Y. Miyashita Nagoya Math. J. Vol. 49 (1973), 21-51

AN EXACT SEQUENCE ASSOCIATED WITH A GENERALIZED CROSSED PRODUCT

YÔICHI MIYASHITA

§ **0. Introduction**

The purpose of this paper is to generalize the seven terms exact sequence given by Chase, Harrison and Rosenberg [8]. Our work was motivated by Kanzaki [16] and, of course, [8], [9]. The main theorem holds for any generalized crossed product, which is a more general one than that in Kanzaki [16]. In §1, we define a group $P(A/B)$ for any ring extension *A/B,* and prove some preliminary exact sequences. In §2, we fix a group homomorphism / from a group *G* to the group of all invertible two-sided B-submodules of A. We put $\Delta/B = \bigoplus J_a/B$ (direct sum), which is canonically a generalized crossed product of *B* with G. And we define an abelian group *C(Δ/B)* for *A/B.* The two groups *C(ΔjB)* and *P(A/B)* are our main objects. *C(Δ/B)* may be considered as a generalization of the group of all central separable algebras split by a fixed Galois extension. The main theorem is Th. 2.12, which is a gener alization of the seven terms exact sequence theorem in [8]. However it is proved that the exact sequence in Th. 2.12 is almost reduced to the one which is obtained from the homomorphism $G \to Aut(K)$ induced by *J,* where *K* is the center of *B.* This fact is proved in Th. 2.15. In §3, we fix a group homomorphism $u: G \to \text{Aut}(A/B)$. From u we obtain a free crossed product $\oplus Au_{\sigma}/B$, where $u_{\sigma}u_{\tau} = u_{\sigma\tau}$, $u_{\sigma}a = \sigma(a)u_{\sigma}(a \in A)$. Therefore the results in $\S 2$ is applicable for this case. In $\S 4$ we prove the Morita invariance of the exact sequence in Th. 2.12. In § 5, we treat a kind of duality, which is based on a result obtained in [19]. In §6 we study the splitting of *P(A/B)* in particular cases.

Received December 23, 1971.

22 YÔICHI MIYASHITA

§ 1 . The definition of *P(A/B),* **and related exact sequences.**

As to notations and terminologies used in this paper we follow [19], unless otherwise expressed.

Let G, G' be groups, and f a homomorphism from G to the group of all automorphisms of G' . Then G operates on G' , by f . Then we call *G*^{*r*} a *G*-group. We denote by G^{G} the subgroup ${g' \in G' | g(g') = g'}$ for all $g \in G$.

Let $A \supseteq B$ be rings with common identity, and let L, K be the centers of *A* and *B,* respectively. We denote by *®(A/B)* the group of all invertible two-sided S-submodules of *A* (cf. [19]), where a two-sided *B*-submodule X of A is invertible in A if and only if $XY = YX = B$ for some B - B -submodule Y of A. We denote by Aut (A/B) the group of all B-automorphisms of a ring A, which operates on the left. Then it is evident that $\mathfrak{B}(A/B)$ is canonically a left Aut (A/B) -group. On the other hand we have

PROPOSITION 1.1. Aut (A/B) is a $\mathfrak{B}(A/B)$ -group.

Proof. Let X be in $\mathfrak{B}(A/B)$. Then $A = XA = X \otimes_B A = AX^{-1}$ $A \otimes B X^{-1}$ canonically (cf. [19; Prop. 1.1]), and hence $X \otimes_B A \otimes_B X^{-1} \rightarrow$ $A, x \otimes a \otimes x' \mapsto xax'$ is an isomorphism. Therefore, for any σ in Aut (A/B) , the mapping $X(\sigma)$: $x \otimes a \otimes x' \mapsto x \otimes \sigma(a) \otimes x'$ ($x \in X$, $x' \in X^{-1}$) from A to A is well defined. Then it is easily seen that *X(σ)* is a β-automorphism of A, and this defines a $\mathfrak{B}(A/B)$ -group Aut (A/B) .

Here we continue the study of $X(\sigma)$ for the sequel. Since $XX^{-1} =$ $B \ni 1$, 1 is written as $1 = \sum_i a_i a_i^{\prime} a_i \in X$, $a_i^{\prime} \in X^{-1}$). Then $\sum_i \tau(a_i)\sigma(a_i')$ $\cdot \sum_i \sigma(a_i) \tau(a_i') = 1$ for σ, τ in Aut (A/B) . Since $\sum_i a_i \otimes a_i' \mapsto 1$ under the isomorphism $X \otimes_{B} X^{-1} \to B$, we know that $\sum_{i} b a_{i} \otimes a_{i}' = \sum_{i} a_{i}'$ all b in B, and so $b \sum_i \tau(a_i) \sigma(a_i') = \sum_i \tau(a_i) \sigma(a_i') b$. Thus $\sum_i \tau(a_i) \sigma(a_i') \in$ (the group of all invertible elements of $\overline{V}_A(B)$), and $(\sum_i \tau)^2$ $=\sum_{i} a_{i} \cdot \sigma(a_{i}')$. Then, for any a in A, u $\sum_{i,j} a_i \cdot \sigma(a_i') \sigma(a_j) \sigma(a_j) a_j' = \sum_{i,j} a_i \cdot \sigma(a_i' a a_j) a_j' = X(\sigma) (\sum_{i,j} a_i a_i' a a_j a_j') = X(\sigma)(a).$ Hence $X(\sigma)$ differs from σ by the inner automorphism induced by *u*. Therefore $X(\sigma) = \sigma$ is equivalent to that u is in the center L of A. To be easily seen, $u \cdot \sigma(x) = x$ for all x in X, (and similarly $\sigma(x')u^{-1} = x'$ for all x' in X^{-1}). Conversely, since the left annihilator of X in A is zero, this characterizes *u,* and hence *u* is independent of the choice of

 α_i, α'_i , and is denoted by $u(X, 1, \sigma)$, in the sequel. As $\sum_i \tau(\alpha_i) \sigma(\alpha'_i) = 0$ $\tau(\sum_i a_i \cdot \tau^{-1} \sigma(a'_i))$, $\sum_i \tau(a_i) \sigma(a'_i)$ is also independent of the choice of a_i, a'_i , and is denoted by $u(X, \tau, \sigma)$.

LEMMA 1.2. Let $_{B}P_{B'}$ and $_{B}P'_{B'}$ be Morita modules, A and A' are *over rings of B and B', respectively. Let* f_0 *be a left B, right B' isomorphism* $P \rightarrow P'$, and $f: A \otimes_B P \xrightarrow{\approx} P' \otimes_{B'} A'$ is a B-B'-isomorphism $such that f(1 \otimes p) = f_0(p) \otimes 1$ for all $p \in P$. Assume that $xf^{-1}(f(a \otimes p)x)$ $f(f(xa \otimes p)x')$ for all $x, a \in A$, $x' \in A'$. Then, if we define $(a \otimes p) * x'$ $= f^{-1}(f(a \otimes p)x')$, then $_A A \otimes_B P_{A'}$ is a Morita module. (cf. [19])

Proof. Put End $(A \otimes B) / B' = A'' / B'$. Then, by [19; Lemma 3.1], $P\otimes_{B'}A'' \to A\otimes_{B}P, p\otimes a'' \mapsto (1\otimes p)a''$ is an isomorphism. On the other hand $f^{-1}: P' \otimes_{B'} A' \to A \otimes_{B} P$, $f_0(p) \otimes a' \mapsto (1 \otimes p) * a'(p \in P)$. By hypothesis, the image of *A¹* in the endomorphism ring is contained in *A".* And, since $P_{B'}$ is a generator, the above two isomorphisms imply that the image of A' is equal to A'' .

Next we define a group *P(A/B). P(A/B)* consists of all isomorphic classes of left *B*, right *B*-homomorphism φ from a Morita module B^P_B to a Morita module $_A N_A$ such that the homomorphism $A \otimes_B P \to N_A$ $a \otimes p \mapsto a \cdot \varphi(p)$ is an isomorphism (cf. [19; §3]). An isomorphism from $\varphi: P \to N$ to $\varphi': P' \to N'$ is a pair (f, g) of isomorphisms such that the diagram

$$
P \xrightarrow{\varphi} N
$$

\n
$$
f \downarrow \qquad \qquad \downarrow g
$$

\n
$$
P' \xrightarrow{\varphi'} N'
$$

is commutative, where f is a left B , right B -isomorphism, and g is a left A, right A-isomorphism. The isomorphism class of φ is denoted by *[* φ]. The product of $\varphi: P \to N$ and $\psi: Q \to U$ is $\varphi \otimes \psi: P \otimes B_Q \to N \otimes A_U$, where $(\varphi \otimes \psi)(p \otimes q) = \varphi(p) \otimes \psi(q)$. We define $[\varphi][\psi] = [\varphi \otimes \psi]$. Then this is well-defined, and associative. The inclusion map $B \to A$ is evidently the identity element. Let $P^* = \text{Hom}_r ({}_B P, {}_B B)$ (cf. [19]), $N^* =$ Hom_r (_AN, _AA), and $\varphi^*: P^* \to N^*$ the homomorphism such that $\varphi^*(p^*) =$ $(a \cdot \varphi(p) \to a \cdot p^{p^*})(p^* \in P^*$, $a \in A$, $p \in P$) (cf. [19; Lemma 3.1]). Then it is obvious that $[\varphi^*]$ is the inverse element of $[\varphi]$ in $P(A/B)$. Thus we have proved

THEOREM 1.3. *P(A/B) is a group.*

Remark. Similarly *P(A/B)* can be defined for any ring homo morphism $B \to A$.

THEOREM 1.4. *There is an exact sequence*

$$
1 \to U(L) \cap U(K) \to U(L) \to \mathfrak{B}(A/B) \to P(A/B) \to \text{Pic}(A) ,
$$

where $U^*(x)$ is the group of invertible elements of a ring * , and Pic (A) is the group of isomorphic classes of two-sided A-Morita modules.

Proof. The mapping $U(L) \cap U(K) \rightarrow U(L)$ is the canonical one, and the mapping $U(L) \to \mathcal{B}(A/B)$ is $c \mapsto Bc$. Then $1 \to U(L) \cap U(K) \to U(L)$ \rightarrow $\mathcal{B}(A/B)$ is evidently exact. For X in $\mathcal{B}(A/B)$, we correspond the canonical inclusion map $i_x \colon X \to A$. If i_x is isomorphic to i_B , then there is a commutative diagram

$$
B \xrightarrow{i_B} A
$$

\n
$$
\approx \downarrow \qquad \downarrow \approx
$$

\n
$$
X \xrightarrow{i_X} A
$$

and hence there is an element d in $U(L)$ such that $Bd = X$. Hence $U(L) \rightarrow \mathcal{B}(A/B) \rightarrow P(A/B)$ is exact. For $\varphi: P \rightarrow M$ in $P(A/B)$, we correspond [M] (the isomorphic class of M). If $M \xrightarrow{\approx} A$ as A-A-modules, then we may assume that $M = A$ and P is a B-B-submodule of A (cf. [19; Lemma 3.1 (4)]). Then, by [19; Prop. 1.1], we have $P \in \mathcal{B}(A/B)$. This completes the proof.

On the other hand we have

THEOREM 1.5. *There is an exact sequence*

 $1 \rightarrow U(L) \cap U(K) \rightarrow U(K) \rightarrow Aut(A/B) \rightarrow P(A/B) \rightarrow Pic(B)$.

Proof. The map $U(L) \cap U(K) \rightarrow U(K)$ is the canonical one, and the map $U(K) \to \text{Aut}(A/B)$ is $d \mapsto d\tilde{d}$, where $\tilde{d}(a) = dad^{-1}$ for all $a \in A$. Then $1 \rightarrow U(K) \cap U(L) \rightarrow U(K) \rightarrow Aut(A/B)$ is evidently exact. For any σ in Aut (A/B) , we correspond the map $i_a : B \to Au_a$, $b \mapsto bu_a$ (cf. [19]). For d in $U(K)$, $d \mapsto \tilde{d} \mapsto i_{\tilde{d}}$. Put $\tilde{d} = \tau$. Then $A \xrightarrow{\approx} Au_{\tau}$, $a \mapsto ad^{-1}u_{\tau}$, as A-Amodules, and $B \xrightarrow{\approx} B$, as *B-B*-modules, by $b \mapsto bd^{-1}$, and we have a commutative diagram

$$
B \xrightarrow{i_B} A
$$

\n
$$
\approx \begin{vmatrix} d^{-1} & \downarrow \approx \\ B & \downarrow \end{vmatrix}
$$

\n
$$
B \xrightarrow{i_{\tau}} A u_{\tau}
$$

Let *σ* be in Aut (A/B) , and suppose that *i_s* is isomorphic to *i_B*: *B* Then there are isomorphisms α , β such that

$$
B \xrightarrow{i_B} A
$$

\n
$$
\uparrow \qquad \qquad \downarrow \alpha
$$

\n
$$
B \xrightarrow{i_{\sigma}} A u_{\sigma}
$$

is commutative. Put $\alpha^{-1}(u_{\sigma}) = d$. Then, for any $a \in A$, $\sigma(a)d = \alpha^{-1}(\sigma(a)u_{\sigma})$ $a = \alpha^{-1}(u_a a) = da$, and so $\sigma(a)d = da$. Since $\beta(d)u_a = \alpha(d) = u_a$, we have $\beta(d) = 1$, whence *d* is in $U(K)$, because β is a *B-B*-isomorphism. Finally, for $\varphi: P \to M$ in $P(A/B)$, we correspond $[P] \in Pic(R)$. If ${}_{B}B_{B} \xrightarrow{\approx} {}_{B}P_{B}$, $1 \mapsto u$, then $P = Bu$ and $M = A \cdot \varphi(u)$. Since $M \xrightarrow{\approx} A \otimes {}_{B}P$ as left A, right B-modules, $a \cdot \varphi(u) = 0$ ($a \in A$) implies $a = 0$. Hence there is an automorphism $\sigma \in \text{Aut}(A/B)$ such that $\varphi(u)a = \sigma(a)\varphi(u)$ for all $a \in A$. Then φ is isomorphic to i_{σ} . This completes the proof.

If we cut out $P(A/B)$, we have well known exact sequences.

PROPOSITION 1.6. *There are two exact sequences*

$$
1 \longrightarrow U(K) \longrightarrow U(V_A(B)) \xrightarrow{\alpha} \mathcal{G}(A/B) \longrightarrow \text{Pic}(B) ,
$$

$$
1 \longrightarrow U(L) \longrightarrow U(V_A(B)) \xrightarrow{\beta} \text{Aut}(A/B) \longrightarrow \text{Pic}(A) ,
$$

where $\alpha(d) = Bd$ and $\beta(d)(a) = dad^{-1}(d \in U(V_A(B)), a \in A)$.

Here we indicate Th. 1.4, Th. 1.5, and Prop. 1.6 by the following diagram:

If A is an R-algebra, we define $Pic_R(A) = \{[P] \in Pic(A) | rp = pr$ for all $r \in R$ and all $p \in P$ } and $P^R(A/B) = \{ [\varphi] \in P(A/B) | \varphi : P \to N, [N] \in P \}$ $Pic_R(A)$. If *B* is an *S*-algebra, we define $P_s(A/B) = \{ [\varphi] \in P(A/B) | \varphi : P$ $\rightarrow N$, $[P] \in \text{Pic}_{\mathcal{S}}(B)$.

§ 2. The definition of $C(\Delta/B)$, and an exact sequence associated with Δ/B .

In this section, we fix a (finite or infinite) group G, rings $B \subseteq A$, and a group homomorphism $J: \sigma \mapsto J$, from G to $\mathfrak{B}(A/B)$. Then J induces a group homomorphism $G \to \text{Aut}\left(V_A(B)/L\right)$ (cf. [19; Prop. 3.3]), and $\text{further} \quad G \to \text{Aut}\,(K/K\;\cap\;L). \quad \text{A} \quad \text{generalized} \quad \text{crossed} \quad \text{product} \; \oplus \; {}_{\sigma \in G} J_{\sigma}/B$ associated with *J* is defined by $(x_q)(y_q) = (z_q)$, where $z_q = \sum_{r \neq q} x_r y_q$. We denote this by A/B in the sequel. Pic (B) is a left G-group defined by $F[P] = [J_{\sigma} \otimes_{B} P \otimes_{B} J_{\sigma^{-1}}]$ (conjugation). Then we define Pic $(B)^{G} = \{[P] \in$ Pic $(B) \mid \{P\} = [P]$ for all $\sigma \in G$, and Pic_{*K*} $(B)^{G} = \text{Pic } (B)^{G} \cap \text{Pic}_{K} (B)$. The homomorphism $\mathfrak{B}(A/B) \to P(A/B)$ in Th. 1.4 induces a left G-group $P(A/B)$ defined by conjugation.

PROPOSITION 2.1. *The following exact sequences consist of G-homomorphίsms*:

$$
1 \longrightarrow U(L) \cap U(K) \longrightarrow U(K) \longrightarrow \text{Aut}(A/B) \longrightarrow P(A/B) \longrightarrow \text{Pic}(B)
$$

$$
1 \longrightarrow U(L) \longrightarrow U(V_A(B)) \longrightarrow \text{Aut}(A/B) \longrightarrow \text{Pic}(A)
$$

Proof. Let $\sigma \in \text{Aut}(A/B)$, and $X \in \mathfrak{G}(A/B)$, and let $\sum_i a_i a_i' = 1$ $(a_i \in X, a_i' \in X^{-1})$. Then $X(\sigma)(a) = \sum_i a_i \cdot \sigma(a_i') \sigma(a) \sum_j \sigma(a_j) a_j'$ for all a in A (cf. § 1), and so $Au_{\sigma} \xrightarrow{\simeq} Au_{X(\sigma)}$ as A-A-modules, by the map $au_{\sigma} \to a$ $\sum_i \sigma(a_i) a_i' u_{X(\sigma)}$. Then the following diagram is commutative:

$$
X \otimes {}_B B \otimes {}_B X^{-1} \longrightarrow A u, \qquad x \otimes b \otimes x' \longmapsto x b u, x' = x b \cdot \sigma(x') u,
$$

\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$

\n
$$
B \longrightarrow A u_{X(\sigma)} \qquad x b x' \qquad \longrightarrow \qquad x b x' u_{X(\sigma)}
$$

Hence Aut $(A/B) \to P(A/B)$ is a G-homomorphism. Let c be in $U(V_A(B))$. Then, since X induces an automorphism of $V_A(B)$, there is a $c' \in$ such that $xc = c'x$ for all $x \in X$ (i.e., $X(c) = c'$). Put $u = \sum_i a_i \cdot \tilde{c}(a'_i)$. Then $c'c^{-1} \cdot \tilde{c}(x) = c'c^{-1} \cdot cxc^{-1} = c'xc^{-1} = x$ for all *x* in X. Hence we know that $c'c^{-1} = u$ (cf. §1). For any a in A, $X(\tilde{c})(a) = u \cdot \tilde{c}(a)u^{-1} = c'c^{-1}cac^{-1}$ $\cdot cc^{-1} = c'ac^{-1}$. Hence $X(\tilde{c}) = \tilde{c'} = \tilde{X(c)}$. The remainder is obvious.

We define $P(A/B)^{(G)} = \{ [\phi] \in P(A/B) | \phi : P \to M, J_a \cdot \phi(P) = \phi(P) \cdot J_a \text{ for }$ all $\sigma \in G$. Then $P(A/B)^{(G)}$ is a subgroup of $P(A/B)^{G}$. In fact, for $\phi: P \to M$ in $P(A/B)$, $[\phi]$ belongs to $P(A/B)^{(G)}$ if and only if, for any σ

in *G*, there is a *B*-*B*-isomorphism $f_a: P \to J_a \otimes B P \otimes B J_{a-1}$ such that the diagram

is commutative, where $({}^{\circ}\phi)(x, \otimes p \otimes x') = x, \cdot \phi(p)x'$. Here we shall check that $P(A/B)^{(G)}$ is closed with respect to inverse. We may assume that $P \subseteq M$ and $P^* \subseteq M^*$ (cf. [19; Lemma 3.1]). Then $P^* = {g \in M^* \mid P^g}$ \subseteq *B*}. In this sense, $(P)J_qP^*J_{q-1} = (PJ_q)P^*J_{q-1} = (J_qP)P^*J_{q-1} = J_q((P)P^*)J_{q-1}$ $= J_{\sigma}J_{\sigma^{-1}} = B$, and so $J_{\sigma}P^*J_{\sigma^{-1}} \subseteq P^*$ for all $\sigma \in G$. Hence $J_{\sigma}P^*J_{\sigma^{-1}} = P^*$ for all $\sigma \in G$.

We put $P_K(A/B)^{(G)} = P_K(A/B) \cap P(A/B)^{(G)}$. Further we define Aut $(A/B)^{(G)} = \{f \in \text{Aut}(A/B) | f(J_{\sigma}) = J_{\sigma} \text{ for all } \sigma \in G\}.$ Then we have

PROPOSITION 2.2. There is an exact sequence

$$
1 \longrightarrow U(L) \cap U(K) \longrightarrow U(K) \longrightarrow \text{Aut}(A/B)^{(G)} \longrightarrow \text{Pic}_K(B)^{G}.
$$

Proof. The above sequence is a subsequence of the one in Th. 1.5. Therefore it suffices to prove that, for f in Aut(A/B), the image of f is contained in $P_K(A/B)^{(G)}$ if and only if $f \in Aut(A/B)^{(G)}$. However $J_{\sigma} \cdot Bu_f J_{\sigma^{-1}} = J_{\sigma} \cdot f(J_{\sigma})^{-1} u_f$, so that $J_{\sigma} \cdot Bu_f J_{\sigma^{-1}} = Bu_f$ if and only if $J_{\sigma} \cdot f(J_{\sigma})^{-1}$ $=$ *B*, or equivalently, $f(J_{\alpha}) = J_{\alpha}$. This completes the proof.

Next we state several lemmas (which are well known).

For any two-sided B-module U, we denote by $V_U(B)$ $\{u \in U | \, bu = ub\}$ for all $b \in B$.

LEMMA 2.3. *Let B be an R-algebra, and P an R-module such that* $R^P\vert_R R$ (i.e., finitely generated and projective). *Then* End_r ($_B B \otimes_R P$) $\longrightarrow B\otimes_R$ **End_r** ($_R$ *P*) canonically, and $_B$ *B* \otimes_R *P*_{*B*} \mid $_B$ *B*_{*B*} (cf. [19]). And further $V_{B\otimes P}(B) \xrightarrow{\approx} K \otimes_R P$ canonically, where K is the center of B. Therefore *if* End $\binom{R}{R}$ = R then $_B B \otimes_B P_B$ is a Morita module.

Proof. The first assertion is well known. The remainder is evident, if ${}_{R}P$ is free. Hence it is true for any P such that ${}_{R}P|_{R}R$

LEMMA 2.4. Let $_{B}M_{B}|_{B}B_{B}$. Then $M = B \cdot V_{M}(B) \xrightarrow{\approx} B \otimes {}_{K}V_{M}(B)$

canonically, and $_K V_M(B)|_K K$. Further $\text{End}_r ({}_K V_M(B)) \xrightarrow{\approx} \text{End}_r ({}_B M_B)$ and $\text{End}_r\left({}_B M\right) \stackrel{\approx}{\longrightarrow} B\otimes_{K} \text{End}_r\left({}_B M_B\right), \text{ canonically.}$

Proof. $_B M_B |_{B} B_B$ implies that $V_M(K) = M$, and hence M may be considered as a left B^e -module, where $B^e = B \otimes_R B^{\circ p}$. Then $_{B^e}M|_{B^e}B$ Evidently $\text{Hom}_{r}(B_{\beta}B, B_{\beta}M) \xrightarrow{\approx} V_M(B)$ canonically. By [14; Th. 1.1], $B_{\beta}M$ $\stackrel{\approx}{\longrightarrow} {\rm Hom}_r\left({}_{B^e}B^e, \ {}_{B^e}M\right) \stackrel{\approx}{\longrightarrow} {\rm Hom}_r\left({}_{B^e}B^e, \ {}_{B^e}B\right) \otimes \ _{K}{\rm Hom}_r\left({}_{B^e}B, \ {}_{B^e}M\right) \stackrel{\approx}{\longrightarrow} B \otimes$ $\chi^r(W_M(B), \chi^r W_M |_{\chi} K$ and $\text{End}_r({}_{\chi}\text{Hom}_r({}_{\beta e}B, {}_{\beta e}M)) \stackrel{\approx}{\longrightarrow} \text{End}_r({}_{\beta}M_{\beta}).$ Combining this with Lemma 2.3, we obtain the last assertion.

COROLLARY 1. Further assume that $\text{End}_r\left({}_BM_B\right) = K$, Then ${}_BM_B$ is *a Morita module.*

COROLLARY 2. Let $_{B}M_{B}||_{B}B_{B}$ and $_{B}M'_{B}||_{B}B_{B}$. Then $_{B}M_{B} \stackrel{\approx}{\longrightarrow}_{B}M'_{B}$ i and $only$ if $_KV_M(B) \xrightarrow{\approx} {}_KV_{M'}(B)$.

The following corollary is repeatedly used to check commutativity of diagrams.

 COROLLARY 3. Let $_{B}M_{B}|_{B}B_{B}$ and $_{B}M'_{B}|_{B}B_{B}$, Then $V_{M\otimes M'}(B) \stackrel{\approx}{\longrightarrow}$ $V_M(B) \otimes {_K}V_{M'}(B)$ canonically, and there is an isomorphism ${_BM} \otimes {_M'}_B \to$ $\mathbb{P}_BM'\otimes M_B,\ m_0\otimes m'\mapsto m'\otimes m_0,\ m\otimes m'_0\mapsto m'_0\otimes m\ (m_0\in {V}_M(B),\ m\in M,\ m'_0\in \mathbb{P}_M^2$ $V_M(B)$, $m' \in M'$), where unadorned \otimes means \otimes_B . We call this isomorphism *the "transposition" of M and M^f*

Proof. By Lemma 2.4, $M = B \otimes_K V_M(B)$ and $M' = B \otimes_K V_{M'}(B)$. Consequently, $M \otimes M' = B \otimes_K V_M(B) \otimes_K V_{M'}(B)$. Then, by Lemma 2.3, $V_{M\otimes M'}(B) \xrightarrow{\approx} V_M(B) \otimes {}_K V_{M'}(B)$ canonically. Since $V_M(B) \otimes {}_K V_{M'}(B) \xrightarrow{\approx}$ $V_{M'}(B) \otimes_{K} V_{M}(B)$ by transposition, we obtain the latter assertion.

Remark. We put $\{[M] \in \text{Pic}(B) \mid B M_B \sim B_B B_B\} = \text{Pic}_0(B) ([19])$. Then, by Lemma 2.3, Lemma 2.4, and Cor. 3 to Lemma 2.4, $Pic_K(K) \xrightarrow{\approx} Pic_0(B)$, $[P] \mapsto [P \otimes_{\kappa} B].$

The following lemma is also used to check commutativity of diagrams

LEMMA 2.5. Let $_B U \otimes_B W_B \sim B_B B_B \sim_B M_B$. If $x \in V_M(B)$ and $\sum_i u_i$ $\otimes w_i \in V_{U \otimes W}(B)$, then $\sum_i u_i \otimes x \otimes w_i \in V_{U \otimes M \otimes W}(B)$.

 $Proof.$ For any x in $V_M(B)$, $U \otimes_B W \to U \otimes M \otimes W$, $u \otimes w \mapsto u \otimes x \otimes w$ is a β-β-homomorphism.

Next we shall define an abelian group $C(\Delta/B)$, which is the main object in the present paper. In the rest of this section, unadorned *®*

always means \otimes_R . $C(\Delta/B)$ consists of all isomorphic classes of generalized crossed products $\bigoplus_{\sigma \in G} V_{\sigma}/B$ of *B* with *G* such that ${}_B V_{\sigma B} \sim {}_B J_{\sigma B}$ for al $\sigma \in G$ (cf. [19]). Let $\bigoplus V_a/B$ and $\bigoplus W_a/B$ be generalized crossed products of *B* with *G*, and let *f* be a *B*-ring isomorphism from $\bigoplus V_a/B$ to $\bigoplus W_a/B$. If $f(V_a) = W_a$ for all $\sigma \in G$, we call f an isomorphism as generalized crossed products. Precisely a generalized crossed product $\bigoplus V_a/B$ is written as $(\bigoplus V_s/B$, $f_{s,t}$, and its isomorphic class is denoted by $[\bigoplus V_s/B$, $f_{s,t}$], where $f_{\sigma,\tau}: V_{\sigma} \otimes V_{\tau} \to V_{\sigma\tau}$ is the multiplication. In particular, the multiplication of *Δ* is denoted by $\phi_{\sigma,\tau}$. However we denote often $(\bigoplus J_{\sigma}/B, \phi_{\sigma,\tau})$ by $\oplus J_{\sigma}/B$, simply. Let $(\oplus V_{\sigma}/B, f_{\sigma,\tau})$ and $(\oplus W_{\sigma}/B, g_{\sigma,\tau})$ be generalized crossed products in $C(\Delta/B)$. Then the σ -component of the product of $(\bigoplus V_a/B, f_{a,t})$ and $(\bigoplus W_a/B, g_{a,t})$ is defined as $V_a \otimes J_{a-1} \otimes W_a$. The mul- $\text{tiplication is defined by } h_{\sigma,\tau} \colon V_{\sigma} \otimes J_{\sigma^{-1}} \otimes W_{\sigma} \otimes V_{\tau} \otimes J_{\tau^{-1}} \otimes W_{\tau} \stackrel{t}{\longrightarrow} V_{\sigma} \otimes V_{\tau}$ $\otimes J_{r^{-1}} \otimes J_{\sigma^{-1}} \otimes W_{\sigma} \otimes W_{\sigma} \stackrel{*}{\longrightarrow} V_{\sigma r} \otimes J_{(\sigma r)^{-1}} \otimes W_{\sigma r}$, where *t* is the transposi tion of $J_{\sigma^{-1}} \otimes W_{\sigma}$ and $V_{\tau} \otimes J_{\tau^{-1}}$, and $* = f_{\sigma,\tau} \otimes \phi_{\sigma,\tau} \otimes g_{\sigma,\tau}$. The associativity of the above multiplication is proved by making use of Cor. 3 to Lemma 2.4. If we identify the canonical isomorphism $B \otimes B \otimes B \to B$, then we have a generalized crossed product $(\bigoplus (V_{\sigma}\otimes J_{\sigma^{-1}}\otimes W_{\sigma})/B, h_{\sigma,\tau})$. The associativity of this composition in $C(\Delta/B)$ is proved by using Cor. 3 to Lemma 2.4, too. Evidently $[\bigoplus J_q/B, \phi_{q,r}]$ is the identity element of *C(* Δ/B *).* The σ -component of the inverse of $(\bigoplus V_{\sigma}/B, f_{\sigma}, f)$ is $J_{\sigma} \otimes V_{\sigma}^* \otimes J_{\sigma}$, where $V^*_{\sigma} = \text{Hom}_{r}({}_B V_{\sigma}, {}_B B)$. The multiplication is defined by $f^*_{\sigma, \tau}: J_{\sigma} \otimes$ $(V^*_\sigma \otimes J_\sigma) \otimes (J_\tau \otimes V^*_\tau) \otimes J_\tau \stackrel{\tau}{\longrightarrow} J_\sigma \otimes (J_\tau \otimes V^*_\tau) \otimes (V^*_\sigma)$ $V^*_{\sigma \tau} \otimes J_{\sigma \tau}$, where $*: V^*_{\tau} \otimes V^*_{\sigma} \to (V^*_{\sigma} \otimes V^*)^* \to V^*_{\sigma \tau}$ is the canonical isomorphism induced by $f_{\sigma,\tau}$. We identify the canonical isomorphism $B \otimes B^*$ \otimes *B* \rightarrow *B*, and we have a generalized crossed product $(\oplus (J, \otimes V^*_{\sigma} \otimes J_{\sigma})/B,$ f^*_s , f^*_s . By the isomorphism $V_s \otimes (J_{s-1} \otimes J_s) \otimes V^*_s \otimes J_s \to (V_s \otimes V^*_s) \otimes J_s \to 0$ *J_s*, the product of $(\bigoplus V_s/B, f_{s,t})$ and $(\bigoplus (J_s \otimes V_s^* \otimes J_s)/B, f_{s,t}^*)$ is isomor phic to J, as generalized crossed products. Hence *C(ΔjB)* is a group. Finally $C(\Delta/B)$ is an abelian group, because the isomorphism $V_a \otimes J_{a-1}$ $\textcircled{x}W_{\sigma}\to V_{\sigma}\otimes J_{\sigma^{-1}}\otimes W_{\sigma}\otimes (J_{\sigma^{-1}}\otimes J_{\sigma})\stackrel{t}{\longrightarrow}W_{\sigma}\otimes J_{\sigma^{-1}}\otimes V_{\sigma}\otimes (J_{\sigma^{-1}}\otimes J_{\sigma})\to W_{\sigma}$ $\otimes J_{n-1} \otimes V_n$ is an isomorphism as generalized crossed products, where t is the transposition of $V_{\sigma} \otimes J_{\sigma^{-1}}$ and $W_{\sigma} \otimes J_{\sigma^{-1}}$. By $C_0(\Delta/B)$, we denote the subgroup of all generalized crossed products $[\bigoplus V_g/B, f_{g,1}]$ such that ${}_B{V}_{\sigma_B} \stackrel{\approx}{\longrightarrow} {}_B{J}_{\sigma_B}$ for all $\sigma \in G$. We put $\operatorname{Pic}_K(B)^{[\sigma]} = \{[P] \in \operatorname{Pic}_K(B) \mid {}_B{P} \otimes J$ \otimes * $P_B \sim {}_B J_{\sigma_B}$ for all σ in *G*, where * $P = \text{Hom}_l(P_B, B_B)$, and " \sim " means

30 YÔICHI MIYASHITA

"similar" (cf. [19]). Then $Pic_K(B)^{[G]}$ is evidently a subgroup of $Pic_K(B)$. Then the canonical isomorphism $P \otimes P \rightarrow B$ induces an isomorphism $P \otimes P$ $J_{\sigma}\otimes(*P\otimes P)\otimes J_{\tau}\otimes *P\to P\otimes J_{\sigma}\otimes J_{\tau}\otimes *P,$ and we obtain ${}^P\phi_{\sigma,\tau}\colon (P\otimes J_{\sigma})^*$ \textcircled{x} *P) \textcircled{x} (P \textcircled{x} J_r \textcircled{x} *P) \rightarrow P \textcircled{x} J_p \textcircled{x} J_p \textcircled{x} \textcircled{x} = P. \textcircled{x} = P. Then $(\bigoplus (P \otimes J_{\sigma} \otimes {}^*P)/B, {}^p \phi_{\sigma,\tau})$ is a generalized crossed product, and $[P] \mapsto$ $[\bigoplus (P \otimes J_{\sigma} \otimes {}^*P)/B, {}^p\phi_{\sigma,\tau}]$ is a group homomorphism from $Pic_K(B)^{[G]}$ to $C(\Delta/B)$. Thus we have proved the following theorem

THEOREM 2.6. *C(Δ/B) is an abelίan group with identity Δ/B, and* $C_0(A/B)$ is a subgroup of $C(A/B)$. There is a commutative diagram

$$
\begin{array}{ccc}\n\text{Pic}_K(B)^G & \longrightarrow C_0(\Delta/B) \\
\downarrow & & \downarrow \\
\text{Pic}_K(B)^{[G]} & \longrightarrow C(\Delta/B)\n\end{array}
$$

Remark. $C_0(\Delta/B)$ is isomorphic to $H^2(G, U(K))$. The isomorphism is defined as follows: Let $[\bigoplus J_{\sigma}/B, f_{\sigma, \tau}]$ be in $C_0(\Delta/B)$. Then, for any σ , *τ* in *G*, there exists uniquely $a_{\sigma,\tau} \in U(K)$ such that $f_{\sigma,\tau}(x_{\sigma} \otimes x_{\tau}) =$ $a_{\sigma,\tau} \cdot \phi_{\sigma,\tau}(x_{\sigma} \otimes x_{\tau})$ for all $x_{\sigma} \in J_{\sigma}, x_{\tau} \in J_{\tau}$. Then $\{a_{\sigma,\tau} | \sigma, \tau \in G\}$ is a (normalized) factor set, and $[\oplus J_{\sigma}/B, f_{\sigma,\tau}] \mapsto \text{class } \{a_{\sigma,\tau}\}\$ is an isomorphism. $(\oplus J_{\sigma}/B,$ $f_{\sigma,\tau}$) may be written as $(\bigoplus J_{\sigma}/B, a_{\sigma,\tau})$ when Δ is fixed.

PROPOSITION 2.7. *There is an exact sequence*

 $Pic_K (B)^G \longrightarrow C_0(\Delta/B)$.

Proof. The semi-exactness follows from the definition of $P_K(\Delta/B)^{(G)}$ ([19; § 3]). Let $[P] \in \text{Pic}_K(B)^G$ be in the kernel. Then $(\bigoplus (P \otimes J, \otimes^* P),$ $P_{\phi_{\sigma,\tau}}$) is isomorphic to $(\bigoplus J_{\sigma}, \phi_{\sigma,\tau}) = \Lambda$. However, by [19; p. 116], $(\bigoplus P \otimes$ $J_{\sigma} \otimes {}^*P$, ${}^p\phi_{\sigma,\tau}$)/*B* is isomorphic to End_{*l*} ($P \otimes {}_B\Delta_d$)/*B*, as rings, and so we have a Morita module $_{A}P \otimes_{B} A_{A}$. Then the canonical homomorphism P to $P \otimes \Delta$, $p \mapsto p \otimes 1$ is in $P_K(\Delta/B)^{(G)}$.

An abelian group $B(\Delta/B)$ is defined by the following exact sequence:

$$
\operatorname{Pic}_{K}(B)^{[G]} \longrightarrow C(\Delta/B) \longrightarrow B(\Delta/B) \longrightarrow 1
$$

Then we have

PROPOSITION 2.8. *There is an exact sequence*

 $\operatorname{Pic}_K(B)^G \longrightarrow C_0(\varDelta/B) \longrightarrow B(\varDelta/B)$

Proof. The semi-exactness is trivial. If $[\bigoplus J_a, f_a]$ is in the kernel of $C_0(\Delta/B) \to B(\Delta/B)$, then there is $[P]$ in Pic_K $(B)^{[G]}$ such that $[P] \mapsto$ $[\bigoplus J_{\sigma}, f_{\sigma,\tau}]$ under the homomorphism $Pic_K(B)^{[\sigma]} \to C(\Lambda/B)$. Then it is evident that $[P]$ is in $\text{Pic}_K(B)^G$.

By Remark to Cor. 3 to-Lemma 2.4, $Pic_K(K) \to Pic_0(B), [P_0] \mapsto$ $[P_0 \otimes_R B]$ is an isomorphism, and $[P] \mapsto [V_P(B)]$ is its inverse.

PROPOSITION 2.9. *The above isomorphism is a G-ίsomorphism.*

Proof. Let [P] be in Pic₀(B). Then $P = B \otimes K V_P(B)$, and $J_{\varphi} \otimes P$ $\otimes J_{\sigma^{-1}} \xrightarrow{\approx} J_{\sigma} \otimes (B \otimes_{K} V_{P}(B)) \otimes J_{\sigma^{-1}} \xrightarrow{\approx} (J_{\sigma} \otimes_{K} V_{P}(B)) \otimes J_{\sigma^{-1}}$ as two-sided B-modules. It is easily seen that $J_{\sigma} \otimes {}_K V_P(B) \to K u_{\sigma} \otimes {}_K V_P(B) \otimes {}_K K u_{\sigma^{-1}}$ $\otimes_{K}J_{\sigma}, x_{\sigma} \otimes p_{0} \mapsto u_{\sigma} \otimes p_{0} \otimes u_{\sigma^{-1}} \otimes x_{\sigma}$ is a *B-B*-isomorphism, where σ denotes the automorphism induced by J_{ρ} . Therefore $J_{\rho} \otimes P \otimes J_{\rho^{-1}} \xrightarrow{\approx} Ku_{\rho} \otimes I_{\rho}$ ${}_{K}V_{P}(B)\otimes {}_{K}K u_{\sigma^{-1}}\otimes {}_{K}B$, $x_{\sigma}\otimes p_{0}\otimes x_{\sigma^{-1}}\mapsto u_{\sigma}\otimes p_{0}\otimes u_{\sigma^{-1}}\otimes x_{\sigma}x_{\sigma^{-1}}(x_{\sigma}\in J_{\sigma}, x_{\sigma^{-1}}\in$ $J_{n-1}, p_0 \in V_P(B)$ is a B-B-isomorphism. Hence, by Lemma 2.3, $V_{J_{\sigma \otimes P \otimes J_{\sigma^{-1}}}(B) \xrightarrow{\approx} K u_{\sigma} \otimes {}_K V_P(B) \otimes {}_K K u_{\sigma^{-1}}$, as *K*-modules. This completes the proof.

COROLLARY. $Z^1(G, \text{Pic}_K(K)) \xrightarrow{\approx} Z^1(G, \text{Pic}_0(B)).$

There is a group homomorphism $[\oplus V_{\sigma}, f_{\sigma,\tau}] \mapsto (\sigma \to [V_{\sigma}][J_{\sigma}]^{-1}) \, (\sigma \in G)$ from $C(\Delta/B)$ to $Z^1(G, \text{Pic}_0(B))$. Then the following sequence is exact:

$$
1 \longrightarrow C_0(\Delta/B) \longrightarrow C(\Delta/B) \longrightarrow Z^1(G, \text{Pic}_0(B))
$$

 $\overline{H}^1(G, \text{Pic}_{0}(B))$ is defined by the exactness of the following row:

$$
\text{Pic}_K(B)^{[G]} \longrightarrow Z^1(G, \text{Pic}_0(B)) \longrightarrow \overline{H}^1(G, \text{Pic}_0(B)) \longrightarrow 1
$$

$$
C(\Delta/B)
$$

PROPOSITION 2.10. $C_0(\Delta/B) \to B(\Delta/B) \to \overline{H}^1(G, \text{Pic}_0(B))$ is

Proof. Evidently the above sequence is semi-exact. Let $[[\oplus V_{\sigma}, f_{\sigma}]]$ (the class of $[\bigoplus V_{\sigma}, f_{\sigma}]$ in $B(\Delta/B)$) be in the kernel. Then there is a $[P] \in \text{Pic}_K(B)^{[G]}$ such that $P \otimes J_{\sigma} \otimes {}^*P \xrightarrow{\approx} V_{\sigma}$ for all $\sigma \in G$, where ${}^*P =$ $\text{Hom}_{l}(P_{B}, B_{B})$. For any $\sigma \in G$, we fix an isomorphism $h_{\sigma}: P \otimes J_{\sigma} \otimes {}^*P$ $\rightarrow V_a \cdot f'_a$, is defined by the commutativity of the diagram

32 YÔICHI MIYASHITA

$$
P \otimes J_{\sigma} \otimes {}^{*}P \otimes P \otimes J_{\tau} \otimes {}^{*}P \xrightarrow{h_{\sigma} \otimes h_{\tau}} V_{\sigma} \otimes V_{\tau}
$$

\n
$$
P \otimes J_{\sigma \tau} \otimes {}^{*}P \xrightarrow{\qquad \qquad \overbrace{h_{\sigma, \tau}}} V_{\sigma \tau}
$$

where $*$ is defined by $*P \otimes P \xrightarrow{\approx} B$ (canonical) and $\phi_{\sigma,\tau}$. Then $(\oplus V_{\sigma},$ $f'_{\sigma,\tau}$) differs from $(\bigoplus V_{\sigma}, f_{\sigma,\tau})$ by some factor set $\{a_{\sigma,\tau}\}\$, i.e., $f'_{\sigma,\tau} = a_{\sigma,\tau}f_{\sigma,\tau}$ (cf. Remark to Th. 2.6.). Then, by the canonical isomorphism $J_{\varphi} \otimes J_{\varphi^{-1}}$ $\otimes V_a \xrightarrow{\approx} V_a$, $(\oplus J_a, a_{a,r}) \times (\oplus V_a, f_{a,r})$ is isomorphic to $(\oplus V_a, f'_{a,r})$. Since $(\bigoplus V_s, f'_{s,\tau})$ is isomorphic to $(\bigoplus (P\otimes J_s\otimes \ast P), {^P\phi}_{s,\tau})$, this completes the proof.

PROPOSITION 2.11. *There is an exact sequence*

$$
B(\Delta/B) \longrightarrow \overline{H}^1(G, \text{Pic}_0(B)) \longrightarrow H^3(G, U(K)) \ .
$$

Proof. For ϕ in $Z^1(G, \text{Pic}_0(B))$, a homomorphism Φ from G to Pic (B) is defined by $\Phi(\sigma) = \phi(\sigma)[J_{\sigma}]$. Let $\Phi(\sigma) = [U_{\sigma}]$ and $U_1 = B$. Then $U_{\sigma} \sim J_{\sigma}$, as B -B-modules, for all $\sigma \in G$. For σ, τ in G, we take a B-B-isomor- $\mathcal{L}_{\sigma,\tau}: U_{\sigma}\otimes U_{\tau}\to U_{\sigma\tau}$. If $\sigma=1$ or $\tau=1$ then we take $f_{\sigma,\tau}$ as a canonical one. Then, for any σ , τ , γ in G, there exists uniquely $u(\sigma, \tau, \gamma) \in$ *U(K)* such that $u(\sigma, \tau, \gamma) f_{\sigma, \tau} (I_{\sigma} \otimes f_{\tau, \gamma})(x) = f_{\sigma \tau, \gamma} (f_{\sigma, \tau} \otimes I_{\gamma})(x)$ for all *x* in $J_{\sigma \tau}$, where I_g is the identity of U_g .

If $\sigma = 1$ or $\tau = 1$ or $\gamma = 1$, then $u(\sigma, \tau, \gamma) = 1$. Let $f'_{\sigma, \tau}$ be another iso- ${\rm morphism\,}$ from $\, U_{\,s}\otimes U_{\,\epsilon} \,$ to $\,U_{\,s\hskip-2.7pt,\,\,}$ and let $\,u'(\sigma,\tau,\gamma)\,$ be the one determined by $f'_{\sigma,\tau}$. Then, for any σ,τ in G, there exists a unique $u(\sigma,\tau) \in U(K)$ such that $u(\sigma,\tau)f_{\sigma,\tau}=f'_{\sigma,\tau}$. If $\sigma=1$ or $\tau=1$, then $u(\sigma,\tau)=1$. It is easily seen that $u'(\sigma, \tau, \gamma) = u(\sigma \tau, \gamma)u(\sigma, \tau) \cdot u(\tau, \gamma)^{-1}u(\sigma, \tau)u(\sigma, \tau, \gamma)$. Let H be the group of all functions u from $G \times G \times G$ to $U(K)$. Then $Z^1(G, \text{Pic}_0(B))$ $\rightarrow H/B^3(G, U(K)), \phi \mapsto \text{class } \{u(\sigma, \tau, \gamma)\}$ is well defined, and this induces $\alpha: \overline{H}^1(G, \text{Pic}_0(B)) \to H/B^3(G, U(K)),$ where $B^3(G, U(K))$ consists of all $u(-, -, -) \in H$ such that $u(\sigma, \tau, \gamma) = u(\sigma \tau, \gamma)u(\sigma, \tau) \cdot u(\tau, \gamma)^{-1}u(\sigma, \tau)$ ⁻¹ for

some mapping $u(-, -): G \times G \to U(K)$ such that $u(\sigma, \tau) = 1$ provided $\sigma = 1$ or $\tau = 1$. If class $\{u(\sigma, \tau, \gamma)\} = 1$ then, for a suitable choice of $f_{\sigma, \tau}$, we can take $u(\sigma, \tau, \gamma) = 1$ for all $\sigma, \tau, \gamma \in G$. Next we shall show that α is a homomorphism from $\overline{H}^1(G, \text{Pic}_0(B))$ to $H/B^3(G, U(K))$. We take another $\psi \in Z^1(G, \text{Pic}_{0}(B))$, and put $\psi(\sigma) = \psi(\sigma)[J_{\sigma}] = [W_{\sigma}].$ And let each $g_{s, \tau} \colon W_{s} \otimes W_{\tau} \to W_{s \tau}$ be a *B-B*-isomorphism, and $u_{\tau}(\sigma,\tau, \gamma)$ be the one determined by $g_{\sigma,\sigma}$. Put $\phi\psi = \pi$. Then $\Pi(\sigma) = \phi(\sigma)\psi(\sigma)[J_{\sigma}] = \phi(\sigma)[J_{\sigma}][J_{\sigma}]^{-1}$ $\cdot \psi(\sigma)[J_{\sigma}] = \Phi(\sigma)[J_{\sigma}]^{-1} \psi(\sigma) = [U_{\sigma} \otimes J_{\sigma^{-1}} \otimes W_{\sigma}].$ We take an isomorphism $k_{\sigma,\tau}\colon U_{\sigma}\otimes J_{\sigma^{-1}}\otimes W_{\sigma}\otimes U_{\tau}\otimes J_{\tau^{-1}}\otimes W_{\tau}\stackrel{\sim}{\longrightarrow} U_{\sigma}\otimes U_{\tau}\otimes J_{\tau^{-1}}\otimes J_{\sigma^{-1}}\otimes W_{\sigma}\otimes W_{\tau}$ $\longrightarrow U_{\sigma r} \otimes J_{(\sigma r)^{-1}} \otimes W_{\sigma r}$, where t is the transposition of $J_{\sigma^{-1}} \otimes W_{\sigma}$ and $U_{\tau} \otimes J_{\tau^{-1}}$, and $* = f_{\sigma,\tau} \otimes \phi_{\tau^{-1},\sigma^{-1}} \otimes g_{\sigma,\tau}$. Then, by using of Cor. 3 to Lemma 2.4, it is easily seen that $u(\sigma, \tau, \gamma)u_1(\sigma, \tau, \gamma)k_{\sigma, \tau\tau}(I_{\sigma} \otimes k_{\tau, \tau}) = k_{\sigma\tau, \tau}(k_{\sigma, \tau} \otimes I_{\tau}).$ The fact that Im α is contained in $H^3(G, U(K))$ will be proved later. Thus we have obtained the following theorem, which may be considered as a generalization of Chase, Harrison, Resenberg [8; Cor. 5.5],

THEOREM 2.12. Let G be a group, and $\Delta/B = (\bigoplus J_q, \phi_q)$ be a *generalized crossed product of B with* G. *Let C and K be the centers of Δ and B, respectively. Then there is an exact sequence*

$$
1 \longrightarrow U(C) \cap U(K) \longrightarrow U(K) \longrightarrow \text{Aut}(A/B)^{(G)}
$$

\n
$$
\longrightarrow P_K(\Delta/B)^{(G)} \longrightarrow \text{Pic}_K(B)^{G} \longrightarrow C_0(\Delta/B)
$$

\n
$$
\longrightarrow B(\Delta/B) \longrightarrow \overline{H}^1(G, \text{Pic}_0(B)) \longrightarrow H^3(G, U(K)) .
$$

Proof. This follows from Propositions 2.2, 2.7, 2.8, 2.10 and 2.11.

Remark. The above sequence can be expressed as a seven term exact sequence:

$$
1 \longrightarrow H^1(G, U(K)) \longrightarrow P_K(\Lambda/B)^{(G)} \longrightarrow Pic_K(B)^G \longrightarrow H^2(G, U(K))
$$

$$
\longrightarrow B(\Lambda/B) \longrightarrow \overline{H}^1(G, Pic_G(B)) \longrightarrow H^3(G, U(K)) .
$$

In fact, for any $f \in Aut(\Lambda/B)^{(G)}$ and any $\sigma \in G$, there exists uniquely $c_0 \in U(K)$ such that $f(x_0) = c_0 x_0$ for all $x_0 \in J_0$. Then it is easily seen that $c_{\sigma\tau} = c_{\sigma} \cdot c_{\tau}$ for all $\sigma, \tau \in G$, and we have an isomorphism Aut $(\Delta/B)^{G}$ \longrightarrow *Z*¹(*G*, *U(K)*). Evidently the image of *U(K)* in Aut (Δ/B ^{(G)} corresponds to $B^{1}(G, U(K)).$

Let $P_o(\sigma \in G)$ be a family of Morita *B-B*-modules such that ${}_B P_{oB}$ $P_{\text{B}}B_{\text{B}}, P_{\text{B}} = B$. Then ${}_{\text{B}}P_{\text{\sigma}} \otimes J_{\text{\sigma}B} \sim {}_{\text{B}}J_{\text{\sigma}B}$. Put $V_{P_{\text{\sigma}}}(B) = P_{\text{0}, \text{\sigma}}$. Then ${}_{\text{K}}P_{\text{0}, \text{\sigma}}$

34 YÔICHI MIYASHITA

 $\sim K$ ^K, and so ${}_{K}P_{0,\sigma} \otimes {}_{K}Ku_{\sigma_{K}} \sim {}_{K}Ku_{\sigma_{K}}$. It was noted in the proof of Prop. 2.9 that $Ku_{\sigma} \otimes {}_K P_{0,\tau} \otimes {}_K Ku_{\sigma-1} \xrightarrow{\simeq} V_{J_{\sigma} \otimes P_{\tau} \otimes J_{\sigma}-1}(B)$, as K-K-modules $u_{\sigma}\otimes p_{\tau}\otimes u_{\sigma^{-1}} \mapsto \sum_{i} a_{i}\otimes p_{\tau}\otimes a_{i}'$, where $a_{i}\in J_{\sigma}, a_{i}'\in J_{\sigma^{-1}}, \sum_{i} a_{i}a_{i}' = 1$. Let $f_{\sigma,\tau}^*: P_{\sigma}\otimes J_{\sigma}\otimes P_{\tau}\otimes J_{\sigma^{-1}}\to P_{\sigma\tau}(\sigma,\tau\in G)$ be a family of *B-B*-isomorphisms. Then, since $V_{J_q \otimes P_{\tau} \otimes J_q} (B) \xrightarrow{\approx} K u_q \otimes {}_R P_{0,\tau} \otimes {}_R K u_{q-1}$, each $f_{q,\tau}^*$ induces a $K-K\text{-isomorphism }\;\; f_{0,\sigma,\tau}^*\colon P_{0,\sigma}\otimes {_{K}\!K\!u}_{\sigma}\otimes {_{K}\!P}_{0,\tau}\otimes {_{K}\!K\!u}_{\sigma^{-1}}\to P_{0,\sigma\tau} \;\;\; \text{(cf. Cor. 3)}$ to Lemma 2.4), and conversely, and it is evident that $\{f_{\sigma,\tau}^* | \sigma, \tau \in G\} \mapsto$ ${f_{0,\sigma,\tau}}^*$, σ , $\tau \in G$ is a one to one mapping between them. This is nothing but an isomorphism in Cor. to Prop. 2.9, and we can prove the com mutativity of the following diagram:

$$
Z^1(G, \text{Pic}_K(K)) \longrightarrow Z^1(G, \text{Pic}_0(B))
$$

$$
H/B^3(G, U(K))
$$

Then, by the same way as in [16; Lemma 8], the image of $Z^1(G, \text{Pic}_K(K))$ in $H/B^3(G, U(K))$ is contained in $H^3(G, U(K))$, and this completes the proof of Th. 2.12. On the other hand, $f_{\sigma,\tau}^*$: $P_{\sigma} \otimes J_{\sigma} \otimes P_{\tau} \otimes J_{\sigma^{-1}} \frac{f_{\sigma,\tau}^* \otimes \phi_{\sigma,\tau}}{f_{\sigma,\tau}^*}$ $P_{\sigma}(\sigma, \tau \in G)$ induces $f_{\sigma, \tau} : P_{\sigma} \otimes J_{\sigma} \otimes P_{\tau} \otimes J_{\tau} \to (P_{\sigma} \otimes J_{\sigma} \otimes P_{\tau} \otimes J_{\sigma^{-1}}) \otimes (J_{\sigma} \otimes J_{\tau})$ $\rightarrow P_{\sigma\tau} \otimes J_{\sigma\tau}(\sigma, \tau \in G)$ and conversely, and $\{f_{\sigma,\tau}^*(\sigma, \tau \in G\} \mapsto \{f_{\sigma,\tau} | \sigma, \tau \in G\}$ is a 1 – 1 mapping. A similar fact holds with respect to $P_{0,\sigma}(\sigma \in G)$ and a $\text{crossed product}\oplus Ku_{\sigma}\text{ with trivial factor set}\colon \{f_{0,\sigma,\tau}^*(\sigma,\tau\in G\} \mapsto \{f_{0,\sigma,\tau}\,|\,\sigma,\tau\in G\}.$ Let $\{f_{\sigma,t}\}\leftrightarrow\{f_{\sigma,\tau}^*\}\leftrightarrow\{f_{0,\sigma,\tau}^*\}\leftrightarrow\{f_{0,\sigma,\tau}\}.$ Then $\{f_{\sigma,\tau}\}\$ defines a generalized crossed product if and only if so is $\{f_{0,s,r}\}$. Its proof is easy, but it is tedious, so we omit it. Next we shall show that $\{f_{\sigma,r}\}\mapsto\{f_{0,\sigma,r}\}\$ is an isomorphism from $C(\Delta/B)$ to $C(\bigoplus K u_{\sigma}/K)$. To this end, let $[\bigoplus (\bigodot_{\sigma} \otimes J_{\sigma})$, $g_{\sigma,\tau}$ be another element in $C(\Lambda/B)$, and let $[\oplus (P_{\sigma} \otimes Q_{\sigma} \otimes J_{\sigma}), h_{\sigma,\tau}]$ be the product of $[\bigoplus (P_{\sigma} \otimes J_{\sigma}), f_{\sigma, \tau}]$ and $[\bigoplus (Q_{\sigma} \otimes J_{\sigma}), g_{\sigma, \tau}]$ (cf. the proof of Th. 2.6). Then $f_{\sigma,\tau}^*: P_{\sigma} \otimes J_{\sigma} \otimes P_{\tau} \otimes J_{\sigma^{-1}} \xrightarrow{\approx} P_{\sigma \tau}$ and $g_{\sigma,\tau}^*: Q_{\sigma} \otimes J_{\sigma} \otimes Q_{\tau} \otimes J_{\sigma^{-1}}$ $\stackrel{\approx}{\longrightarrow} Q_{\sigma}$, induce $f_{\sigma,\tau}^*\otimes g_{\sigma,\tau}^*\colon P_{\sigma}\otimes J_{\sigma}\otimes P_{\tau}\otimes J_{\sigma^{-1}}\otimes Q_{\sigma}\otimes J_{\sigma}\otimes Q_{\tau}\otimes J_{\sigma^{-1}}\stackrel{\approx}{\longrightarrow}$ $P_{\sigma r} \otimes Q_{\sigma r}$. Similarly $f_{0,\sigma,r}^*$ and $g_{0,\sigma,r}^*$ induce $f_{0,\sigma,r}^* \otimes g_{0,\sigma,r}^*$. On the other hand there are isomorphisms $P_{a} \otimes J_{a} \otimes P_{c} \otimes J_{a-1} \otimes Q_{a} \otimes J_{a} \otimes Q_{c} \otimes J_{a-1}$ $\stackrel{\tau}{\longrightarrow}P_{\bullet}\otimes Q_{\bullet}\otimes J_{\bullet}\otimes P_{\bullet}\otimes (J_{\scriptscriptstyle{\sigma^{-1}}} \otimes J_{\scriptscriptstyle{\sigma}}) \otimes Q_{\bullet}\otimes J_{\scriptscriptstyle{\sigma^{-1}}} \stackrel{*}{\longrightarrow} P_{\scriptscriptstyle{\sigma}}\otimes Q_{\bullet}\otimes J_{\scriptscriptstyle{\sigma}}\otimes P_{\bullet}\otimes Q_{\bullet}$ $\otimes J_{g-1}$, where t is the transposition of $J_g \otimes P_{g} \otimes J_{g-1}$ and Q_g . Similarly $\text{we have an isomorphism }\ P_{\scriptscriptstyle 0,r}\otimes K\hspace{-.05cm}\mathscr{U}_s\otimes P_{\scriptscriptstyle 0,r}\otimes K\hspace{-.05cm}\mathscr{U}_{s^{-1}}\otimes Q_{\scriptscriptstyle 0,r}\otimes K\hspace{-.05cm}\mathscr{U}_s\otimes Q_{\scriptscriptstyle 0,r}\otimes \mathscr{V}_s$ $Ku_{\sigma^{-1}} \to P_{0,\sigma} \otimes Q_{0,\sigma} \otimes Ku_{\sigma} \otimes P_{0,\tau} \otimes Q_{0,\tau} \otimes Ku_{\sigma^{-1}} \;\; \text{for all} \;\; \sigma, \tau \in G. \;\; \text{ Then the}$ following two diagrams are commutative:

$$
P_{\bullet} \otimes J_{\bullet} \otimes P_{\bullet} \otimes J_{\bullet-1} \otimes Q_{\bullet} \otimes J_{\bullet} \otimes Q_{\bullet} \otimes J_{\bullet-1} \stackrel{f_{\bullet,\bullet}^* \otimes g_{\bullet,\bullet}^*}{\longrightarrow} P_{\bullet \circ} \otimes Q_{\bullet},
$$

\n
$$
\uparrow \qquad P_{\bullet} \otimes Q_{\bullet} \otimes J_{\bullet} \otimes P_{\bullet} \otimes Q_{\bullet} \otimes J_{\bullet-1} \stackrel{f_{\bullet,\bullet}^* \otimes g_{\bullet,\bullet}^*}{\longrightarrow} P_{\bullet,\bullet} \otimes R_{\bullet} \otimes S_{\bullet} R
$$

where $[\bigoplus (P_{0,\sigma} \otimes_R Q_{0,\sigma} \otimes_R Ku_{\sigma}), h_{0,\sigma,\tau}]$ is the product of $[\bigoplus (P_{0,\sigma} \otimes_R Ku_{\sigma}), f_{0,\sigma,\tau}]$ and $[\oplus (Q_{0,\sigma} \otimes_R Ku_{\sigma}), g_{0,\sigma,\tau}].$ Then, since $\{f_{\sigma,\tau}^* \otimes g_{\sigma,\tau}^*\} \leftrightarrow \{f_{0,\sigma,\tau}^* \otimes g_{0,\sigma,\tau}^*\}$ is evident, we know that ${h_{\sigma,\tau}} \leftrightarrow {h_{0,\sigma,\tau}}$. Thus we have proved that $C(\Delta/B)$ $\to C(\oplus Ku_{\sigma}/K), \{f_{\sigma,\tau}\} \mapsto \{f_{0,\sigma,\tau}\}\$ is an isomorphism. It is easily seen that $C_0(\Delta/B) \xrightarrow{\approx} C_0(\bigoplus K u_{\sigma}/K)$ under the above isomorphism. Thus we have proved

THEOREM 2.13. *There are commutative diagrams:*

$$
\begin{array}{ccccccc}\n1 & \longrightarrow & C_0(\Delta/B) & \longrightarrow & C(\Delta/B) & \longrightarrow & Z^1(G, \text{Pic}_0(B)) & \text{(exact)} \\
& & \geq & & \geq & & \geq & \\
1 & \longrightarrow & C_0(\bigoplus K u_*/K) & \longrightarrow & C(\bigoplus K u_*/K) & \longrightarrow & Z^1(G, \text{Pic}_K(K)) & \text{(exact)} \\
& & Z^1(G, \text{Pic}_0(B)) & & & & & \\
& & & & & & & & \\
Z^1(G, \text{Pic}_K(K)) & & & & & & & \\
\end{array}
$$

We shall further continue the study of the relation between Δ/B and $\bigoplus K u_{\sigma}/K$ (with trivial factor set).

PROPOSITION 2.14. *There exists a commutative diagram*

$$
\begin{array}{ccc}\n\operatorname{Pic}_{K}(K) & \longrightarrow C(\bigoplus K u_{\sigma}/K) \\
\downarrow & & \approx \downarrow \\
\operatorname{Pic}_{K}(B)^{[G]} & \longrightarrow & C(\Delta/B)\n\end{array}
$$

Proof. Let $[P_0] \in \text{Pic}_K(k)$. It is necessary to prove that $(\bigoplus P_0 \otimes$ ${}_{K}Ku_{\bullet}\otimes{}_{K}{}^{*}P_{0}),{}^{p_{0}}\phi_{0,\sigma,\bullet}$ orresponds to $(\oplus~((B\otimes{}_{K}P_{0})\otimes{}J_{\bullet}\otimes(B\otimes{}_{K}{}^{*}P_{0})),{}^{p}\phi_{\sigma,\bullet}$ under the isomorphism $C(\bigoplus K u_{\sigma}/K) \to C(\Delta/B)$, where $\phi_{0,\sigma,\tau}$ is the canonical $\text{isomorphism} \quad Ku_{\sigma} \otimes {}_{K}Ku_{\tau} \to Ku_{\sigma}$, $u_{\sigma} \otimes u_{\tau} \mapsto u_{\sigma}$, $P = B \otimes {}_{K}P_{0}$, and ${}^{*}P_{0} =$ $\text{Hom}_{l}(P_{0K}, K_K)$ (cf. the proof of Th. 2.6). However this is done by using

 Ku _a \otimes _{*K*}^{*}P₀</sub> \otimes _{*K}Ku*_{*a*-1} $\stackrel{\approx}{\longrightarrow}$ *V*_{*Ja* \otimes **P*₈*z*₁*CB*) and *P $\stackrel{\approx}{\longrightarrow}$ *B* \otimes _{*K*}*P₀ canonically}</sub> (cf. the proof of Th. 2.13).

Next we define a homomorphism from $P_K(\bigoplus K u_s/K)^{(G)}$ to $P_K(\Delta/B)^{(G)}$. Let $\phi_{0}: P_{0} \to M_{0}$ be in $P_{K}(\bigoplus Ku_{\sigma}/K)^{(G)}$. Then $Ku_{\sigma} \otimes {}_{K}P_{0} \otimes {}_{K}Ku_{\sigma^{-1}} \stackrel{\approx}{\longrightarrow}$ $V_{J_q \otimes P \otimes J_{q-1}}(B)$, as K-K-modules, $u_q \otimes p_0 \otimes u_{q-1} \mapsto \sum_i a_{q,i} \otimes (1 \otimes p_0) \otimes a'_{q,i}$ where $P = B \otimes {}_K P_0$, $a_{\sigma,i} \in J_\sigma$, $a'_{\sigma,i} \in J_{\sigma^{-1}}$, $\sum_i a_{\sigma,i} a'_{\sigma,i} = 1$. Therefore $K u_\sigma \otimes$ $x_s \otimes (1 \otimes p_0)$ (cf. the proof of Prop. 2.9). Now, for the sake of simplicity, we may assume that $P_{\mathbf{0}} \subseteq M_{\mathbf{0}}$. Then $u_{\sigma}P_{\mathbf{0}}u_{\sigma^{-1}} = P_{\mathbf{0}}$ for all $\sigma \in G$. Then $P_{\text{o}} \otimes {}_{K}J_{\text{o}} \stackrel{\approx}{\longrightarrow} J_{\text{o}} \otimes {}_{K}P_{\text{o}}$, as *B-B-*modules, $u_{\text{o}}p_{\text{o}}u_{\text{o}-1} \otimes x_{\text{o}} \mapsto x_{\text{o}} \otimes p_{\text{o}}$, and this induces a *B*-*B*-isomorphism $P_0 \otimes_R A \stackrel{\approx}{\longleftrightarrow} P \otimes A \stackrel{\approx}{\longrightarrow} A \otimes_R P_0 \stackrel{\approx}{\longleftrightarrow} A \otimes P$). Then, by Lemma 1.2, we have a Morita module $\Delta \text{D} \otimes {}_{K}P_{\text{0}\Delta}$, where $(x_{\sigma} \otimes p_{\text{0}})x$ $= x_a x_c \otimes u_{r-1} p_0 u_r (x_c \in J_a, p_0 \in P_0, x_c \in J_c)$. Hence the canonical homomor phism $\phi: B \otimes_R P_0 = P \to A \otimes_R P_0$ is in $P_K(\Lambda/B)^{(G)}$. Let $\psi_0: Q_0 \to U_0$ be another element of *P (®KuJKY^G * Then *[φ^Q][ψ⁰]: Po® KQ^O* -> *M^o ®' U^o* $p_0 \otimes q_0 \mapsto \phi_0(p_0) \otimes \psi_0(q_0)$, where \otimes' means the tensor product over $\oplus Ku_a$. On the other hand, $[\![\phi]\!] [\![\psi]\!] : (B \otimes_R P_0) \otimes (B \otimes_R Q_0) \to (A \otimes_R P_0) \otimes_A (A \otimes_R Q_0)$ is the canonical map. Then it is easily seen that the canonical isomorphism $\beta \otimes_{K} P_{0} \otimes_{K} Q_{0} \rightarrow (A \otimes_{K} P_{0}) \otimes_{A} (A \otimes_{K} Q_{0})$ is a *A*-*A*-isomorphism such that the diagram

$$
B \otimes {}_{K}P_{0} \otimes {}_{K}Q_{0} \longrightarrow A \otimes {}_{K}P_{0} \otimes {}_{K}Q_{0}
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
(B \otimes {}_{K}P_{0}) \otimes {}_{B}(B \otimes {}_{K}Q_{0}) \longrightarrow (A \otimes {}_{K}P_{0}) \otimes {}_{A}(A \otimes {}_{K}Q_{0})
$$

is commutative. Hence $\beta \colon [\phi_0] \mapsto [\phi]$ is a homomorphism from $P_K(\Delta/B)^{(G)}$.

THEOREM 2.15. *There is a commutative diagram with exact rows:* $U(K) \longrightarrow \text{Aut}(\bigoplus K u_{\sigma}/K)^{(\mathcal{G})} \longrightarrow P_K(\bigoplus K u_{\sigma}/K)^{(\mathcal{G})} \longrightarrow \text{Pic}_K(K)^{\mathcal{G}}$ **I** α α β γ $\begin{array}{ccc} \n\begin{array}{ccc}\n\sqrt{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{$ $U(K) \longrightarrow \text{Aut}(A/B)^{G/\mathcal{O}} \longrightarrow P_K(A/B)^{G/\mathcal{O}} \longrightarrow \text{Pic}_K(B)^G$ \longrightarrow $C_0(\biguplus \Lambda u_{\sigma}/\Lambda) \longrightarrow B(\biguplus \Lambda u_{\sigma}/\Lambda) \longrightarrow H^*(G, \Gamma C_K(\Lambda)) \longrightarrow H^*(G, U(\Lambda))$ \rightarrow $C_0(\Delta/B) \longrightarrow B(\Delta/B) \longrightarrow \overline{H}^1(G, \text{Pic}_0(B)) \longrightarrow H^3(G, U(K))$ $where \alpha is \text{ Aut } (\bigoplus K u_{\sigma}/K)^{(G)} \xrightarrow{\approx} Z^1(G, U(K)) \xrightarrow{\approx} \text{ Aut } (A/B)^{(G)} \text{ (cf. Remark)}$

to Th. 2.12). *and β is the homomorphism defined above.*

Proof. By Cor. to Prop. 2.9 and the definition of $\overline{H}^1(G, \text{Pic}_0(B))$, is surjective, and hence so is *d.* As *γ* is injective, so is *β,* if (1) and (2) are commutative. Therefore it suffices to prove that (1) and (2) are commutative. However the commutativity of (1) is evident. To prove the commutativity of (2), let $\alpha(f_0) = f$. Then, for any $\sigma \in G$, there exists uniquely $c_e \in U(K)$ such that $f(x_e) = c_e x_e$ for all $x_e \in J_e$. Then $f_0(u_e) =$ $c_s u_s$ for all $\sigma \in G$, and so $(x_\sigma \otimes u_{f_0})x_\tau = x_\sigma x_\tau \otimes u_{\tau^{-1}}u_{f_0}u_\tau = x_\sigma x_\tau \otimes u_{\tau^{-1}}c_\tau u_\tau u_{f_0}$ $= x_s x_\tau \otimes \tau^{-1}(c_\tau) u_{f_0} = x_\sigma \cdot f(x_\tau) \otimes u_{f_0}$ in $\Delta \otimes_K Ku_{f_0}$, where $x_\sigma \in J_\sigma$, $x_\tau \in J_\tau$ (cf. the definition of β). This means that (2) is commutative.

THEOREM 2.16. There exists a commutative diagram
\n
$$
U(K) \longrightarrow \text{Aut}(A/B)^{(G)} \longrightarrow P_K(A/B)^{(G)} \longrightarrow \text{Pic}_K(B)^G
$$
\n
$$
\parallel \qquad \qquad (1) \qquad \qquad \downarrow \qquad \qquad (3) \qquad \parallel
$$
\n
$$
U(K) \longrightarrow \text{Aut}(A/B)^{(G)} \longrightarrow P_K(A/B)^{(G)} \longrightarrow \text{Pic}_K(B)^G
$$

Proof. Let f be in Aut $(A/B)^{(G)}$. Then $f(J_g) = J_g$ for all $\sigma \in G$, so *f* induces canonically an automorphism of $\Delta/B = \bigoplus J_s/B$. Then the commutativity of (1) is evident. Next we define a homomorphism $P_K(A/B)^{(G)}$ \rightarrow $P_K(\Lambda/B)^{(G)}$. Let $\phi: P \rightarrow M$ be in $P_K(\Lambda/B)^{(G)}$. For the sake of sim plicity, we may assume that P is a submodule of M. Then $J_e P = J_e \otimes$ $B_B P = P J_a = P \otimes B J_a$ in M for all $\sigma \in G$. We construct $\bigoplus J_a P$, formally. Then this is isomorphic to $\Delta \otimes_B P$ canonically, as *B*-*B*-modules. Similarly \oplus *PJ*_{*s*} \longrightarrow *P* \otimes _{*B*} Δ . Since $J_s P = P J_s$, we have an isomorphism $A \otimes_B P \xrightarrow{\approx} P \otimes_B A$, as *B-B-modules*. It is easily seen that this isomorphism satisfies the condition of Lemma 1.2. Thus $\bar{\phi}: P \to A \otimes_B P$, $p \mapsto 1 \otimes p$ is in $P_K(\Lambda/B)^{(G)}$. Let $\psi: Q \to U$ be another element in $P_K(A/B)^{(G)}$. Then $[\![\phi]\!] [\psi] : P \otimes_B Q \to M \otimes_A U$. On the other hand, we have $[\![\phi]\!] [\bar{\psi}] : P \otimes$ ${}_{B}Q \rightarrow (A \otimes {}_{B}P) \otimes {}_{A}(A \otimes {}_{B}Q)$. Then it is easily seen that the canonical isomorphism $\Delta \otimes B^P \otimes B^Q \to (\Delta \otimes B^P) \otimes (\Delta \otimes B^Q)$ is a Δ - Δ -isomorphism such that the diagram

is commutative. Hence the mapping $[\phi] \rightarrow [\bar{\phi}]$ is a group homomorphism. Finally, the commutativity of (2) is evident from the definition of the homomorphism $P_K(A/B)^{(G)} \to P_K(A/B)^{(G)}$.

 $\text{Evidently} \quad 1 \to \text{Aut}(A/\Sigma J_{\sigma}) \to \text{Aut}(A/B)^{(G)} \to \text{Aut}(A/B)^{(G)} \quad \text{is exact.}$ Then the commutativity of Th. 2.16 implies that

 $P_K(A/B)^{(G)} \longrightarrow P_K(A/B)^{(G)} \longrightarrow P_K(A/B)^{(G)}$

is exact. Thus we have

COROLLARY. *The following diagram is commutative, and two rows are exact:*

Remark. If $L \subseteq K$ then Aut $(A/B)^G$ is a subgroup of Aut $(A/B)^{G}$. On the other hand, if $V_A(B) = K$ then Aut $(\Delta/B)^{(G)} = \text{Aut}(\Delta/B)$, because Hom $({}_{B}J, {}_{B}, {}_{B}J, {}_{B}) = 0$ for any $\sigma \neq \tau$ (cf. [17; §6]).

§ 3. In this section, *G* is a group, and $B \supseteq T$ are rings with a common identity. We fix a group homomorphism $G \to \text{Aut}_l(B/T)$ (the group of all *T*-automorphisms of B/T , $\sigma \mapsto \bar{\sigma}$, and we consider *B* as a G-group. K and F are centers of B and T, respectively. We put $\Delta_1 =$ $\bigoplus_{\sigma \in G} Bu_{\sigma}/B$, which is a crossed product of *B* and *G* with trivial factor set: $u_{\sigma}u_{\tau} = u_{\sigma\tau}, u_{\sigma}b = \sigma(b)u_{\sigma}$. We denote by C_1 the center of Λ_1 . Then, applying Th. 2.12 in §2 to this generalized crossed product, we obtain an exact sequence

$$
\begin{aligned}\n1 &\longrightarrow U(C_1) \cap U(K) \longrightarrow U(K) \longrightarrow \text{Aut}(A_1/B)^{(G)} \longrightarrow P_K(A_1/B)^{(G)} \\
&\longrightarrow \text{Pic}_K(B)^G \longrightarrow C_0(A_1/B) \longrightarrow B(A_1/B) \\
&\longrightarrow \overline{H}^1(G, \text{Pic}_0(B)) \longrightarrow H^3(G, U(K))\n\end{aligned}
$$

where Aut $(A_1/B)^{(G)} \xrightarrow{\approx} Z^1(G, U(K))$ and $C_0(A_1/B) \xrightarrow{\approx} H^2(G, U(K))$.

We begin this section with the following

PROPOSITION 3.1. *The following two exact sequences consist of G-homomorphίsms:*

$$
1 \longrightarrow U(K) \cap U(F) \longrightarrow U(K) \longrightarrow \mathfrak{B}(B/T) \longrightarrow P(B/T) \longrightarrow Pic(B) ,
$$

$$
1 \longrightarrow U(F) \longrightarrow U(V_B(T)) \longrightarrow \mathfrak{B}(B/T) \longrightarrow Pic(T) .
$$

Proof. The exactness was proved in Th. 1.4 and Prop. 1.6. Canonically $\mathfrak{B}(B/T)$ is a G-group, and the homomorphism $G \to \text{Aut}(B/T)$ induces a homomorphism $G \to \text{Aut}(K)$, by restriction. By Th. 1.5, there is a homomorphism $Aut(B/T) \to P(B/T)$, and this defines a G-group $P(B/T)$, by conjugation. Then it is evident that $P(B/T) \rightarrow Pic(B)$ is a G-homomorphism. Next we shall show that $\mathfrak{G}(B/T) \to P(B/T)$ is a Ghomomorphism. Let $\sigma \in \text{Aut}(B/T)$, and $X \in \mathfrak{B}(B/T)$. Then $\sigma(X) \in \mathfrak{B}(B/T)$, and the image of X in $P(B/T)$ is $\phi_X: X \to B, x \mapsto x$. On the other hand the image of σ in $P(B/T)$ is $\phi_{\sigma} : T \to B u_{\sigma}, t \mapsto t u_{\sigma}$. Then there is a commutative diagram

$$
T \otimes_T X \otimes_T T \longrightarrow Bu_{\sigma} \otimes {}_B B \otimes {}_B B u_{\sigma-1}
$$

\n
$$
\sigma \Big| \approx \qquad \qquad \alpha \Big| \approx
$$

\n
$$
\sigma(X) \longrightarrow \qquad B ,
$$

where α is the canonical one. This shows that $\mathfrak{G}(B/T) \to P(B/T)$ is a G-homomorphism. It is easily seen that $U(V_B(T)) \to \mathcal{B}(B/T)$, $d \mapsto Td$ is a G-homomorphism.

We denote by $\mathfrak{G}(B/T)^{(G)}$ the group $\{X \in \mathfrak{G}(B/T)| X(\bar{\sigma}) = \bar{\sigma} \text{ for all } \sigma \in G\},$ where σ denotes the image of σ in Aut (B/T) (cf. Prop. 1.1). In §1, we have seen that $\mathfrak{G}(B/T)^{(G)} = \{X \in \mathfrak{G}(B/T) | u(X, \sigma, 1) \in K\} = \{X \in \mathfrak{G}(B/T)|$ for any $\sigma \in G$, there exists $c_{\sigma} \in U(K)$ such that $c_{\sigma}x = \sigma(x)$ for all $x \in X$. We denote by $P^{K}(B/T)^{(G)}$ the subgroup of $P^{K}(B/T)$ (cf. § 1), which consists of all *[φ]* satisfying (**).

(**) For any $\sigma \in G$, there exists a B-B-isomorphism $f_{\sigma}: M \to Bu_{\sigma}$ \otimes $_{B}\!M \otimes$ $_{B}\!Bu$ _{o-1} such that the diagram

$$
\begin{array}{ccc}\nP & \stackrel{\phi}{\longrightarrow} M \\
\downarrow^{\sigma}\searrow^{\searrow} & \searrow^{\fsigma} \\
Bu_{\sigma} \otimes {}_{B}M \otimes {}_{B}Bu_{\sigma-1}\n\end{array}
$$

is commutative, where ϕ is the map $p \mapsto u_{\sigma} \otimes \phi(p) \otimes u_{\sigma^{-1}}(p \in P)$. The proof that $P^{K}(B/T)^{(G)}$ is a subgroup is the following

PROPOSITION 3.2. $P^{K}(B/T)^{(G)}$ is a subgroup of $P^{K}(B/T)$.

Proof. Let $\phi: P \to M$ and $\psi: Q \to U$ be two representations of an element of $P^{K}(B/T)^{(G)}$, and let the diagram

$$
Q \xrightarrow{\psi} U
$$

$$
\alpha \downarrow \approx \beta \downarrow \approx
$$

$$
P \xrightarrow{\alpha} M
$$

be commutative, where *a* is a T-T-isomorphism, and *β* is a *B-B*isomorphism. For any σ in *G*, there is a *B*-*B*-isomorphism $f_{\sigma} : M \rightarrow$ $Bu_{\bullet} \otimes_{B} M\otimes_{B} Bu_{\bullet^{-1}}$ such that the diagram

$$
\begin{array}{c}\nP \stackrel{\phi}{\longrightarrow} M \\
\downarrow^{\sigma} \searrow \searrow^{\sigma} f \circ \\
Bu \otimes_B M \otimes_B Bu_{\sigma^{-1}}\n\end{array}
$$

is commutative. Then a *B*-*B*-isomorphism $g_e: U \to Bu_e \otimes _B U \otimes _B Bu_{e^{-1}}$ is determined by the commutativity of the following diagram:

 \cdot

$$
Q \xrightarrow{\Psi} U \xrightarrow{\mathcal{Y}_{\sigma}} Bu_{\sigma} \otimes {}_{B}U \otimes {}_{B}Bu_{\sigma-1} ,
$$

\n
$$
\alpha \Big| \approx \beta \Big| \approx 1 \otimes \beta \otimes 1 \Big| \approx
$$

\n
$$
P \xrightarrow{\qquad \beta} M \xrightarrow{\qquad \gamma} Bu_{\sigma} \otimes {}_{B}M \otimes {}_{B}Bu_{\sigma-1}
$$

that is, $g_{\sigma} = (1 \otimes \beta \otimes 1)^{-1} f_{\sigma} \beta$. It is easily seen that $g_{\sigma} \psi(q) = u_{\sigma} \otimes \psi(q)$ $\otimes u_{n-1}(q \in Q)$, and hence $P^{K}(B/T)^{(G)}$ is well defined. It is evident that $P^{E}(B/T)^{(G)}$ is closed under multiplication. Finally $f_{\sigma}: {}_{B}M_{B} \to {}_{B}Bu_{\sigma} \otimes {}_{B}M$ \otimes $_BBu_{\sigma^{-1}B}$ induces a *B*-*B*-isomorphism $\text{Hom}_r\left({}_BM, {}_BB\right) \stackrel{\approx}{\longrightarrow} \text{Hom}_r\left({}_BBu_{\sigma} \otimes$ $\partial_B M \otimes \partial_B B u_{\sigma^{-1}} , \, {}_B B) , \ \ \text{ and } \ \ \text{there \ \ is \ \ a \ \ canonical \ \ } B\text{-}B\text{-isomorphism } \ \ Bu_{\sigma} \otimes \partial_B B u_{\sigma} , \ \ d\mathcal{H} \otimes \partial_B B u_{\sigma} .$ $r_{\rm r}$ ($_{B}M$, $_{B}B$) \otimes $_{B}Bu_{\sigma^{-1}}$ \rightarrow ${\rm Hom}_{r}$ ($_{B}Bu_{\sigma}$ \otimes $_{B}Mu_{\sigma}$ \rightarrow $_{B}Bu_{\sigma^{-1}}$, $_{B}Bv_{\sigma}$ \rightarrow $_{B}$ \otimes h \otimes $u_{\sigma^{-1}}$ \mapsto $(u_{\sigma} \otimes x \otimes u_{\sigma^{-1}} \to \sigma(x^h))(x \in M)$. Then we have a commutative diagram:

$$
\operatorname{Hom}_r(r_1P, {}_TT) \xrightarrow{r} \operatorname{Hom}_r(r_2M, {}_BB)
$$

$$
{}^{\sigma}r \approx \approx
$$

$$
B u_{\sigma} \otimes {}_B \operatorname{Hom}_r(r_2M, {}_BB) \otimes {}_B B u_{\sigma-1}
$$

where γ is the canonical homomorphism $f \mapsto (\phi(p) \to p^f)(p \in P)$. This completes the proof.

THEOREM 3.3. *There is an exact sequence*

$$
U(K) \longrightarrow \mathfrak{G}(B/T)^{(G)} \longrightarrow P^{K}(B/T)^{(G)} \longrightarrow Pic_{K}(B)^{G}.
$$

Proof. For *X* in $\mathfrak{B}(B/T)$, the image of *X* in Pic^k (B/T) is the canonical inclusion map $\phi: X \to B$. Then ϕ is $X \to B$, $x \mapsto \sigma(x)$. Therefore $[\phi]$ is in Pic^k $(B/T)^{(G)}$ if and only if, for any $\sigma \in G$, there is a $c_{\sigma} \in U(K)$ such that $c_{\sigma} x = \sigma(x)$ for all $x \in X$, that is, $X \in \mathfrak{G}(B/T)^{(G)}$. Then the exactness of the present sequence follows from Th. 1.4.

THEOREM 3.4. There is a commutative diagram with exact rows:

$$
U(K) \longrightarrow \mathfrak{G}(B/T)^{(G)} \longrightarrow P^{K}(B/T)^{(G)} \longrightarrow Pic_{K}(B)^{G}
$$

\n $\approx \begin{vmatrix} a & (1) & \beta & (2) & r \\ V & & \beta & \end{vmatrix} R$
\n $U(K) \longrightarrow$ Aut $(A_{1}/B)^{(G)} \longrightarrow P_{K}(A_{1}/B)^{(G)} \longrightarrow$ Pic_K $(B)^{G}$

Proof. The isomorphism $U(K) \longrightarrow U(K)$ is $c \mapsto c^{-1}$. Let $X \in \mathfrak{B}(B/T)^{(G)}$. Then, for any σ in G, there exists uniquely $c_{\sigma} \in U(K)$ such that $c_{\sigma} x = \sigma(x)$ for all $x \in X$. If is easily seen that $c_{\sigma} = c_{\sigma} \cdot \sigma(c_{\tau})$ for all $\sigma, \tau \in G$, $c_1 = 1$. Then $c_{\sigma}(\sigma \in G)$ defines an automorphism $\rho: \sum_{\sigma} b_{\sigma} u_{\sigma} \mapsto \sum_{\sigma} b_{\sigma} c_{\sigma} u_{\sigma}$. We define $\mathfrak{B}(B/T)^{(G)} \longrightarrow \text{Aut}(A_1/B)^{(G)}, X \mapsto \rho$. The commutativity of (1) is easily seen. Next we shall define $P^{K}(B/T)^{(G)} \xrightarrow{\gamma} P_{\nu}(A/B)^{(G)}$. Let $\phi: P \to M$ be in $P^{K}(B/T)^{(G)}$. Then, for any $\sigma \in G$, there exists a B-B-isomorphism $f_a: M \to Bu_a \otimes_B M \otimes_B Bu_{g-1}$ such that $f_a \phi = \phi$. Then f_a induces an iso morphism $f'_s \colon M \otimes_B B u_s \xrightarrow{f_s \otimes 1} B u_s \otimes_B M \otimes_B B u_{s-1} \otimes_B B u_s \xrightarrow{*} B u_s \otimes_B M,$ where $*$ is induced by the canonical map $Bu_{-1} \otimes B u_{-2} \rightarrow B$. As is easily seen, $f'_{\sigma}(\phi(p) \otimes u_{\sigma}) = u_{\sigma} \otimes \phi(p)$ ($p \in P$). Taking direct sum, we have an isomorphism $\Delta_i \otimes_R M \stackrel{\approx}{\longrightarrow} M \otimes_R \Delta_i$, and it is easy to check that this iso morphism satisfies the condition of Lemma 1.2. Thus we have $\bar{\phi}$: $M \rightarrow$ $A_1 \otimes_R M, m \mapsto 1 \otimes m$, in $P_K(A_1/B)^{(G)}$ (cf. § 2). Let $\psi: Q \to U$ be another ele ment in $P^{K}(B/T)^{(G)}$. Then the canonical isomorphism $A_1 \otimes_B M \otimes_B U \stackrel{\approx}{\longrightarrow}$ $(A_1 \otimes_B M) \otimes_{A_1}(A_1 \otimes_B U)$ is a A_1 - A_1 -isomorphism such that the diagram

$$
\begin{CD} M\otimes_{\ _B}U\stackrel{\overline{\phi\otimes\psi}}{\longrightarrow}1_{\ _1}\otimes_{\ _B}M\otimes_{\ _B}U\\ \overline{\phi}\otimes\overline{\psi}\stackrel{\searrow}{\longrightarrow} (A_1\otimes_{\ _B}M)\otimes_{_{A_1}}(A_1\otimes_{\ _B}U) \end{CD}
$$

is commutative. Hence the map $\phi \rightarrow \bar{\phi}$ is a homomorphism. Finally we shall show the commutativity of (2). Let $1 = \sum_i x_i^r x_i$ ($x_i^r \in X^{-1}$, $x_i \in X$).

42 YOICHI MIYASHITA

Then $\Delta_1 \otimes B \ni u_{\sigma} \otimes 1 = \sum_i u_{\sigma} x_i' \otimes x_i$, so $(u_{\sigma} \otimes 1) u_{\tau} = (\sum_i u_{\sigma} x_i')$ $(\sum_i \sigma(x_i')u_{\sigma} \otimes x_i)u_{\tau} = \sum_i \sigma(x_i')u_{\sigma}u_{\tau} \otimes x_i = \sum_i u_{\sigma}x_i'u_{\tau} \otimes x_i = \sum_i u_{\sigma}x_i'u_{\tau}x_i \otimes 1 = 0$ $\sum_i u_a x_i' x_i c_i u_r \otimes 1 = u_a \cdot \rho(u_r) \otimes 1$. Hence $A_1 \otimes {}_B B \stackrel{\approx}{\longrightarrow} A_1 u_s, u_s \otimes 1 \mapsto u_s u_s$ is a Δ_1 - Δ_1 -isomorphism. Hence (2) is commutative. This completes the proof. The next Cor. 1 is follows from Th. 3.4.

COROLLARY 1. *The following diagram is commutative, and two rows are exact:*

where K and F are centers of B and T, respectively.

COROLLARY 2. If $B^G = T$ then two homomorphisms $\mathfrak{G}(B/T)^{(G)} \to$ $\mathrm{Aut} (A_1/B)^{(G)}$ and $P^K(B/T)^{(G)} \to P_K(A_1/B)^{(G)}$ are monomorphisms. There*fore, in this case,* $\mathfrak{B}(B/T)^{(G)}$ *is an abelian group.*

COROLLARY 3. *If B/T is a finite G-Galois extension, then all vertical maps in* Th. 3.4 *are isomorphisms.*

Proof. It suffices to prove that γ is surjective, by Cor. 2, Th. 1.4. and Th. 1.5, because the center of Δ ^{*x*} is F in this case. Let $\bar{\phi}: M \to \bar{M}$ be in $P_K(\Lambda_1/B)^{(G)}$, and let $M \subseteq \overline{M}$. Then, $u_{\sigma}M = M u_{\sigma}$ ($\sigma \in G$), and this yields a left Δ_1 -module $M: u_{\sigma} * m = u_{\sigma} m u_{\sigma-1}$ ($m \in M, \sigma \in G$). Then, by [8; $\text{Th. 1.3}, \ \ M = B \otimes {}_T M_0, \ \ \text{where} \ \ M_0 = \{ m \in M \, | \, u_s m = m u_s \ \ \text{for all} \ \ \sigma = G \}.$ $\text{Similarly } M = M_0 \otimes {}_T B$, and the inclusion map $\phi : M_0 \to M$ is in $P^K (B/T)^{(G)}$, because ${}_{T}M_{0T} \stackrel{\approx}{\longrightarrow} {}_{T}Hom_{r}({}_{41}B, {}_{41}M)_{T}$ is a Morita module. By the proo of Th. 3.4, $\gamma(\phi) = \bar{\phi}$ is easily seen.

PROPOSITION 3.5. If $V_B(T) = K$ then $\mathfrak{B}(B/T)^{(G)} = \mathfrak{B}(B/T)$.

Proof. Let $X \in \mathfrak{B}(B/T)$, and let $1 = \sum_i a_i a_i' (a_i \in X, a_i' \in X^{-1})$, and $\sigma \in G$. Then $u = \sum_i a_i \cdot \sigma(a_i') \in V_B(T) = K$, and $u \cdot \sigma(x) = x$ for all $x \in X$ (cf. $\S 1$).

§ 4. Morita invariance of the exact sequence in §2 .

In this section we shall cast a glance at the Morita invariance of the exact sequence in Th. 2.12. We fix two Morita modules ${_A}M_{A'}\supseteq {_B}P_{B}$ such that $M = A \otimes {}_B P = P \otimes {}_{B'} A'$ (cf, [19]), where $B \subseteq A$ and $B' \subseteq A'$. We put $V_A(A) = L$, $V_{A'}(A') = L'$, $V_B(B) = K$, and $V_{B'}(B') = K'$. There is an isomorphism $V_A(B) \to V_{A'}(B')$, $c \mapsto c'$ such that $cp = pc'$ for all $p \in P$, and this induces $L \xrightarrow{\approx} L'$ and $K \xrightarrow{\approx} K'$, by [19; Prop. 3.3]. Further, by [19; Th. 3.5], Aut $(A/B) \xrightarrow{\approx}$ Aut (A'/B') , $\sigma \mapsto \sigma'$, where $\sum \sigma(a_i)p_i =$ $\sum q_i \cdot \sigma'(a'_i)$ for all $\sum a_i p_i = \sum q_i a'_i (a_i \in A, p_i, q_j \in P, a'_i \in A')$ in M. Then it is evident the diagram

$$
U(V_A(B)) \longrightarrow \text{Aut}(A/B)
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
U(V_{A'}(B')) \longrightarrow \text{Aut}(A'/B')
$$

is commutative. Let $\sigma \mapsto \sigma'$ under the isomorphism Aut $(A/B) \rightarrow$ Aut (A'/B') . Then $Au_{\sigma} \otimes_{A} M \to M \otimes_{A'} A'u_{\sigma'}, u_{\sigma} \otimes p \mapsto p \otimes u_{\sigma'}$ ($p \in P$) is an $A - A'$ -isomorphism. Hence

$$
Aut (A/B) \longrightarrow Pic (A)
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
Aut (A'/B') \longrightarrow Pic (A')
$$

is a commutative diagram, where $Pic(A) \rightarrow Pic(A'), [X] \rightarrow [X']$ is the isomorphism such that $X \otimes_{A} M \stackrel{\approx}{\longrightarrow} M \otimes_{A'} X'$ as A-A[']-modules. There is an isomorphism $\mathfrak{B}(A/B) \to \mathfrak{B}(A'/B')$, $Y \mapsto Y'$ such that $YP = PY'$ (cf. [19; Prop. 3.3]). Then the following diagram is commutative:

$$
U(V_A(B)) \longrightarrow \mathfrak{G}(A/B) \longrightarrow \text{Pic}(B)
$$

\n
$$
\approx \downarrow \qquad \approx \downarrow \qquad \approx \downarrow \ast
$$

\n
$$
U(V_{A'}(B')) \longrightarrow \mathfrak{G}(A'/B') \longrightarrow \text{Pic}(B')
$$

where $*:[W]\mapsto [W']$ is the isomorphism such that $W\otimes_B P\stackrel{\approx}{\longrightarrow} P\otimes_{B'} W$ as *B-B'*-modules. The isomorphism $P(A/B) \to P(A'/B')$, $\phi: Q \to U \mapsto$ $\phi' : Q' \to U'$ is defined by the commutativity of the diagram

$$
Q \otimes {}_{B}P \stackrel{\approx}{\leftarrow} P \otimes {}_{B'}Q'
$$

$$
U \otimes {}_{A}M \stackrel{\approx}{\leftarrow} M \otimes {}_{A'}U'
$$

for some B-B'-isomorphism *a* and some *A-A*'-isomorphism *β.* In fact, we put $Q' = \text{Hom}_r\left({}_BP, {}_BB\rangle \otimes {}_BQ \otimes {}_BP$ and $U' = \text{Hom}_r\left({}_AM, {}_AA\rangle \otimes {}_AU \otimes {}_AM,$ and take the canonical isomorphisms $P \otimes_{B'} Q' \xrightarrow{\approx} Q \otimes_{B} P$ and $M \otimes_{A'} U$ $\longrightarrow U\otimes _{A} M$. Then it is clear that the following diagrams are commutative:

$$
\begin{array}{ccc}\n\text{Aut}(A/B) & \longrightarrow P(A/B) & \longrightarrow \text{Pic}(B) \\
\approx & \searrow & \approx & \searrow \\
\text{Aut}(A'/B') & \longrightarrow P(A'/B') & \longrightarrow \text{Pic}(B') \\
\otimes (A/B) & \longrightarrow P(A/B) & \longrightarrow \text{Pic}(A) \\
\approx & \searrow & \searrow & \searrow \\
\otimes (A'/B') & \longrightarrow P(A'/B') & \longrightarrow \text{Pic}(A')\n\end{array}
$$

We now fix a commutative diagram

consisting of group homomorphisms. Put $\Delta = \bigoplus J_{\sigma}/B$ and $\Delta' = \bigoplus J'_{\sigma}/B'$. Then we have

THEOREM 4.1. *There exists a commutative diagram*

$$
U(K) \longrightarrow \text{Aut}(A/B)^{(G)} \longrightarrow P_K(A/B)^{(G)} \longrightarrow \text{Pic}_K(B)^G \longrightarrow C_0(A/B)
$$

\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$

\n
$$
U(K') \longrightarrow \text{Aut}(A'/B')^{(G)} \longrightarrow P_{K'}(A'/B')^{(G)} \longrightarrow \text{Pic}_{K'}(B')^G \longrightarrow C_0(A'/B')
$$

\n
$$
\longrightarrow B(A/B) \longrightarrow \overline{H}^1(G, \text{Pic}_0(B)) \longrightarrow H^3(G, U(K))
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
\longrightarrow B(A'/B') \longrightarrow \overline{H}^1(G, \text{Pic}_0(B')) \longrightarrow H^3(G, U(K'))
$$

Proof. First we shall show that there is an isomorphism $C(\frac{d}{B})$ $\stackrel{\approx}{\longrightarrow} C(\Delta'/B'), \oplus U_{\sigma}/B \mapsto \oplus U_{\sigma}'/B'.$ Put $P^* = \text{Hom}_{r}(B_{\sigma}P, B_{\sigma}B)$ and $P^* \otimes_{B} U_{\sigma}$ \rightarrow C(Δ '|*B*^{*f*}, 0*U_g*|*B* \rightarrow 0*U_g*|*B*. Put P^{*} = Hom_r (*B*^{*P*}, *B^D*) and P^{*} α ^{*BU*}
 \odot *D*^{*B*} *II'* Then for any $\alpha \circ C$ there is a separated *B D'* isomorphism $\phi I = U_a$. Then, for any $\sigma \in G$, there is a canonical B- D -isomorphism $f_{\sigma} \colon U_{\sigma} \otimes B^{\Gamma} \to I \otimes B^{\prime}I \otimes B^{\prime}I \otimes B^{\prime}I \to I \otimes B^{\prime}U_{\sigma}$. The multiplication in $\bigcup_{\sigma} U_{\sigma}/D$ is defined by the commutativity of the diagram

$$
(U_{\sigma} \otimes {}_{B}U_{\tau}) \otimes {}_{B}P \longrightarrow U_{\sigma} \otimes {}_{B}P \otimes {}_{B'}U'_{\tau} \longrightarrow P \otimes {}_{B'}(U'_{\sigma} \otimes {}_{B'}U'_{\tau} \otimes {}_{B'}U'_{\tau})
$$

$$
\downarrow
$$

$$
U_{\sigma\tau} \otimes {}_{B}P \longrightarrow P \otimes {}_{B'}U'_{\sigma\tau}
$$

The isomorphism $\oplus f_* \colon (\oplus U_{\sigma}) \otimes {}_B P \to P \otimes {}_{B'} (\oplus U'_{\sigma})$ satisfies the condition in Lemma 1.2, and f_a induces an isomorphism $U_a \otimes_B P \to P \otimes_B U'_a$, that is, $\oplus U_{\sigma}/B$ and $\oplus U'_{\sigma}/B'$ defined above are equivalent as generalized crossed products. In particular, *Δ/B* and *Δ'IB'* are equivalent. The isomorphism Pic $(B) \to Pic (B')$ induces the isomorphism $Pic_K (B)^{[G]} \to$ $Pic_{K'}(B')^{[G]}, [W] \mapsto [P^* \otimes_{B} W \otimes_{B} P],$ where $P^* = Hom_{r}({}_{B}P, {}_{B}B)$. We put $W' = P^* \otimes {}_B W \otimes {}_B P$. Then $W^{*\prime} \stackrel{\approx}{\longrightarrow} W'^*$ canonically, where $W'^* =$ Hom_{r} (*B*^{*, W'*}, *B*^{*B'*}). Noting this fact, we can see that the diagram

$$
\begin{array}{ccc}\n\text{Pic}_K(B)^{[G]} & \longrightarrow & C(\Delta/B) \\
\downarrow & & \downarrow \\
\text{Pic}_{K'}(B')^{[G]} & \longrightarrow & C(\Delta'/B')\n\end{array}
$$

is commutative. The isomorphism $Pic_0(B) \to Pic_0(B')$ induces the isomorphism $Z^1(G, \text{Pic}_0(B)) \to Z^1(G, \text{Pic}_0(B'))$ (cf. Cor. to Prop. 2.9), and it is evident the diagram

$$
C(\Delta/B) \longrightarrow Z^1(G, \text{Pic}_0(B))
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
C(\Delta'/B') \longrightarrow Z^1(G, \text{Pic}_0(B'))
$$

is commutative. The facts that the isomorphism $P(\Delta/B) \rightarrow P(\Delta'/B')$ induces $P_K(\Delta/B)^{(G)} \xrightarrow{\approx} P_{K'}(\Delta'/B')^{(G)}$, and that the isomorphism Aut(Δ/B) \rightarrow Aut $({\cal A}'/B')$ induces Aut $({\cal A}/B)^{(G)} \stackrel{\approx}{\longrightarrow}$ Aut $({\cal A}'/B')^{(G)}$ are easily checked. After these remarks it is easy to complete the proof.

If we take a commutative diagram

then each g_{σ} : $Au_{\sigma} \otimes_{A} M \to M \otimes_{A'} A' u'_{\sigma}, u_{\sigma} \otimes p \mapsto p \otimes u'_{\sigma}(p \in P)$ is an A-A isomorphism, and $\oplus g_\bullet: (\oplus Au_\bullet) \otimes_A M \to M \otimes_{A'} (\oplus A'u'_\bullet)$ satisfies the condition of Lemma 1.2, so that $\bigoplus Au_{\sigma}/B$ and $\bigoplus A'u'_{\sigma}/B'$ with trivial factor

set are equivalent as generalized crossed products. Therefore Th. 4.1 is applicable to this case.

§5. In this section we fix a Morita module $_{A/B}M_{B^*/A^*}$ (cf. [19]) and a commutative diagram

of group homomorphisms, where $\alpha: X \mapsto \sigma$ is defined by $(xm) \cdot \sigma(b^*) =$ $x(mb^{*})(x \in X, m \in M, b^{*} \in B^{*})$ (cf. [19; Th. 1.5]), and $A \supseteq B$ and $B^{*} \supseteq A^{*}$ are rings. For any c in $V_A(B)$, there is a $c' \in V_{B^*}(A^*)$ such that $cm =$ mc' for all $m \in M$. Then the map $c \mapsto c'^{-1}$ is a group isomorphism $U(V_A(B)) \to U(V_{B^*}(A^*)),$ and this induces isomorphisms $U(K) \to U(K^*),$ $U(L) \to U(L^*),$ where $K = V_B(B), K^* = V_{B^*}(B^*), L = V_A(A),$ and $L^* =$ $V_{A^*}(A^*)$. The following diagram is commutative:

$$
U(V_A(B)) \longrightarrow \text{Aut}(A/B)
$$

\n
$$
\downarrow \text{(inverse)} \qquad \qquad \uparrow \alpha^*
$$

\n
$$
U(V_{B^*}(A^*)) \longrightarrow \text{G}(B^*/A^*)
$$

where $\alpha^*: X^* \mapsto \sigma^*$ is defined by $(\sigma^*(a)m)x^* = a(mx^*)(x^* \in X^*, m \in M,$ $a \in A$), or equivalently, $\sigma^*(a)(my^*) = (am)y^*(y^* \in X^{*-1})$.

PROPOSITION 5.1. Aut $(A/B)^{(G)} \xrightarrow{\approx} \mathfrak{B}(B^*/A^*)^{(G)}$.

Proof. Let $X \mapsto \sigma$ under the isomorphism $\mathfrak{B}(A/B) \to \text{Aut}(B^*/A^*)$, and let $\sigma^* \mapsto X^*$ under the isomorphism Aut $(A/B) \rightarrow \mathcal{B}(B^*/A^*)$. Then it suffices to prove that $X(\sigma^*) \mapsto \sigma(X^*)$ under Aut $(A/B) \to \mathfrak{G}(B^*/A^*)$. Let $\tau \leftrightarrow \sigma(X^*)$ under Aut $(A/B) \rightarrow \mathcal{B}(B^*/A^*)$. There is a $u \in U(V_A(B))$ such that $X(\sigma^*)(a) = u \cdot \sigma^*(a)u^{-1}$ $(a \in A)$ (cf. § 1). Then $u \cdot \sigma^*(x) = x$ for all $x \in X$, and so $u \cdot \sigma^*(x) m = xm$ for all $m \in M$. Let $y^* \in X^{*-1}$. Then $(xm) \cdot \sigma(y^*)$ $= x(my^*) = u \cdot \sigma^*(x)(my^*) = u((xm)y^*) = (xm)y^*u'$, so that $\sigma(y^*) = y^*u'$ for all $y^* \in X^{*-1}$, where $um = mu'$ for all $m \in M$. Then, for any $a \in A$, $\tau(a)(m \cdot \sigma(y^*)) = (am) \cdot \sigma(y^*) = (am)y^*u' = u((am)y^*) = u \cdot \sigma^*(a)(my^*) =$ $u \cdot \sigma^*(a)u^{-1} \cdot u(my^*)$. But $u(my^*) = my^*u' = m \cdot \sigma(y^*)$. Hence $\tau(a) =$ $X(\sigma^*)(a)$ for all $a \in A$.

PROPOSITION 5.2. There is an isomorphism $P(A/B) \xrightarrow{\approx} P(B^*/A^*)$.

Proof. Let $\phi: P \to N$ be in $P(A/B)$. Put $_{B*}P'_{B*} = \text{Hom}_{r}$ ($_{B}M$, $_{B}B$) \otimes $P \otimes {}_B M$ and ${}_{A *}N'{}_{A *} = \text{Hom}_r ({}_A M, {}_A A) \otimes {}_A N \otimes {}_A M$. Then there are canonical $\limsup_{B \to \infty} B^B \otimes_{B^*} P'_{B^*} \to {}_B P \otimes {}_B M_{B^*} \quad \text{and} \quad {}_A M \otimes {}_{A^*} N'_{A^*} \to {}_A N \otimes {}_A M_{A^*}.$ Then $\phi' : N' \to P'$ in $P_{K^*}(B^*/A^*)$ is defined by the commutativity of

$$
M \otimes {}_{B^*}P' \xrightarrow{\approx} P \otimes {}_B M
$$

$$
\approx \uparrow 1 \otimes \phi' \qquad \qquad \downarrow \phi \otimes 1
$$

$$
M \otimes {}_{A^*}N' \xrightarrow{\approx} N \otimes {}_A M
$$

Let $\psi: Q \to U$ be another element in $P(A/B)$ *,* and $\psi': U' \to Q'$ is the one defined by *ψ.* Then the following diagram is commutative:

$$
M \otimes_{B^*} P' \otimes_{B^*} Q' \longrightarrow P \otimes_{B} M \otimes_{B^*} Q' \longrightarrow P \otimes_{B} Q \otimes_{B} M
$$

\n
$$
\approx \uparrow \qquad \approx \uparrow \qquad \approx \uparrow \qquad \approx \uparrow
$$

\n
$$
M \otimes_{A^*} N' \otimes_{A^*} U' \longrightarrow N \otimes_{A} M \otimes_{A^*} U' \longrightarrow N \otimes_{A} U \otimes_{A} M
$$

On the other hand we have a diagram

$$
M \otimes_{B^*}(P \otimes_B Q)' \xrightarrow{\quad * \quad} M \otimes_{B^*}P' \otimes_{B^*}Q' \longrightarrow P \otimes_{B} Q \otimes_{B} M
$$

\n(1)
\n
$$
M \otimes_{A^*}(N \otimes_A U)' \longrightarrow M \otimes_{A^*} N' \otimes_{A^*} U' \longrightarrow N \otimes_{A} U \otimes_{A} M
$$

where (2) and (1) + (2) are commutative, and $*$ is induced by $(P \otimes_B Q)'$ $\longrightarrow P' \otimes_{B^*} Q'$. Hence (1) is commutative, and this proves that the map $[\![\phi]\!] \mapsto [\![\phi']\!]$ is a homomorphism. Similarly we can define a homomorphism $P(B^*/A^*) \to P(A/B)$. Hence $P(A/B) \xrightarrow{\approx} P(B^*/A^*)$, $[\phi] \mapsto [\phi'].$

THEOREM 5.3. $\oplus J_{\mathfrak{a}}/B$ and $\oplus B^*u_{\mathfrak{a}}/B^*$ are equivalent by $_{B}M_{B^*}$, as *generalized crossed products. Therefore* Th. 4.1 *is applicable to this case.*

Proof. For any *σ* in *G*, the map $J_{\sigma} \otimes {}_B M \to M \otimes {}_{B^*} B^* u_{\sigma}$, $x \otimes m \mapsto$ $xm\otimes u_{\sigma}$ is a B-B^{*}-isomorphism, and the following diagram is commutative :

$$
J_{\sigma} \otimes {}_{B}J_{\tau} \otimes {}_{B}M \longrightarrow J_{\sigma} \otimes {}_{B}M \otimes {}_{B^{*}}B^{*}u_{\tau} \longrightarrow M \otimes {}_{B^{*}}B^{*}u_{\sigma} \otimes {}_{B^{*}}B^{*}u_{\tau}
$$

\n
$$
J_{\sigma} \otimes {}_{B}M \longrightarrow M \otimes {}_{B^{*}}B^{*}u_{\sigma}.
$$

THEOREM 5.4. There is a commutative diagram

48 YOICHI MIYASHITA

$$
U(K) \longrightarrow \text{Aut}(A/B)^{(G)} \longrightarrow P_K(A/B)^{(G)} \longrightarrow \text{Pic}_K(B)
$$

\n
$$
\approx \downarrow \qquad (1) \qquad \approx \downarrow \qquad (2) \qquad \approx \downarrow \qquad (3) \qquad \approx \downarrow
$$

\n
$$
U(K^*) \longrightarrow \mathfrak{B}(B^*/A^*)^{(G)} \longrightarrow P^{K^*}(B^*/A^*)^{(G)} \longrightarrow \text{Pic}_{K^*}(B^*)
$$

Proof. It suffices to prove that $P(A/B) \xrightarrow{\approx} P(B^*/A^*)$ induces $P_K(A/B)^{(G)} \xrightarrow{\approx} P^{K^*}(B^*/A^*)^{(G)}$, and that (1), (2), (3) are commutative. Now, $J_{\sigma}\otimes_{B} M \stackrel{\approx}{\longrightarrow} M\otimes_{B^*} B^*u_{\sigma}, x\otimes m\mapsto xm\otimes u_{\sigma}$, as $B-B^*$ -modules. Let $\phi: P \to N$ be in $P_K(A/B)^{(G)}$. Then, for any σ in G, there exists an isomorphism $f_{\sigma}: {}_B\!J_{\sigma} \otimes {}_B\!P \otimes {}_B\!J_{\sigma^{-1}B} \to {}_B\!P_B$ such that

$$
J_{\mathscr{I}} \otimes {_{B}P} \otimes {_{B}J_{\mathscr{I} - 1}} \otimes {_{B}M} \xrightarrow{f_{\mathscr{I}} \otimes 1} P \otimes {_{B}M} \uparrow \phi \otimes 1
$$

is commutative. Then a B^* - B^* -isomorphism $f'_a: P' \to B^* u_a \otimes B^* P' \otimes$ ${}_{B*}B^*u_{s-1}$ is defined by the commutativity of

$$
M \otimes {}_{B^*}B^*u_{\sigma} \otimes {}_{B^*}P' \otimes {}_{B^*}B^*u_{\sigma-1} \stackrel{1 \otimes f'_{\sigma}}{\longleftarrow} M \otimes {}_{B^*}P'
$$

1
$$
\otimes {}^{\sigma\phi'} \qquad \qquad \uparrow 1 \otimes \phi'
$$

$$
M \otimes {}_{A^*}N'
$$

Thus $[\phi']$ is in $P^{K^*}(B^*/A^*)^{(G)}$, and hence $P_K(A/B)^{(G)} \xrightarrow{\approx} P^{K^*}(B^*/A^*)^{(G)}$. The commutativity of (1) and (3) is easily seen. To prove the com mutativity of (2), let $\sigma \in \text{Aut}(A/B)^{(G)}$, and $\sigma \mapsto X$ under the isomorphism $\text{Aut}(A/B)^{(G)} \to \mathfrak{G}(B^*/A^*)^{(G)}$. Then $MX = M \otimes_{A^*} X \xrightarrow{\approx} Au_{\sigma} \otimes_{A} M$, $m \otimes x$ $\mapsto u_{\sigma} \otimes mx$ is an A-A^{*}-isomorphism. And it is easy to see that the diagram

$$
M \otimes {}_{A^*}X \xrightarrow{\approx} A u_{\sigma} \otimes {}_A M
$$

$$
\downarrow \qquad \qquad \uparrow
$$

$$
M \otimes {}_{B^*}B^* \xrightarrow{\approx} B \otimes {}_B M
$$

is commutative. Hence (2) is commutative. This completes the proof.

§6. PROPOSITION 6.1. *If B/T is a trivial finite G-Galois extension then* $P_K(\Lambda_1/B)^{(G)} \to \text{Pic}_K(B)^G \to 1$ *is exact and splits, where* Λ_1 *is a crossed* product of B and G with trivial factor set $(Cf.$ [16; Cor. 2].)

Proof. B is the direct sum of $(G: 1)$ copies of *T*. Put $e_e =$ $(0, \dots, 0, 1, 0, \dots, 0)$ (the *σ*-component is 1). Then $\sum_{\sigma} e_{\sigma} = 1, e_{\sigma}e_{\tau} = \delta_{\sigma, \tau}e_{\sigma}$ and $B = \sum \oplus Te_{\sigma}$. The operation of G on B is given by $\tau(e_{\sigma}) = e_{\tau\sigma}$. Let $[P] \in \text{Pic}_K(B)^d$. \therefore Then $_{B}\!Bu_{_{\boldsymbol{\sigma}}}\otimes {_{B}\!P}_{B} \xrightarrow{\approx} {_{B}\!P} \otimes {_{B}\!Bu_{_{\boldsymbol{\sigma}}}}$ for all $\sigma\in G.$ $\text{Multiplying } e_1 \text{ on the right, we have } {}_B B u_e e_1 \otimes {}_B e_1 P_B \xrightarrow{\approx} {}_B P e_e \otimes {}_B e_e B u_e$ for all $\sigma \in G$. Hence $h_{\sigma}: {}_{T}e_{1}P_{T} \xrightarrow{\simeq} {}_{T}e_{\sigma}P_{T}$ for all $\sigma \in G$, because ${}_{T}e_{\sigma}B_{T} =$ $e_e T_T \xrightarrow{\approx} {}_T T_T$, $e_e t \mapsto t(t \in T)$. It is easily seen that $[e_1 P] \in \text{Pic}_F(T)$, where *F* is the center of *T*. Put $e_1P = P_0$, and let $(P_0)_G$ be the module of all $G \times G$ matrices over P_0 , and let P' be its diagonal part. Then it is evident that $(P_0)_G$ is canonically a two-sided $(T)_G$ -Morita module, where $(T)_G$ is the ring of all $G \times G$ matrices over *T*. Indifying *B* with the diagonal part of $(T)_{G}$, ${}_{B}P'{}_{B}$ is isomorphic to ${}_{B}P_{B}$. And $(T)_{G} \otimes {}_{B}P' \stackrel{\approx}{\longrightarrow} (P_{0})_{A}$ as left $(T)_{G}$, right B-modules, canonically. Since $e_{\sigma}(\sigma \in G)$ is a basis for $B_T, A_1 = \text{Hom}_l(B_T, B_T) \stackrel{\approx}{\longrightarrow} (T)_G$. Then we can easily see that the canonical map $P' \to (T)_G \otimes {}_B P'$ is in $P_K((T)_G/B)^{(G)}$.

PROPOSITION 6.2. If Δ/B is a group ring then the sequence $P_K(\Delta/B)$ \rightarrow Pic_K (B) \rightarrow 1 is exact, and splits.

Proof. Let $[P] \in Pic_K(B)$. Then there is a $B-B$ -isomorphism $BG \otimes_B P \rightarrow P \otimes_B BG$, $\sigma \otimes p \mapsto p \otimes \sigma(\sigma \in G)$, and this isomorphism satisfies the condition in Lemma 1.2.

Remark. The above proposition can be generalized to the case that $A = \sum \oplus Bu_s$, $u_s b = bu_s(b \in B)$, $u_s u_s = a_{s_s}u_{s_s}$ with $a_{s_s} \in U(K)$. The proof is analogous to the above one.

PROPOSITION 6.3. *Let A,B,L, and K be rings as in* §2, *and fix a group homomorphism* $J: G \to \mathcal{B}(A/B)$. Suppose that B/K is separable *and that* $K \subseteq L$. *Then*

 $P_K(A/B)^{(G)} \stackrel{\approx}{\longrightarrow} \text{Aut}(A/B)^{(G)} \times \text{Pic}_K(K)$,

this induces

$$
P^L(A/B)^{(G)} \xrightarrow{\approx} \text{Aut}(A/B \cdot L)^{(G)} \times \text{Pic}_K(K)
$$
.

Proof. Let $\phi: P \to M$ be in $P_K(A/B)$. Then there is an automorphism *f* of $V_A(B)/K$ such that $f(c)\phi(p) = \phi(p)c$ for any $c \in V_A(B), p \in P$, and the map $[\![\phi]\!] \mapsto f$ is a group homomorphism from $P_K(A/B)$ to Aut $(V_A(B)/K)$ (cf. [19; Prop. 3.3]). Then the map Aut $(A/B) \to P_K(A/B) \to \text{Aut}(V_A(B)/K)$

50 YOICHI MIYASHITA

is the restriction to $V_A(B)$. Let *U* be a *B*-*B*-module such that $bu = ub$ for all $b \in K$, $u \in U$. Put $B^e = B \otimes_R B^{op}$. Then U may be considered as a left B^e -module. By [14; Th. 1.1], ${}_{Be}U \xrightarrow{\approx} \text{Hom}_r ({}_{Be}B^e,{}_{Be}B) \otimes {}_K \text{Hom}_r ({}_{Be}B,{}_{Be}U),$ and so $U = B \otimes_K V_U(B)$. In particular, $A = B \otimes_K V_A(B)$. Hence Aut (A/B) \longrightarrow Aut $(V_A(B)/K)$ by restriction. Let $\bar{f} | V_A(B) = f$, and assume that $\phi \in P_K(A/B)^{(G)}$. Then $J_g \cdot \phi(P) = \phi(P)J_g = \overline{f}(J_g)\phi(P)$, because $J_g =$ $B\cdot V_{J,\sigma}(B)$. Hence $\bar{f}(J_{\sigma})=J_{\sigma}$ for all $\sigma\in G$. Therefore the image of ϕ in Aut (A/B) belongs to Aut $(A/B)^{(G)}$. Hence the map Aut $(A/B)^{(G)}$ $\rightarrow P_K(A/B)^{(G)} \rightarrow$ Aut $(A/B)^{(G)}$ is the identity map. Combining this with Prop. 2.2, we know that $P_K(A/B)^{(G)} \xrightarrow{\approx} \text{Aut}(A/B)^{(G)} \times \text{Im} \alpha$, where : $P_K(A/B)^{(G)} \to \text{Pic}_K(B)^G$ is the one as in Prop. 2.2. By Remark to Lemma 2.4, $Pic_K(K) \xrightarrow{\approx} Pic_K(B), [P_0] \mapsto [B \otimes_R P_0].$ Then the canonical map $B \otimes$ ${}_{K}P_{0} \to A \otimes {}_{K}P_{0}$ is in $P_{K}(A/B)^{(G)}$. Therefore Im $\alpha \xrightarrow{\approx} Pic_{K}(K)$. Thus we have the first assertion. The second assertion is obvious.

COROLLARY. Let $L \supseteq K$ be commutative rings, and we fix a group *homomorphism* $G \to \text{Aut}(L/K)$. Then

$$
P^{L}(L/K)^{(G)} = P^{L}(L/K) \xrightarrow{\approx} \text{Pic}_{K}(K) . \quad (\text{cf. § 3})
$$

Proof. Let $\sigma \in G$. Then, for any $[P_0] \in Pic_K(K)$, $(Lu_{\sigma} \otimes_R P_0) \otimes_L Lu_{\sigma^{-1}}$ $\stackrel{\approx}{\longrightarrow} L \otimes_{K} P_{0}, xu_{s} \otimes p_{0} \otimes u_{s-1}y \mapsto xy \otimes p_{0}, \text{ as } L\text{-}L\text{-modules.}$

Remark. By the above Cor, the sequence

$$
\mathfrak{G}(L/K)^{(G)}\longrightarrow P^L(L/K)^{(G)}\longrightarrow \mathrm{Pic}_L\ (L)^G
$$

is isomorphic to

 $\mathfrak{G}(L/K)^{(G)} \longrightarrow \text{Pic}_K(K) \longrightarrow \text{Pic}_L(L)^{G}$.

(Cf. Th. 3.4, [8], and [16].)

PROPOSITION 6.4. Let $A \supseteq B$ be rings, and L the center of A. $Assume$ that $A \otimes {}_L V_A(B) | A$ as left A , right $V_A(B)$ -modules, and $V_A(V_A(B)) = B.$ Then

$$
P^L(A/B) \xrightarrow{\approx} \mathfrak{B}(A/B) \times Im \alpha
$$

where α : $P^{L}(A/B) \rightarrow Pic_{L}(A)$ is the one as in Th. 3.4. *(Cf.* [14], [19].)

Proof. By [19; Th. 1.4], Aut $(V_A(B)/L) \xrightarrow{\approx} \mathcal{B}(A/B)$, and the map

 $\rightarrow P^L(A/B) \longrightarrow \text{Aut}(V_A(B)/L) \stackrel{\approx}{\longrightarrow} \mathfrak{B}(A/B)$

is the identity (cf. [19; Prop. 3.3]). Then, by Th. 1.4, we can complete the proof.

REFERENCES

- [1] M. Auslander and 0. Goldman: The Brauer group of a commutative ring, Trans. Amer. Math. Soc, 19 (1960), 367-409.
- [2] G. Azumaya: Algebraic theory of simple rings (in Japanese), Kawade Syobό, Tokyo, 1952.
- [3] G. Azumaya: Maximally central algebras, Nagoya Math. J., 2 (1951), 119-150.
- [4] G. Azumaya: Completely faithful modules and self injective rings, Nagoya Math. J., 27 (1966), 697-708.
- [5] H. Bass: The Morita Theorems, Lecture note at Univ. of Oregon, 1962.
- [6] H. Bass: Lectures on topics in algebraic K-theory, Tata Institute of Fundamen tal Research, Bombay, 1967.
- [7] H. Bass: Algebraic K-theory, Benjamin, 1968.
- [8] S. U. Chase, D. K. Harrison and A. Rosenberg: Galois Theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc., 52 (1965).
- [9] S. U. Chase and A. Rosenberg: Amitzur complex and Brauer group, Mem. Amer. Math. Soc., 52 (1965).
- [10] F. R. DeMeyer: Some note on the general Galois theory of rings, Osaka J. Math., 2 (1965), 117-127.
- [11] F. R. DeMeyer and E. Ingraham: Separable algebras over commutative rings, Springer, 1971.
- [12] D. K. Harrison: Abelian extensions of commutative rings, Mem. Amer. Math. Soc, 52 (1965).
- [13] K. Hirata: Some types of separable extensions of rings, Nagoya Math. J., 33 (1968), 108-115.
- [14] K. Hirata: Separable extensions and centralizers of rings, Nagoya Math. J., 35 (1969), 31-45.
- [15] T. Kanzaki: On Galois algebras over a commutative ring, Osaka J. Math., 2 (1965), 309-317.
- [16] T. Kanzaki: On generalized crossed product and Brauer group, Osaka J. Math., 5 (1968), 175-188.
- [17] Y. Miyashita: Finite outer Galois theory of non-commutative rings, J. Fac. Sci. Hokkaido Univ., Ser. I, 19 (1966), 114-134.
- [18] Y. Miyashita: Galois extensions and crossed products, J. Fac. Sci. Hokkaido Univ., Ser. I, 20 (1968), 122-134.
- [19] Y. Miyashita: On Galois extensions and crossed products, J. Fac Sci. Hokkaido Univ., Ser. I, 21 (1970), 97-121.
- [20] K. Morita: Duality for modules and its application to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyôiku Daigaku, 6 (1958), 83-142.

Tokyo University of Education