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NEO-NORMAL FUNCTIONS IN ARBITRARY REGIONS

KAM-FOOK TSE

1. Introduction

It is well known that many properties possessed by functions holo-
morphic and bounded in a region are also possessed by functions mero-
morphic and omitting three values. Noshiro [14] in 1938 and Lehto and
Virtanen [12] in 1957 independently defined the notion of "normal func-
tions" they and many others subsequently discovered that most properties
concerning boundary behavior and value distribution acquired by mero-
morphic functions omitting three values in the unit disk (or more general,
in a simply-connected region) are also valid properties of "normal func-
tions" defined there. In their research on the problems of value distri-
bution of normal functions, Lange [9], Gavrilov [5] and Gauthier [4] have
discovered that functions normal in the disk are exactly those which omit
three values "locally," i.e., they do not possess any "p-sequence" (see
above references). However, the definition of a function being normal
in a region depends on the simply-connectedness of the region or its
universal covering surface. It is thus difficult to judge if a function
defined in an arbitrary region is normal.

In this paper, we shall try to generalize the notion of "normal func-
tions" by using some easy-to-recognize terms and metric-like functions.
It is obvious that many theorems, especially those concerning boundary
behavior for normal functions defined in the disk, do not hold true or
do not even make sense for "normal functions" defined in an arbitrary
region. However, a number of theorems concerning value distribution
do hold for "normal functions" defined in an arbitrary region.

Throughout this paper, we shall use G to denote a region in the com-
plex plane having at least one finite boundary point except otherwise
specified. If a region has no finite boundary point, then it is simply-
connected of parabolic type. Lehto and Virtanen in [12, Sect. 11, p. 55]
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showed that only constant functions are normal there and we will not
look into this here. (Also see Yosida [19].)

To characterize the criterion of value distribution of "neo-normal"
functions in G, we shall, in section 2, introduce a neo-metric in G. In
fact, this neo-metric will help us to have a better understanding of non-
Euclidean metric "in small" in simply-connected regions of hyperbolic
type.

In section 3, we shall define the notion of "neo-normal" functions
in arbitrary regions. Some necessary and sufficient conditions will be
explored, and some remarks will be made on the equivalence between
our definition and the previously defined ones for functions normal in a
simply-connected region.

In section 4, we shall look into the problem concerning the growth
of the derivatives of neo-normal functions. For the case in which f(z) is
a holomorphic function bounded or omitting three values in the disk,
the study of the growth the quantity "(1 - \zf)k\fik)(z)\" near the bound-
ary have been extensively investigated by Seidel and Walsh [16]. The
same problem has also been investigated by Rogosinski [15] for bounded
functions defined in an angle, and by Eggleton [2] and Xou (Tsou) [18]
for bounded functions in arbitrary regions. We shall generalize their
results to "neo-normal functions."

Finally, in section 5, we shall make a remark concerning the con-
nections of our results and the studies of Lehto [11], Lehto and Virtanen
[13] and Gavrilov ([6], [7], [8]) on meromorphic function in a deleted
neighborhood of one of its isolated singularities.

In the sequel, let G be defined as before and ΘG be its boundary.
If zeG, O < 0 < 1 , then d{z) = min{|2 - z'\: z'edG} and G(z, 0) = {z'e G:
\z _ Z'\ < θd(z)}. We shall use C, D, <e, Λ, Ω, d and χ to denote the
unit circumference, the unit disk, the complex number plane, the real
number axis, the Riemann sphere with radius 1, the Euclidean metric
on # or 2̂, and the chordal metric on β, respectively. If G is a simply-
connected region of hyperbolic type, then p will denote the non-Euclidean
metric in G and for 0 < r < oo, Dp(z, r) = {zf e G, p(z, z') < r}. In partic-
ular, if G = D, zu z2 e D, then

(i.i) P(zu*2)=i log I* - * * ' + '*• - *•;.
2 |1 - z,z2\ - \z, - z2\
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Moreover, a ssquence of points {zn} in G is said to be a boundary

sequence of G if {zn} has no limit points in G. On the other hand, Γ

is said to be a boundary path if Γ = {£ = #(£): 0 < ί < 1}, where z(t) is

a continuous function from [0,1) to G, with lim sup {z(t): £ > 1 — 1/n}

cz 3G. Finally, if /(#) is a meromorphic function in G, then p(f(z)) =

\f'(z)\/l + \f(z)|2 and we say that /(#) has "Picard behavior" in a set

A of G if f(z) assumes every value, except perhaps two, in β, infinitely

often in A.

2. A Neo-metric in G

DEFINITION 2.1. We define s: G x G-> [0,1] by the following:

(i) If there exists ^, 0 < θx < 1, such that zιeG(z2,θι) and

£2e Gfe,^), then

(2.1) sfo, «2) = inf {̂ : 0 < θ < 1 , zxe G(z2, θ) and s2 e G(zl9 θ)} ,

(ϋ)

(2.2) s(zlyz2) = 1 , otherwise.

LEMMA 2.1. Let zίfz2eG. Then

( i )

, «2) - min 1 . ' ^ Γ ^ 2 ' ,Ί > 4 >
I mm W(^),d(^2)] J

(2.3)

(π)

(2.4) s(zuz2) — 0 ΐ/ and onίi/ i/ ^x = z2 ,

(iϋ)

(2.5) siz^Zt) = sfe,^) ,

(iv) /or ani/ 2;0 e G

(2.6) s^o,^) + s(zo,z2) > —s(z19z2) ,

(v) // s(zuz2) < 1, then for any point zQ on the straight line joining

zλ to z2, we have

(2.7) s ( z ί 9 z 0 ) < l , a n d s ( z 2 , z 0 ) < l .
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Remark, (A) s does not satisfy the triangular inequality (and we

call it a neo-metric). For example, let G = {z; Re (2) > 0} and zx = 4,

z2 = 8, z0 = 5, then 8(z09zJ + s(zQ,z2) = 1/4 + 3/5 = 17/20 < 1 = s(z19z2).

(B) The number 1/4 in (2.6) may not be best possible factor in the

inequality.

Proof. We may suppose d(zx) < d(z2). To show (2.3), if \zλ — z2\ >

d(z^, then z2g G(zuθ) for each 0 < θ < 1 and we have s(zuz2) = 1. On

the other hand, if \zλ — z2\ < d(zx)9 let 0O = (|Si — ^2l/d(«i))(<l), then for

each 0 < δ < ΘQ such that ΘQ + δ < 1, z2 e G(zlf θ0 + δ) and certainly z1 e

Gfe, θo + δ); while s2 g Gfe, θ0 - δ). i.e., 6>0 = inf {θ: 0 < θ < 1, ^ eGfe, θ),

z2eG(zuθ)}. Hence (2.3) is valid.

(2.4) and (2.5) are trivial. We now start to show (2.6). L e t z o e G ,

and without loss of generality, let s(zuz0) < 1, and s(z2yz0) < 1. Hence

|Si — Sol < m i n {d(Zo)9 dizj} and \z2 — zQ\ < min {d(zo),d(z2)}. By the defini-

tion of d(z) we have

d(z0) < d(zx) + \zQ - zλ\ < 2d(zί) and d(z2) < d(z0) + \zQ - z2\

< 2d(zQ) <

Hence

s(z0,zθ + s(zQ,z2) =
m m {d(z0), d{zj] m m {d(z2), d(^0)}

l^i - *ol + l g2 - Sol > l^i - SQ| + \Z2 - ZQ\

>^-s(z19z2).
( 1 ) 4

For (2.7), note that if s(zl9z2) < 1, then max{|22 — «0|, | ^ — zQ\} <

\zλ-z2\< min{dizj, d(z2)}. Hence d(«0) > d(zj - \zx - z0\ > | ^ - z2\ - \z, - z0\

> \z2 - zo\. i.e., s(z2,z0) = (|«2 - ^o!/min W(22),d(«0)]) < 1. Similarly, we

can show s(zl9z0) < 1.

In a sense, this neo-metric gives us a "refined" measurement when

compared to the Euclidean metric in G for points which are near to the

boundary. It works almost like the non-Euclidean metric (see also the

following results) in a simply-connected region. In fact, let G = D, and

let {zn} be an increasing sequence of positive numbers such that
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= 1. If (1 — 2«+i)/l — zn < 1/2, then lim sup p(zn, zn+ι) > 1/3 and s(zn9 zn+1)

— 1 for each n = 1,2, . Conversely, if lim s(zn, zn+ί) = 0, then

lim(l — 2n+i)/l — 2n = 1, and we have (for example, see [3, Lemma 4])

lim|0(2w,2n+1) = 0. To be more precise, in describing the relation between

the non-Euclidean metric p and the neo-metric s in a simply-connected

region of hyperbolic type, we shall prove the following results. First,

we show the main lemma in this section.

LEMMA 2.2. Let G be a simply-connected region of hyperbolic type

in the ζ plane. For each aeG, let fa be a one-to-one conformal mapping

from G onto D such that fa(a) = 0. Then for each 0, 0 < 0 < 1,

(2.8) (|*| < -A.} c /β(G(α, 0)) <^{\z\< min (40,1)} .

Proof. We will show {\z\ < 0/16} c /α(G(α, 0)) first. Let 2 = g(w) =

/α(α + θd(a)w), then g(w) is one-to-one on |w| < 1. By Koebe's distortion

theorem, fa(G(a,θ)) = flf(|w| < 1) covers {|s| < |^(0)|/4}. Note that g\w)

- θd(a)f'a(ζ), where ζ = α + θd(a)w. It follows that | #'(()) | = βd(α)|/ί(α)|.

Let Λ- be the inverse function of fa, then h is one-to-one on \z\ < 1. By

a theorem of Seidel and Walsh [16, Theorem 3, p. 134], we have A(O

< (1 - 1212) \h\z)\ < 4Di(ζ), where D^ζ) is the radius of the largest smooth

circle (boundary not included) with center at ζ and entirely contained in

the Riemann configuration over the ζ-plane onto which ζ = h(z) maps the

region \z\ < 1. i.e., in our case, Dλ(a) = d(ά). Hence, we have

(2.9) d(a) < A
\ja\β)\

Or, \g'(O)\ = 0d(ά)\f'a(a)\>θ/4:. Thus 1^(0)1/4 > 0/16. It follows now

that fa(G(a,θ)) = g{\w\ < 1} covers {\z\ < 0/16}. To prove the second half

of (2.8), i.e., to show /α(G(α,0)) c {|«| < min (1,40)}, we let 0 < 1/4 and

let w = (Λ(«) — a)/d(a) = {h(4θ\lr) — a}/d(a). (i.e., 2 = 40ω.) It is easy to

see that k(ω) is one-to-one on |ω| < 1. By Koebe's distortion theorem,

fc(|ω| < 1) covers {\w\ < fc/(0)/4}. On the other hand, by the theorem of

Seidel and Walsh which we quoted earlier (see (2.9)), |fc'(0)| = 40/d(α)

X \h'(0)\ > 40/ d(a)'d(a) = 40. i.e., fc;(0)/4 > 0. Hence fc(|ω|< 1) covers

{\w\ < 0}, that is equivalent to h(\z\ < 40) covers G(α,0) and our theorem

is complete.
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COROLLARY 2.2.1. Let G be a simply-connected region of hyperbolic

type and z0 e G. Then

(A) for each R > 0, there exists a 0(0 < 0 < 1), depending only on

R (independent of the choice of z0) such that G(z09θ) c Dp(z09R)9

(B) if R< 1/2 log 17/15, then there exist θ1 and 02, ( O < 0 ! < 0 2 < 1 ) ,

depending on R only, such that G(2o,0i) c Dp(z09R) c G(z09θ2).

Proof. (A) Let 0 < 40 < (e2R - D/(e2R + 1 ) < 1, then by Lemma 2.2,

fzo(G(z0,θ))c. {\z\< 40}. It is easy to see that by (1.1) we have {|z|< 40}

cD,(0,B), i.e., G(zOfθ)d Dp(z09R).

(B) If R < 1/2 log 17/15, then (e2R - ΐ)/(e2R + 1 ) < 1/16. Choose 02

such that 0 < 16(e2R - ΐ)/(e2R + 1) < 02 < 1, then by lemma 2.2, we have

Dp(0,R) e {\z\ < 02/16} c fZo(G(zQ,θ2)). The other half of part (B) follows

from part (A) by choosing 0X such that 0 < 40X < (e2R - ΐ)/(e2R + 1.)

LEMMA 2.3. Let zQ e G, and for 0 < 0 < 1, let

(2.10) D sfe, 0) = {z e G: s(z0, z)< 0} ,

ίfeen G(zo,θ/2) c Z)s(zo,0) c Gfe,0).

Proo/. If s(20, »x) < 0 < 1, then \zx — zo\ < θd(z0). Hence ^x e G(z09θ).

On the other hand, since d(z0) < d(z^) + \zx — zo\ < 2d(z^)y we have

then \zλ — z<\ < (θ/2)d(zQ). Hence s(z19z0) < 0 and our proof is complete.

Combining Corollary 2.2.1 and lemma 2.3, we have the following

connection between the non-Euclidean metric p and s in a simply-con-

nected region as follows.

COROLLARY 2.3.1. Let G be a simply-connected region of hyperbolic

type and z0 e G. Then

(A) for each R > 0, there exists a 0(0 < 0 < 1), depending only on

R such that Ds(z0,θ) c Dp(z0,R).

(B) if R < (1/4) log 17/15, then there exist θlfθ2 (0 < θx < 02 < 1),

depending only on R such that Ds(z^θ^ c Dp(zQ,R) c Ds(z0,θ2).

Remark. Suppose G is a simply-connected region of hyperbolic type
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and / is a meromorphic function in G. It is well known that / is not
normal in G if and only if there exists a ''p-sequence" (see Introduction)
of f(z) in G. i.e., there exists a boundary sequence {zn} of G such that
for each R > 0, and for each infinite subsequence {zm} of {zn}, f(z) has

Picard behavior in Q Dp(zm,R). Here p represents the non-Euclidean
m = l

metric in G. However, it does not give us an explicit picture if G is
not as "simple" as a disk or a half plane because we do not know what
a non-Euclidean disk would look like in G. But corollaries 2.2.1 and
2.3.1 give us a better understanding on the locations and relative sizes
of these non-Euclidean disks, i.e., if R < (1/4) log 17/15, for practical
application, we could replace Dp(zn,R) by G(zn,θ) or Ds(zn,θ) for some
suitable θ which depends only on R. And Gs(zn,θ) or Ds(zn,θ) are easy
to recognize.

Before going on to the next section, we shall show that in the case
when G = D, some improvements could be made on the results of the
above corollaries.

L E M M A 2.4. Let zoeD and 0 < θ < 1. Then

(A) n (so, log (1 + θ)) c G(z0, θ) c Dp

(B) Dp[z09log (1 + ^ c % , )

Proof. (A) Without loss of generality, we may suppose that zQ lies
on the positive #-axis. Thus let z0 = γ and let a < γ < b such that b — γ =
γ _ α = θ{l — γ). Suppose pγ = min {/?(α, ^), p{b, γ)} and ô2 = max {p(a, γ),
p(b, γ)}, then Dp(z0, pλ) c G(^o, θ) c Dp(z0, p2). By an easy calculation, we have
ρ(a,γ) = log{(l + ^)(1 + f)/((l
fl(l-r))/(l + r ) ( l -β)} .
and log(1/(1 - fl)) < ^(r, 6) < log {(1 + )θ/(l - θ.)} i.e., log (1 + θ) < Pl <
p2 < log{(l + 0)/(l - 0)}. In other words,

L + 0)) c
1 -

(B) follows immediately from (A) and lemma 2.3.

Remark. In D,Ds(z0,θ) = {zeD: s(z,z0) < θ}, in general, is not a
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Euclidean disk (while Dp(zQ, R) is always a Euclidean disk, though it may

not have z0 as its center). For example, let zQ = 1/2, Θ — 1/2, then

il

3. Neo-Normal Functions in G

DEFINITION 3.1. We say that a meromorphic function f(z) is neo-

normal in G if the family of functions F = {#*(» = /(s + d(2)w): s e G}

is normal in the sense of Montel in \w\ < 1. (We shall use s-normal

instead of neo-normal in the following discussions.)

THEOREM 3.1. f(z) is s-normal in G if and only if

(3.1) sup {d(z)p(f(z)): z e G} < K < oo .

Proof. Note that (d/dw)gz(w) = /7(ω)cί(^), where ω = z + d(z)w. If

f(z) is s-normal in G, i.e., F is normal in \w\ < 1, by Marty's criterion

on normalcy, d(z)p(f(z)) = p(gz(O)) < K < oo for each «e G. Hence (3.1)

is valid.

Conversely, if (3.1) is valid, we will show ί7 is normal in |w| < 1.

It suffices to show F is normal in \w\ < θ for each 0 < θ < 1. Fixed

zoeG, if |Wi| < θ and if ^ = z0 + d(zo)wu then | ^ — zo\ = d(«0) IwJ <
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θd(zQ). Since d(z0) < d(zλ) + \zx — zQ\ < d(zj + θd(z0), thus (1 — θ)d(zQ) <

d(zx). On the other hand, pig^w,)) = d(soM/0*i)) < W(«i)/d - θ))ρ(f(zJ) <
K/(l - ff), where K is the bound in (3.1), i.e., sup {sup p(gz(w)} < K/(l - θ).

lwl<Ξ0<i,ze(?

Hence F is normal in \w\ <θ for each 0 < \w\ < 1 and our proof is
complete.

With the help of the neo-metric s, we will generalize the notion of
"p-sequence" as follows.

DEFINITION 3.2. A boundary sequence {zn} in G is said to be an
"s-sequence" of a meromorphic function f(z) in G if for each 0 < θ < 1,
and for each infinite subsequence {zm} of {zn}, f(z) has Picard behavior

in \JDs(zm,θ).
w = l

THEOREM 3.2. A meromorphic function f(z) in G is s-normal if and
only if it does not possess any s-sequence. (See also [4], [5] and [9].)

Proof. Suppose that f(z) is not s-normal in G. By theorem 3.1,

there exists a boundary sequence {zn} in G such that lim d{zn)p{f(zn)) = oo.

Write gn(w) = f(zn + d(zn)w), then limp(gn(0)) = lim d(zn)p(f(zn)) = oo.

i e., {ί/nOw)} is not normal in |w| < 0 for each 0 < 0 < 1. In particular,

{#w(w)} cannot omit three values there. Hence f(z) has Picard behavior

in (jD8(zn,ff) for each 0 < θ < 1, which is equivalent to saying that
71 = 1

{zn} is an s-sequence.
Conversely, suppose that f(z) is s-normal and that it possesses an

s-sequence {zn}. We may let lim f(zn) = a exist. By definition 3.1, the
sequence of functions !F — {gn(w) = f(zn + d(zn)w): n = 1,2, •} is normal
in \w\ < 1. Hence it is (d — χ) equicontinuous in \w\ < θ, for each 0 < θ
< 1. (For example, see [10, Sect. 2, p, 155].) Choose θ, such that
χ(0jw),ffm(O))<l/4 for all \w\ < 2Θ < 1, i.e., χ(J(zn),f(z))< 1/4 for
all z e D(zm, θ). Hence, for sufficiently large n, sup {%(/(«), a): ze Ds(zn, θ)}

00

< 1/2, i.e., f(z) does not have Picard behavior in \JD8(zn,θ)9 which
n=l

contradicts our assumption that {zn} is an s-sequence and our proof is
now complete.

Remark. It is clear that if G is a simply-connected region of hyper-
bolic type, from the viewpoint of theorems 3.1, 3.2; or corollary 2.3.1,
that the definitions of "normal function" in [12] and [14] are equivalent
to that of "s-normal function." Meanwhile, the definitions of "p-sequence"
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in [4], [5] and [9] are equivalent to that of s-sequence. However, as
we will see later in section 5, if G is multiply-connected, the definition
of "normal functions" in [12] is not the same as that of "s-normal
functions" here.

We shall list some results concerning s-normal functions defined in
an arbitrary region. These results have been proved for the case when
G = D. (For example, see [1].) In most instances, the proofs are es-
sentially the same as those for the disk and we will omit them.

LEMMA 3.3. Let f(z) be meromorphic and s-normal in G and let

{zn}> {z'n} be two boundary sequences in G.

(A) // {f(zn)} is bounded away from w e Ω, then there exists a Θ
oo

(0 < θ < 1), such that f(z) is bounded away from w in \J Ds(zn, θ).
71 = 1

(B) // lim f(z) = w, w being assumed by f(z) only a finite number
00

of times, then f(z) tends to w uniformly in (J Ds(znf θ) for each 0 < θ < 1.
n-l

(C) // lim s(zn,z'n) = 0, then lim f(zn) — a if and only if lim/OQ
— α.

4. Application—the Growth of Derivatives

Generalizing the definition of regular sequence of Seidel and Walsh
[16, pp. 153-54], we have

DEFINITION 4.1. Let f(z) be a meromorphic function and let {zn} be
a boundary sequence in G. If there exists a θ0, 0 < θ0 < 1, such that
for any sequence of points {z'n} with lim sup s(zn, z'n) < ΘQ9 we have

(4.1) limχ[/(2n),/«)] = 0,

then we call {zn} a chordally s-regular sequence of f(z).
If instead of (4.1) we have

(4.2)

then we call {zn} an s-regular sequence of f(z).

DEFINITION 4.2. ([16, p. 154]) Let fiz) be meromorphic and let
{zn} be a boundary sequence in G. If for each integer 1 < k < m, we
have

(4.3) lim d{znYΓ«\zn) = 0 ,
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while

(4.4) lim sup d(znr
+ι\Γm+»(zn)\ > 0 ,

then we call {zn} a quasi-regular sequence of order m.

The case m — oo is allowed and means lim d(zn)
kfa)(zn) = 0 for each

positive integer k.

Remark. The notion of chordally regular sequence is also used in

the study of value distribution of certain class of meromorphic functions,

for example, for those which do not possess any chordally regular

sequence in the unit disk. For some detail on this related problem, see

[17].

We are going to investigate the necessary and sufficient conditions

for a boundary sequence to be quasi-regular of infinite order. There are

two approaches, one employed by Eggleton [2] and the other by Seidel

and Walsh [16]. We shall generalize Eggleton's method first.

LEMMA 4.1. Let f{z) be a meromorphic function and let {zn} be a

boundary sequence in G. Suppose that

(4.5) (1) lim/(*n) = 0,
71—»co

(2) for some 0 < θ < 1, f(z) is bounded in

G1(θ) = \JG(zn,θ)
71 = 1

and

(3) for each 0 < θ < θl9 and for each n = 1,2,

there exists z'n9 \z'n — zn\ = θd{zn) such that

(4.6) lim/(s'n) = 0 .
7i-»oo

Then {zn} is a quasi-regular sequence of infinite order. In fact, we have

(4.7) lim d{zn)
kΓk\zn) - 0 for k = 0,1,2, . .

7l->oo

Proof. Let the bound of f(z) in G(β) be M. Write Γn = dG(zn,θλl2),

then
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Hence

(4-8) ι w ι s w « ***-°.». .
We shall show by induction that

(4.9) lim d(zny\f«Xzn)\ = 0 for k = 0,1,2, ,
n-*co

When k = 0, (4.5) reduces to lim/(2n) = 0, which is a part of our

hypothesis. Suppose now

(4.10) lim fm(zn)d{zn)
k = 0 for k = 0,1,2, , K - 1 ,

By Taylor's formula

Σ
fco

Hence

U. - ^> / UJ = / ( < ) _ Σ Cg. g.J / W ( g < t ) _ Σ VbLZJ
K\ *-o A;! *-jr+i A;!

And

K - g«H/<JC)(g«)l
K\

+ Σ

i.e.,

Thus, by (4.8),

And by (4.5), (4.6) and (4.9), we have
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^ MK! ^ / 2Θ \k _ MK! (2Θ/Θι)κ+1

θj θκ 1 - (2Θ/ΘJ

Letting θ—>0 we have limd{zn)
κ\f{K)(zn)\ = 0 and our induction process

is complete.

COROLLARY 4.1.1. // f(z) is s-normal and meromorphίc in G, L is

a boundary path in G such that

lim/O) = 6^00
z->3G
zeL

Uι(/Z>lL l l i i l J \/CJU/\iCJ — \J J U f tv — J-, ^ι, * .
Z-+8G

Proof. Without loss of generality, let 6 = 0, for otherwise, we may

consider f{z) — 6. By Lemma 3.3, f(z) is bounded in [J Ds(zί9θ) for some
Z6L

0< θ < 1. Our corollary follows immediately from Lemma 4.1.

Remark. If 6 = 00, the above corollary is false. (See also the

remark following Lemma 4.2.)

COROLLARY 4.1.2. Let f(z) be s-normal, holomorphίc and have only

a finite number of zeros in G. If S is any set in G such that S Π dG

Φ 0 and lim f(z) = 0, then
zes

lim d(z)kf(k\z) = 0 for each k = 1,2, . , and for each 0 < θ < 1, where
z->SΓ)dG

Proof. From Lemma 3.3, f{z) tends to zero uniformly in Siβ) and

our result is an immediate consequence of Lemma 4.1.

COROLLARY 4.1.3. // f(z) is meromorphic and assumes every value

in Ω at most a finite number of times in G, then each boundary sequence

{zn} in G such that lim sup \f(zn)\ ±? 00, is a quasi-regular sequence of

infinite order.

Proof. Trivial!

COROLLARY 4.1.4. Let f(z) be s-normal and meromorphic and let {zn}
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be a boundary sequence in G such that lim s(zn,zn+ι) = 0 and lim f(zn)
= δ=^ oo. Then {zn} is a quasi-regular sequence of infinite order.

Proof. Let L be the boundary path in G formed by joining consecu-
tive points zn to zn+1 by an Euclidean straight line. By Lemma 2.1 and
Lemma 3.3, lim f(z) = b *? oo. Our corollary now follows directly from

z~+dG
zeL

Corollary 4.1.3.

COROLLARY 4.1.5. Let f(z) be meromorphic and s-normal and omit

two values in G. If {zn} is a boundary sequence in G such that

limsups(2n,2n+i) < 1 <M&d lim/(sn) = w, where w is one of the omitted

values, then {zn} is a quasi-regular sequence of infinite order.

Proof. Same as Corollary 4.5.

Remark. Corollary 4.1.1 generalizes [2, Theorem 1]; Corollary 4.1.2
generalized Theorems 1 and 3 and Corollary 1 in [18]; Corollary 4.1.3
generalizes Corollaries 7 and 8 in [18] and Corollary 4.1.5 generalizes
Corollaries 2, 3, 4, 5 and 6 in [18].

Now, we are going to look into the same problem from the viewpoint
employed by Seidel and Walsh [16].

LEMMA 4.2. A necessary and sufficient condition that {zn} be an s-
regular sequence for a holomorphic s-normal function f(z) in G is that
it be quasi-regular of infinite order.

Proof. The condition is necessary. If {zn} is an s-regular sequence
of f(z), then there exists a positive number θ, such that 2Θ (0 < 2Θ < 1)
is the ΘQ in Definition 4.1.

Consider the sequence of functions

{flr»(O - /(*» + θdίzn)ζ) - f(zn)} .

Since f(z) is s-normal, thus {gn(ζ)} is normal in | ζ | < 1. We shall

show limflrn(C) = 0 uniformly in some disk | ζ | < Λ < l . If | ζ | < > l and

z = zn + θd(zn)ζ, then \z - zn\ < λθd(zn). i.e., s(zn,z) < 2λθ < 20. Given
any ε < 0, by the definition of 5-regular sequence, there exists an integer
N(ε) such that for all n < N(ε) and zeDs(zn,2θ), we have \f(z) - f(zn)\
< ε. i.e., for |ζ| < λ, \gn(ζ)\ < e. Hence lim^(ζ) = 0 uniformly in
|C| < λ. This implies that l im^CO = 0 for each k = 1,2, , and for
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Id < λ. Since 0«>(O) = ΘH{znYf«\zn), i.e., lim d{znYf^{zn) = 0, for k =

1,2, . Thus {zn} is quasi-regular of infinite order.

Conversely, since {gn(ζ)} is normal in |ζ| < 1, then a suitable sub-

sequence of {gn(ζ}} would converge uniformly in each disk |ζ| < λ < 1 to

some holomorphic function G(ζ) for which G(0) = 0. Hence G(ζ) =

CiC + c2ζ
2 + . On the other hand, gn(ζ) = Σ ((θd(zn))ηk\)f*\zn)ζK

Hence lim (0fc/fc l)d(zn)
kf(k\zn) = cn. It is clear now if {2n} is quasi-regular

of infinite order, then G(ζ) = 0 in each disk |ζ| < λ < 1, and hence {zn}

is s-regular.

Remark. (A) As shown above, because of the strong hypothesis

for regular sequence, we do not need the boundedness of {/(«»)} to prove

Lemma 4.2, Seidel and Walsh had overlooked this point in the proofs of

[16, Theorem 5, p. 156] and [16, Corollary 4, p. 198]. However, if {zn}

is only chordally s-regular, the necessity in Lemma 4.2 is not valid.

For example, let f(z) = 1/(1 — z), then it is holomorphic and normal in

D, but lim(l — r)f'(r) = 00. In such case, the boundedness of {/(«„)} is
r->oo

needed.

(B) All the corollaries of Lemma 4.1 are also corollaries of Lemma

4.2. It is because the hypothesis of each corollary would imply that

the boundary sequence (in consideration) is s-regular and that f(z) is

holomorphic in some neighborhood of the boundary sequence.

(C) By Definition 3.2, and by Theorems 3.1, 3.2, and the fact that

d(z)\f'(z)\ > d(z)p(f(z)), it is easy to see that a necessary condition for

a boundary sequence {zn} in G to be an s-regular (chordally s-regular)

or quasi-regular of order k, k>l, of f(z) is that {zn} is not an s-sequence

of f(z). On the other hand, Lemma 4.1, its corollaries, and Lemma 4.2

remain valid if we replace the hypothesis that f(z) is s-normal in G by

that the boundary sequence(s) in consideration is not an s-sequence of

5. Some Remarks

We wish to remark here about the connections between our results

and those of Lehto [11], Lehto and Virtanen [12], and Gavrilov [6], [7]

and [8] concerning meromorphic function defined in a deleted neighbor-

hood of one of its essential singularities. First of all, we examine the

following definition and lemma in [11].
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DEFINITION 5.1. A meromorphic function f(z) defined in a domain
G is said to be weakly normal if f(z) is normal in every simply-connected
subregion of G.

LEMMA 5.1. Let f(z) be meromorphic in a deleted neighborhood G
of its essential singularity z = 0. Then the following are true.

(A) f(z) is weakly normal in G if and only if

(5.1) lim sup \z\p(f(z)) < oo ,

(B) if f(z) omits one value in U, then

lim sup \z\ p(f(z)) = oo .
2-0

Applying our notion, we have

COROLLARY 5.1.1. Let f(z) be a meromorphic function defined in a
region G.

(A) / / G is simply-connected, then f(z) is normal in G if and only
if it is weakly normal in G, if and only if it is s-normal in G.

(B) If G is a deleted neighborhood of z = 0, an essential singularity
of f(z), then f(z) is weakly normal in G if and only if fiz) is s-normal
in G, if and only if

(5.2) lim sup \z\ p(fiz)) < oo .

(C) / / f(z) and G are defined as in (B), and if in addition, f(z)
omits one value in G, then f(z) is not s-normal in G.

Proof. Part (A) follows directly from Theorem 3.2 and the fact
that the notions "normal" and "weakly normal" are equivalent in a
simply-connected region.

Part (B) follows part (A) of Lemma 5.1 and the fact that d(z) = \z\.
Part (C) follows from part (B) of Lemma 5.1 and part (B) of this

corollary.

Remark. From the above corollary, we see that a meromorphic
function could be s-normal in a deleted neighborhood of an essential
singularity while Lehto and Virtanen [12] showed f(z) could never be
normal there. In this case, "normal" always implies "weakly normal"
which is equivalent to "s-normall" by part (B) of the above corollary.
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The author is not so sure what we could say about the implication going
in the other direction.

Another point of interest is the theorem investigated by Lehto [11]
and later by Gavrilov [7] and [8]. In fact, using our notions, we have
the following theorem for which the proof will be omitted.

THEOREM 5.2. Let h(r) > 0 be an arbitrary real-valued function
defined for all r > 0 such that h(r) < r, and let f(z) be a meromorphic
function in G. If {zn} is a boundary sequence such that

lim h(d(zn))p{f(zn)) = oo ,
n-*oo

then f(z) has Pίcard behavior in Q G(zn,δp(d(zn)) for each δ > 0, where

p(r) — h(r)/r. In particular, when h(r) = r, we have Theorem 3.2.
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