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ON THE BEHAVIOR OF EXTENSIONS OF VECTOR BUNDLES

UNDER THE FROBENIUS MAP

HIROSHI TANGO

Introduction.

Let k be an algebraically closed field of characteristic p > 0, and let

X be a curve defined over fc. The aim of this paper is to study the

behavior of the Frobenius map F* : H\X, E) -> H\X, F*E) for a vector

bundle E.

Our main result is the following.

THEOREM 15. Let X be a curve of genus g > 0. Let n{X) be the

integer defined by

n(X) = max h ] ^ i / runs over all rational functions on X

with d / ^ 0j .

Then

(i) for any line bundle L such that degL > n(X), the Frobenius map

F* : H\X, L) -> HKX, F*L) is injective.

(ii) if n(X) > 0, then there exists a line bundle M of degree n(X)

such that the Frobenius map F* : Hι(X,$[) —> Hι(X,F*]fc) is not injective.

(where L is the dual line bundle of L)

This main result leads us to a counter example to a question posed

by R. Hartshorne:

QUESTION. Assume the Hasse-Witt matrix of X is non-singular. Is

the Frobenius map F* :H\X,L)-* H\X,F*L) injective for any ample

line bundle L?

I wish to thank Professor Hideyasu Sumihiro for his advice and

Received September 4, 1971.
Revised May 19, 1972.

73



74 HIROSHI TANGO

encouragement, and Professors Masayoshi Nagata and Masaki Maruyama

for their valuable conversations.

Notations.

Throughout this paper, we mean by a variety (resp. curve) an irre-

ducible complete non-singular variety (resp. curve) defined over an

algebraically closed field of characteristic p > 0. We denote by Θx the

structure sheaf of X, by K == K(X) the field of rational functions on X

and by Ωz the sheaf of germs of regular differential i-forms.

We use the words vector bundle and locally free sheaf interchange-

ably. For any vector bundle E of rank w on a curve, there exists a

series of subbundles of E

~[71 s— Ύ71 f— T71 s— ^— Tp 77T
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where Lt — Ei\Ei_λ is a line bundle (cf. Atiyah [1])

(Li,L2, ,Ln) will be called a splitting of E. A line subbundle L of E

will be called a maximal line subbundle of E, if L satisfies the following

condition: for any line subbundle M of E, άeg L ^ deg M.

A splitting (L19L2, ---jLJ will be called a maximal splitting of E,

if it satisfies the following conditions:

(i) Lx is a maximal line subbundle of Ey

(ii) (L2,L3, •••,!/») is a maximal splitting of E\LX.

We denote by E the dual vector bundle of E and denote by hι(E) the

dimension of the Λ>vector space H%X,E).

1. Let X be a variety of dim n. Let F: X -> X be the Frobenius

morphism. (cf. [4]). The natural derivation ά:Θx—> Ωx gives rise to a

fc-linear map d: Ωx -> Ωψ for each i, which induce a 0x-homomorphism

F^ά: F*ΩX -» F^ΩΫ1 for each i. We denote by Sz (resp. ^ί

x

¥1) the kernel

(resp. image) of F*ά: F*ΩX -+ F*Ωγ\ Let x be a point of X and let

^,^2, -,un be local parameters of X at a?. Then we have the following

Propositions, due to Cartier (cf. [10]).

PROPOSITION 1. %xx = ®yx Θ ( 0 Θx^{uh,uh, . . , u ό ) p - 1 d % Λ d % 2

Λ Λ d wi4) where ΘXfX = {fp;fe Θx,x], &x,x is an ΘXtX-module through

the p-th power map.
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PROPOSITION 2. There are Θ x-homomorphisms C: 2£z —> ΩZ9 called

the Cartίer operator, with the following properties.

( i ) C(ω1 + ω2) = CM + C W

(ii) C(f*ω) = fC(ω)

(iii) C(ω) = 0 if ωe@χtX

(iv) C((.Λ/2 -/i)*"1 d/x Λ d/2 Λ Λ d/« = d/, Λ d/2 Λ • - Λ d/«

where ω19ω29ωe&ZtX and / J i J ^ , / ^ ^ .

PROPOSITION 3. The following sequence of Θx-Modules are exact.

( i ) o >%x > F ^
Fr

(ii) 0 >ΘX >w%Q

(iii) 0 • ax > &x - ^ > Ωx > 0

Since the Frobenius morphism F is aίRne, the canonical p-linear map

a\Hi(X,Fj(i&
r)-*Hi(X,&) is bijective, for any coherent sheaf & on X

and for any integer i, (cf. [3] III. 1. 3. 3.). Since &x = F*ΩX, dim Hn(X, &x)

= dim Hn{X, Ωx) = 1 and the Cartier operator C* : ίfw(Z, Sz) -> ίίTC(Z, fl})

is surjective, so we have that C* is bijective. Let E be a vector bundle

on X. Then there exists a natural map ^:E® E® Ωx-^ Ωx and the

cup product

U:HKX,E) x H*-KX,E<g>flj) • ί ί w ( Z , E ® E ® Ω X ) .

The composition map

£Γ*(X, S) x Hn-*(X, E (g) flj) > Hn(X, E ® JE ® Ωx) • Hn(X, Ωz) « fc .

gives the Serre duality between H%X,E) and Hn-%X,E (x) βj).

The following is well known (e.g. for curves Serre [9]).

PROPOSITION 4. Lei E be a vector bundle on X. Then the follow-

ing two k-linear maps are dual to each other.

(i) F'*(i, E): HKX, E) • H\X, E ® F*ΘX)

(ii) C*(n - i, E): Hn~%X, E ® 3TZ) • Hn'\X9 E ® Ωz).

In particular, we have dim Image F7*(i, S) = dim Image C*(n — i,j&).

For the sake of completeness we include a proof:
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H\X,E) X Hn-%X,£:(g)Ql)

\id X C*(n - i, E)

£1 yΛ., EJ ) X tl \ Λ , Hi V>9 =2 2f/

I F'*(i, E) X id

iϊ^X, £; (g) F^) x iϊ^-^Z, Jί

H*(Z, F*^) X H^KX, F*E (g) flj) — > iϊn(Z, F*£7 (x) F*J& ® i2j — > ίPKX, flj)

Giving the duality between H^X^^F^O^ and Hn-l{X9E ® %n

x) by the
composition map C*(n, Θx) o a'1 oψ^of/o^xα), we have the duality between
F'*(i,E) and C*(n-i,E).

2. Let E be a vector bundle on X. We denote by F*(i,ί7), the
composition map α o F'*(i, E): i ϊ^Z, J&) -> ̂ ( Z , ί7*^).

THEOREM 5. Lei X be a curve and let E be a vector bundle on
X. Then

(i) dim Cokernel F*(l, E) = feo(^ (x) J*y

(ii) dim Kernel F*(l, J?) = ^ 0 (^ ® βP£ - (h°(F*£) - Λ°(iS))

Proof. By virtue of Proposition 3, we have the following exact
sequences,

0—>E(

0—>έ -> E ®
—>0

χ—+0

and hence following cohomology exact sequences

0 — > H\X, E
0 — > fl»(χ, E)

— • H\X, E)

Hence we have

H\X, E ®

H\X, E ®

H\X, E

H\X, E ® £>£

dim Cokernel F*(l, E) = dim Cokernel F'*(l, E)
= # ( # ® F^jr) - dim Image F'*(X, E)
= h\F*E) — dim Image C*(0, Jί) (by virtue of Proposition 4)
= hKF*E) - (h\E ® Ft&j) - h\E ® ίPi))
= h\E ® Jfi)
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And we have

dim Kernel F*(l, E) = dim Kernel F'*(l, E)

= h\E <g> ®\) - fc°(l& <8> F*0

= h°(E <g> Λi) - (h\F*E) -

COROLLARY 6. Lei X be a curve and let E be a vector bundle.

Assume that the Frobenius map F*(1,E) is surjective, then F*(1,E) is

injectίve and h°(F*E) = h°(E).

As a corollary of this Theorem 5, we have the following Theorem

of Oda:

THEOREM 7. (T. Oda). Let X be an elliptic curve and let E be an

indecomposable vector bundle of rank r and of degree d. Then we have

the following results.

(i) When the Hasse-Witt matrix of X is not zero {i.e., F*(1,ΘZ) is

injective), the Frobenius map F*(1,E) is ίnjective.

(ii) When the Hasse-Witt matrix of X is zero (i.e., F*(1,ΘZ) is the

zero map), the Frobenius map F*(1,E) is not injective (and in fact the

zero map) if and only if r < p, d = 0 and E has a non-zero section (i.e.,

in Atiyah's notation E = Fr with r < p).

COROLLARY 8. (Corollary of the proof of Theorem 7) (cf. [1] p. 451)

Let X be an elliptic curve.

(i) When the Hasse-Witt matrix of X is not zero, then

SS\ « Lx Θ L2 Θ Θ Lp-i where

{OX,LX,L2, ,Lp_i} = {L; line bundles with L®p « Θx]

(ii) When the Hasse-Witt matrix of X is zero, then 0P± « Fv_x.

(iii) F*F*OZ&&0X

Proof. Let E be an indecomposable vector bundle of rank r and of

degree d. We use the following results of Atiyah (cf. [1]).

h°(E) — d and hι(E) — 0 when d is positive

h°(E) = 0 and h\E) — — d when d is negative.

h°(E) = h\E) = 0 when d = 0 and E ψFr.

h\E) = h\E) = 1 when E « F r .
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When d = 0, there is a line bundle of degree 0 with E « L®Fr.
It is easy to see that &x is a vector bundle of rank p — 1. Let
3$x « Z?! 0 E2 0 0 Es be the decomposition of @x into indecomposable
factors. Let r< be the rank of Z^ and let d* be the degree of Et. Then
we have Σ d, = deg J ^ = χ(J^) = χ(F*Φz) - χ(0x) = 0. Let L be a non
trivial line bundle of degree 0, then h°(L ® <gx) Φ 0 (in fact equal to 1)
if and only if LΘP « 0X by virtue of following exact sequence.

0 - H°(X, L) > H\X, L <g> F#(PZ) > ίf°(Z, L ® # y • H\X, L) = 0 .

This shows that dt ^ 0 for all i and so d€ = 0 for all i. Let Lt be the
line bundle with Et^ Lt® Fu9 then L^p « ί?x. By virtue of Lemma
13, we have the following results. When h\^x

x) = 1, then s — 1, rx = p — 1
and Lx « ^ . And when Λ°(^i) = 0, then s = p — 1, r< — 1 and
{^,L1?L2, . ,LP_J = {L; line bundles with LΘP » ^x}. Let E' be an
indecomposable vector bundle of rank r and of degree d. If d> 0, then
Λ1^) = 0. If d < 0, then &°(# <g) L) = 0 for all line bundle L of degree
0, and so h\E ® 3SX) = 0. Thus the Frobenius map F*(l,£7) is injective
when d ψ 0. When eί = 0 and E ψ Fr then h\E) = 0 and the Frobenius
map F*(1,E) is injective. When E — Fr and the Hasse-Witt matrix of
X is not zero, then h\E Θ @x) = 0 and the Frobenius map F*(1,E) is
injective. When E = Fr and the Hasse-Witt matrix of X is zero, then
we have the following results by induction on r. h?(F*Fr) = min {29, r},

F*Fr π®Θx for all r with r <:p and F*(l,F r) is the zero map if and
only if r <£ p — 1.

r = 1. It is obvious.
p >̂ r > 1. We have the following exact sequence

0 • F r _ ! > Fr • Θx • 0 .

r

Hence we have F*Fr « 0 Θx and h°(F*Fr) = r by the induction assump-
tion. But we have h°(Fr0^x) = h\Fr®Fv_l) = min{r,p - 1} (for all
r, cf. [1] Lemma 17). Hence we have h\Fr <g) ^ ) - h\F*Fr) + h\Fr) = 1,
if r <p. This shows that when r < p the Frobenius map F*(l,Fr) is
the zero map.

p <̂  r. F r has F p as a subbundle and so h°(F*Fr) ̂  p by the induc-
tion assumption. Hence we have
0 ^ h(Fr ® Λi) - h°(F*Fr) + h\Fr) ^ 0. This shows that ho(F*Fr) = p
and the Frobenius map F*(l,F r) is injective.
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3. Let X be a curve. For any divisor D on X, we denote by Θ{D)
the line bundle associated with D.

DEFINITION 9. For any function f eK, we denote by n(f) the integer
(or infinity) Σxeχ[vx(df)/p] where [ ] is the Gauss symbol, and Vχ

is the valuation associated with x.

LEMMA 10. Let g be the genus of the curve X. Then
(i) /*(/) = oo if and only if feKp,
(ii) n(f) ̂  [2(g - ΐ)/p], if /*(/) < oo.

Proof, d/ = 0 if and only if / e K*9 and if d/ = 0, then /*(/) = oo.
If d/ Φ 0, the divisor D = Σxeχvx(df)x is a canonical divisor, and
so the degree of D is 2(g — 1). Therefore we have

n(f) • Γ2G/-D1

D E F I N I T I O N 11. We define n(X) by the following formula

n{X) = max {/*(/) feK and f£Kp}.

Note that n(X) ^ [2(g - l)/p], by virtue of Lemma 10.

LEMMA 12. Let D be a divisor on X, Then we have

H°(X,eK-D)®a1

z)gz{άf;feK and (d/) > pD} .

Proof. By virtue of Proposition 3, we have the following exact
sequence.

0 > Θ(-D) (x) 0SX > (P(-D) (x) &z ^-> O(-D) ® Ω\ > 0

Hence, we have the following cohomology exact sequence.

0 —> H\X, &(~D) ® Oϊ) > H°(X, 6(-D) ® 3P£ • H°(X, Θ(-D)

n

Since, H\X, Φ(-pD) <8> Ωx

x) = {ω e Ω\Kβ) (ω) > pD}. The assersion is
obvious by virtue of Proposition 3.

Remark: By Lemma 12, it is easy to see that n(X) coincides with
the degree of a maximal line subbundle of 28\.

LEMMA 13. Let G be the group of linear equivalence classes of
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divisors on X, and let Gp be the subgroup of elements DeG such that
pD = 0. Then Gp is a finite group of order p% where σ is the rank of
the Hasse-Witt matrix of X.

Proof. See Serre [9] Proposition 10 § 2.

PROPOSITION 14. Let X be a curve of genus g > 0. Then n(X) ^ 0.

Proof. When the Hasse-Witt matrix of X is not zero. Gp Φ 0, by
virtue of Lemma 13. So there exists a non-zero element DeG such
that pD — 0. Therefore, there exists a rational function / such that
ftK? and (/) = pD. Hence (d/) > pD. Thus n(X) ^ deg D = 0.

When the Hasse-Witt matrix of X is zero, i.e., F*(1,ΘX) is the
zero map. We have

0 > H\X, Θx) > H\X, F*ΘX) > H\X9 ®\) > H\X, Θx) > 0

and hence we have H°(X9 @x) « H\X, Θx) ψ 0. Therefore n(X) ^ 0, by
virtue of Remark.

THEOREM 15. Let X be a curve of genus g > 0. Then
(i) for any line bundle L such that degL > n(X), the Frobenius

map F*(l, L): H\X, L) -> Hι(X, F*L) is injectίve.
(ii) if n(X) > 0, then there exists a line bundle M of degree n(X)

such that the Frobenius map F*(l,iβΓ) is not injectίve.

Proof. Let degL>/ι(Z). Then H%X, L ® βP£ = 0 by virtue of
Remark. Therefore the Frobenius map F*(1,L) is injective by virtue
Theorem 5.

(ii) n{X) > 0. There exists a line bundle M of degree n(X) > 0,
with H\X,]&®a1

x) Φ 0. Since h\F*(M)) = 0, the Frobenius map F*(l,ikf)
is not injective by virtue of Theorem 5.

The following Proposition gives the relation between the number
n(X) and the rank of the Hasse-Witt matrix.

PROPOSITION 16. Let X be a curve of genus g > 0, and let h(X) be
the rank of the Hasse-Witt matrix of x. Then we have

g - h(X) ^ ( p - l )

Proof. Let D be an effective divisor of degree d > 0, such that the
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Frobenius map F*(1,0(—D)) is injective. Then we have the following

exact commutative diagram.

0

H\X, Θ(-D)) • HKX, ®χ) > 0
I

i
0 — • Kernel φ — • H\X, Θ(-pD)) -?-+ H\X, ΘΣ) — • 0

And we have

dim Image φ°F*(\, G{-D)) ^ h\Θ{-D)) - dim Kernel φ = g + d - pd .

Hence we have hiX) *> g + d — pd, i.e., g — h(X) <Ξ (p — ΐ)d. Since, for

any effective divisor D of degree n{X) + 1, the Frobenius map F*(l, G(~D))

is injective, we have

g - Λ(Z) ^ (p - l)(/ι(Z) + 1) .

4. In this section we shall extend Theorem 15 from line bundles to

indecomposable vector bundles of arbitrary rank.

PROPOSITION 17. Let X be a curve of genus g > 0. Then for any

r, there exists an indecomposable vector bundle which has a splitting

In order to prove Proposition 17, we need the following Lemmas.

LEMMA 18. Let E and Έf be vector bundle on X, and let(Lx, L2, , Lr)

be a splitting of E, and suppose that ψ: E —> Ef is a generίcally surjective

morphism. Then there exists a splitting (L[,L'2, - -,L's) of Ef which

satisfies the following condition There exists a sequence 1 ^ iλ < ί2 < ,

• , < ίs such that Horn (Lijf L,) Φ 0 for all j , in particular deg Lij ^ deg L'j.

Proof of Lemma 18. It is easy.

LEMMA 19. Let X be a curve and let Ef be an indecomposable

vector bundle which has a splitting (L19L2> ,L r ). Let L be a line

bundle such that deg L < deg L5 for all j . If an exact sequence

0 — > E' —^-> E —?-> L — > 0 does not split, then E is indecomposable.

Proof of Lemma 19. Tensoring the sequence with L we may assume
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that L = Θx and deg L3 > 0 for all j . Suppose E is decomposable. Let
E = Eι®E2 and let ψ< be the injection Et-^E (£ = 1,2). We may
assume that φoψx φ 0. By virtue of Lemma 18, there exists a splitting
(LJ, Lg, , L^) of Eλ such that deg L ^ 0 for all i. Therefore p o ψ is
surjective. And we have the following exact commutative diagram.

0 0

Ef -^->E

2

I I
0 0

where E;/ is the kernel of poψ^ψj is the injection induced by ψ19E';/ is

the cokernel of ψi and a7 is the homomorphism induced by a. By virtue of

Snake Lemma, the map af is an isomorphism. Since deg Ẑ  > 0 for all

j , the composition map p o ψ2 o«' o j / = 0, by virtue of Lemma 18, since

^ is a surjection, poψ2oα/ = 0. Hence, the exists a map ty't:E"'—>Er

such that α o ψj = ψ2 o a\ It is easy to show that rf o ^ = identity. There-

fore £" = S7/ Θ E'".E" = 0, since £" is indecomposable and E"1 &E2Φ 0.

Hence E1 = Θx. This shows that the exact sequence 0 — > Έf — > E

_L> (pχ — > o splits. This is a contradiction. Therefore E is indecom-

posable.

Proof of Proposition 17. When g = 1. β^ « tf^ and F r has a split-
ting {OZ,OX,.-.,OZ) (cf. [1]).

When g > 1. We prove this by induction on r.
r = 1. It is obvious.
r > 1. By induction assumption, there exists an indecomposable

vector F r_! which has a splitting (Ωψ*r-*\ Ωψir~9), -,ΩZ9OZ). Since
ίP(X, jPr_! <g) β y = iϊo(Z, Fr_x) Φ 0, the exists a non-split exact sequence
0 -» F r_! ® β^ -> E -> ίPx -> 0.

Applying Lemma 19 to this exact sequence, we see that E is indecom-
posable. It is easy to show that E has a splitting (Ωψ*1"1*, Ωψir~2\ , Θz).
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PROPOSITION 20. Let X be a curve of genus g >̂ 2. Let E be an

indecomposable vector bundle of rank r on X and let (LUL2, ,L r) be

a maximal splitting of E. If dQ = min {deg Lu deg L2, , deg Lr}9 then

degE ^ r(r - ΐ)(g - 1) + rd0 .

In order to prove Proposition 20, we need the following Lemmas.

LEMMA 21. Let X be a curve of genus g. Let E (resp. E') be a

vector bundle of rank r (resp. r') on X and let (resp. (Ml9M29 « ,Mβ))

be a splitting of E (resp. E'). Suppose that deg Li > degikf, + 2(g ~ 1),

for all i, j , then H\X9 j£ <g) #') = 0.

Proof of Lemma 21. (Li®M3) i,j is a splitting of E®&. Since

deg Ω\ <g> Mj <g> Li < 0, we have H\X9 Lt <g> ilί, ) = ίf°(X, β^ ® Mj ® L,) = 0.

Therefore we have Hι(X, E (x) E') = 0.

LEMMA 22. Let X be a curve of genus g. Let E be an indecom-

posable vector bundle of rank r on X and let (L19L2, ,L r) be a split-

ting of E. Then for any m with 1 <; m ^ r, we have

min {deg L19 deg L2, , deg Lm_λ)

^ max {deg Lm, deg Lm + 1, , deg Lr} + 2(g - 1) .

Proo/ of Lemma 22. It is obvious by virtue of Lemma 21.

LEMMA 23 (M. Nagata). Let X be a curve of genus g. Let E be

a vector bundle of rank 2 and let (L19L2) be a maximal splitting of E.

Then

deg L2 ^ deg Lλ + g .

Proof of Lemma 23. See M. Nagata [7] or M. Maruyama [6]

Theorem 3. 13.

LEMMA 24. Let X be a curve of genus g. Let E be a vector bundle

of rank r on X and let (Ll9 L2, - . . , Lr) be a maximal splitting of E.

Then

deg Lr ^ deg Lx + (r - ΐ)g .

Proof of Lemma 24. It is obvious by virtue of Lemma 23.

Proof of Proposition 20. We shall define a sequence of integers,
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1 = in < %n_λ < , . . . , < ί2 < %x < i0 = r + 1, which satisfies the following

condition.

deg L ίm = min {deg L19 deg L2, . . , deg L ^ . ^ J (m > 0) .

We define a one-to-one onto map

9>:{l,2,...,r} > {0,1, , r - 1} ,

such that ^0') = r + /.-- iTO — iTO-1 + 1 where im*^j< iw_i We shall

prove that

deg L3^ d0 + 2φ(j)(g - 1)

by induction on m such that im ^ j < im_x.

For m = 1. Since (Liχ9 L<1+1, , Lj) is a maximal splitting of a vector

bundle, we have deg Lό <; d0 + (j — ίjg, by virtue of Lemma 24. Since

φ{j) = — ίj and flr ^ 2(flf — 1), we have

degL, .^d o + 2φ(j)(g - 1) .

For m > 1. Since (Lίn,Lίm + 1, ,L^) is a maximal splitting of a

vector bundle, we have deg L3 <; deg Lim + (j - im)g ^ deg Lim + 2(J - ίm)

(g — 1). Since φ(im^2 — 1) ^ φ(Q) for all ίTO_ι <; q ^ r, we have

d e g L , ^ d0 + 2φ(q)(g - 1) ^ d0 + 2φ(im_2 - l)(flr - 1) ,

for all im_x ^ q ^ r, by induction assumption. For any 1 <̂  #' < ίm-i>

deg Lα/ ^ deg L<m. Hence by virtue of Lemma 22, we have

Hence we have

^ d0 + 2(r - i m . x + 1)(^ - 1) + 20* - ij(g -

Therefore, we have

deg E = Σ deg L, ^ rd0 + Σ 2p(j)(ff - D = rd0

THEOREM 25. Le£ X be a curve of genus g > 1.

(i) /or ατιτ/ indecomposable vector bundle of rank r such that

deg E > r(r — 1) + (# — 1) + rn(X), the Frobenius map F*(1,E) is injec-

tive.
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(ii) if n(X) > 0, then for any r > 0, there exists an indecomposable
vector bundle Ef of rank r with deg E' = r(r — l)(g — 1) + rniX) such
that the Frobenius map F*(1,E') is not injective

Proof, (i) Let (LUL2, ,Lr) be a maximal splitting of E. Then
deg Lj > n(X), by virtue of Proposition 20. Hence the Frobenius map
F*(l,Lj) is surjective for all j , and the Frobenius map F*(1,E) is sur-
jective. Therefore, the Frobenius map F*(1,E) is injective by virtue of
Corollary 8.

(ii) When n(X) > 0, there exists a line bundle M of degree n(X), such
that the Frobenius map F*(l, M) is not injective. There exists an indecom-
posable vector bundle Fr which has a splitting (Ωψ^, Ωψ^~2\ , β^, ΘΣ).
Put Ef = F r (x) M. Then £" is an indecomposable vector bundle of rank
r, and of degree r(r — l)(g — 1) + rn(X), which has M as a quotient line
bundle. And H\X, Ef) = ίί°(Z, j£'<*>) = 0. Therefore, the Frobenius map

Ό is not injective, by virtue of Corollary 6.

5. In this section we shall give an example of a curve with positive
n(X) although the Hasse-Witt matrix of X is non-singular. We also
give other examples of a curve X with positive n(X).

EXAMPLE 1. Let k be an algebraically closed field of characteristic
3. Let X c Pi be the curve defined by the homogeneous equation

XIX, + X\X2 + X\XQ = 0 .

One verifies easily that X is non-singular. Being a plane curve of degree
4, it has genus 3. (This example was given in [5]). The Hasse-Witt
matrix of X is identically zero. (cf. [5]).

PROPOSITION 26. // X is the curve in Example 1, then n(X) = 1.

Proof. By Definition 11, n(X) ^ 1. Let / = (Zo - X2/X1) eK=. K(X).
We have (/)« = (0,0,1) + 3(1,0,0). This shows that /gff. It is easy
to show that vx(άf) ^ - 3 , if x = (0,0,1) or x = (1,0,0), and vx{άf) > 3,
if x = (1 _ a, —1,1) i — 1,2,3 where at are the distinct roots of the
equation a2 = a + 1, and vx(df)^0, if x Φ (1,0,0). This shows that
n(f) ^ 1, and n{X) = 1.

EXAMPLE 2. Let fc be an algebraically closed field of characteristic
3. Let X a Pi be the curve defined by the homogeneous equation
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xt - x\x2 - x,x\ = o.

One verifies easily that Z is non-singular. Being a plane curve of degree
4, it has genus 3. (This example was given in [2]). The Hasse-Witt
matrix of Z is identically zero. (cf. [2]).

PROPOSITION 27. // Z is the curve in Example 2, theh n{X) = 1.

Proof. We prove this in the same way as in Proposition 26. We have
n{X) ^ 1. Put / = (XzjXd e K, then n(f) = 1. Therefore we have
n(X) = 1.

EXAMPLE 3. Let k be an algebraically closed field of characteristic
p >̂ 3. Let Z c PI be the curve defined by the homogeneous equation

One verifies easily that Z is non-singular. Being a plane curve of degree
p + 1, it has genus (l/2)p(p — 1).

PROPOSITION 28. // Z is the curve in Example 3, then n(X) — p
- 2 > 0 .

Proof. We have Λ(Z) ^ p - 2. Put / = (Zo/Z^ e K, then we have
n(X) = p-2.

PROPOSITION 29. // Z is £foe αm e m Example 3, ίften ίΛβ Hasse-
Witt matrix is non-singular, i.e., the Frobenius endomorphism of H\X, Θx)
is injective.

Proof. Ui — {{X^X^XΪ); Xt Φ 0} i — 1,2 are affine open subsets of
PI Then X c Uλ U E72. Let / = Zo

p+1 - W W " 1 + Zf"1 - ZΓ1) e
k[X0,X19X2]. Now let α e f f f t ί j . Since {Z Π C/^Z Π C/2} is an affine
open covering of Z, we can realize a as a function fe on Z Π DΊ Π Z72

This function extends to a function h on Uι Π C/2> i.e., to an element
of the ring k[X0/Xu X2\X19 XJX2]. The set of coboundaries is

h is a linear combination of monomials Xi/XlXΓj. Now if i ^ p + 1,

we can write
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γί-p-1 γi-p-1A° + A° (mod /) .
xipχι11 xi^x***

If i <^ j or j <̂  0, then Xl/X{Xi~j is a coboundary. Let φ be the natural

map kUεo/X1,X2X1,X1X2]-+H1(K,Φz). Then we can choose

φiXllX^l), φ{XHX\X2), . ., φiXt/X^Γ1), φ&ξ/XlX!-*), ••'

as a basis of H\X,ΘΣ). Let α f < i = (Zr a ' + e ~V*i~'-2rr w + i ~ 1 ), for all i, j
and ε = 0 or 1. To complete the proof we need the following Lemma.

LEMMA 30. Under the same notation as above,

( i ) let Vεi be a vector subspace of H\Xy Θx) which is spanned by
&εio>aεii> - - 'y(x.iji.i) where j(εi) = m i n { i — l,p — ί + ε — 2 } , for all i such

that p + ε — 2 ̂  i ̂  1. Then Vεi is stable under the Frobenius endo-
morphism.

(ii) F*(l9Θz\Vti is an injection.

(iii) © 7 l i = ff(Z,ίz).

Proof. Let l/2(p — 1) ̂  ̂ ' ̂  1, then we have

(mod /)

= Σ (-Dm(2 ; / ~
w = 0

(1)
T

, J yi1 IJ y1(_ l)j + nβi — £ + Ά\χ2πι + ε-2(χ χ\p-m-j + l

T ^ ^ ^ i 1 ; \ j + n )) ° ι l A 2 j

(mod /)

In the sequel, let p > i and 0 ̂  y — 1 ̂  y(εi). Then we have
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( 2 ) ( I ) ( ^ .

/ £»»+-'(j:iZ1)i>-»-J+'(Zf-» - Xξ-y-w \ _
ψ\ (xi-J^Xξ-t-i+ ) I

By virtue of formulas (1), (2) and (3), we have

( i ) - 2/ + e - 1

where α.ίJ_1 = ^Σ 1 (

Since j(εi) + 1 ^ (l/2)(p — 1) and aεij(ei)+1 = 0, formula (4) shows that (i)
is true.

(ii) Since a&ij_x + S ί - l W 2 * ' "J? + *) = 0, it is easy to verify
TO-0 \ Π l I

that F*(l, ̂ ) I Vt is injective

(iii) It is obvious.
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