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MASANORI KISHI

§1. Introduction and preliminaries.

One of the main problems in potential theory is to determine the
class of kernels satisfying the domination principle or the complete maxi-
mum principle. As to positive symmetric kernels this is settled to a
certain extent, but as to non-symmetric kernels we have not yet obtain
satisfactorily large explicit classes. In this note we shall give a class of
positive non-symmetric convolution kernels on the real line satisfying the
complete maximum principle.

Let K be a positive Radon measure on the real line R. Given an
essentially bounded Lebesgue measurable function / vanishing outside a
compact set, the convolution K*f is called a potential relative to a posi-
tive kernel K. This is a Lebesgue measurable function on R. Throughout
this note we shall identify two functions which differ on a set of Lebesgue
measure zero.

We shall say that the kernel K satisfies the complete maximum prin-
ciple, when the following statement is valid: if / and g are essentially
bounded Lebesgue measurable functions vanishing outside a compact set
and K*f <; K*g + 1 on the set {x e R fix) > 0}, then the same inequality
holds almost everywhere in R. A sufficient condition for the complete
maximum principle is the existence of a so-called submarkovίan resolvent
{Kp} (p > 0), a family of positive kernels such that for each p > 0, K — Kp

= pK*Kp = pKp*K and pKp*l ^ 1, and K = Ko = limKp. The outline
of the proof: we have, for each p > 0,
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P p \n = 0

where (pKp)° = ε, the Dirac measure on the origin, and (pKp)
n =

dpKv)
n~ι*(pKp). This shows that K + (l/p)e satisfies the complete maxi-

mum principle, so that K itself satisfies the complete maximum principle.

§2. Negative-definite functions.

A complex-valued continuous function λ(x) on R is said to be negative-

definite, when it holds that

i) i(O) ^ 0, λ(-x) ="

ii) for any n points xί9 x29 , xn on R and for any n complex num-

bers ξ!, ξ2, , ξn With f] ζj =

As easily seen, λ(x) = ax2 + ibx + c is negative-definite, if a and c are

non-negative and b is real. λ(x) = c — (p — ix)~ι with p > 0 and c ^ p~ι

is also negative-definite, since

Γ°° . ,

— {p — £#)~1 = — e~pyeιxydy .
Jo

The sum of negative-definite functions λ19λ2, — ,λn is evidently negative-
/ n \ -1

definite. In this section we shall show that for specific Λ/s, λ = [ Σ ̂ " Ί

is negative-definite.

LEMMA 1. Let 0 < Pj < p2 < < pw αwcZ ^1 ?μ2 9 ,μn>vu^> # >v n

be non-negative numbers, and let f(z) be a complex-valued function

I N + —^—\γ\ If Σto^Σ vi> fW is equal t0

(1) az + b +

with b > 0, akck > 0. // Σ N = Σ yi> ** ^ s βĝ αZ to

z — ak

n

1 ' ' I=ϊ

d
(2) az> + bz + c+2Σ Wk

*-i 2 — or*

with a < 0, c > 0, αr,^ > 0.
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n n

Proof. First we consider the case that Σ /^ "£ Σ vό I R "this case
n n

f(z) is equal to Π (v) — z2)/ψ(z), where ψ(z) = 2 ((μfc + ^ ^ t + (vk — μk)z)

• Π (P) —z2) is a polynomial of degree 2n — 1: the coefficient c of ^ 271"1 is
n

(—I) 7 2" 1 Σ G>ifc — i"*) Hence /(«) is wri t ten as

φ{z)az + b

with a polynomial c?(2) of degree less than 2n — 1 and a — j ] (/ifc — vk)\ .

Remark that ψ(z) has 2^ — 1 simple zeros ak's and ^^'s: in the case that

c is positive and n is odd, or c is negative and n is even,

j8n < -Vn < βn-i < -Pn-l < ' " < ~Vl < βl < ~Vι

V1<a1<P2< < Vn-l < OCn-l < Vn ,

and in the case that c is negative and n is odd, or c is positive and n

is even

-Vn < βn-l < -Vn-l < ' " < ~V2 < βl < ~Vl

Vl < <*χ < V2 < * * * < Vn-l < ttn-1 < Vn < 0Cn .

In any case we have

φ(z) _ v1

z-ak

φ(z) = ]J (p} - z2) - (α« + b)ψ(z)

fi CP? oΐ) > 0

Therefore akφ(ak)lψ\ak) and βkφ(βk)lΨf(βk) are positive. We put s = 0 in

(1) and obtain

—1 2w—1 Λ

4- y J!*L > o
I / i ^ \J

W 71

Now suppose that Σ ^ = Σ ^ (=£0). Then
. 7 = 1
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Φ)f(z) = az2 + bz + c +

I n

with a polynomial φ(z) of degree less than 2n — 1 and a = — Σ (μ& +
\ J f c - l

< 0. ψθ) has 2(n — 1) simple zeros ak's and βk's such that

Pk \ "A; ^ /̂ fc + 1 > PΛ + 1 \ Pfc \ Pfc I 1 ^ K ^ /& ^ •

Similarly in the first case it holds that

φ(z) __ nyl <p(ak) 1 , ny φ(βk) 1

= Π (PJ - ^2) ~

- ft CP?-jSi) < 0

Hence the product of ak and dk in (2) is positive for each k and

By this lemma we have

PROPOSITION 1. Let p19 p2, - , p n , ^ , ^ 3 , . . -, μn9 »19 »2, . , vn be non-

negative numbers. Then

(3) λ{x) =
y +

is negative-definite.

Proof. If Σ NΦ Σ »i> we have by (1)

2 w - l Λ

with real α Φ 0, & > 0, αfccfc > 0. If Σ ^ = Σ

λ(x) = -ax* + ibx + c +*Σ—-—
*-i IX — ak
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with real b, a > 0, c < 0, akdk > 0. Therefore, in any case, λ(x) is

negative-definite.

§3. Fractional powers of Heaviside kernel.

Heaviside kernel H is the convolution kernel on R induced by the

function

l o , x ^ o

Given a non-negative Lebesgue measurable function / , its Heaviside

potential Hf(x) is

H*f(x) = Γ f(y)dy .
J -co

The kernel H has a unique positive resolvent {Hp} (p ^ 0) such that

Hp(x) = e~px , x > 0
0 £ < 0

and J? satisfies the complete maximum principle. For a positive number

a smaller than 1, the fractional power Ha of H is the convolution kernel

defined by

which is equal to the one induced by

τ«-l

(—.— r > 0
#«(χ) = Γ(α)

(0 , a; ^ 0

In this section we shall show that for any 0 < a, β < 1, the sum of Ha

and ϊίβ satisfies also the complete maximum principle, Hβ being the adjoint

kernel of Hβ, namely, ϊίβ(x) — Hβ(—x). Notice that

w χ < 0

Uβ(χ)=\Γ(β) π Jo
(
\
(0 a ^ 0

Let μ and y be positive Radon measures on (0, oo). We exclude the

case μ = v = 0, and put
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( Γ e - * * d μ ( p ) , x > 0

:
epxdv(p) , x < 0

vo

We assume that K(x) is locally Lebesgue integrable. Then it induces a

positive convolution kernel K. Our aim is to prove the complete maxi-

mum principle for K. First we restrict ourselves to the case that μ and

v are measures on a bounded closed interval [a, b] (0 < a < b < oo). The

Fourier transform of K, K(y) = K(x)e-2πixydx, is equal to
J -oo

r dμ(p) + r dv(p) β

J α p + 2 ^ J a p — 27rίT/

Hence Λ(?/) = (K(y)Yι is continuous on 1?, and

" x > o , *

LEMMA 2. λ(y) is negative-definite.

Proof. We fix n points yί9 y29 ,yn on the real line and n complex
n

numbers fi,?2> >fw such that 2 ξj = 0. Given an arbitrary positive

number e, we can take a division of [a, 6], α = p0 < ^ < <pN = 6,

such that

- 2/*) ~ ί.(2/i - #*)| < e 0#, k = 1,2, -, n) ,

( N I a \ \ -1

j] cf* + 1 9 and μι and ^ denote re-
1=1 \ Pi + 2πiy pt — 2πiy 11

spectively μ-and ^-masses of Z-th subinterval of the division. Then it

holds that

and that, λε(y) being negative-definite by Proposition 1, Σ λ(Vj —

ύ 0.

This lemma leads us to the following

PROPOSITION 2. // μ and v are positive Radon measures on [a, b]

(0 < a < b < oo), then the convolution kernel K defined by



NON-SYMMETRIC KERNEL 195

e~Pxdμ(p) , x > 0

epxdv(p) , x < 0P
J

satisfies the complete maximum principle.

Proof. It suffices to show the existence of a positive submarkovian re-
solvent {Kq} (q ̂ > 0) such that Ko = K. By the above proposition, q + λ(y) is

a negative-definite continuous function and 0 < λ(0) = (P ̂ ^ + PiM
\Jα p Ja p

^ Re λ(y). Hence (q + λ(y))~ι is a positive-definite continuous functions
and by Bochner's theorem it is the Fourier transform of a positive
measure Kq,

(Q + λiy))-1 = Kq{y) = Γ
J —o

Notice that \yK(y)\ is bounded and hence every Kq is a square integrable
function. Therefore we have

= qK0Kq = ? = -1 1— - - = K0- Kq ,

and hence qK^Kq = KQ — Kq. We have also qKq(0) = ~ < 1.
q -f~ Λ ( 0 )

By this proposition we have

THEOREM. Let μ and v be positive Radon measures on (0, oo) such
that the function K defined by (*) is locally Lebesgue integrable. Then
K satisfies the complete maximum principle.

Proof. K is the limiting kernel of an increasing sequence of kernels
discussed above. Hence our theorem follows immediately from the fol-
lowing lemma.

LEMMA 3. Let {Kn} be an increasing sequence of positive kernels
satisfying the complete maximum principle. If K — lim Kn defines a
positive kernel, it satisfies the complete maximum principle.

Poof. Let / and g be essentially bounded positive Lebesgue measur-
able functions vanishing outside a compact set such that Kf ^ Kg + 1
on Sf = {x e R f(x) > 0}. We shall prove the inequality Kf ^ Kg + 1
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almost everywhere in R. Without loss of generality, we may suppose
that Kf < Kg + 1 on Sf. Let fn be the restriction of / to the set
{xeSf Kf^ Kng + 1}. Then {fn} increases to /. Since Kn satisfies
the complete maximum principle, we have Knfn ^ Kng + 1 ̂  Kg + 1
almost everywhere. Noticing that {Knf} increases to Kf, we conclude
that Kf = lim Knfn, and Kf S Kg + 1.

Setting μ = ̂ ^ L p - and v = ̂ B^Lp-^, we have

COROLLARY. Ha + Hβ satisfies the complete maximum principle, for

any 0 < a, β < 1.
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