M', f', q' \rangle$ be extended quadratic modules. If there exist an A-isomorphism $\sigma: M \to M'$ and A-homomorphism $g: M \to A$ satisfying $q' \circ \sigma = q + 2fg - 2g^2$ and $f' \circ \sigma = f - 2g$, then we call that $\langle M, f, q \rangle$ and $\langle M', f', q' \rangle$ are A-isomorphic, and denote by $(\sigma, g): \langle M, f, q \rangle \rightarrow \langle M', f', q' \rangle$ the A-isomorphism of extended quadratic modules, or simply $\langle M, f, q \rangle \approx \langle M', f', q' \rangle$.

Then we have easily

- 1) $(I, 0)$ is identity,
- 2) $(\sigma', g')(\sigma, g) = (\sigma' \circ \sigma, g + g' \circ \sigma)$ and
- 3) $(\sigma, g)^{-1} = (\sigma^{-1}, -g \circ \sigma^{-1}).$

Thus, we can consider a category $Qua^*(A)$ in which objects are extended quadratic modules and morphisms are A-isomorphisms of extended quad ratic modules. Then, $Qua*(A)$ includes the category $Qua(A)$ of the ordinaly quadratic modules as a sub-category. Because, (σ, g) : $\langle M, 0, q \rangle$ $\rightarrow \langle M', 0, q' \rangle$ is an A-isomorphism in Qua^{*} (A) if and only if $\sigma: (M, q) \rightarrow$ (M', q') is an A-isomorphism in Qua(A), therefore we may regard as $\langle M, 0, q \rangle = (M, q)$ and $(\sigma, 0) = \sigma$ in Qua(A).

DEFINITION. Let $\langle M, f, q \rangle$ be an extended quadratic module, and let $B_{f,q}: M \times M \to A$ be a symmetric bilinear form defined by $B_{f,q}(x,y) =$ $f(x)f(y) + B_q(x, y)$ for x and y in M. Then, we call the bilinear module $(M, B_{f,g})$ the associated bilinear module with $\langle M, f, q \rangle$. If $(M, B_{f,g})$ is a non-degenerate bilinear module, then *(M, f, q}* is called a *non-degenerate extended quadratic module.*

LEMMA 4. If $(\sigma, g): \langle M, f, q \rangle \rightarrow \langle M', f', q' \rangle$ is an A-isomorphism in $Qua[*](A)$ *, then we have* $B_{f',q'}(\sigma(x), \sigma(y)) = B_{f,q}(x, y)$ for all x and y in *M, that is,* $\sigma: (M, B_{f,q}) \to (M', B_{f',q'})$ *is an A-isomorphism of bilinear "modules.*

Proof. Since the A-isomorphism $\sigma: M \to M'$ and the A-homomorphism $g: M \to A$ satisfy $f' \circ \sigma = f - 2g$ and $q' \circ \sigma = q + 2fg - 2g^2$, we have $B_{f',q'}(\sigma(x), \sigma(y)) = f'(\sigma(x))f'(\sigma(y)) + B_{q'}(\sigma(x), \sigma(y)) = (f(x) - 2g(x))(f(y) 2g(y) + B_q(x, y) + 2(f(x)g(y) + f(y)g(x)) - 4g(x)g(y) = f(x)f(y) + B_q(x, y)$ $= B_{f,q}(x,y).$

COROLLARY 2. If $\langle M, f, q \rangle \approx \langle M', f', q' \rangle$ and $\langle M, f, q \rangle$ is non-degen*erate, then* $\langle M', f', q' \rangle$ *is also non-degenerate.*

DEFINITION. Let $\langle M_1, f_1, q_1 \rangle$ and $\langle M_2, f_2, q_2 \rangle$ be extended quadratic modules. We define the orthogonal sum \perp and the tensor product \otimes of extended quadratic modules as follows:

$$
\langle M_1, f_1, q_1 \rangle \perp \langle M_2, f_2, q_2 \rangle = \langle M_1 \oplus M_2, f_1 \perp f_2, q_1 \perp q_2 - f_1 \times f_2 \rangle \quad (5),
$$

$$
\langle M_1, f_1, q_1 \rangle \otimes \langle M_2, f_2, q_2 \rangle
$$

$$
= \langle M_1 \otimes M_2, f_1 \otimes f_2, f_1^2 \overline{\otimes} q_2 + q_1 \overline{\otimes} f_2^2 + q_1 \otimes q_2 \rangle \quad (6),
$$

where $f_1 \perp f_2$ is defined by the A-homomorphism $M_1 \oplus M_2 \rightarrow A$; $x_1 \oplus x_2$ $\longleftrightarrow f_1(x_1) + f_2(x_2)$, and $f_1 \times f_2$ the quadratic form $M_1 \oplus M_2 \rightarrow A$; $x_1 \oplus x_2$ \longrightarrow $f_1(x_1) \cdot f_2(x_2)$.

LEMMA 5. Let $\langle M_i, f_i, q_i \rangle$ and $\langle M'_i, f'_i, q'_i \rangle$ be extended quadratic $modules, \text{ and } (\sigma_i, g_i): \langle M_i, f_i, q_i \rangle \rightarrow \langle M'_i, f'_i, q'_i \rangle \text{ an } A\text{-}isomorphism \text{ in }$ Qua^{*} (A) for $i = 1,2$. Then we have the following A-isomorphisms in $Qua^*(A);$

QUADRATIC EXTENSIONS 137

$$
\begin{array}{ll}\n(\sigma_1 \oplus \sigma_2, g_1 \perp g_2) : \langle M_1, f_1, q_1 \rangle \perp \langle M_2, f_2, q_2 \rangle \rightarrow \langle M_1', f_1', q_1' \rangle \perp \langle M_2', f_2', q_2' \rangle & (7), \\
(\sigma_1 \otimes \sigma_2, f_1 \otimes g_2 + g_1 \otimes f_2 - 2g_1 \otimes g_2) : \langle M_1, f_1, q_1 \rangle \otimes \langle M_2, f_2, q_2 \rangle \\
& \rightarrow \langle M_1', f_1', q_1' \rangle \otimes \langle M_2', f_2', q_2' \rangle & (8).\n\end{array}
$$

Proof. The proof of (7). We shall show that $(\sigma_1 \oplus \sigma_2, g_1 \perp g_2)$: $X_1 \oplus M_2, f_{1} \perp f_{2}, q_{1} \perp q_{2} - f_{1} \times f_{2} \rangle \rightarrow \langle M^{\prime}_1 \oplus M^{\prime}_2, f^{\prime}_{1} \perp f^{\prime}_{2}, q^{\prime}_{1} \perp q^{\prime}_{2} - f^{\prime}_{1} \times f^{\prime}_{2} \rangle$ is an A-isomorphism in Qua^{*} (A). For $x_1 \oplus x_2$ in $M_1 \oplus M_2$, we have

 $(q'_1 \perp q'_2 - f'_1 \times f'_2) \circ (\sigma_1 \oplus \sigma_2)(x_1 \oplus x_2) = q'_1(\sigma_1(x_1)) + q'_2$ $= q_1(x_1) + 2f_1(x_1)g_1(x_1) - 2g_1(x_1)^2 + q_2(x_2) + 2f_2(x_2)g_2(x_2) - 2g_2(x_2)^2$ $2g_1(x_1))(f_2(x_2) - 2g_2(x_2)) = (q_1 \perp q_2 - f_1 \times f_2)(x_1 \oplus x_2) + 2(f_1 \perp f_2)(g_1 \perp g_2)$ $(x_{1} \oplus x_{2}) = 2(g_{1} \perp g_{2})^{2}(x_{1} \oplus x_{2})$, and

$$
\begin{aligned} (f_1' \perp f_2') \circ (\sigma_1 \oplus \sigma_2) &= f_1' \circ \sigma_1 \perp f_2' \circ \sigma_2 = (f_1 - 2g_1) \perp (f_2 - 2g_2) \\ &= (f_1 \perp f_2) - 2(g_1 \perp g_2) \; . \end{aligned}
$$

The proof of (8) is obtained by similar computations the proof of Lemma 3. We omit this proof.

DEFINITION. We denote by $B_{f,q} \perp B_{f',q'}$ the associated bilinear form with $\langle M, f, q \rangle \perp \langle M', f', q' \rangle$, and by $B_{f,q} \otimes B_{f',q'}$ the associated bilinear form with $\langle M, f, q \rangle \otimes \langle M', f', q' \rangle$, that is, $B_{f,q} \perp B_{f',q'} =$ and $B_{f,q} \otimes B_{f',q'} = B_{f \otimes f',f^2 \otimes q' + q \otimes f'^2 + q \otimes q'}.$

PROPOSITION 5. The orthogonal sum and the tensor product of ex*tended quadratic modules* $\langle M, f, q \rangle$ and $\langle M', f', q' \rangle$ induce the following *identities between the associated bilinear modules with them*

$$
(M \oplus M', B_{f,q} \perp B_{f',q'}) = (M, B_{f,q}) \perp (M', B_{f',q'}) \tag{9}
$$

 $i.e.$ $B_{f,q} \perp B_{f',q'}(x \oplus x', y \oplus y') = B_{f,q}(x, y) + B_{f',q'}(x', y')$ for $x \oplus x'$ $y \oplus y'$ in $M \oplus M'$, and

$$
(M\otimes M', B_{f,q}\otimes B_{f',q'})=(M, B_{f,q})\otimes (M', B_{f',q'})
$$
 (10)

i.e. $B_{f,q} \otimes B_{f',q'}(\sum_i x_i \otimes x'_i, \sum_j y_j \otimes y'_j) = \sum_{i,j} B_{f,q}(x_i, y_j) \cdot B_{f',q'}(x'_i, y'_j)$ for $\sum_i x_i \otimes x_i'$ and $\sum_j y_j \otimes y_j'$ in $M \otimes M$

Proof. The proof of (9) : $B_{f,q} \perp B_{f',q'}(x \oplus x', y \oplus y') = (f \perp f'(x \otimes x'))$ $+ B_{q+q'}(x \oplus x', y \oplus y') - B_{f \times f'}(x \oplus x', y \oplus y') = f(x)f(y) + f'(x')f'(y') +$ $f(x)f'(y') + B_q(x, y) + B_{q'}(x', y') - (f(x)f'(y') + f(y)f'(x')) =$ $(x, y) + B_{f', q'}(x', y'),$ for any $x \oplus x'$ and $y \oplus y'$ in $M \oplus M'.$

138 TERUO KANZAKI

The proof of (10): $B_{f,g} \otimes B_{f'g'}(\sum_i x_i \otimes x_i', \sum_i y_i \otimes y_i') = B_{f \otimes f', f^2 \overline{\otimes} g' + g \overline{\otimes} f'^2 + g \otimes g'}$ $(\sum_{i} x_i \otimes x_i', \sum_{i} y_i \otimes y_i') = f \otimes f'(\sum_{i} x_i \otimes x_i') f \otimes f'(\sum_{i} y_i \otimes y_i') + B_{f^2 \overline{\otimes} q' + q \overline{\otimes} f'^2 + q \otimes q'}$ $(\sum_i x_i \otimes x'_i, \sum_i y_i \otimes y'_i) = (\sum_i f(x_i) f'(x'_i))(\sum_i f(y_i) f'(y'_i)) + B_{f^2 \overline{\otimes} q'}(\sum_i x_i \otimes x'_i,$ $\sum y_j \otimes y'_j$) + $B_{q \otimes f'^2}(\sum x_i \otimes x'_i, \sum y_j \otimes y'_j)$ + $B_{q \otimes q'}(\sum x_i \otimes x'_i, \sum y_j \otimes y'_j)$ = $\sum_{i,j} (f(x_i)f(y_j)f'(x'_i)f'(y'_j)$ + $f(x_i)f(y_j)B_{q'}(x'_i, y'_j)$ + $B_q(x_i, y_j)f'(x'_i)f'(y'_j)$ + $B_q(x_i,y_j)B_{q'}(x'_i,y'_j)) = \sum_{i,\,j} B_{f,q}(x_i,y_j)B_{f',q'}(x'_i,y'_j) , \text{ for } \sum x_i\otimes x'_i \text{ and }$ in $M \otimes M'$.

COROLLARY 3. If $\langle M, f, q \rangle$ and $\langle M', f', q' \rangle$ are non-degenerate ex*tended quadratic modules, then* $\langle M, f, q \rangle$ | $\langle M', f', q' \rangle$ *is also non-degenerate. Furthermore, if M and M' are finitely generated projective Amodules, then* $\langle M, f, q \rangle \otimes \langle M', f', q' \rangle$ *is non-degenerate.*

Remark 3. If 2 is inversible in the ring *A,* then the category Qua^{*} (A) is equivalent to the category Qua (A), i.e. for any object $\langle M, f, q \rangle$ in Qua^{*} (A), $\langle M, f, q \rangle \approx \langle M, 0, q + (1/2)f^2 \rangle$.

Remark 4. Let $\langle M_1, f_1, q_1 \rangle$, $\langle M_2, f_2, q_2 \rangle$ and $\langle M_3, f_3, q_3 \rangle$ be extended quadratic modules. Then we get the following natural isomorphisms in Qua^{*} (A) ;

 $1) \quad \langle M_1, f_1, q_1 \rangle \perp \langle M_2, f_2, q_2 \rangle \thickapprox \langle M_2, f_2, q_2 \rangle$

 $\langle M_1, f_1, q_1 \rangle \otimes \langle M_2, f_2, q_2 \rangle \thickapprox \langle M_2, f_2, q_2 \rangle$

 $\langle M_1, f_1, q_1 \rangle \perp \langle M_2, f_2, q_2 \rangle \rangle \perp \langle M_3, f_3, q_3 \rangle \thickapprox \langle M_1, f_1, q_1 \rangle \perp \langle M_1, f_2, q_3 \rangle$ $\vert \langle M_{3}, f_{3}, q_{3} \rangle$,

 $4)$ $(\langle M_1, f_1, q_1 \rangle \otimes \langle M_2, f_2, q_2 \rangle) \otimes \langle M_3, f_3, q_3 \rangle$ $,f_3,q_3\rangle$

 $\begin{equation} \begin{split} \left\langle \delta \right\rangle & \lesssim \delta \left\langle \left\langle M_{1}, f_{1}, q_{1} \right\rangle \perp \left\langle M_{2}, f_{2}, q_{2} \right\rangle \right\rangle \otimes \left\langle M_{3}, f_{3}, q_{3} \right\rangle \thickapprox \left\langle \left\langle M_{1}, f_{1}, q_{1} \right\rangle \otimes \left\langle M_{3}, f_{3}, q_{3} \right\rangle \right\rangle \end{split} \end{equation}$ $\perp (\langle M_2, f_2, q_2 \rangle \otimes \langle M_3, f_3, q_3 \rangle),$

 $6) \quad \langle M_1, f_1, q_1 \rangle \otimes \langle A, I, 0 \rangle$

Proof. We shall show only 5). For the other isomorphisms, we can see easily. To prove it, it is enough to show the identity

 $\{(f_1 \perp f_2)^2 \otimes q_3 \, + \, (q_1 \perp q_2 - f_1 \times f_2) \otimes f_3^2 \, + \, (q_1 \perp q_2 - f_1 \times f_2) \otimes q_3 = 0\}$ $(f_1^2 \overline{\otimes} q_3 + q_1 \overline{\otimes} f_3^2 + q_1 \otimes q_3) \perp (f_2^2 \overline{\otimes} q_3 + q_2 \overline{\otimes} f_3^2 + q_2 \otimes q_3) - (f_1 \otimes f_3) \times (f_2 \otimes f_3).$ For any $\sum_i (x_i + y_i) \otimes z_i$ in $(M_1 \oplus M_2) \otimes M_3$, $(f_1 \perp f_2)^2 \overline{\otimes} q_3 + (q_1)$ $q_2-f_1\times f_2)\otimes q_3(\sum_i(x_i\oplus y_i)\otimes z_i)$ $)^{2} + 2(q_{1}(x_{i}))$ $\sum_{i < j} \left[(f_1(x_i) + f_2(y_i)) (f_1(x_j) + f_2(y_j)) B_{q_3}(z_i, z_j) + (B_{q_1}(x_i, x_j) + B_{q_2}(y_i, y_j) - \right]$ $f_1(x_i) f_2(y_i) - f_1(x_i) f_2(y_i) f_3(z_i) f_3(z_i) + (B_{a_1}(x_i, x_i) + B_{a_2}(y_i, y_i) - f_1(x_i) f_2(y_i)$

QUADRATIC EXTENSIONS 139

 $+ 2q_1(x_i)q_3(z_i)) +$ $+ 2q_2(y_i)q_3(z_i)) - f_1(x_i)$ $f_1(x_j)B_{q_3}(z_i, z_j) + B_{q_1}(x_i, x_j)f_3(z_i)f_3(z_j) + B_{q_1}(x_i, x_j)B_{q_3}(z_i, z_j) + (f_2(y_i)f_2(y_j)$ $B_{q_3}(z_i, z_j) + B_{q_2}(y_i, y_j) f_3(z_i) f_3(z_j) + B_{q_2}(y_i, y_j) B_{q_3}(z_i, z_j)) - (f_1(x_i) f_3(z_i) f_2(y_j))$ $= (f_1^2 \otimes q_3 + q_1 \otimes f_3^2 + q_1 \otimes q_3) \perp (f_3)$ \times $(f_2 \otimes f_3)(\sum_i (x_i \oplus y_i) \otimes z_i)$

DEFINITION. An extended quadratic module $\langle M, f, q \rangle$ is called *hyperbolic* if the associated bilinear module $(M, B_{f,q})$ with $\langle M, f, q \rangle$ is hyperbolic, i.e. there exists an A-module N such that $M = N \oplus N'$ for some A-submodule N', $f(N) = q(N) = 0$ and $N = N^{\perp} (= \{x \in M : B_{f,q}(x, N)\})$ $= 0$.

From Proposition 5 and the well known properties on bilinear modules, we get the following proposition.

PROPOSITION 6.

1) If $\langle M, f, q \rangle$ and $\langle M', f', q' \rangle$ are hyperbolic, then so is also $\langle M, f, q \rangle$ $\perp \langle M', f', q' \rangle.$

2) If M is a finitely generated projective A-module and $\langle M,f,q \rangle$ *is hyperbolic then* $\langle M, f, q \rangle$ *is non-degenerate.*

3) If $\langle M, f, q \rangle$ and $\langle M', f', q' \rangle$ are non-degenerate and $\langle M, f, q \rangle$ is $\emph{hyperbolic, then} \> \langle M, f, q \rangle \otimes \langle M', f', q' \rangle \> \emph{is also hyperbolic.}$

3. Extended Witt ring *W*(A).*

From the argument in $\S 2$, we can construct a commutative ring $W^*(A)$. Let $\text{Qua}_p^*(A)$ be a full subcategory of $\text{Qua}^*(A)$ consisting of non-degenerate extended quadratic modules with finitely generated pro jective modules. In the category $Qua_p[*](A)$, as well as the construction of the Witt ring $W(A)$, we consider the full subcategory $HQua_P[*](A)$ consisting of hyperbolic extended quadratic modules. And, using the notation of K-theory in [1], we define the extended Witt ring $W^*(A)$ by $W^*(A) = \text{Coker } (K_0(\text{HQua}_p^*(A)) \to K_0(\text{Qua}_p^*(A)))$. Thus, it can be easily checked that $W^*(A)$ is a commutative ring with sum and product induced by orthogonal sum | and tensor product \otimes . We denote by $[\langle P, f, q \rangle]$ the class of $\langle P, f, q \rangle$ in $W^*(A)$.

THEOREM 2. *The extended Witt ring W**(A) *has always the identity element* $[\langle A, I, 0 \rangle]$ *, and there exists a ring homomorphism of the Witt ring W(A) to W*(A). Then, the image of W(A) becomes an ideal of* $W^*(A)$. If 2 is inversible in A, then it is an isomorphism; $W(A) \longrightarrow$ *W*(A).*

Proof. Let $\text{Qua}_p(A)$ be the full subcategory of $\text{Qua}(A)$ consisting of non-degenerate quadratic modules (P, *q)* with finitely generated pro jective A-module P, and $\text{HQua}_p(A)$ the full subcategory of $\text{Qua}_p(A)$ whose objects are hyperbolic in $Qua_n(A)$. Consider the functor $\Phi: \text{Qua}_p(A) \to \text{Qua}_p^*(A); (P, q) \longrightarrow \langle P, 0, q \rangle$, then we have the following commutative diagram

$$
K_0(\mathrm{HQua}_p^*(A)) \to K_0(\mathrm{Qua}_p^*(A)) \to W^*(A) \to 0
$$

\n
$$
\uparrow K_0(\emptyset)
$$

\n
$$
K_0(\mathrm{HQua}_p(A)) \to K_0(\mathrm{Qua}_p(A)) \to W(A) \to 0
$$

where two rows are exact.

Thus, the ring homomorphism $K_0(\Phi)$ induces a ring homomorphism $\omega: W(A) \to W^*(A)$. Then, Im ω becomes an ideal of $W^*(A)$, for $\langle \langle P, f, q \rangle$ $[\langle P', 0, q' \rangle] = [\langle P \otimes P', 0, q \otimes q' + f^2 \overline{\otimes} q' \rangle]$ in $W^*(A)$. If 2 is inversible in A, by Remark 3, $K_0(\Phi)$ is an isomorphism, therefore, so is also $\omega\colon W(A) \longrightarrow W^*(A).$

4. The unit group of $W^*(A)$ and $Q_s(A)$.

In this section, we consider a relation between the separable quad ratic extension group $Q_s(A)$ and the unit group $U(W^*(A))$ of the extend ed Witt ring $W^*(A)$.

THEOREM 3. *There exists a group homomorphism of Q^S (A) to* $U(W^*(A))$;

$$
\Theta\colon Q_s(A)\longrightarrow U(W^*(A))\,;\, [U,f,q]\leadsto [\langle U,f,2q\rangle]\;.
$$

Proof. Let [U, f, q] be an element in $Q_s(A)$. By Theorem 1, the bilinear module $(U, D_{f,q})$, called the discriminant of $[U, f, q]$, is nondegenerate. Since $D_{f,q}(x, y) = f(x)f(y) + 2B_q(x, y) = f(x)f(y) + B_{2q}(x, y)$ $= B_{f,2q}(x, y)$ for any x and y in U, we have $D_{f,q} = B_{f,2q}$. Therefore, $\langle U, f, 2q \rangle$ is in Qua_p^{*} (A). Now, we shall show that Θ is well defined: If $[U, f, q] = [U', f', q']$ is in $Q_s(A)$, then there exist an A-isomorphism $\sigma: U \to U'$ and an A-homomorphism $g: U \to A$ such that $q' \circ \sigma = q + fg - g^2$ and $f' \circ \sigma = f - 2g$. Then, we get $2q' \circ \sigma = 2q + 2fg - 2g^2$ and $f' \circ \sigma =$

 $f-2g$, that is, $\langle U, f, 2q \rangle \approx \langle U', f', 2q' \rangle$ in Qua_p^{*}(A). Thus, the map $\Theta: Q_s(A) \to W^*(A)$; $[U, f, q] \longrightarrow [\langle U, f, 2q \rangle]$ is well defined. Furthermore, we have

 $\theta([U,f,q][U',f',q']) = \theta([U \otimes U',f \otimes f',f^2\,\overline{\otimes}\, q' + q \,\overline{\otimes}\, f'^2 + 2q \otimes q']) =$ $[\langle U \otimes U', f \otimes f', f^z \overline{\otimes} \, 2q' + 2q \overline{\otimes}\, f'^z + 2q \otimes 2q' \rangle] = [\langle U, f, 2q \rangle] \cdot [\langle U', f', 2q' \rangle],$ and $\Theta([A, I, 0]) = [\langle A, I, 0 \rangle]$. Accordingly, Im Θ is contained in $U(W^*(A))$ and $\Theta: Q_s(A) \to U(W^*(A))$ is a group homomorphism.

Remark 5.

1) if K is a field with the characteristic \neq 2, then $U(W^*(A)) =$ $U(W(A)) \approx U(K)/U(K)^2$, $Q_s(K) \approx U(K)/U(K)^2$ and Θ is an isomorphism.

2) If K is a field with characteristic 2, then Θ is a zero homomorphism.

REFERENCES

- 11] H. Bass: Lecture on Topics in Algebraic K-theory, Tata Institute of Funda mental Research, Bombay, 1967.
- [2] P. M. Cohn: Quadratic extensions of skew fields, Proc. London Math. Soc. 11 (1961) 531-556.
- I 3] T. Kanzaki: On commutor ring and Galois theory of separable algebras, Osaka J. Math. 1 (1964).
- 4] T. Kanzaki: Generalized crossed product and Brauer group, Osaka J. Math. 5 (1968) 175-188.
- [5] T. Kanzaki: On bilinear module and Witt ring over a commutative ring, Osaka J. Math. 8 (1971) 485-496.
- { 6] P. A. Micali and 0. E. Villamayor: Algebra de Clifford et groupe de Brauer, Ann. scient. Ec. Norm. Sup., t. 4 (1971) 285-310.
- [7] P. P. Revoy: Sur les deux premiers invariants d'une forme quadratique, Ann. scient. Ec. Norm. Sup., t. 4 (1971) 311-319.

Osaka City University