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AN EXACT SEQUENCE ASSOCIATED WITH A

GENERALIZED CROSSED PRODUCT

YOICHI MIYASHITA

§ 0. Introduction

The purpose of this paper is to generalize the seven terms exact
sequence given by Chase, Harrison and Rosenberg [8]. Our work was
motivated by Kanzaki [16] and, of course, [8], [9]. The main theorem
holds for any generalized crossed product, which is a more general one
than that in Kanzaki [16]. In §1, we define a group P(A/B) for any
ring extension A/B, and prove some preliminary exact sequences. In
§2, we fix a group homomorphism / from a group G to the group of
all invertible two-sided Z?-submodules of A. We put ΔjB = 0 JJB (direct
sum), which is canonically a generalized crossed product of B with G.
And we define an abelian group C(Δ/B) for A/B. The two groups C(ΔjB)
and P(A/B) are our main objects. C(Δ/B) may be considered as a
generalization of the group of all central separable algebras split by a
fixed Galois extension. The main theorem is Th. 2.12, which is a gener-
alization of the seven terms exact sequence theorem in [8]. However
it is proved that the exact sequence in Th. 2.12 is almost reduced to the
one which is obtained from the homomorphism G —> Aut (K) induced by
J, where K is the center of B. This fact is proved in Th. 2.15. In §3,
we fix a group homomorphism u: G —» Aut (A/B). From u we obtain a
free crossed product Θ Auσ/B, where uauτ — uστ, uσa = σ(a)uσ(a e A).
Therefore the results in § 2 is applicable for this case. In § 4 we prove
the Morita invariance of the exact sequence in Th. 2.12. In § 5, we
treat a kind of duality, which is based on a result obtained in [19]. In
§6 we study the splitting of P(A/B) in particular cases.
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§ 1 . The definition of P(A/B), and related exact sequences.

As to notations and terminologies used in this paper we follow [19],
unless otherwise expressed.

Let G, G' be groups, and / a homomorphism from G to the group
of all automorphisms of G'. Then G operates on G', by /. Then we
call Gr a G-group. We denote by G/G the subgroup {g' e G/"| g(g') = g'
for all g e G}.

Let A Z) B be rings with common identity, and let L, K be the centers
of A and B, respectively. We denote by ®(A/B) the group of all
invertible two-sided S-submodules of A (cf. [19]), where a two-sided
β-submodule I of A is invertible in A if and only if XY = YX = β for
some β-β-submodule Y of A. We denote by Aut(A/Z?) the group of all
β-automorphisms of a ring A, which operates on the left. Then it is
evident that ®(A/B) is canonically a left Aut (A/B)-group. On the other
hand we have

PROPOSITION 1.1. Aut(A/J3) is a ®(A/B)-group.

Proof. Let X be in ®(A/B). Then A = XA = X ® BA = AX"1 =
A ® ^ " 1 canonically (cf. [19; Prop. 1.1]), and hence X®BA®BX~λ-+
A,x®a®xf^ xaxf is an isomorphism. Therefore, for any σ in Aut (A/B),
the mapping X(σ): x ® α ® a;7 H-> a; ® σ(α) ® α;7 (x € Z, α;7 e X"1) from A to A
is well defined. Then it is easily seen that X(σ) is a β-automorphism
of A, and this defines a ®(A/£)-group Aut (A/B).

Here we continue the study of X(σ) for the sequel. Since XX~ι =
β a 1, 1 is written as 1 = Σ< ̂ ( ^ e Z, α$ e X"1). Then Σ* τ(ĉ )(7(α')
•St^fatM^D — 1 f° r σ» τ ^n Aut(A/β). Since Σ i α < ® α i ^ l u n der the
isomorphism X ® 5X"1 -> B, we know that Σ* ^αί ® ai = Σί αί
all 5 in B, and so 6 Σ* ^(^tM^D = Σz τCαtMαQδ. Thus Σ*

(the group of all invertible elements of VA(B)), and (Σt τ
= Σiaί σ(a'i)- Then, for any a in A ^

= Σ<,/ ̂  σ(^αα^α^ = X(σ) (Σ<,y ̂ ^ααX)
Hence X(σ) differs from σ by the inner automorphism induced by u.
Therefore X(σ) = σ is equivalent to that u is in the center L of A. To
be easily seen, ^ σ(x) = α for all x in X, (and similarly o(x')vrΎ = a/
for all 2/ in X"1). Conversely, since the left annihilator of X in A is
zero, this characterizes u, and hence u is independent of the choice of



EXACT SEQUENCE 23

α^α , and is denoted by u(X, l,σ), in the sequel. As ]•]< τ(flt)σ(a't) =
*(Σ* ^i τ~V(α )), 2]< τ ^ M α ) is also independent of the choice of α*,α ,
and is.denoted by u(X,τ,σ).

LEMMA 1.2. Let BPB, and BP''B, be Morita modules, A and Af are
over rings of B and B', respectively. Let f0 be a left B, right Bf-
isomorphism P -• P', and f: A® BP -Ξ-> Pf ® B,A

f is a B-Bf-isomorphism
such that /(I ® p) = /0(p) ® 1 /or αίZ p e P. Assume that xf~Kf(a ® p)ajθ

for all x,aeA,x'eA'. Then, if we define (a®p)*xr

A ® 5P^, is α Morita module, (cf. [19])

Proof. Put End (AA ® BP)/B' = A"\Bf. Then, by [19 Lemma 3.1],
P ® B,A" -> A ® BP, p ® a" i-> (1 (x) p)α77 is an isomorphism. On the other
hand f~ι: Pf ® B,A

f -*A®BP, fo(p) ®a'>->(l® p)*a\p e P). By hypothesis,
the image of A1 in the endomorphism ring is contained in A". And,
since PB, is a generator, the above two isomorphisms imply that the
image of A7 is equal to A77.

Next we define a group P(A/B). P(A/B) consists of all isomorphic
classes of left B, right B-homomorphism φ from a Morita module BPB

to a Morita module ANA such that the homomorphism A® BP -+ N,
a®p y-+ a-φ(p) is an isomorphism (cf. [19; §3]). An isomorphism from
φ\ P -+ N to φ': Pf -*Nf is a pair (/,g) of isomorphisms such that the
diagram

P - ^ > N

I

is commutative, where / is a left B, right j?-isomorphism, and g is a
left A, right A-isomorphism. The isomorphism class of φ is denoted by
[φ\. The product of φ: P -> 2V and ψ:Q-»[/is φ®ψ:P®BQ-*N® AU,
where (9? <8> ψ) (p ® 0) = y>(p) ® ψ(g). We define fy>] [ψ] = [p ® ψ]. Then
this is well-defined, and associative. The inclusion map B —> A is evi-
dently the identity element. Let P* = Homr (BP, BB) (cf. [19]), 2V* =
Homr (4N, ̂ A), and 9*: P* —» N* the homomorphism such that ^*(p*) =
(α ^(p) -^ α pp*)(p* e P*, αe A, p e P) (cf. [19; Lemma 3.1]). Then it is
obvious that [9*] is the inverse element of [φ] in P(A/B). Thus we have
proved
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THEOREM 1.3. P(A/B) is a group.

Remark. Similarly P(A/B) can be defined for any ring homo-

morphism B —> A.

THEOREM 1.4. There is an exact sequence

1 _* u(L) Π UiK) -» UiL) -> ®(A/S) -» P(A/B) — Pic (A) ,

where £/(*) is ί/̂ e group of invertίble elements of a ring *, αmZ Pic (A)

is ί/̂ e #rowp o/ isomorphίc classes of two-sided A-Morita modules.

Proof. The mapping U(L) Π £7(10 —» £7(L) is the canonical one, and

the mapping C7(L) -> ®(A/B) is c ^ Be. Then 1 -> [7(L) n U(K) -> ί/(L)

—>©(A/J?) is evidently exact. For X in ®(A/^), we correspond the

canonical inclusion map iΣ\ Z - > A. If i x is isomorphic to i 5, then there

is a commutative diagram

and hence there is an element d in U(L) such that BcZ = X. Hence

UiL) -> ®(A/J?) -> P(A/β) is exact. For p : P -^ M in P(A/B), we corre-

spond [M] (the isomorphic class of M). If M -^-> A as A-A-modules,

then we may assume that M — A and P is a B-Z?-submodule of A

(cf. [19 Lemma 3.1 (4)]). Then, by [19 Prop. 1.1], we have P e ®(A/B).

This completes the proof.

On the other hand we have

THEOREM 1.5. There is an exact sequence

1 -> U(L) Π U(K) -> U(K) -> Aut (A/β) -* P(A/B) -> Pic (B) .

Proof. The map Z7(L) Π U(K) -* U(K) is the canonical one, and the

map U(K) -> Aut (A/B) is d*-+ d, where d(a) = dad"1 for all α e A. Then

1 -> Z7(Z) Π I7(L) -> 17(10 -> Aut (A/B) is evidently exact. For any a in

Aut(A/B), we correspond the map iσ: B -> Auσ9 b^>buσ (cf. [19]). For

d in U(K),d *-+d *-+%%. Put cί = τ. Then A -^-> Auτ, a «-> ad~ιuτy as" A-A-

modules, and B -^-> B9 as B-β-modules, by & ^ δd"1, and we have a

commutative diagram
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Let σ be in Aut(A/Z?), and suppose that i, is isomorphic to iB: B
Then there are isomorphisms a,β such that

is commutative. Put a~ι{uσ) = d. Then, for any a e A,σ(ά)d = α '^
= α^O^α) = ώα, and so σ(ά)d = da. Since β(d)uσ — aid) = ^σ, we have
β(d) = 1, whence d is in 27(ίC), because β is a β-β-isomorphism.
Finally, for φ:P->M in P(A/B), we correspond [P]ePic(B). If
^β^ -^~> BPB, l^u, then P — Bu and M = A p(w). Since M -^-> A ® ̂ P
as left A, right B-modules, a φ(u) — 0 (αeA) implies α = 0. Hence
there is an automorphism a e Aut (A /B) such that φ(u)a = σ(α)p(w) for
all αeA. Then ^ is isomorphic to ΐσ. This completes the proof.

If we cut out P(A/B), we have well known exact sequences.

PROPOSITION 1.6. There are two exact sequences

a
1 — > U(K) — > U(VA(B)) — > ®(A/B) > Pic (B) ,

1 — > U(L) — > U(VA(B)) - ^ * Aut (A IB) — • Pic (A) ,

where ct{d) — Bd and β(d)(a) = dad-\deU(yA(B)),aeA).

Here we indicate Th. 1.4, Th. 1.5, and Prop. 1.6 by the following
diagram:

Z7(K).

U(L) n u(K)

If A is an E-algebra, we define PicΛ (A) = {[P] e Pic (A) | rp = pr for
all reR and all peP} and PB(A/B) = {[φ] e P(A/B)| φ: P -> N, [N] e
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PicΛ (A)}. If B is an S-algebra, we define PS(A/B) == {[φ]eP(A/B)\φ: P

-> N, [P] e Pic 5 (B)}.

§ 2. The definition of C(J/B)9 and an exact sequence associated with ΔjB.

In this section, we fix a (finite or infinite) group G, rings δ c A ,

and a group homomorphism J: σ ^ Jσ from G to ®(A/B). Then / induces

a group homomorphism G -» Aut (VA(B) /L) (cf. [19; Prop. 3.3]), and

further G—> Aut (K/K Π L). A generalized crossed product ®βQQJβIB

associated with J is defined by (xσ)(yσ) = (2,), where 2σ = Στp=σ xτyp. We

denote this by ά\B in the sequel. Pic (B) is a left G-group defined by

*[P] = [/, (x) 5 P (g) B/^.J (conjugation). Then we define Pic (B)G = {[P] e

Pic (B) I *[P] = [P] for all σ e G}, and Pic,, (B)G = Pic (£)* Π Pic* (5). The

homomorphism ®(A/B)->P(A/B) in Th. 1.4 induces a left G-group P(A/B)

defined by conjugation.

PROPOSITION 2.1. The following exact sequences consist of G-homo-

morphίsms:

1 > jr/(L) n U(K) > U(K) • Aut {A IB) —-> P(A/B) • P i c (JS)

1 • U(L) • U(VA(B)) • Aut {A IB) • Pic (A)

Proof. Let σeAut(A/β), and Z e ® ( A / δ ) , and let 2

(αi e Z, α< e X"1). Then X(σ)(a) = Σ^ α r σ(α>(α) ̂ ^ ( α ^ for all a in A

(cf. § 1), and so A^σ -^-> A^X(σ) as A-A -modules, by the map auσ —> α

2ί(7(^)Φi(α) Then the following diagram is commutative:

X ® BB ® ^ ί̂̂ "1 • ^ * > x ® δ ® ^ 1 > xbuax
f = xb σ(x')uσ .

B >AuX{σ) I ( f f )

Hence Aut (A/B) -> P(A/B) is a G-homomorphism. Let c be in

Then, since Z induces an automorphism of VA(B), there is a c' e

such that xc — c'x for all xeX (i.e., Z(c) = c'). Put ^ = Σ

Then c'c"1-^^) = c'c'^cα c"1 = c'xc~ι — x for all x in X. Hence we know

that c'c~ι = M (cf. §1). For any a in A, X(c)(α) = u-c(a)u~l = c'c '^αc' 1

• cc'"1 = c'αc'"1. Hence Z(c) = cr = X(c). The remainder is obvious.

We define P(A /BYG) = {[̂ ] e P(A /J5) | ψ: P -> M, Ja #(P) = φ(P) -Jσ for

all o eG}. Then P(A/β) ( G ) is a subgroup of P(A/B)G. In fact, for

φ: P->M in P(A/B), [0] belongs to P(A/BYG) if and only if, for any a
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in G, there is a B-B-isomorphism fa:P-^Jσ®BP®BJa-i such that the

diagram

is commutative, where (σψ)(xσ ® p ® xβ) = xσ-φ(p)x'σ. Here we shall check

that P(A/B){G) is closed with respect to inverse. We may assume that

P ^ M and P* c jlf* (cf. [19; Lemma 3.1]). Then P* = {geM*\Pΰ

£ £}. In this sense, (P)J0P*Jσ-1 = (PJβ)P*J^1 = (J0P)P*Jβ^ = Jβ((P)P*)J^1

= J,/,^ = β, and so JσP^Jσ-! c P* for all σ e G. Hence JaP*Ja-ι = P*

for all o e G.

We put P*(A/£)(G) - PX(A/B) Π P(A/B)(G). Further we define

Aut (A/J5)(G) = {/ e Aut (A/β) | /(/,) = J, for all σ 6 G}. Then we have

PROPOSITION 2.2. Tfterβ is an ea acί sequence

1 > [/(L) n U(K) • U(K) • Aut (A/BYG)

iCiΓ (B)G .

Proof. The above sequence is a subsequence of the one in Th. 1.5.

Therefore it suffices to prove that, for / in Aut(A/B), the image of /

is contained in PK(A/BYG) if and only if / e Aut (A/β)(G). However

J^BufJo-x = Ja-f(JaY
ιuf, so that Jσ-BufJσ-r = Buf if and only if / .-/(/J" 1

= B, or equivalently, / (/J = Jβ. This completes the proof.

Next we state several lemmas (which are well known).

For any two-sided S-module U, we denote by Vυ(B) {ueU\bu = ub

for all b e B}.

LEMMA 2.3. Let B be an R-algebra, and P an R-module such that

RP\RR {i.e., finitely generated and protective). Then Endr (BB 0 RP)

-^-> B (x) RΈnάr (RP) canonίcally, and BB ® RPB \ BBB (cf. [19]). And further

VmP{B) ~ -̂> K® RP canonίcally, where K is the center of B. Therefore

if End (RP) = R then BB ® RPB is a Morita module.

Proof. The first assertion is well known. The remainder is evident,

if RP is free. Hence it is true for any P such that RP\RR.

L E M M A 2.4. Let BMB \ BBB. Then M = B. VM(B) ~^-> B (x) KVM(B)
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canonically, and KVM{B) \ KK. Further End r (KVM(B)) -^-> End r (BMB) and

End r (BM) -^-> B ® ^End,. (BMB), canonically.

Proof. BMBIBBB implies that VM(K) = M, and hence M may be

considered as a left ^-module, where Be = B® κB
Op. Then BeM\BeB.

Evidently Homr (BβB, BeM) -Ξ-> 7^(5) canonically. By [14; Th. 1.1], BM

- ^ > Homr (5β£«, 5eM) -^-> Homr ( 5 e £ e , BeB) ® x Hom r (Λ.B, 5eM) - ^ > 5 ®

^7^(5), ^ 7 ^ I ^ Z and End r (irHom,. (BβB, BM)) ~^-> End r (ΛM5). Combining

this with Lemma 2.3, we obtain the last assertion.

COROLLARY 1. Further assume that End r (BMB) = Z, Γ/^e^ BMB is

a Morita module.

COROLLARY 2. Let BMB \ BBB and BWB \ BBB. Then BMB -^-> BM'B if

and only if KVM{B) -^-> KVM,(B).

The following corollary is repeatedly used to check commutativity

of diagrams.

COROLLARY 3. Let BMB \ BBB and BM'B \ BBB. Then VM®M,(B) -^->

VM(B) ® KVM'(JB) canonically, and there is an isomorphism BM ® M;

B —>

BW (x) MB, mQ (x) mf t-> m' (x) m0, m®m[^mf

Q®m (m0 e 7^(5), meM, m'oe

VM,(B), mf e Mf), where unadorned (x) means ®B. We call this isomorphism

the "transposition" of M and Mf

Proof. By Lemma 2.4, M = β ® ̂ 7^(5) and M/ = JB (x) ̂ 7^,(5).

Consequently, M ® Mf = β ® ̂ 7^(5) ® ̂ 7 ^ ( 5 ) . Then, by Lemma 2.3,

VMβM,(B) - ^ > 7^(B) ® ̂ 7^(5) canonically. Since VM(B) (x) ̂ 7 ^ ( 5 ) - ^ >

7^/(B) (x) x7jf(B) by transposition, we obtain the latter assertion.

Remark. We put {[M] e Pic(B) \ BMB ~ BBB} = Pic0(JB) ([19]). Then, by

Lemma 2.3, Lemma 2.4, and Cor. 3 to Lemma 2.4, Pic^ (K) -^-> Pic0 (β),

The following lemma is also used to check commutativity of diagrams

LEMMA 2.5. Let BU ® BWB — BBB — BMB. If xe VM(B) and Σίui

®wte VUΘW(B), then Σiui®x®wie VU(S)M®W(B).

Proof. For any x in VM(B), Ό ® BW ->U ®M®W,u®w ^u® x®w

is a β-β-homomorphism.

Next we shall define an abelian group C(J/B), which is the main

object in the present paper. In the rest of this section, unadorned ®
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always means ®fi. C(ΔfB) consists of all isomorphic classes of generalized
crossed products ®σeβVσ/B of B with G such that BVσB ~ BJCB f° r aU
σeG (cf. [19]). Let 0 VJB and 0 WJB be generalized crossed products
of B with G, and let / be a B-ring isomorphism from 0 VJB to © WJB.
If f(Vσ) = T7, for all σ e G, we call / an isomorphism as generalized
crossed products. Precisely a generalized crossed product 0 VJB is
written as (© VJB,faJ, and its isomorphic class is denoted by [0 VJB,fσjΐ],
where fβtX: Vσ ® Vτ —> Vστ is the multiplication. In particular, the mul-
tiplication of Δ is denoted by φϋtt. However we denote often (©JJB,φσtV)
by ΘJJB, simply. Let (0 7,/B,/,,r) and (®WJB,g.tV) be generalized
crossed products in C(Δ/B). Then the σ-component of the product of
(®VJB,fσJ and (®WJB,g,tV) is defined as V.®J.-1®Wβ. The mul-
tiplication is defined by h,tt: Vσ ® Jσ-t ® Wσ ® Vτ ® Jτ_χ ® T7r - U 7, ® Vτ

® Jτ_x ® Λ-i ® W7. ® T̂ r ~^> Vστ ® /(„)_! (x) T7αr, where t is the transposi-
tion of Ja-X (x) Wβ and Vτ ® Jτ-l9 and * = /,fΓ ® ̂ σ)T (x) ̂ σ)T. The associativity
of the above multiplication is proved by making use of Cor. 3 to Lemma
2.4. If we identify the canonical isomorphism B (x) B (x) B —> B, then we
have a generalized crossed product (© (Vσ ®Ja-x ® Wσ)/B, hσj. The
associativity of this composition in C(Δ/B) is proved by using Cor. 3
to Lemma 2.4, too. Evidently [®Jσ/B,φσtt] is the identity element of
C(Δ/B). The (7-component of the inverse of (© VJB,f.tV) is Jσ®Vf® Jσ,
where Vf = Homr (BVσ, BB). The multiplication is defined by /* r:/σ(x)

(Y* ®Jσ) (x) (Jv®V*)®Jt-ϊ-+J. ® (/Γ® 7*) (8) (7
V*τ ® ΛΓ, where *: Vf ® V* -> (Vσ ® 7τ)* -> 7* is the canonical isomor-

phism induced by f9tτ. We identify the canonical isomorphism B®B*

® B —» B, and we have a generalized crossed product (0 (Ja ® 7* ® Jσ) /B,

f * t ) . By the isomorphism Vσ ® (Jσ-X ® /J ® Vf ®Ja^ (Vσ ® Vf) ®Jσ-^

Jσ, the product of (®VJB,fβtV) and (© (/σ ® Vf ® J.)/B,f*r) is isomor-

phic to J, as generalized crossed products. Hence C(ΔjB) is a group.

Finally C(Δ/B) is an abelian group, because the isomorphism Va®Ja-i

®Wσ->Vσ® J.-X®Wσ® (Λ_x® J.) -^->Wσ® j,-t® Vo®(Λ-,® J σ )-T7 σ

® J0-i ® 7, is an isomorphism as generalized crossed products, where t

is the transposition of 7,® Ja-t and Wσ<8)Jσ-i. By C0(Δ/B), we denote

the subgroup of all generalized crossed products [ Θ ^ / B J J such that

*7 σ ΰ -^> ^ for all σeG. We put Pic,, (5)^3 = {[P] e Picx (B) | Λ P ® Jσ

® *^β - BJCB
 f o r a 1 1 σ i n G)> where *P = Hom^ (PB,BB), and " - " means
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"similar" (cf. [19]). Then Pic* ( # F ] is evidently a subgroup of Pic* (B).

Then the canonical isomorphism *P ® P -> 5 induces an isomorphism P ®

J , ® ( * P ® P ) ® J T ® * P — P ® J , ® / T ® * J P , and we obtain pφay.(P®Jo

® *P) ® (P ® J τ ® *P) — P ® Jσ ® J r ® *P | ( 8 ^ Θ I > P®Joτ® *P. Then

(Θ (P® Λ ® *P)/B,pφβtT) is a generalized crossed product, and [P] «->

[ Θ ( P ® Λ ® *P)/β, p ^,J is a group homomorphism from Pic* (B)m to

C(Δ/B). Thus we have proved the following theorem

THEOREM 2.6. C(Δ/B) is an abelίan group with identity Δ/B, and

CQ(A/B) is a subgroup of C(Δ/B). There is a commutative diagram

Picκ(B)G >C0(Δ/B)

• C(ΔjB)

Remark. CQ(Δ/B) is isomorphic to H2(G,U(K)). The isomorphism

is defined as follows: Let [®JJB,fσJ be in CQ(Δ/B). Then, for any

σ, τ in G, there exists uniquely ασ>τ e U(K) such that fσt£xσ (8) xv) =

β,,r 0σfr(#* ® r̂) for all Xa G Λ, XΓ G /Γ. Then {ασr |σ, τ e G) is a (normalized)

factor set, and [φ J,/2?,/,|Γ] •-> class {ασ>r} is an isomorphism. (0/σ/JS,

/^J may be written as (ξBJJB,aσJ when Δ is fixed.

PROPOSITION 2.7. There is an exact sequence

P i c * {B)G • C0{Δ/B) .

Proof. The semi-exactness follows from the definition of Pκ(ΔjByG)

([19 § 3]). Let [P] e Pic* (B)G be in the kernel. Then (Θ (P0JσΘ *P),
pφσjτ) is isomorphic to (®Jσ,φσtΐ) = J. However, by [19; p. 116], (ΘP(g)

Jσ<8)*P),pφσ,τ)/B is isomorphic to End^ (P ® BΔΔ) jB, as rings, and so we

have a Morita module ΔP ® BΔΔ. Then the canonical homomorphism P

to P ® Δ,p^p®l is in PK(Δ/BYG).

An abelian group B(Δ/B) is defined by the following exact sequence:

Pic* ( S F ] • CM IB) • B(Δ/B)

Then we have

PROPOSITION 2.8. There is an exact sequence

Pic* (B)G — > C0(J/β) • B(Δ/B)
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Proof. The semi-exactness is trivial. If [®Jσ,fσJ is in the kernel

of CQ(Δ/B)-*B(Δ/B), then there is [P] in Pic* ( B F ] such that [P]y->

[ Θ Λ , / V ] under the homomorphism Pic* ( B F ] -> C(Δ/B). Then it is

evident that [PI is in Pic* (B)G.

By Remark to Cor. 3 to-Lemma 2.4, Pic* (K) -* Pic0 (B), [Po] ^

Wo ® *B] is an isomorphism, and [P] t-+ [VP(B)] is its inverse.

PROPOSITION 2.9. The above isomorphism is a G-ίsomorphism.

Proof. Let [P] be in Pico(B). Then P = B® KVP(B), and Jσ®P

<g> /,_, -Ξ-> J# <g> (B <g> KVP(B)) <g> Λ-x -Ξ-> (J, ® *"FP(β)) <g> /,-> as two-sided

B-modules. It is easily seen that /, ® KVP(B) -> K f̂f (x) *7P(J?) ® *K^σ-i

® JΓΛ> %<, ® Po »-> K ® Po ® ̂ - i ® ̂  is a J5-β-isomorρhism, where σ denotes

the automorphism induced by Jσ. Therefore Ja ® P ® /σ-i -^-> K^. (8)

Jσ-i>Vo ^ V"p(B)) is a J?-B-isomorphism. Hence, by Lemma 2.3,

VJ OP®J,-ICB) - ^ Kuσ ® κVP(B) (x) κKuσ-ly as K-modules. This completes

the proof.

COROLLARY. Z\G, Pic* (X)) -^-> Z^G, Pic0 (B)).

There is a group homomorphism [φ VσffσiT] ^ (σ —> [ 7 J [/J"1) (σ e G)

from C(J/B) to Z\G, Pic0 (B)). Then the following sequence is exact:

1 > C0{Δ/B) • C{ΔjB) • Zι(G, Pic0 (B))

F^G, Pic0 (B)) is defined by the exactness of the following row:

Pic* (B)w — • Z\G, Pic0 (B)) — > ff(G, Pic0 (B))

PROPOSITION 2.10. C0(J/B) -> B(J/B) -> F^G, Pic0 (B)) is

Proof. Evidently the above sequence is semi-exact. Let [[φ Vσ,fβtT]]

(the class of [ 0 7 , , / J in B(Δ/B)) be in the kernel. Then there is a

[P] e Pic* (B)w such that P (g) /„ ® *P -Ξ-> 7 . for all σ e G, where *P =

(PB9BJS). For any σ e G , we fix an isomorphism hσ: P ® Λ ® *P

<; /σ,τ is defined by the commutativity of the diagram
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P (x) /, (x) *P (x) P ® / r (x) *P hσ®h\ γσ (g) γτ

j "V-
where * is defined by *P®P -^-> B (canonical) and φβtT. Then ( 0 Vσ,

f'σtT) differs from ( 0 7 , , / J by some factor set {aσ^}, i.e., /',,τ = α,,τ/σ,Γ

(cf. Remark to Th. 2.6.). Then, by the canonical isomorphism Jσ®Jσ-i

® Vσ -Ξ_> 7,, (0/, ,α, ) r ) X (© 7σ,/σ>r) is isomorphic to ( 0 7σ,/'σ>Γ). Since

(Θ 7,,/',,,) is isomorphic to ( 0 (P(x) J , ® * P ) , p ^ r ) , this completes the

proof.

PROPOSITION 2.11. There is an exact sequence

B(J/B) > HKG, Pic0 (£)) > H\G9 U(K)) .

Proof. For φ in Z\G, Pic0 (β)), a homomorphism Φ from G to Pic (B)

is defined by Φ(σ) = φ(σ)[Jσ]. Let Φ(σ) = [17J and U1 = J5. Then Ϊ7, - /σ,

as jB-S-modules, for all σ e G. For σ, r in G, we take a B-B-isomor-

phism / σ j T :U a ®U τ -> Uστ. If σ = 1 or r = 1 then we take /σjT as a

canonical one. Then, for any σ, τ, γ in G, there exists uniquely u(σ, τ, γ) e

U(K) such that u{σ,τ9γ)fσ^{Iσ®f^){x)^fστ^fσ^®Iγ){x) for all x in J#rr,
where Iσ is the identity of Uσ.

UσΘUr®Ur

uaτ®υr

If (7 = 1 or τ — 1 or p = 1, then u(σ,τ,γ) = 1. Let f^τ be another iso-

morphism from Uσ ® C7r to Uστ, and let ^(σ, r, γ) be the one determined

by f^τ. Then, for any σ, τ in G, there exists a unique %O, r) e U(K) such

that u(σ,τ)fβyT = / , , τ . If σ = 1 or τ = 1, then u(σ, τ) = 1. It is easily

seen that u'(σ, r, r) = u(στ, γ)u(σ, τ) ffw(τ, γ)~ιu(σ, τγ)~ιu(σ, τ,)-). Let H be the

group of all functions u from G X G X G to U(K). Then ZX(G, Pic0 (B))

-» H/B3(G, U(K)),φ H-> class {w(σ, r, 7-)} is well defined, and this induces

a:HKG,Fico(B))-> H/BXG, U(K)), where B\G, U(K)) consists of all

%(—, —, —) e ί? such that %(σ, τ, 7) = ^(στ, γ)u(σ, τ) σ^(τ, ̂ "^(σ, τγ)~ι for
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some mapping u(—,—):GxG-^ U(K) such that u(σ, τ) = 1 provided

a = 1 or τ = 1. If class {tt(σ,r,τθ} = 1 then, for a suitable choice of f0tT,

we can take u(σ, τ, γ) = 1 for all <x, τ, p e G. Next we shall show that a

is a homomorphism from ΪΓ(G, Pic0 (B)) to H/B3(G,U(K)). We take

another ψ G ̂ ( G , Pic0 (B)), and put ^(σ) = ψ(σ)[Jσ] = [Wa]. And let each

9σ,τ ^ f f ® ^ T - ^ Wσr be a Z?-B-isomorphism, and ^(σ,τ, 7) be the one

determined by gσ,τ. Put 0ψ = π. Then 77(σ) = φ(σ)ψ(σ)[J σ] = φ(σ)[J σ][J ^

ψ(σ)[Jσ] = Φ W t J J - ^ σ ) = [E7,® Λ-x ® WJ. We take an isomorphism

Ky Uσ (x) Λ-x ® ΪΓ # ® C/r (x) /r-x ® Wτ -U uσ ® C/Γ <g> / r-, ® Λ-x ® w. ® ΐfr

— -̂> Z7<rr (x) J^^-i (x) Wσr, where t is the transposition of Ja~x®Wσ and

C7T (x) Jτ-lf and * = / σ t r ® φτ-i,σ-i ® ^σ,r. Then, by using of Cor. 3 to Lemma

2.4, it is easily seen that u(σ, r, rMO, r, γ)kσ^r(Iσ ® fcΓtr) = kaτ^(k^τ (x) 7r).

The fact that Im α is contained in iϊ3(G, Z7(K)) will be proved later.

Thus we have obtained the following theorem, which may be considered

as a generalization of Chase, Harrison, Resenberg [8; Cor. 5.5],

THEOREM 2.12. Let G be a group, and ΔjB = (®Jσ,φ9tt) be a

generalized crossed product of B with G. Let C and K be the centers

of Δ and B, respectively. Then there is an exact sequence

1 • U(C) (Ί I7(X) • U(K) • Aut (A/BYG)

> PK(A/Byv > Ficκ (B)G , ClΔjB)

> B(Δ/B) > HKG, Pic0 (B)) > H\G, 17(20) .

Proof. This follows from Propositions 2.2, 2.7, 2.8, 2.10 and 2.11.

Remark. The above sequence can be expressed as a seven term

exact sequence:

1 > H\G, U(K)) > PK(Δ/BYG> > P ic x (B)G > H2(G, 17(20)

> B(Δ/B) > HKG, Pic0 (B)) > HKG, U(K)) .

In fact, for any fe Aut (Δ/BYG) and any σeG, there exists uniquely

cQ e U(K) such that f(xσ) = cσxσ for all xσ eJσ. Then it is easily seen

that caτ = cσ

 σcτ for all σ, τ e G, and we have an isomorphism Aut (Δ/BYG)

-Ξ-> Z\G, U(K)). Evidently the image of 17(20 in Aut (Δ/BYG) corresponds

to BKG, U(K)).

Let Pσ(σ e G) be a family of Morita B-S-modules such that BPaB

- BBB, Pλ = B. Then BPσ ® / σ β - ΰ / f f 5 . Put VPa(B) = P^a. Then KP^O
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~ KK, and so κP0iO ® κKuσjκ ~ κKuσκ, It was noted in the proof of

Prop. 2.9 that Kuσ ® κP^τ ® κKuβ-x -^-> F ^ p r 0 j w ( B ) , as ίί-if-modules,

w f ® 3 ? r ® V i •-• Σ ί α i ® ^ ® α{, where α£ e/, , α{ e/,-i, ^ αtα< = 1. L e t

/ * τ : P σ (g) /σ (x) P τ ® Λ-i -> Pσ τO, r e G) be a family of B-5-isomorphisms.

Then, since Vj^P^Ja-x{B) -^-> 2 ^ , ® ̂ ^ ® κKuσ-19 each / * r induces a

Z-K-isomorphism /0*σ,τ: P0,σ ® κKuσ ® ̂ ^ ® A ^ -> P0,στ (cf. Cor. 3

to Lemma 2.4), and conversely, and it is evident that {/*r | σ, τ e G} H->

{/ίir.r k , r e G } is a one to one mapping between them. This is nothing

but an isomorphism in Cor. to Prop. 2.9, and we can prove the com-

mutativity of the following diagram:

Z\G, Pic* (K)) — • Z\G, Pic0 (B))

\ /
HjB\Gy U(K))

Then, by the same way as in [16 Lemma 8], the image of Z\G9 Pic^ (K))

in H/B3(G, U(K)) is contained in HZ(G, U(K)), and this completes the proof

of Th. 2.12. On the other hand, / * τ : P σ ® J σ ® P τ ® Ja-, iXt®Φσ'τ>

Pστ(σ, τeG) induces f.%t: Pσ® JσΘ PTΘ Jt-» (Pa ®Jσ®PτΘΛ-0 Θ (Jσ® Λ)

-> Pστ ® Jστ(σ, τeG) and conversely, and {/* r | σ, τ e G) «-> {/ff?τ | σ, τ e G) is

a 1 — 1 mapping. A similar fact holds with respect to POyXσ e G) and a

crossed product ®Kuσ with trivial factor set: {/*σ,r | σ,r G C } B {/0,α,r | σ,r e G}.

Let {/,it} <-> {/*τ} <-> {/0*σ,r} ̂  {/Oi#tT}. Then {/,,,} defines a generalized

crossed product if and only if so is {/0,α,r} Its proof is easy, but it is

tedious, so we omit it. Next we shall show that {/ff,r} >-> {fo,σ,τ} is an

isomorphism from C(ΔjB) to C(®KuJK). To this end, let [ 0 (Qσ <g) J,),

flr^J be another element in C(A/B), and let [ 0 (Pσ (x) Qσ (x) Jσ), hσj be the

product of [Θ(Pσ®Jσ),fσJ and [φ (Q, <g> / t f), ̂ , J (cf. the proof of Th.

2.6). Then / * r : Pσ® Jσ® PT® Jo-i -^-> Pστ and ^* τ : Qσ <g> /σ ® QΓ (x) /._,

- ^ > Qffr induce / * Γ ® flr* r : P σ ® Λ ® P r ® Λ_x ® Qσ ® Λ <g> Qr ® Ja-X - ^ >

Par ® Qαr Similarly /0*σ>r and #0*σ>r induce /jζ,ίΓ ® #0*σjT. On the other

hand there are isomorphisms Pc® Ja®Pτ® Jσ-i ® Qσ® Jσ® Qτ® Jσ-i

-^Pσ®Qσ®Jσ®Pτ® (Λ-i ® Jσ) ®Qτ® Jσ-ι -^Pσ®Qσ®Ja®Pτ®Qτ

(x) /„_!, where ί is the transposition of Jσ® P r (x) /α-i and Qα. Similarly

we have an isomorphism P M ® ίC^^ ® P0>r ® X^-i ® Q^a ® Kuσ ® Q^τ ®

Kua-X -> P0>σ ® Q0>σ (8) Z ^ ® P0,r ® Q0,r ® ̂ ^.-i for all σ , r ε G . Then the

following two diagrams are commutative:
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P, Θ Λ ® Pt ® /._χ ®. Q.

.,® * # « . ®κP»,&κKu._ ι® Qβ> ^ /-O,στ w K**Q,στ

where [Θ (POi, ® KQO<, ® JCXM.), Λo,.,J is the product of [φ (Pβ l, ® KKU,),^^]

and [φ (Q,,. ® JΓKM.), Λ...J. Then, since {/*r ® flr*.} «-> {/J.,, ® flTβ*.,,} is

evident, we know that {Λ^J •-> {ha>,tT}. Thus we have proved that C{ΔjB)

-> C(θ Xtt./ίO, {/,,,} i-> {/o,.,,} is an isomorphism. It is easily seen that

CsiΔIB) -2-> C 0(θ KuJK) under the above isomorphism. Thus we have

proved

THEOREM 2.13. There are commutative diagrams:

1 — • CJiΔIE) — • C(J/β) — > ZKG,-Pico(B)) (exact)

C0(θ Ku, IK) — • C(θ Kua jK) — • Z\G, Pic* (K)) (exact)

HKG, U(K))

Z\G,-Picκ(K))/

We shall further continue the study of the relation between z//5 and

®KuJK (with trivial factor set).

PROPOSITION 2.14. There exists a commutative diagram

Ficκ(K) —>C(@KuJK)

Pic* ( B F 3 — > C(Δ/B)

Proof. Let [P0]ePicκ(k). It is necessary to prove that (®(P 0 ®

κKu. ® r * P 0 ) , p»?50jO)τ) corresponds to (φ ((B ® π P 0 ) ® / . ® (B ® x*Po)), p?5«,.)

under the isomorphism C(&KuJK) -> C(ΔIB), where ^,i(riτ is the canonical

isomorphism .KM,® κKut-» !?«„, ua®ut^-%„,P — B® KP9, and *P 0 =

Homj (POJC,E:X) (cf. the proof of Th. 2.6). However this is done by using
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Kua ® K*PQ ® KKua-x ~^-> VJa<S)*p^jσ-1(B) and *P -^-> B ® K*PQ canonically

(cf. the proof of Th. 2.13).

Next we define a homomorphism from Pκ{®KuJKYG) to PK(Δ/B)(G).

Let ^0:P0->ikf0 be in Pκ(® KuJKYG\ Then Kua® KPQ® KKua-x~^>

J' σ 6 § P 6 § J V ~ l \ ~ ) 9 C * o x x ~ x \ . ~ l l l V / V Λ l Λ l C o , tλ/σ \ ζ y JJQ Kjy U"σ — \ 1 — T / ι Ί Uv'g ί V ^ V \ J L \ S y } J n J \ £ y v ί / _ ί ,

where P = B® KPO, aOίi e Jσ, < f i e Jσ-l9 2 , α . X f i = 1. Therefore JK:̂ e<; (x)

^σ ® (1 ® Po) (cf. the proof of Prop. 2.9). Now, for the sake of simplicity,

we may assume that Po <Ξ MQ. Then uaP^ua-x — Po for all σ eG. Then

Po ® i?Λ -^-> Λ ® RPQ> as jB-β-modules, uσpQuσ-x ® xσ^> xσ® p0, and this

induces a B-B-isomorphism Po ® ^J (-^-> P ® J) -^-> ^ ® ^P o (-^-> Δ®P).

Then, by Lemma 1.2, we have a Morita module ΔΔ ® KPQJ, where (xσ ®po)xτ

— xσxτ ® uτ-1pQuτ (xσ e Ja, Po e Po, xτ e Jτ). Hence the canonical homomor-

phism φ:B® KPO = P-+Δ®KPO is in Pκ(Δ/ByG)- Let ψ0: Qo -> E70 be

another element of Pκ(®KuJKYG\ Then [φQ][ψ0]: Po® KQO -> Mo ®' Uo,

Po ® QQ •-> ΦoiVo) ® ΨoiQo), where ®/ means the tensor product over 0 Kuσ.

On the other hand, [φ][ψ]: (B ® KPO) ® (B ® KQO) -> (Δ ® KPO) ® Δ{Δ ® KQO)

is the canonical map. Then it is easily seen that the canonical isomorphism

Δ ® KPQ ® KQQ -> (Δ® KP0) ® Δ(Δ ® KQO) is a J-J-isomorphism such that

the diagram

B® KPQ® KQO > Δ® KPQ® KQO

I I
(JS ® KPO) ® B(B ® KQQ) > (Δ ® KPO) ® Δ(Δ ® KQO)

is commutative. Hence β: [φ0] h-> [φ] is a homomorphism from
) to PK(Δ/BYG\

THEOREM 2.15. There is a commutative diagram with exact rows:

U(K) — > Aut (Θ KuJKyG) — > Pκ{® KuJK)™ — • Pic,, (K)G

I Y Y
(1) a « (2) j8| r

Y Y Y

ϋ{K)—• Aut (J/BYG) — • PK(A/BYG) —>Picκ(B)°

— • C0(Θ KuJK) — > B(φ KuJK) — • H\G, Pic x (K)) — > H\G, U(K))

• C0(J/B) > B(Δ/B) > HKG, Pico(β)) > H\G,-U(K))

where a is Aut (Θ Ku./K)™ -^> Z\G, U(K)) -^> Aut (Δ/B)m (cf. Remark

to Th. 2.12). and β is the homomorphism defined above.
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Proof. By Cor. to Prop. 2.9 and the definition of Hι{G, Pico(B)),

ε is surjective, and hence so is d. As γ is injective, so is β, if (1) and

(2) are commutative. Therefore it suffices to prove that (1) and (2) are

commutative. However the commutativity of (1) is evident. To prove the

commutativity of (2), let a(f0) = /. Then, for any σeG, there exists

uniquely cσ e U(K) such that f(xσ) — cσxσ for all xσ e Jσ. Then fo(uσ) =

cσuσ for all σeG, and so (xσ (x) ufo)xτ = xσxτ ® uτ-1ufouτ = # σ # r (x) uτ-xcτuτufQ

= £σ#Γ (x) τ-^O^/o = xa-f(xT) Θ % 0

 i n 4 ® *#%o> where α, e /„, xr e / r (cf.

the definition of β). This means that (2) is commutative.

T H E O R E M 2.16. There exists a commutative diagram

U(K) — > A u t (A/BYG) — > PK(A/BYG) — > P i c κ ( B ) G

(1) I (2) I (3)

U(K) • Aut(J/B) ( G ) • PK(A/BY

Proof. Let / be in Aut(A/B)( ί?). Then f(Jσ) = Jσ for all σeG, so

/ induces canonically an automorphism of Δ/B = © JJB. Then the com-

mutativity of (1) is evident. Next we define a homomorphism PK(A/BYG)

->Pκ{ΔjByG\ Let φ:P->M be in PK(A/BYG). For the sake of sim-

plicity, we may assume that P is a submodule of M. Then JσP = Jσ ®

BP = PJΰ = P® BJa in M for all σ e G . We construct Θ ΛΛ formally.

Then this is isomorphic to Δ® BP canonically, as l?-J3-modules.

Similarly 0 PJσ -^-> P ® ̂ J. Since JσP = PΛ, we have an isomorphism

Λ (8) BP -^-> P ® 5̂ ? as S-β-modules. It is easily seen that this iso-

morphism satisfies the condition of Lemma 1.2. Thus φ: P —> Δ® BP,

V ^ 1 <g> v is in P^(J/B) ( G ). Let ψ: Q -> U be another element in PK(AIBYG).

Then [0]I>]: P (g) ̂ Q ~> i»ί (x) AU. On the other hand, we have [φ][ψ]: P ®

BQ -* (Δ (x) BP) ® j(/f (x) 5Q). Then it is easily seen that the canonical

isomorphism Δ ® BP ® BQ -> (Δ (x) BP) ® / J (x) BQ) is a J-J-isomorphism

such that the diagram

PΘBQ

is commutative. Hence the mapping [φ] H-> [̂ 1 is a group homomorphism.

Finally, the commutativity of (2) is evident from the definition of the

homomorphism PK(A/BYG) -> PK(Δ/BYG).
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Evidently 1 -> Aut (A/ΣJm) -> Aut (A/BYG) -> Aut (Δ/BYG) is exact.

Then the commutativity of Th. 2.16 implies that

Aut (A/ΣJ0) • PK(A/BYG) > PK(Δ/BYG>

is exact. Thus we have

COROLLARY. The following diagram is commutative, and two rows

are exact:

U(L) n U(K) -> U(KG) -» Aut (A/ΣJ.) -» PK(A/BYG) -* PK(Δ/BYG)

Remark. If L c Z then Aut(A/β)G is a subgroup of Aut(A/BYG).

On the other hand, if VΔ(B) = X then Aut(J/J5)(G) = Aut(J/B), because

Horn (5/.β, ^ΛB) = 0 for any σ Φ τ (cf. [17; §6]).

§ 3. In this section, G is a group, and B Z) Γ are rings with a

common identity. We fix a group homomorphism G-+Aut z (B/T) (the

group of all Γ-automorphisms of B/T), σ »-> <τ, and we consider JS as a

G-group. i£ and F are centers of B and Γ, respectively. We put Δx =

Θ σeGBuJB, which is a crossed product of B and G with trivial factor

set: uσuv = uστ,uαb — σ(b)uσ. We denote by Cx the center of J1# Then,

applying Th. 2.12 in §2 to this generalized crossed product, we obtain

an exact sequence

1 > UiC,) ΓΊ U(K) > ϋ(K) • Aut (A/BYG) • PK(AJBYG)

> Pic,, (B)G > C0(Λ/S) > B(ΔJB)

> HKG, Pic0 (B)) > HKG, U(K)) ,

where Aut (A/BYG) - ^ > Z\G, ϋ(K)) and CJLΔJB) -^-> BP(G,ϋ(K)).

We begin this section with the following

PROPOSITION 3.1. The following two exact sequences consist of

G-homomorphίsms:
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1 > U(K) Π U(F) • U(K) > ®(J?/D • P(B/T) > Pic (B) ,

1 > U(F) > U(VB(T)) > &(B/T) > Pic (T) .

Proof. The exactness was proved in Th. 1.4 and Prop. 1.6.

Canonically ®(B/T) is a G-group, and the homomorphism G —> Aut (B/T)

induces a homomorphism G-> Aut(Z), by restriction. By Th. 1.5, there

is a homomorphism Aut (B/T) —> P(B/T), and this defines a G-group

P(B/T), by conjugation. Then it is evident that PiBjT) -* Pic (B) is a

G-homomorphism. Next we shall show that @(B/Γ)-* P(B/T) is a G-

homomorphism. Let a e Aut (B/T), and X e ®(B/Γ). Then σCX) e ®(B/T),

and the image of X in P(B/T) is φx: X -> B,x ^ x. On the other hand

the image of (7 in P(B/T) is ^ f f: Γ -> Buσ,t ^ tuσ. Then there is a com-

mutative diagram

X (x) Γ Γ — > B ^ ® β B <g> BBM,-!)τ

•i-
> B ,

where α: is the canonical one. This shows that ®(B/Γ) —> PiBjT) is a

G-homomorphism. It is easily seen that U(VS(T))-+®(B/T), d^Td is

a G-homomorphism.

We denote by ®(B/TYG) the group {X e ®(B/T)\X(σ) - σ for all σ e G},

where σ denotes the image of σ in Aut (B/T) (cf. Prop. 1.1). In §1,

we have seen that ®(B/TYG) = {X e ®(B/T) |^(X, *, 1) e K} = {X e ®(B/T)|

for any <7 e G, there exists cσ e U(K) such that cax = σ(x) for all x e X}.

We denote by PK(B/TYG) the subgroup of PK(B/T) (cf. § 1), which consists

of all [φ] satisfying (**).

(**) For any σe G, there exists a B-B-isomorphism fσ: M —> Buσ

(x) ̂ ilί ® BBuσ-x such that the diagram

Buσ ®BM® jβua_x

is commutative, where °φ is the map p *-+uβ<8>φ(p)®uσ-ι(peP). The

proof that Pκ(B/T)iG) is a subgroup is the following

PROPOSITION 3.2. Pκ(B/τyG) is a subgroup of PK(B/T).
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Proof. Let φ: P -> M and ψ: Q -> U be two representations of an

element of Pκ{B/TyG\ and let the diagram

Q - ^ > U

M

be commutative, where a is a T-T-isomorphism, and β is a B-B-

isomorphism. For any σ in G, there is a B-B-isomorphism fσ: M —>

B^σ (x) 5 M (g) BBua-x such that the diagram

Buσ® BM® BBU,.!

is commutative. Then a B-B-isomorphism gσ: U-> Buσ® BU <&) BBuσ-i

is determined by the commutativity of the following diagram:

Q JL+ U - - • * B^σ (8) BU Θ BBM,., ,

P — > M — > Buσ (8) BM ® £ β^ σ - i

that is, flr, = (1 <8> 0 <8> ί)~ιfββ. It is easily seen that #σψ(g) = ^σ

® ua-x(q e Q), and hence PK(B/TYG) is well defined. It is evident that

Pκ(BjTyG) is closed under multiplication. Finally / , : BMB-* BBuσ® BM

(x) BBua-1B induces a B-ZMsomorphism Hom r (BM, BB) -^-> Homr (BBuσ ®

B]lί (8) BBu*-i> BB)> and there is a canonical B-B-isomorphism B^α ®

r (BM, BB) 0 BBue-x -> H o m r ( β B^ σ (x) βM(x) BBu,-19 BB)9uσ®h® ua-t >->

a? ® uβ~χ —> σ(^Λ))(ίc e M). Then we have a commutative diagram:

Homr (TP, TT) -L> Homr (βM

\ -/
Buσ ® 5 Hom r (βM, BB) ® Λ - i

where ^ is the canonical homomorphism / •-> (0(p) —> pO (peP). This

completes the proof.
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THEOREM 3.3. There is an exact sequence

U(K) > ®(B/TYG) > Pκ(B/TyG) • P i c * (B)G .

Proof. For X in ®(B/T), the image of X in Ficκ(B/T) is the

canonical inclusion map φ:X->B. Then °φ is X -^ B, x t->σ(x). There-

fore [φ] is in Picκ (B/TYG) if and only if, for any σeG, there is a

cσ e U(K) such that cσx = σ(x) for all x e X, that is, X e ®(B/TyG). Then

the exactness of the present sequence follows from Th. 1.4.

THEOREM 3.4. There is a commutative diagram with exact roivs:

— • ®(B/τyG) — > Pκ(B/τyG) — • pic* (B)G

(1) > (2) [r I
U(K) • Aut (JJByG) > Pκ(ΔλIByG) • Pic,, (B)G

Proof. The isomorphism U(K) -^~> U(K) is c^ c~\ Let X e ®(B/Γ)(G).

Then, for any σ in G, there exists uniquely cσ e U(K) such that cσx = σ(x)

for all j e l . If is easily seen that cστ = cσ-σ(cτ) for all σ,τeG,cι = 1.

Then cσ(σ e G) defines an automorphism <o: 2]β &^α ^ Σ ^ bσcσuσ. We define

®(B/TyG) - ^ > Aut (Λ/β)(G), X-> p. The commutativity of (1) is easily seen.

Next we shall define Pκ(B/TyG) -^ Pκ(A/ByG). Let φ:P-+M be in

Pκ(B/TyG). Then, for any σeG, there exists a #~£-isomorphism

fa: M —> βπ α (x) S M ® BBUσ-i such that /α0 = σ^. Then /σ induces an iso-

morphism f'σ\M® BBuσ

 / g g ) 1 ) β^σ (x) BM(x) ^ . x (x) ̂ β ^ , -ί-> Buσ (g) 5 M,

where * is induced by the canonical map Bua-X (x) BBuσ —> 5 . As is easily

seen, fiiφiv) ® uβ) — uσ ® φ(p) (p eP). Taking direct sum, we have an

isomorphism Δx ® BM -^-> M (x) ̂ J^ and it is easy to check that this iso-

morphism satisfies the condition of Lemma 1.2. Thus we have φ: M —>

4 <g) 5 M, m H-> 1 (x) m, in PK{AxIByG) (cf. § 2). Let ψ: Q -> ?7 be another ele-

ment in Pκ(B/TyG). Then the canonical isomorphism Δλ ® BM (x) BU -^->

( 4 (g) 2jM) (8) ̂ ( 4 (x) BC7) is a J r J r isomorphism such that the diagram

is commutative. Hence the map φ —> ^ is a homomorphism. Finally we

shall show the commutativity of (2). Let 1 = J^iX^iix^eX'1, xteX).



42 YOICHI MIYASHITA

Then Δx ® BB s uσ (x) 1 = £]* w,aί ® %i, so (w, (g) 1)MΓ == (J]t uβx\

(ΣI* ^ G ^ , ® #i)wr = Σlί σ(xΊ)ucuτ ®χi =^γii uσx\ut ® α?* = £]* uσ%ίUτ%ί ® 1 =

χ\ w ^ α ^ c ^ (x) 1 — uσ-p(uτ) (x) 1. Hence 4 (x) ̂ B -^-> J ^ , wα ® 11-> ̂ σ ^ is a

Ji-Ji-isomorphism. Hence (2) is commutative. This completes the proof.

The next Cor. 1 is follows from Th. 3.4.

COROLLARY 1. The following diagram is commutative, and two rows

are exact:

Aut (ά

®(B/τyG)

U(KG) Π UiF) -> U(KG) -> &(BG/T) -> PK(B/TYG)

where K and F are centers of B and T> respectively.

COROLLARY 2. // BG — T then two homomorphisms ®(B/TYG) ->

Aut(Λ/S) ( G ) and PK(B/TYG) -*Pκ(dι/ByG) are rnonomorphisms. There-

fore, in this case, @(Z?/T)(G) is an abelian group.

COROLLARY 3. If B/T is a finite G-Galois extension, then all vertical

maps in Th. 3.4 are isomorphisms.

Proof. It suffices to prove that γ is surjective, by Cor. 2, Th. 1.4.

and Th. 1.5, because the center of Δx is F in this case. Let φ: M -> M

be in P^(J 1/β) ( G ), and let M c M. Then, uσM = Muσ (σeG), and this

yields a left J rmodule M: uσ*m — ucmuβ_x (me M, σeG). Then, by [8;

Th. 1.3], tf = B ® ΓM0, where MQ = {m e M\uσm = muσ for all σ = G}.

Similarly M = MQ®TB, and the inclusion map φ: Mo-+ M is in PK(B/TYG),

because Γ M 0 Γ - ^ > ΓHom r (jχβ, ^M)^ is a Morita module. By the proof

of Th. 3.4, γ(φ) — φ is easily seen.

PROPOSITION 3.5. If VB(T) = K then ®(B/TYG) = ®(B/T).

Proof. Let Xe®(B/T), and let 1 =

σeG. Then % = J]« α r σ ( α 0 e ^ ( Γ ) = ^

(cf. §1).

, a^ia, e X, a', e Z" 1), and

u σ(x) — x for all # 6 X
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§ 4 . Morita invariance of the exact sequence in § 2 .

In this section we shall cast a glance at the Morita invariance of

the exact sequence in Th. 2.12. We fix two Morita modules AMA, 3 BPB>

such that M = A <g> BP = P® B,A' (cf, [19]), where B c A and B' c A'.

We put VA(A) = i , VA,(A') = L'> VB(B) = K, and VB,(B') = K'. There is

an isomorphism VA{B) —> VV(B'), CH>C; such that cp = pc' for all p e P,

and this induces L -^-> 1/ and K -^-> K7, by [19 Prop. 3.3]. Further,

by [19; Th. 3.5], Aut (A/B) - ^ Aut (A'/B'), σ >-+ σ', where Σ<*a>M =

ΣQj σ'Wj) for all 2] α ^ = Σ g X (α* 6A,p<, ^ eP,αJ eA') in M. Then

it is evident the diagram

I I
U(VA,(B')) > Aut (Λ7JB0

is commutative. Let σ •-> σ' under the isomorphism Aut(A/β)->

Aut (A'/B'). Then A^σ (x) AM -> M ® AΛ'uσ,, uσ(g)p ^> p®uσ, (p e P) is an

A-A ^isomorphism. Hence

Aut (A/B) — > P i c ( A )

Aut (A'/BO — • Pic (AO

is a commutative diagram, where Pic (A) -> Pic (A7), [X] *-+ [X'] is the

isomorphism such that X (x) AM -^-> M ® ^,Z7 as A-A^modules. There

is an isomorphism @(A/B) -> ®(A7/B0, Y ^ Y' such that YP = PY7 (cf.

[19; Prop. 3.3]). Then the following diagram is commutative:

U(VA(B)) — • &(A/B) —>Pic(B)

Y Y Y

UiVABO) — • ©(A7B0 — > Pic (BO

where *: [W] »-> [W7] is the isomorphism such t h a t W ® BP -^-> P ® B,W

as B-B'-modules. The isomorphism P(A/B) -> P{Af jBf), φ:Q-*U »->

φ': Qf -* Uf is defined by the commutativity of the diagram
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for some B-B'-isomorphism a and some A-A'-isomorphism β. In fact,

we put Q' = Homr (BP, BB) (x) BQ® BP and U' = Homr GM, ̂ A) <g) 4Ϊ7 <g> AM,

and take the canonical isomorphisms P (x) β/Q' -^-> Q (x) 5 P and M® A,U'

-—> U (x) ̂ M. Then it is clear that the following diagrams are

commutative:

Aut(A/B) • P(A/B)

Aut (A'/B') —

®(A/B) —
1

"ϊ
®(A'/B') —

We now fix a commutative

-> P(A'/B') —

-> P(A/B) -

~l

-* P{A'IB') —

diagram

--•Pic

->Pic

~l
~l

-•Pic

(£')

(A)

(A')

J' @(A7B0

consisting of group homomorphisms. Put Δ = ®JJB and Δf — 0 J'JB'.

Then we have

THEOREM 4.1. There exists a commutative diagram

U(K) > Aut(Δ/ByG) > PK(Δ/BYG) > Picκ(B)G > CQ(Δ/B)

Y Y Y Y Y

U(K') — > Aut {Δ'IB'y0) — > Pκ,(Δ'IB'Yβ) — • ~P\cκ, {B')° — > C9(Δ'/Br)

~pz( ΛI ~R\ TJ^ίC1 P I P (F*}} J-f^ίC1 TJ(KY\

i y Ί
— • B{Δf\Bf) — > HKG, Pic0 (BO) — > H3(G, U(K'))

where all vertical maps are isomorphisms.

Proof. First we shall show that there is an isomorphism C(Δ/B)

-^-> C(Δ'IBf), 0 UJB .-> 0 U'JB'. Put P* = Horn, (BP, BB) and P* ® BUa

® P = J7̂ . Then, for any σ eG, there is a canonical B-jB'-isomorphism

fσ'.Uσ® BP -> P® ϋ-P* (g) BUa® BP = P <S) B,U'σ. The multiplication in

0 £/'„/£? is defined by the commutativity of the diagram
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uτ) ® B P —• u. ® B P (x) B,uf

τ — > P <g> S,(CT: <g> B-uo

The isomorphism 0 / , : (Θ C7α) (g) ΰ P -> P <g) β,(0 [7'σ) satisfies the condition

in Lemma 1.2, and /, induces an isomorphism Ua® BP -+P ® B>U'a, that

is, 0 UJB and 0 U'JB' defined above are equivalent as generalized

crossed products. In particular, Δ/B and Δ'IB' are equivalent. The

isomorphism Pic (B) -> Pic (Bf) induces the isomorphism Pic^ (B)ίG1 -•

Pic,,, (J5'F], [Ψ] ^ [P* ® # ® BP], where P* = Homr (BP, BB). We put

r = P ® # ® BP. Then if*7 -^-> Tf'* canonically, where W* =

Homr (B>W\B'B'). Noting this fact, we can see that the diagram

( B 0 C G ] • C{Δ'IBf)

is commutative. The isomorphism Pic0 (S) —> Pic0 (SO induces the iso-

morphism Z\G, Pic0 (B)) -> Z^G, Pic0 (BO) (cf. Cor. to Prop. 2.9), and it

is evident the diagram

C(Δ/B) > ZKG, Pic0 (B))

C(Δ'/B')—• ZKG, Pico (BO)

is commutative. The facts that the isomorphism P(Δ /B)-+P(Δ'/B')

induces PK(Δ/B){G) -Ξ-> Pκ,(Δ'IB'yG), and that the isomorphism Aut(J/B)

->Aut(zί7B0 induces Aut (Δ/BYG) - ^ > Aut {Δf jBfyG) are easily checked.

After these remarks it is easy to complete the proof.

If we take a commutative diagram

Aut(A/B)

<

then each ga: Auσ (x) AM -* M (x) 4,A Vff, ^σ (x) p »-> p ® u'Xv e P) is an A-Ar-

isomorphism, and © ^ t f: ( 0 A^J ® ^M —> ikf (g) 4/(0 AX) satisfies the con-

dition of Lemma 1.2, so that ®AuJB and 0AV σ /B ; with trivial factor



46 YOICHI MIYASHITA

set are equivalent as generalized crossed products. Therefore Th. 4.1
is applicable to this case.

§5. In this section we fix a Morita module A/BMBVA* (cf. [19]) and
a commutative diagram

G \

of group homomorphisms, where a: X ^> σ is defined by (xm) σ(b*) =
x(mb*)(x e X, m e M, &* e JB*) (cf. [19 Th. 1.5]), and A 2 B and 5* 2 A*
are rings. For any c in VJβ), there is a c ;e VB*(A*) such that cm =
me' for all meM. Then the map c »-• c'"1 is a group isomorphism
U(VA(B)) -> J7(7^(A*)), and this induces isomorphisms U(K)->U(K*),
U(L) -> J7(L*), where K = 7*0?), X* = 7^(5*), L = VA{A)9 and L* =
VA*(A*). The following diagram is commutative:

U(VA(B)) >Aut(A/B)

(inverse) Tα*

where α*: Z* H-> σ* is defined by (σ*(α)m)^* = a(mx*)(x* eZ*, meM,
aeA)y or equivalently, σ*(a)(my*) = (αm)f ( f e I*" 1 ) .

PROPOSITION 5.1. Aut (A/£)(G) -^> ®(5*/A*)(G).

Proof. Let X ι-> σ under the isomorphism ®(A/B) —> Aut (J?*/A*),
and let σ* H^ X* under the isomorphism Aut(A/B) -> ®(β*/A*). Then
it suffices to prove that X(σ*) •-> σ(X*) under Aut (A/β) -> ®(β*/A*). Let
τ^σ(X*) under Aut {A IB) -> ®(B*/A*). There is a ^eί7(7^(J?)) such
that Z(σ*)(α) = u-σ*(a)u-1 (a e A) (cf. § 1). Then u-σ*(x) = x for all xeX,
and so u-σ*(x)m — xm for all meM. Let ^eX*" 1 - Then (#m) σ(?/*)
= x(my*) — u-σ*(x)(my*) = (̂(α m)^*) = (xm)y*u', so that σ(#*) = 2/*^
for all f e P " 1 , where t6m = m^ for all meM. Then, for any aeA,
τ(ά)(m σ(τ/*)) = (am) a(f) = (am)y*uf — u((am)y*) = w σ*(a)(mi/*) =
u-σ*(a)u~ι-u(my*). But u(my*) — my*uf = m σ(y*). Hence. τ(a) =
X((7*)(a) for all aeA.

PROPOSITION 5.2. Tftere is an isomorphism P(A/B) -^-> P(β*/A*).
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Proof. Let φ: P -> N be in P(A/B). Put ^PV = Homr (BM, BB) ®

ΰ P ® #M and ĴV'̂ * = Homr (AM, AA) ® AN® AM. Then there are canonical
isomorphisms BM ® B*P'B* -> BP® BMB* and AM ® ̂ JV7 *̂ -> AN ® Jlί^ .
Then 0': Λ/7-> P' in PK*(B*/A*) is defined by the commutativity of

M i

Let ψ: Q —• Z7 be another element in P(A/B)9 and ψ ;: ί/7 —> ζ)' is the one
defined by ψ. Then the following diagram is commutative:

M®BJ

M® AJ

On the other

M ® B*(P

ί
M ® AN

3 /(>

1
> P ®

—>2V(x

hand we have a

•<g)

r ®

BQY --̂ ->M®

(1)

— > M®

ι B M ® B*Q'

diagram

P ' (x) O7

Ί "
^*xV vX/ A*U

— > P Θ

—>N<g>

— • P ®

(2)

—>N<g>

sQ®

~t
JJ®

BQ®

ί
AU®

BM

AM

BM

AM

where (2) and (1) + (2) are commutative, and * is induced by (P ® BQY
-—> Pf ® B*Qf. Hence (1) is commutative, and this proves that the map
[φ] ι-> [φf] is a homomorphism. Similarly we can define a homomorphism
P(B*/A*) -> P(A/B). Hence P(A/B) -^-> P(B*/A*), [φ] ^ ψ\.

THEOREM 5.3. ®JJB and ®B*uJB* are equivalent by BMB*9 as
generalized crossed products. Therefore Th. 4.1 is applicable to this case.

Proof. For any a in G, the map Jσ® BM-* M® B*B*uσ9 x®m\->
xm®uσ is a #-Z?*-isomorphism, and the following diagram is com-
mutative :

I
M ®

THEOREM 5.4. Tftere is α commutative diagram
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U(K) >Aut (A/BYG) > PK(A/BYG) > Pic* (B)

« | CD ~| (2) « | (3) « |
Y Y Y Y

U(K*) > ®(B*/A*) ( G ) > Pκ {B*IA*yG) > Pic** (B*)

Proo/. It suffices to prove that P(A/B) -^-> P(S*/A*) induces

P*(A/B) ( G )-^P*XB*/A*) ( G ), and that (1), (2), (3) are commutative.

Now, J f f ( x ) s l A l ( x ) f i ^ \ , x ® m ^ x m ® M a , as B-B*-modules. Let

φ: P —> iV be in PK(A/B){G\ Then, for any σ in G, there exists an iso-

morphism fσ: 5 / σ ® β P ® s/α-ifi -> ^ s such that

is commutative. Then a B*-B*-isomorphism /£: Pf

B*B*uσ-x is defined by the commutativity of

*N'

Thus [^] is in P**(B*/A*)(G), and hence Pi,(A/B)(G) -^> P**(B*/A*)(G).

The commutativity of (1) and (3) is easily seen. To prove the com-

mutativity of (2), let σe Aut (A/B)(G), and σ ι-> X under the isomorphism

Aut (A/BYG) -> ®(B*/A*)(G). Then MX = M ® ^*Z ~^-> Aua ® AM,m®x

\-+ uσ® mx is an A-A*-isomorphism. And it is easy to see that the

diagram

Aun

i
M ® β*B* -^-> B® BM

is commutative. Hence (2) is commutative. This completes the proof.

§6. PROPOSITION 6.1. If B/T is a trivial finite G-Galois extension

then Pκ(JJByG) —> Pic^ (B)G —> 1 is exact and splits, where Δx is a crossed

product of B and G with trivial factor set (C/. [16; Cor. 2].)
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Proof, B is the direct sum of (G: 1) copies of T. Put eσ =

(0, , 0,1, 0, , 0) (the <7-component is 1). Then Σσ eσ = 1, eσeτ = 3ff|Γeσ,

and JS = 2] θ Teσ. The operation of G on B is given by τ(eσ) = erσ.

Let [P]ePic κ (B) G . Then BBuσ® BPB-^-* BP ® BBuaB for all σ e G .

Multiplying ex on the right, we have BBuaex (x) BexPB -^-> 5 Pβ σ (x) BeaBuaB

for all <y e G. Hence Λ,: τej?τ -^-> ^ P ^ for all α e G , because Γ β σ β Γ =

τeσTτ -^-> Γ Γ Γ , eσ£ H> tit e T). It is easily seen that [exP\ e Pic^ (T), where

F is the center of T. Put exP = Po, and let (P0)σ be the module of all

G X G matrices over Po, and let P 7 be its diagonal part. Then it is

evident that (PQ)G is canonically a two-sided (2%-Morita module, where

(T)G is the ring of all G X G matrices over T. Indifying B with the

diagonal part of (2%, BP'B is isomorphic to BPB. And (T)G (x) BP' ^ - > (Po)^

as left (2%, right B-modules, canonically. Since eσ(σ e G) is a basis for

BΓ, Ji = Honii (BT9 Bτ) -^-> (Γ)G. Then we can easily see that the canonical

map Pr -> (2% <g> 5 P 7 is in PK((T)G/BYG\

PROPOSITION 6.2. // ΔjB is a group ring then the sequence PK(A/B)

-» PICK (B) -> 1 is exact, and splits.

Proof. Let [P] e Picx(B). Then there is a J3-B-isomorphism

J?G (x) BP —> P 0 BBG, σ ® p y-> p ® σ{σ e G), and this isomorphism satisfies

the condition in Lemma 1.2.

Remark. The above proposition can be generalized to the case that

A = 2 θ B^σ, ^,6 = &̂ σ(?> e £), ΊVMr = αffϊΓwαr with aσjT e [/(K). The proof

is analogous to the above one.

PROPOSITION 6.3. Let A,B,L, and K be rings as in §2, and fix a

group homomorphίsm J:G—>©(A/B). Suppose that B/K is separable

and that K cz L. Then

PK(A/BYG) - ^ > Aut (A/B)(G) x Pic,, (X) ,

this induces

PL(A/BYG) -^-> Aut (A/B'LYG) x Pic,, (X) .

Proof. Let 0: P -> M be in PK(A/B). Then there is an automorphism

/ of VA(B)/K such that f(c)φ(p) = 0(p)c for any c e 7^(β),p € P, and the

map [φ] H^ / is a group homomorphism from PK(A /B) to Aut (VA(B) jK)

(cf. [19 Prop. 3.3]). Then the map Aut (A/B) -> PK(A/B) -> Aut (YΛ(B)/K)
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is the restriction to VA(B). Let U be a Z?-Z?-module such that bu = ub

for all b e K, u e U. Put Be = B ® *B 0 P . Then f7 may be considered as a left

βe-module. By [14 Th. 1.1], BeU -^-* Homr (BeB
e, BeB) <g> *Hom r (ΰδJS, ΰeC7),

and so U = B ® * VV(S). In particular, A = £ <g) *F^(B). Hence Aut (A /B)

-^-> A\xt{VA{B)/K) by restriction. Let f\VA{B) = f, and assume

that φePκ(A/ByG\ Then Jσ φ{P) = φ{P)Jσ = J{Jσ)φ{p)> because /„ =

B-VJXB). Hence f(Jσ) = Jσ for all σ e G . Therefore the image of 0

in Aut(A/B) belongs to Aut (A/BYG). Hence the map Aut (A/B)(G)

-*PK(A/BYG) -+ Aut(A/B)(G) is the identity map. Combining this with

Prop. 2.2, we know that PK(A jBYG) -Ξ-> Aut (A/B)iG) x Im a, where

α: PK(A/BYG) —• Pic^Cβ)^ is the one as in Prop. 2.2. By Remark to Lemma

2.4, Pic* (K) ~^-> Pic* (JB), [Po] H-> [B <g) *P 0 ] . Then the canonical map JS ®

* P 0 -> A (x) * P 0 is in PK(A/BYG\ Therefore Im a -2-> Pic* (X). Thus we

have the first assertion. The second assertion is obvious.

COROLLARY. Let LziK be commutative rings, and we fix a group

homomorphίsm G -> Aut (L/K). Then

PL(LjKyG) = PL(L/K) ^ > Pic* (Jί) . (cf. § 3)

Proof. Let σ e G. Then, for any [Po] e Pic* (K), (Luσ <g) *P0) (x) LLuβ-x

-^-> L ® *P 0 , xuσ (g) p0 (g) ί t , . ^ 1-* a?3/ (8) p0> as L-L-modules.

Remark. By the above Cor, the sequence

@(L/JO(G) • PL(L/KYG) • PicL (L)G

is isomorphic to

®(L/KyG) > Pic* (JO > PicL (L)G .

(Cf. Th. 3.4, [8], and [16].)

PROPOSITION 6.4. Let A 3 B be rings, and L the center of A.

Assume that A (x) LVA(B)\ A as left A, right VA(B)-modules9 and

VΛ(yA(B)) = B. Then

PL(A/B) - ^ > @(A/B) Xlma

where a: PL(A/B) -> PicL (A) is the one as in Th. 3.4. {Cf. [14], [19].)

Proof. By [19; Th. 1.4], Aut {VA{B)jL) -^-> ®(A/B), and the map
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• PL(A/B) • Aut (VA(B)/L) -^-> ®(A/B)

is the identity (cf. [19; Prop. 3.3]). Then, by Th. 1.4, we can complete

the proof.
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