T. Matsuzawa Nagoya Math. J. Vol. 48 (1972), 91-97

REMARK ON THE TRICOMI EQUATION

TADATO MATSUZAWA

§1. As an application of the Carleman-type estimation Hörmander [4], p. 221, has proved the following:

A solution (distribution) of the Tricomi equation

$$
\frac{\partial^2 u}{\partial t^2} + t \frac{\partial^2 u}{\partial x^2} = 0
$$

in an open set *Ω* in $R_{x,t}$ belongs to $C^{\infty}(\Omega)$ if it is in $C^{\infty}(\Omega)$ where $Q_{-} = \{(x, t)$; $(x, t) \in Q, t < 0\}.$

In this note we shall consider the same problem for the inhomogeneous Tricomi equation

$$
\frac{\partial^2 u}{\partial t^2} + t \frac{\partial^2 u}{\partial x^2} = f(x, t)
$$

in a different manner. The existence of the solution in the generalized sense is well known. Furthermore we shall consider the propagation of analyticity. More precisely, the solution *u* is analytic in *Ω* if it is analytic in Ω _r and if $f(x, t)$ is analytic in Ω (Theorem 3.1). We shall use the results of [2] and [5] in the proof.

§ 2. The following theorem is obtained from the results of Berezin [2].

THEOREM 2.1. *Consider the following (backward) Cauchy problem:*

(2.1)
$$
u_{tt} + tu_{xx} = f(x, t) \quad in \, D
$$
,

(2.2)
$$
u(x, 0) = \varphi(x), \quad u_t(x, 0) = \psi(x) \quad \text{in} \quad a \leq x \leq b
$$

where D denotes a domain in the region t < 0 *bounded by characteristics passing through* $(a, 0)$ *and* $(b, 0)$, $(a < b)$. Assume $f(x, t)$ and $f_x(x, t)$ are *continuous in* \overline{D} *and the initial data* $\varphi(x), \psi(x)$ are thrice continuously *differentiable in* [α, &]. *Then there exists one and only one solution*

Received April 21, 1972.

92 TADATO MATSUZAWA

u{x, t) of the problem (2.1), (2.2) *having continuous second derivatives in* \overline{D} . Furthermore, if $f(x,t)$ and $\varphi(x)$, $\psi(x)$ are infinitely differentiable *in* \overline{D} and in [a, b] respectively, then the solution $u(x,t)$ is an infinitely *differentίable function in D.*

By virtue of Theorem 2.1 it is shown that there exists a fundamental solution $E(x, t)$ for the backward Cauchy problem for the equation $Lu =$ $u_{tt} + tu_{xx} = 0$. That is, there exists a distribution $E(x, t)$ in the region $t \leq 0$ such that

(2.3)
$$
LE = E_{tt} + tE_{xx} = 0 \quad \text{for } t < 0,
$$

(2.4)
$$
E(x, 0) = 0
$$
, $E_t(x, 0) = \delta_x$.

In fact, take $f(x, t) = 0, \varphi(x) = 0$ and

$$
\psi(x) = \begin{cases} 0 & x < 0 \\ x^i/4 \,! & x \ge 0 \end{cases}
$$

in Theorem 2.1. Then there exists a solution $v(x, t)$ for the problem (2.1), (2.2) with these data having second continuous derivatives in the region $t \leq 0$. The desired fundamental solution is given by

(2.5)
$$
E(x,t) = \frac{\partial^5}{\partial x^5}v(x,t) \qquad t \leq 0,
$$

where differentiation in x is interpreted in the sense of distributions. By Theorem 2.1 and (2.5) we have

$$
(2.6) \qquad \text{supp. } E(x,t) \subset \{(x,t) \, ; \, -\frac{2}{3}(-t)^{3/2} \leq x \leq \frac{2}{3}(-t)^{3/2}, t \leq 0\} \, ,
$$

(2.7)
$$
E(\cdot,t) \in C([-T,0];\mathscr{D}'(R_x))
$$
,

$$
(2.8) \tE_t(\cdot,t) \in C([-T,0];\mathscr{D}'(R_x))
$$

for any $T > 0$, where $\mathscr{D}'(R_x)$ denotes the space of distributions in R_x .

Furthermore, by using the partial hypoellipticity of the Tricomi operator L in t (cf. [4], \S §2.2, 4.3), we have the following.

COROLLARY 2.1. Let Ω be an open set in $R^2_{x,t}$ such that $\{(x, 0)\}$; $a < x < b$ } c *Ω*. If $u \in \mathscr{D}'(\Omega)$ satisfies

(2.9)
$$
Lu = u_{tt} + tu_{xx} = 0 \quad in \; \Omega ,
$$

(2.10)
$$
u = 0 \quad in \quad \Omega_+ = \{(x, t) ; (x, t) \in \Omega, t > 0\}.
$$

Then $u = 0$ *in* $\Omega_+ \cap (\overline{D} \cup \Omega)$ where D denotes a domain in the region $t < 0$ bounded by characteristics passing through $(a, 0)$ and $(b, 0)$.

For the proof we apply Theorem 2.1 by regulariging *u* with respect to *x.*

§3. Let *Ω* be an open set in $R_{x,t}$ ² which intersects *x*-axis.

THEOREM 3.1. Let $u = u(x, t) \in \mathcal{D}'(\Omega)$ be a solution of the equation

$$
(3.1) \t\t\t Lu = u_{tt} + tu_{xx} = f(x, t) \t\t in \t\Omega
$$

with $f \in C^{\infty}(\Omega)$. Then $u \in C^{\infty}(\Omega)$ if it is in $C^{\infty}(\Omega)$ where $\Omega = \{(x, t)\}$. $(x, t) \in \Omega, t < 0$. Furthermore, u is an analytic function in Ω if it is α *analytic in* Ω *₋ and if* $f(x,t)$ *is analytic in* Ω *.*

We shall prove this theorem in several steps. First we shall show that $u(x, 0) \in C^{\infty}{x}$; $(x, 0) \in \Omega$.

Assume $\{(x,0);0\leq x\leq b\}\subset \Omega$, $(0< b)$. If we take $T>0$ sufficiently small then the closed domain \overline{D} bounded by $\{(x, 0)$; $0 \le x \le b\}$, characteristics passing through (0,0) and (b,0) and $\{(x, -T)\,;\,-\infty\,<\,x\,<\,+\infty\}$ is contained in $\Omega \cap \{(x, t): t \leq 0\}$. Let $u(x, t)$ and $f(x, t)$ be functions given in Theorem 3.1 and b, T be sufficiently small, then by the usual way (cf. [3]) we have

(3.2)
$$
u(x, 0) = \int E_t(x - y, -T)u(y, -T)dy - \int E(x - y, -T)u_t(y, -T)dy - \int \int_{-T \le \tau \le 0} E(x - y, \tau) f(y, \tau) dy d\tau, \qquad 0 < x < b,
$$

where the integral is taken in the sense of distributions. We note that there exists $u(x, 0) = \lim_{x \to 0} u(\cdot, t)$ in $\mathscr{D}'(0 < x < b)$ by the partial hypotherm ellipticity of *L* in *t* (cf. [4], §4). The formula (3.2) is justified because of the assumptions for u, f and the properties of $E(x, t)$: (2.6), (2.7), (2.8). Thus we have proved that $u(x, 0) \in C^{\infty}(0, b)$, and hence

$$
u(x, 0) \in C^{\infty}{x
$$
; $(x, 0) \in \Omega$.

Similarly, if *u* and f are analytic in Ω and Ω respectively, then we see that $u(x, 0)$ is analytic in $\{x, (x, 0) \in \Omega\}$. We omit the detail.

In the next section we shall show that

$$
(3.3) \t u \in C^{\infty}(\Omega \cap \{(x, t); t \ge 0\})
$$

94 TADATO MATSUZAWA

from which we see that $u(x, 0)$ and $u_t(x, 0)$ are in $C^{\infty}{x}$; $(x, 0) \in \Omega$. Then, applying Theorem 2.1 and Corollary 2.1, we have

$$
(3.4) \t u \in C^{\infty}(\Omega \cap \{(x,t)\,;\, t \leq 0\}) .
$$

By (3.3), (3.4) and noting that the form of the equation is $u_{tt} + tu_{xx} = f$ in *Ω* we have $u \in C^{\infty}(\Omega)$ by the usual method of calculation (cf. § 4).

In the analytic case, from the assumption the $u(x, 0)$ is analytic in ${x, (x, 0) \in \Omega}$ we shall show, in the next section, $u = u(x, t)$ is analytic in $\Omega \cap \{(x,t)\,;\,t\geq 0\}$ from where we have $u(x,0),u_t(x,0)$ are analytic in $\{x; (x, 0) \in \Omega\}$. Then by Cauchy-Kowalevski theorem and Corollary 2.1, *u* is analytic in a neighbourhood of the x-axis contained in Ω . On the other hand, *u* is analytic in $\Omega_+ = \{(x, t) \in \Omega, t > 0\}$ because it is a solution of an elliptic equation in *Ω⁺ .* Thus *u* is analytic in *Ω.*

§ 4. It remains for us to prove the regularity property of the solu tion u in $\Omega \cap \{(x,t)\,;\,t\geq 0\}.$

THEOREM 4.1. Let $f \in C^{\infty}(\Omega)$ ($\in C^{\infty}(\Omega)$) and $u \in \mathcal{D}'(\Omega)$ such that

(4.1)
$$
Lu = u_{tt} + tu_{xx} = f(x, t) \quad in \; \Omega \; ,
$$

$$
(4.2) \t u(x, 0) = \psi(x) \in C^{\infty}\{x \,;\, (x, 0) \in \Omega\} \t (\in C^{\omega}\{x \,;\, (x, 0) \in \Omega\}).
$$

Then we have $u \in C^{\infty}(\Omega \cap \{(x, t) : t \ge 0\})$ ($\in C^{\infty}(\Omega \cap \{(x, t) : t \ge 0\})$). Here C^{ω} denotes the set of analytic functions.

To prove this theorem we use the method employed in [5], \S § 5, 6. We note that it is sufficient to prove the case $u(x, 0) = \psi(x) = 0$. First we prepare the following theorem which is derived by a direct compu tation. Take $G = (a < x < b) \times [0, T)$ such that $\overline{G} \subset \Omega$ and introduce the notation:

$$
(4.3) \quad \|v\|_{\tilde{\mathbb{V}}^{(G)}}^2 = \sum_{j=0}^2 \|D_t^j v\|_{L^2(G)}^2 + \|t^{1/2} v_{xt}\|_{L^2(G)}^2 + \|t^{1/2} v_x\|_{L^2(G)}^2 + \|tv_{xx}\|_{L^2(G)}^2
$$

 $(\mathfrak{F}(G)$ is a Hilbert space with the norm $\lVert \cdot \rVert_{\mathfrak{F}(G)}$.

THEOREM 4.2 (cf. [5], Theorem 4.2). There exists a constant $C > 0$ *such that*

(4.4)
$$
||v||_{\mathfrak{G}(G)} \leq C ||Lv||_{L^2(G)}
$$

for all $v \in \mathfrak{F}(G)$ *with* supp. $v \subset G$ and $v(x, 0) = 0$.

Suppose $f(x, t) \in C^{\infty}(\Omega)$, then by the partial hypoellipticity of L in t (cf. [4], §4.3) we conclude that for any $r(\geq 2)$ there exists a number $= \beta(u, r)$ such that

(4.5)
$$
\zeta u \in H_{(r,\beta)}(G) = H_{(r,\beta)}(R^2)|_G
$$

for any $\zeta = \zeta(x, t) \in C_0^{\infty}(G)$, For the notation $H_{(r, \beta)}(R^2)$, we refer to [4], §2.5.

For a real number s we define an operator T_s :

$$
\hat{T_s v}(\xi,t) = (1+|\xi|^2)^{s/2} \, \hat{v}(\xi,t) \; ,
$$

where $v \in \mathcal{S}'(R^2_{x,t} \cap \{ t \geq 0 \})$ and $\hat{v}(\xi, t)$ denotes the partial Fourier transformation of *v* with respect to *x*. (cf. [4], $\S 1.7$.)

For any $x_0 \in (a, b)$ take $\zeta \in C_0^{\infty}(G)$ such that $\zeta(x_0, 0) \neq 0$ and

$$
\frac{\partial \zeta}{\partial t}(x,t) = 0 \quad \text{if} \quad (x,t) \in G \; , \quad 0 \leqq t \leqq \frac{T}{2} \; .
$$

Then by (4.5) we have

(4.6) *φT ζu e*

for any $\varphi \in C_0^{\infty}(G)$. Starting with (4.6), by using the estimate (4.4) we can easily show that $\varphi T_s \zeta u \in \mathfrak{H}(G)$ for any *s* and $\varphi \in C_0^{\infty}(G)$ from where we have $\varphi D_x^j u \in \mathfrak{H}(G), j = 0, 1, 2, \cdots$. And rewriting the form of the equation $u_{tt} = -tu_{xx} + f$, we have $\varphi D_t^r D_x^j \in L^2(G)$, $0 \leq r, j < \infty$. Then we have $u \in C^{\infty}(G)$, from where we have $u \in C^{\infty}(G)$.

Next we consider the case where $f \in C^{\omega}(G)$ and $u(x, 0) = 0$. In this case we have $u \in C^{\infty}(G)$ by the above result. To obtain the analyticity of *u* in $\Omega \cap \{(x, t); t \geq 0\}$, we have to estimate precisely the successive derivatives of u . We can pursuit the manner employed in [6], $\S 6$ where the analyticity of the solutions of the equations $u_{tt} + t^{2k}u_{xx} = f$, $k =$ $0,1,2,\dots$, was proved. In the following we shall give an outline of the reasoning.

Introduce the notations:

$$
G_{\epsilon} = (a + \epsilon < x < b - \epsilon) \times [0 \le t < T) \qquad 0 < \epsilon < \text{Min}\left(\frac{b - a}{2}, \frac{T}{2}\right),
$$
\n
$$
G_{\epsilon}^* = G_{\epsilon} \setminus (a + \epsilon < x < b - \epsilon) \times \left[0 \le t < \frac{T}{2}\right),
$$
\n
$$
N_{\epsilon}(v) = \|v\|_{L^2(G_{\epsilon})}, \qquad N_{\epsilon}^*(v) = \|v\|_{L^2(G_{\epsilon}^*)}.
$$

LEMMA 4.1 (cf. [4], ch. 1). Let $\varepsilon, \varepsilon_1$ be positive numbers with $0 <$ $+ \varepsilon_1 < \text{Min }((b-a)/2, T/2).$ Then there exists functions $\psi = \psi_{\epsilon, \epsilon_1}$ $\in C_0^{\infty}(G_{\epsilon_1})$ such that $\psi = \psi_{\epsilon,\epsilon_1} \equiv 1$ on $G_{\epsilon+\epsilon_1}$

(4.7)
$$
\operatorname{Max} |D_x^j D_t^r \psi| \leq C_{j+r} \varepsilon^{-(j+r)} \qquad 0 \leq j+r \leq 2
$$

$$
D_t \psi \equiv 0 \qquad on \ (a+\varepsilon_1, b-\varepsilon_1) \times \left[0, \ \frac{T}{2}\right).
$$

LEMMA 4.2 (cf. [6], Lemma 6.2). There exists a constant $C > 0$ *such that*

$$
(4.8) \qquad \begin{aligned} \sum_{j=0}^{2} \varepsilon^{j} N_{\epsilon+\epsilon_{1}}(D_{i}^{j}v) + \sum_{j=0}^{2} \varepsilon^{j} N_{\epsilon+\epsilon_{1}}(tD_{x}^{j}v) + N_{\epsilon+\epsilon_{1}}^{*}(v) \\ + \varepsilon N_{\epsilon+\epsilon_{1}}^{*}(D_{x}v) + \varepsilon^{2} N_{\epsilon+\epsilon_{1}}^{*}(D_{t}D_{x}v) \\ \leq C \{\varepsilon^{2} N_{\epsilon_{1}}(Lv) + \sum_{j=0,1} \varepsilon^{j} N_{\epsilon_{1}}(tD_{x}^{j}v) + N_{\epsilon_{1}}^{*}(v) + \varepsilon N_{\epsilon_{1}}^{*}(D_{t}v) \} \end{aligned}
$$

for all $v \in C^{\infty}(G)$ and $v(x, 0) = 0$. The constant C does not depend on , *ε1 under the condition mentioned previously.*

This lemma is obtained by substituting $\psi_{\epsilon,\epsilon}$ in (4.4).

LEMMA 4.3 (cf. [4], ch. 7). *Let w be an analytic function in G. Then there exists a constant C* > 0 *such that*

$$
(4.9) \qquad \qquad \varepsilon^{j+r} N_{k} (D_x^j D_t^r w) \leq C^{j+r+1} \qquad \text{if } j+r < k ,
$$

for all integer $k > 0$ *. Conversely, if* $w \in C^{\infty}(G)$ *suctisfies* (4.9), then w *is analytic in G.*

Proof of the analyticity of *u* in $\Omega \cap \{(x,t)\,;\,t\geq 0\}.$

First we shall show that there exists a constant $B > 0$ such that, for any $\varepsilon > 0$ and for any integer $l > 0$,

$$
(4.10)
$$
\n
$$
\frac{\sum_{r=0}^{2} \epsilon^{r+j} N_{li}(D_{i}^{r} D_{x}^{j} u)}{\sum_{r=0}^{2} \epsilon^{r+j} N_{li}(t^{2k} D_{x}^{r+j} u)} \geq B^{l+1}
$$
\n
$$
\frac{\sum_{r=0,1} \epsilon^{r+j} N_{li}^{*}(D_{i}^{r+j} u)}{\epsilon^{2+j} N_{li}^{*}(D_{i} D_{x}^{j+1} u)}
$$

if $j < l$.

It we take *B* sufficiently large, we have (4.10) for $l = 1$ by Lemma 4.2. Next, since $f(x, t)$ is analytic in \overline{G} , there exists a constant $C_0 > 0$ such that

$$
\varepsilon^{2+j} N_{i\epsilon}(D_x^j f) \leq C_0^{j+1} ,
$$

for $j = 1, 2, \cdots$ and $0 < \varepsilon < (b - a)/2$.

Assuming that (4.10) have been proved for an $l > 0$, we shall prove (4.10) for $l + 1$. Replacing v by $\varepsilon^{l} D_x^{l} u$ and ε_1 by $l \varepsilon$ in (4.8), we see that the terms in the left hand side of (4.10) for the case $l + 1$ are smaller than $5C_0B^{l+1}$ if $j < l + 1$. Hence we have (4.10) for $l + 1$ if $5C_0B^{l+1} \le B^{l+2}$. This condition is satisfied for all *l* if $B > \max(5C_0, 1)$.

From (4.10) (cf. Lemma 4.3) we obtain

$$
(4.11) \qquad \qquad \sum_{r=0}^{2} \|D_{i}^{r} D_{x}^{j} u\|_{L^{2}(G_{\epsilon_{1}})} \leqq C_{1}^{j+1} j^{j} , \qquad j=0,1,2,\cdots
$$

 ${\rm for\,\, some\,\, constant}\,\, C_1 > 0\,\, {\rm where}\,\,\, G_{\scriptscriptstyle \epsilon_1} = (a\, + \, \varepsilon_{\rm i}, b\, -\, \varepsilon_{\rm i})\times [0,T/2]\,\, {\rm with}\,\, \varepsilon_{\rm i} > 0$ sufficiently small.

To obtain the successive estimates including the derivatives in both *x* and *t*, we rewrite the equation $Lu = f$ in the form $D_i^2 u = -tD_x^2 u + f$. And using (4.11) by the usual way (cf. [6] for example) we have

$$
||D_x^jD_t^r u||_{L^2(G_{\epsilon_1})}\leqq C_2^{j+r+1}(j+r)^{j+r}\qquad 0\leqq j,r<\infty
$$

for some constant $C_2 > 0$, from which we have the analyticity of u in *Gn* by the Sobolev lemma.

REFERENCES

- [1] Baouendi M. S., Sur une class d'opérateurs elliptiques dégénérés, Bull. Soc. Math. France, 95, 45-87 (1967).
- [2] Berezin I. S., On Cauchy's problem for linear equations of the second order with initial conditions on a parabolic line (in Russian). Mat. Sbornik, N. S. t24 *(66),* 301-320 (1949).
- [3] Courant R. and Hilbert D.: Methods of mathematical phisics. Vol. II. Interscience Pub. New York (1962).
- [4] Hδrmander L.: Linear partial differential operators. Berlin, Springer-Verlag (1963).
- [5] Matsuzawa T., Sur les équations $u_{tt}+t^2u_{xx}=f$ ($\alpha\geq 0$). Nagoya Math. J. Vol. 42, (1971).
- [6] Matsuzawa T., Sur les equations quasi-elliptiques et les classes de Gevrey. Bull. Soc. Math. France, t96, 243-263 (1968).

Nagoya University