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REMARK ON THE TRICOMI EQUATION

TADATO MATSUZAWA

§1. As an application of the Garleman-type estimation Hormander

[4], p. 221, has proved the following:

A solution (distribution) of the Tricomi equation

d2u + t ? u 0

dt2 dχ2

in an open set Ω in R\.tt belongs to C°°(Ω) if it is in C°°(Ω_) where

Ω_ = {(x,t);(x,t)eΩ,t < 0}.

In this note we shall consider the same problem for the inhomogeneous

Tricomi equation

dt2 dx2

in a different manner. The existence of the solution in the generalized

sense is well known. Furthermore we shall consider the propagation of

analyticity. More precisely, the solution u is analytic in Ω if it is

analytic in Ω_ and if f(x,t) is analytic in Ω (Theorem 3.1). We shall

use the results of [2] and [5] in the proof.

§ 2. The following theorem is obtained from the results of Berezin [2].

THEOREM 2.1. Consider the following (backward) Cauchy problem:

(2.1) utt + tuxx = f(x,t) in D ,

(2.2) u(x, 0) = φ(x) , ut(x, 0) = ψ(x) in a ^ x ^ b

where D denotes a domain in the region t < 0 bounded by characteristics

passing through (α, 0) and (6,0),(α<&). Assume f(x,t) and fx{x,t) are

continuous in D and the initial data <p(x),ψ(x) are thrice continuously

differentiable in [α, &]. Then there exists one and only one solution
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u{x, t) of the problem (2.1), (2.2) having continuous second derivatives

in D. Furthermore, if f(x,t) and φ(x),ψ(x) are infinitely differ'entίable

in D and in [a9b] respectively, then the solution u(x,t) is an infinitely

differentίable function in D.

By virtue of Theorem 2.1 it is shown that there exists a fundamental

solution E(x, t) for the backward Cauchy problem for the equation Lu =

uu + tuxx = 0. That is, there exists a distribution E(x, t) in the region

t <: 0 such that

(2.3) LE = Ett + tExx = 0 for t < 0 ,

(2.4) E(x, 0) = 0 , Et(x, 0) = δx .

In fact, take fix, t) = 0, φ(x) — 0 and

(0 x < 0

in Theorem 2.1. Then there exists a solution v(x,t) for the problem

(2.1), (2.2) with these data having second continuous derivatives in the

region t ^ 0. The desired fundamental solution is given by

(2.5) E(x, t) = j£-v(x, t) t < 0 ,
dxb ~

where differentiation in x is interpreted in the sense of distributions.

By Theorem 2.1 and (2.5) we have

(2.6) supp. E(x, t) c {(x, t) - f (-£) 3 / 2 ^ α? ̂  | ( - O 3 / 2 , ί ^ 0} ,

(2.7) #( . , t )e C([-Γ, 0] 9'{RX)) ,

(2.8) ^ ( ^ O e C α - ^ O l ^CΛJ)

for any T > 0, where 2\RX) denotes the space of distributions in Rx.

Furthermore, by using the partial hypoellipticity of the Tricomi

operator L in f (cf. [4], §§2.2, 4.3), we have the following.

COROLLARY 2.1. Let Ω be an open set in RXtt such that {(#, 0);

a < x < b) c Ω. If ue 9\Ω) satisfies

(2.9) Lu = utt + tuxx = 0 in Ω y

(2.10) ^ = 0 in Ω+ = {(x,t);(x,t)eΩ,t>0} .
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Then u — 0 in Ω+ ΓΊ (25 U Ω) where D denotes a domain in the region

t < 0 bounded by characteristics passing through (a, 0) and (6,0).

For the proof we apply Theorem 2.1 by regulariging u with respect

to x.

§3. Let Ω be an open set in R%tt which intersects #-axis.

THEOREM 3.1. Let u = u(x, t) e 2\Ω) be a solution of the equation

(3.1) Lu = utt + tuxx = f(x91) in Ω

with f e C°°(Ω). Then u e C°°(Ω) if it is in C~(Ω_) where Ω_ = {(x, t)

(x, t) e Ω9 t < 0}. Furthermore, u is an analytic function in Ω if it is

analytic in Ω_ and if f(x9 t) is analytic in Ω.

We shall prove this theorem in several steps. First we shall show

that u(x, 0) e C°°{x (x9 0) e Ω).

Assume {{x,0);0^^}cfl,(0<ί)). If we take T > 0 sufficiently

small then the closed domain D bounded by {(x, 0) 0 ^ x ^ 6}, charac-

teristics passing through (0,0) and (6,0) and {(x, —T);—oo < x < +00}

is contained in Ω (Ί {(x, t);t <£ 0}. Let u(x, t) and fix, t) be functions

given in Theorem 3.1 and 6, T be sufficiently small, then by the usual

way (cf. [3]) we have

u(x, 0) = Et(x - y, -T)u{y, -T)dy - \E(x- y, -T)ut(y, -T)dy

(3-2) J

- E(x-y, τ)f(y, τ)dydτ , 0 < x < b ,
J J —T£τ<,Q

where the integral is taken in the sense of distributions. We note that

there exists u(x9 0) = limu( 9t) in S7(0 < x < 6) by the partial hypo-

ellipticity of L in t (cf. [4], §4). The formula (3.2) is justified because

of the assumptions for u9f and the properties of E(x9t): (2.6), (2.7),

(2.8). Thus we have proved that u(x9 0) e C°°(0, 6), and hence

u{x9 0) e C°°{x {x9 0) e Ω) .

Similarly, if u and / are analytic in fl_ and Ω respectively, then we see

that u(x9 0) is analytic in {x; (x,0) e Ω}. We omit the detail.

In the next section we shall show that

(3.3) u e C°°(Ω Π {(x9 ί) ί ^ 0})



94 TADATO MATSUZAWA

from which we see that u(x, 0) and ut(x, 0) are in C°°{x (x, 0) e fl}. Then,
applying Theorem 2.1 and Corollary 2.1, we have

(3.4) u e C°°(fl Π {(x, t) t ^ 0}) .

By (3.3), (3.4) and noting that the form of the equation is utt + tuxx = /
in Ω we have u e C°°(fl) by the usual method of calculation (cf. § 4).

In the analytic case, from the assumption the u(x9θ) is analytic in
{x {x, 0) e Ω} we shall show, in the next section, u = u(x, t) is analytic
in Ω Π {(x,t); t ^ 0} from where we have u(x,0),ut(x,0) are analytic in
{x;(x, 0) e fl}. Then by Cauchy-Kowalevski theorem and Corollary 2.1, u
is analytic in a neighbourhood of the #-axis contained in fl. On the
other hand, u is analytic in Ω+ = {(x, t) e Ω, t > 0} because it is a solution
of an elliptic equation in Ω+. Thus u is analytic in Ω.

§ 4. It remains for us to prove the regularity property of the solu-
tion i i i n f l n {(xy t);f£ 0}.

THEOREM 4.1. Let feC°°(Ω) (eCω(fl)) and ue2\Ω) such that

(4.1) Lu = utt + tuxx = f(x91) in Ω y

(4.2) u(x, 0) = ψ(a ) e C~{x (x, 0) e fl} (e Cω{x (α, 0) e fl}) .

Then we have u e C°°(fl Π {(x, t) ί ^ 0}) (β Cω(fl Π {(«, ί) ί ^ 0})). if ere
Cω denotes the set of analytic functions.

To prove this theorem we use the method employed in [51, §§ 5, 6.
We note that it is sufficient to prove the case u(x9 0) = ψ(x) = 0. First
we prepare the following theorem which is derived by a direct compu-
tation. Take G = (α < x < b) x [0, T) such that G c fl and introduce
the notation:

(4.3) \\v\\* = Σ I I W l l c*) + ll<V2^lll.(G) + l l ί ^ . i i i . ^ + \\tvxx\\iHG)

is a Hubert space with the norm I

THEOREM 4.2 (cf. [5], Theorem 4.2). There exists a constant C > 0
such that

(4.4) \\V\\Q{G) <ί C\\Lv\\LHG)

for all v e Q(G) with supp. v c G and v(x, 0) = 0.
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Suppose fix, t) e C°°(β), then by the partial hypoellipticity of L in t

(cf. [4], §4.3) we conclude that for any r(^> 2) there exists a number

β = β(u9 r) such that

(4.5) ζu e HirJ)(G) = H(rJ)(R2)\G

for any ζ = ζ(aj, t) e C"(G), For the notation f?(rw3)(#2), we refer to [4],

§2.5.

For a real number s we define an operator T s :
/\

where v e ̂ ' ( K ^ Π {ί ^ 0}) and #(£, £) denotes the partial Fourier trans-

formation of v with respect to x. (cf. [4], § 1.7.)

For any x0 e (a, 6) take ζ β C~(G) such that ζ(ίc 0 ,0)^0 and

_i-(x, ί) = 0 if ix, t) e G , 0 <̂  ί ^ — .

Then by (4.5) we have

(4.6) φTβζu e

for any φeCoiG). Starting with (4.6), by using the estimate (4.4) we

can easily show that ψTsζu e $(G) for any s and φ e C Γ(G) from where

we have φDJ

xue £>(G), / = 0,1,2, . And rewriting the form of the

equation utt = —tuxx + / , we have ψDr

tD{ eL\G), 0 ^ r, j < oo. Then

we have ueC^iG), from where we have %eC°°(G).

Next we consider the case where / e CωiG) and %(#, 0) = 0. In this

case we have u e C°°(G) by the above result. To obtain the analyticity

of u in Ω Π {ix, ί) t ^ 0}, we have to estimate precisely the successive

derivatives of u. We can pursuit the manner employed in [6], § 6 where

the analyticity of the solutions of the equations utt + t2kuxx = /', k =

0,1,2, , was proved. In the following we shall give an outline of the

reasoning.

Introduce the notations:

Ge = (α + ε < x < b - ε) x [0 ̂  t < T) 0 < ε < Min f b ~ a T

G* = G.\(a +ε<x<b-ε)X\0^»^—],
L 2/

'.(v) = ||V||L«(G.) > N*(v) =

2 ' 2
Γ
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LEMMA 4.1 (cf. [4], ch. 1). Let ε9ει be positive numbers with 0 <

ε + ex < Min ((& — α)/2, T/2). T&ew ίftere raisfc functions ψ = <ψ e>ei

6 Co(Gei) such that ψ = ψ t f t l = l o w G e + 6 1

Max |£>£Z>[ΨI ^ CUrε-{J+r)

(4.7)
Z)tψ = 0 on (α + εx, & - εx) X Γo, - | ) .

LEMMA 4.2 (cf. [6], Lemma 6.2). There exists a constant C > 0

such that

N*+61(v)

(4.8) + eN*+εi(Dxv) + ε2N*+61(DtDxv)

^ C{ε*N61(Lv) + Σ εjN61(tDJ» + N*(v) + εN*φtv)}
i0l

/or αiZ v € C°°(G) and v(x, 0) = 0. The constant C does not depend on
ε, ε1 under the condition mentioned previously.

This lemma is obtained by substituting ψεieιv in (4.4).

LEMMA 4.3 (cf. [4], ch. 7). Let w be an analytic function in G.

Then there exists a constant C > 0 such that

(4.9) εj+rNke(DiDr

tw) ^ Cj+r+ί if j + r <k ,

for all integer k > 0. Conversely, if w e C°°(G) suctίsfies (4.9), then w

is analytic in G.

Proof of the analyticity of u in Ω Π {(#,*); ί ^0} .

First we shall show that there exists a constant B > 0 such that,

for any ε > 0 and for any integer I > 0,

(4.10)

r=0

2

r=0,l

if ί < I

It we take β sufficiently large, we have (4.10) for I = 1 by Lemma 4.2.

Next, since /(a?, t) is analytic in G, there exists a constant Co > 0 such

that
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for j = 1,2, . . . and 0 < ε < (6 - α)/2.

Assuming that (4.10) have been proved for an I > 0, we shall prove (4.10)

for I + 1. Replacing v by ειDι

xu and εx by Zε in (4.8), we see that the

terms in the left hand side of (4.10) for the case I + 1 are smaller than

5C0B
ι+1 if j < I + 1. Hence we have (4.10) for l + l if 5C0B

ι+1 ^ Bι+2.

This condition is satisfied for all I if B > max(5C0,1).

From (4.10) (cf. Lemma 4.3) we obtain

(4.11) ± \\DlDiu\\LHGεi) £ Ctψ , j = 0,1,2, . . .
r=o

for some constant d > 0 where Gεi — (a + ε19 b — εx) x [0, Γ/2] with εx > 0

sufficiently small.

To obtain the successive estimates including the derivatives in both

x and t, we rewrite the equation Lu = / in the form D\u = —tD2

xu + f.

And using (4.11) by the usual way (cf. [6] for example) we have

\\DίDlu\\Lwn) ^ Ctr+1U + r ) ' + ' 0 ^ j, r < oo

for some constant C2 > 0, from which we have the analyticity of u in

Gn by the Sobolev lemma.
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