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LINEAR IMBEDDINGS OF SELF-DUAL

HOMOGENEOUS CONES

I. SATAKE*)

Introduction. Let G be a reductive algebraic Lie group1) acting

linearly on a (finite-dimensional) real vector-space U with a maximal com-

pact isotropy subgroup K and suppose that the quotient Ω — GjK is a self-

dual homogeneous cone in U. Let (G', Kr) be another such pair correspond-

ing to a self-dual homogeneous cone Ωr in Ur. Given a homomorphism

P : G-+G' such that ρ(K) c K\ one has an equivariant map Ω-^Ω' induced

by p, which we denote again by p. If this map is a restriction to Ω of an

injective linear map of U into U\ it will simply be called a linear imbedding

of Ω into Ωr. The purpose of this paper is to determine all homomorphisms

P : G-+Gr giving rise to a linear imbedding of Ω into Ωf in this sense, for

the case where G' = GL(n, J Γ ) ( J Γ = R, C, K) (see 1.2). After a brief

summary of known facts in 1 (due mainly to Koecher [2] and Vinberg [4]),

we will in 2 reformulate our problem in terms of the representation-theory of

Lie algebras and state the main results. Sections 3 and 6 are devoted to

the reductions of the problem to the case where J3Γ = C and where both Ω

and p are irreducible. The solutions for this particular case are given in 4.

Our problem is closely related to a similar problem concerning holo-

morphic imbeddings of symmetric domains ([3a]). (Actually, our method

here is nothing but a replica of the old one.) It will turn out (as the result

of the classification) that every linear imbedding p : Ω-*Ωf = ̂ (n, C) is an

isometry such that the image p{Ω) is totally geodesic in Ω', and can be

extended to a holomorphic imbedding of the corresponding tube domain:

U + iΩ-+Ur + iΩr. It would be desirable to prove these facts more directly
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χ) Here by a (reductive) algebraic Lie group we mean a Lie group whose identity connect-

ed component is that of the group of /^-rational points of a connected (reductive) algebraic
group ^ defined over R. gf is reductive, if its radical is an (algebraic) torus.
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(without using the classification) and including possibly the case where Ω!

is not of classical type. Out study was motivated by, and in turn has some

applications to, the theory of (rational) Siegel domains of the third kind,

which we hope to discuss elsewhere.

1. Self-dual homogeneous cones.

1.1. In the following, U is a real vector-space of dimension m and Ω is

a (non-empty) open convex cone in U. We suppose that the vertex of Ω is

the origin of U and Ω does not contain any straight line. Let G = Auto(J2)

be the identity connected component of the (linear) automorphism group of

Ω, i.e., the subgroup of GL(U) formed of all linear transformations g such

that g(Ω) = Ω. We shall always assume Ω to be * 'homogeneous" and "self-

d u a l " ; these mean, respectively, that G is transitive on Ω and that there

exists a positive-definite inner product < > on U such that one has

(1) ω <= Ω <=Φ <<*>, α/> > 0 for all ω' e Ω9 ω' ψ 0.

It is known ([4]) that G is then a reductive (algebraic) Lie group with the

center isomorphic to a vector group and that for any ω0 e Ω the isotropy

subgroup K — KωQ of G at ωQ is a maximal compact subgroup of G. Thus

Ω has a structure of a symmetric space with non-positive curvature (with a

flat part) with respect to a G-invariant Riemannian metric. Furthermore,

there exists a unique direct decomposition

(2) Ω = Ωi X x Ωt, U = Ux ® ® Ut

such that Ωt is an irreducible (i.e., indecomposable) self-dual homogeneous

cone in Uu and correspondingly the automorphism group is also decomposed

in the form:

(3) G = Gi x x Gty Gt = Auto(βt),

where each Gt is the direct product of a simple (semisimple) Lie group

(which may reduce to the identity group) and the group of dilatations on

Ui9 isomorphic to R.

1.2. The irreducible self-dual homogeneous cones are completely clas-

sified (up to linear isomorphisms) into the following five types ([2], [4]):

1°. Q = £*(v, R), m = -|-y( y + 1),

2°. Ω = ̂ (v9 O, m = v\
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3°. Ω = ^ " ( y , K), m = 2y2 - v,

where, as usual, R, C, K denote the field of reals, complexes and quater-

nions,, respectively, and the symbol ^{y9 <JίΓ) (J%~ = R, C, K) stands for the

cone formed of all positive hermitian elements in MXΉΓ) (the ring of all

v x v matrices with entries in J3Γ) with respect to the standard involution

x = (xtJ)\—>ιχ = (xji). The semisimple part Gs of G = Auto(J2) is identified

with SL(v9 JF)/center, if the action of g e SL{v, JΓ) on ^*(v, J Γ ) is

defined by x \—> tg'1xg"1. (SL(v, J%~) denotes the multiplicative group of

all elements in MX^ίΓ) with reduced norm 1.) These three types are called

"classical." Note that, for v = 1, they all reduce to the "half-line"

{x e R\x > 0}, for which one has Gs = {1}.

4°. Ω = {x = W G Rm\x\ - J]xί > 0 , x1>0] ( m > 3 , m ¥= 4).
z = 2

Gs is the identity connected component of SO(1, m — 1).

5°. Ω = &(3, <&\ m = Z7,

where <g* denotes the Cayley's octonion algebra and ^ ( 3 , <&) is the cone

formed of all positive elements in the 27-dimensional exceptional Jordan

algebra. The semisimple part Gs is a simple Lie group of type EQ with

real rank 2.

2. Linear imbeddings.

2.1. Let Ω and £?' be self-dual homogeneous cones in real vector-spaces

U and U', respectively, and let G = Auto(0), Gr = Auto(i2r). An injection p

of Ω into Ωr is called a /m^αr imbedding if the following conditions are satis-

fied:

(i) p is "equivariant", i.e., there exists a local monomorphism of G (that

is, a monomorphism from a covering group of G) into G', denoted again by

P, such that one has

(4) p{g{ω)) = p{g){p(ω)) for flr e G, α> e 0 ;

(ii) jθ is "l inear", i.e., /? can be extended to a linear map (also denoted

by p) from U into £/'.

Let a and g' be the Lie algebra of G and G', respectively. Take ω0 e

β and put ω'o = p(β)0). We denote by ϊ = ϊωo (resp. V = Iί/0) the subalgebra



124 I. SATAKE

of g (resp. g') corresponding to the isotropy subgroup K = Kωo (resp. Kr —

Kr

ωfQ) of G (resp. Gr) at ω0 (resp. ω'Q). Then, the condition (i) implies that

one has a monomorphism of g into g' (denoted again by p) such that

(a) p(tj c i : v

Conversely, if one has a monomorphism ^ : g -» g' satisfying (Co) (for given

ω0 e 42, ω ί e β ' ) , then, using the corresponding local monomorphism p :

G->G', one can define an equivariant injection p :Ω->Ωr by putting p(g{ω0))

= /°(ί7)(ύ>o) (Note that such a monomorphism ^ : g -> g' is woί uniquely de-

termined by the corresponding injection p :Ω-+Ω'.)

We denote by σ = σωo the Cartan involution of g with respect to ϊ, i.e.,

the (unique) involution of g such that t = {X& Q\σ(X) = X}. Similarly, let

σ' = σ'ω,0 be the Cartan involution of gr with respect to f'. Then clearly

the condition (Co) is implied by the condition

(C) P°σωQ = σ'»'0 ° °̂

It is well-known (see, e.g., [3a]) that, in general, an equivariant injection

P \Ω-*Ω' of symmetric spaces comes from a monomorphism of g satisfying

(C) if and only if it is an isometry and p{Ω) is totally geodesic in Ωr (for a

suitable choice of the invariant Riemannian metrics on Ω and Ωr). It should

also be noted that, in our case, if one denotes by t the adjoint with respect

to an inner product < > on U for which the condition (1) makes sense, then

one has ιG = G, *g = g, and the map X\—>• — ιX ( I G g) is a Cartan in-

volution of g. It follows that a linear imbedding p : Ω -> Ωr comes from a

monomorphism of g satisfying (C) if and only if one can find a K- (resp.

Kr-) invariant inner product < > (resp. < >') on U (resp. Ur) satisfying

(1) for Ω (resp. Ω') and such that

(5) <p(x), p(y)Y = <x, y> for all x9yt=U.

2.2. In the following, we fix ω0 e Ω (and hence ϊ = ϊωo, o = σωQ) once

and for all. Our problem is then to find all pairs (pf ω'Q) formed of a mo-

nomorphism p : g -> g' and ω'o e ί2' satisfying the condition (Co) and giving

rise to a linear imbedding p : Ω->Ωr; a solution (/>, ω'o) satisfying the stronger

condition (C) will be called a strong solution. As we mentioned in the In-

troduction, we shall consider this problem only for the case where Ωr is of

classical type, but in a slightly extended form, by dropping the injectivity

of p and the effectiveness of G and Gr. Since the case J3Γ = R or K can
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be deduced from the case J ^ = C (see 6), we shall henceforth restrict ourselves

to the case Ω' = J^(n9 C). Thus, changing the notation, we let G be a con-

nected reductive Lie group acting on U through a representation π : G ->

GL(U), such that π{G) = Auto(β), TΓ^I) = Ko : compact, and let K be the

isotropy subgroup of G at ω0, which is again a maximal compact subgroup

of G. On the other hand, let V be a complex vector-space of dimension

n and set Gr = GL{V), Ωr = ^(V) (the cone of all positive-definite hermitian

forms on F), Uf = ^(V) (the space of all hermitian forms on F), the action

of gr e G' on U' being defined by

(9f(F))(x, y) = F(g'-'x9 g^y) (x, y e F)

for F <= ί/'. Then, our problem can be formulated as follows:

PROBLEM. For a given pair (g, ωo)9 find all triples {V, p, F) formed of a re-

presentation (V, p) of the Lie algebra g and F <B J7*(V), such that p(X) is skew-

hermitian with respect to F for all I ε { and that the induced equivariant map p :

Ω~>Ωr = ^{V) is linear.

A solution (V, p, F) is called a strong solution, if it satisfies the stronger

condition

(CO P(σ(X)) = -p{X)* for all X e g,

where σ is the Cartan involution of g with respect to t and * denotes the

adjoint with respect to the hermitian form F. Two triples (F, p, F) and

(V, pf, F') are said to be equivalent (resp. conjugate or anti-equivalent), if there

exists a linear (resp. antilinear) isomorphism φ : F-> F' such that one has

( p'{X) = φ o P{X) o 0-i for all l e g ,

(6) F'(x, y) = F ^ - ^ α ) , ^ ( y ) ) (resp. = W ^ y ) , ^ 1 (^)))

^ for all x9 y e F.

It is clear that if (F, /o, F) and (F r, /o', F r ) are equivalent or conjugate and

if one of them is a (strong) solution, then so is also the other. Since g is

real, it is clear that for any solution (F, p, F) one also has a solution con-

jugate to it. A solution conjugate to itself is called a self-conjugate solution.

For two triples (Vif pu Ft) (i = 1, 2) with pt : g -• gl(F*), Ft e ^ ( F * ) , the

triple ( F i Θ F 2 , p i © / ^ , F i © F 2 ) is called the direct sum of them. The direct

sum of (Fi, jOt, Fi) (/ = 1, 2) is a (strong) solution if and only if both of

them are (strong) solutions. A triple (F, p, F) is called irreducible (resp.
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primary) if the representation p of g is irreducible (resp. primary, i.e., de-

composable into a direct sum of mutually equivalent irreducible represen-

tations) .

2.3. Now, to state our main results, we introduce some more notation.

From the decomposition (2) of Ω one obtains the following decomposition

of the Lie algebra g of G:

(7) 3 = ϊoΘ3i® Θβt,

where ϊ0 is the Lie algebra of the maximal compact normal subgroup Ko

of G and g* is the Lie algebra of Gt = Auto(J2t) (1 < i < 0- We denote the

semisimple (resp. abelian) part of g{ by gf (resp. αo«) and put

(8) g*

Then one has g = ! 0 ® α0 ® g5. One writes also

(9) β>o — Σ °>OU fi)oί e ^ ΐ

i = l

THEOREM 1. (a) 4̂ solution (V, p, F) of the above problem can be decomposed

uniquely into the direct sum of primary solutions (V(ί\ p(ί\ Fω), corresponding to the

primary components of the representation p. The solution (V, p, F) is a strong solu-

tion if and only if all its primary components (Vω, p(i\ F(ί)) are strong solutions.

(b) A primary solution {V, p, F) can be expressed in the following form

V=V1(g) Vo,

P = Pi ® 1 + 1 ® Po,(10)

where (Vu Pu Fλ) is an irreducible strong solution for ($ίQ, ωOio) for some index i0,

1 < f0 < t, Vo is a (finite-dimensional) complex vector-space, Fo e ^ ( F o ) , and p0 is

a primary representation of fo©cto ^nio κ(Vθ9 Fo) (the Lie algebra of all skew-

hermitian transformations of Vo with respect to Fo). Here we understand that the

representations pλ and p0 are extended in a trivial manner to the representations of

g, which are denoted by the same letters2^ Conversely, any triple (V, p, F) defined

2) Let 0o be an ideal of a Lie algebra 9 such that there exists a unique complementary
ideal 8o such that 9 = 9o©So Then, any representation of p0 of 90 can be extended (in
a unique manner) to a representation of 9 by putting ρo(X) = 0 for I £ 9j. The repre-
sentation of 9 thus obtained is called a "trivial extension" of p0 and is usually denoted by
the same letter ρ0.
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in this manner is a primary solution for (g, ω0). The primary solution (V, p, F) is

a strong solution if and only if one has ρo{ao) = {0}.

It follows that any solution (V, p, F) is decomposable into a direct sum

of irreducible solutions (though such a decomposition is not unique). This

fact can trivially be verified for a strong solution, for in that case the

condition (C) implies that, if W is any p(g)-invariant subspace of V, then

the orthogonal complement Wx of W in V (with respect to F) is also p{q)~

invariant. The proof of Theorem 1 for the general case will be given in

3-5.

Theorem 1 also implies that, if (F, p, F) is a solution, then p is a "com-

mutative sum" of two representations p1 and pO3\ where [V, p1, F) is a strong

solution with p1^) = 0 and p° is a trivial extension of a representation of

fo © cio into u(F, F). Thus the representations p and p1 induce the same

map of Ω into Ωf = ̂ {V)9 so that the image p{Ω) is always totally geodesic

in Ωr. It should also be noted that, when the representation p comes from

an Λ-rational homomorphism of an algebraic group defined over R, the con-

dition ρ°(a0) = {0} is automatically satisfied, so that {V, p, F) is a strong

solution.

A key step in the proof of Theorem 1 is to show that for an irreducible

solution (Vl9 pu FJ the hermitian form Fx is uniquely determined up to a

positive scalar multiple by the representation (Vl9 Pi). This fact, which is

again trivial for strong solutions, will be proved in 5 by using the classi-

fication given in 4. This uniqueness, along with Theorem 1, will imply the

following

THEOREM 2. The equivalence class of a solution {V, p, F) is uniquely deter-

mined only by the equivalence class of the representation p.

3. Reduction of the problem.

3.1. Our first step is to reduce the problem according to the decom-

position (8) of the abelian part α0. The notation being as in 2.3, let Zt be

the unique generator of aoi such that exp(ΛZi)(<Ξ Gt) is the dilatation χ\—>

eλx in Ut (1 < i < t). (In other words, Zt viewed as a linear transformation

3) If ρf and p" are two representations of a Lie algebra 8 on the same representation-
space V such that p'{X) and p"(Xf) commute with each other for all X, X' e 9, then the
sum p = p' + p" is also a representation of 9 on V, which we call a "commutative sum" of
/>' and p".
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of Ui is the identity transformation lUt.) Then one has

(11)

for all λt e R, #* e Uu 1 < i < t. Hence, if (F, p, F)Jis a solution for

(fi> ^o)5 one has from the conditions (i), (ii)

exp (Hλtp(Zt))(F) =
1

Hence, putting Z< = p[Zt)9 Ft = p{ωoί), one has

for all a?, y e F. Differentiating both sides of this equality with respect to

the variable λi9 one obtains

-F(Z'tx', yf) - F(x\ ZW) = Fi(α, y),

where x' = exp (ΣΛΛJZJ)X, y' = exp CΣlΛjZj)y. From this, one obtains im-

mediately the following relations:

(12) ~ F(Zlx, y) + F(x, Zίy) = -F 4 (», 2/),

(13) Fi(Z;.χt y) + Fiix, Z'sy) = -« W F<(», 2/)

for all x, y e F and 1 < /, y < ί.

Now, since jFί belongs to the closure of p{Ω), the hermitian form Ft is

positive semi-definite. Hence

W't = {x e F|F*(α) = 0}

is a linear subspace of F. Let Wi be the orthogonal complement of

with respect to F. Then one has

(14) ( • - W "

•- D, F , | W ί = 0 .

From (12) and (13) it is clear that both Wt and W[ are invariant under Z'i%

Moreover, from (13) one sees that Z\\ Wi 4-^-1^, is skew-hermitian with res-

pect to Fi\ Wi. Hence Z\\ Wt is diagonalizable and all its eigen-values have
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the real part = — — . Similarly, from (12) one sees that Z{|W{ is skew-

hermitian with respect to F\ Wl, hence also diagonalizable, and all its eigen-

values *are purely imaginary. Since Z{, , Z[ are mutually commutative,

it follows that the decomposition (14) is invariant under all Z<, 1 < j < t.

We now assert that, for i ψ j , Wt and Ws are orthogonal with respect

to F. In fact, since one has (Ft + Fj)\(Wt + Wj) > 0 , one sees from (13) by

the same argument as above that all eigen-values of (Zi + Zj)\(Wt + Wj)

have the real part = — i - . Since one has
Zl

Wt + Wj = Wif) Wj + WiΓϊ W'j + Wj Π W'i9

this implies that Wt Π W3 = {0}, and so Wt c W% Wό c W'u which proves

our assertion.

On the other hand, since F — Σ Ft is positive-definite, it is clear that
t
Π W'i = {0}. Hence, one obtains the following orthogonal decomposition

z' = l

(15) V= W,® • - ®Wt.

If Pt denotes the orthogonal projection of V onto Wu then Z't + -\-Pι is
Zl

skew-hermitian (with respect to F) and one has

(16) Ft{x, y) = F(Ptx, PtV) for x, y e V.

3.2. Now, since α0 is in the center of 3, it is clear that the decom-

position (15) is invariant under p(q). Hence the solution (V, p, F) decomposes

into the direct sum of the solutions corresponding to Wi9 1 < i < t. Thus

the whole problem can be reduced to the case V = Wio for some f0- For brevity

when this condition is satisfied, i.e., when one has p{aoί) c u(V, F) for

all i ψ iθ9 we shall say that the solution {V, p, F) belongs to the component

LEMMA. Let {V9 p, F) be a solution such that one has p{aoί) c u(F, F).

Then, one has /o(gf) = {0} and p{Ut) = {0}.

Proof. Let g e Gt. Then, since p(ωoi) = 0, one has

p(g)(F) = p(g(ω0)) = p(g(ωoi)

= p(g(<ooi)) + F.

Writing g in the form g = gs exp (λZt) with g8 e Gf, 2 G R, one has
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P(9)(F) = p(g*)(F) = eλ - p(gs(ωoί)) + F.

It follows that

p(gs)(F) = F, P(9s(ωoί)) = 0

for all gs e= Gf. The first relation implies that p{GΪ) c t/(7, F). But, since

G? is either a non-compact simple Lie group or = {1}, one concludes that

ι°(9?) = {0}. On the other hand, since gs(cύoi) (gs e Gf) generate linearly the

whole space Uu the second relation implies that ρ{Ut) = {0}, q.e.d.

It follows that, if (V, p, F) is a solution belonging to the component

gi0, then one has /o(gf) = {0} and /o(t/<) = {0} for all ί ψ i0, so that

(K P\Qioy F) is clearly a solution for (gίo, α)oίo) and γ> is a commutative sum

of two representations p1 and /o° which are the trivial extensions of HSi0

and /> 1 (ϊo ® Σ ciot), respectively.

Our result can be summarized as follows.

PROPOSITION 1. A solution for (g, ω0) can be decomposed uniquely into the

direct sum of solutions belonging to one of the components g* (1 < i < t). If

(V, p, F) is a solution belonging to a component §u then p can be expressed as a

commutative sum of two representations p1 and p\ where p1 is a trivial extension2) of

a representation of (̂  such that {V, p1]^, F) is a solution for (&, ωoi) and p° is a

trivial extension of a representation of fo@ao into u(V, F).

The decomposition p = p1 + p° mentioned in Proposition 1 is not uni-

que, but will become unique if p1 is normalized by the condition ρ1{Zi) =

3.3. By virtue of Proposition 1, the proofs of Theorems 1 and 2 can

be reduced to the case where Ω is irreducible and g is the Lie algebra of

), and where the representation p is "normalized" by the condition

(17) P(iu) = —γ lv .

Actually, we shall prove in 5 the following

PROPOSITION 2. Suppose Ω is irreducible and g is the Lie algebra of Auto(!2).

Let {V, p, F) be a solution for (g, ω0) normalized by the condition (17). Then:

(a) If V = Σ V(ί) is the decomposition of V into the direct sum of primary
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components with respect to the representation p, then the V(φs are mutually ortho-

gonal with respect to F.

(b) A normalized primary solution (V, p, F) can be expressed in the form

V=Vι®Vo,

(18) I 9 = Pi <g> 1,

where (Vu pl9 Fi) is an irreducible strong solution, Fo is a complex vector-space and

(c) For an irreducible strong solution (Vu pl9 Fi)9 Ft is uniquely determined by

{Vl9 Pi) up to a positive scalar multiple.

It is immediate that Theorem 1 follows from Propositions 1 and 2, (a),

(b). Also, assuming Proposition 2, Theorem 2 can be proved as follows.

Let (F, pf F) and {V, p'9 Ff) be two solutions for (g, ω0) and suppose that p

and p' are equivalent. By Theorem 1, (a) we may assume that both p

and pf are primary. Then, by Theorem 1, (b) we may write

( V=V1®V09

P = Pi ® 9o,

V'O9

9' = P

Ff = F

Let φ be a linear isomorphism of F onto V such that φo p(X) = p\X)oφ

for all l e g . Since pt and p[ are the trivial extensions of mutually equiva-

lent irreducible representations of qiQ9 one has by Shur's lemma that φ =

Φi®Φo with φi : Vi^V[9 φo : Vo-+V0 (cf. [3a], p. 441). Then, by Proposition

2, (c), one has

F[(Φι(x), Φi(y)) = cFίix, y) for x, y e Fj,

with c > 0. On the other hand, one can write

Fi(Φo(x), Uv)) = ^o(^, Ty) for x9 y e Fo

with a linear transformation T of Fo, which is hermitian and positive-definite

with respect to F o and commutes with po{X) ( l G f 0 ® α 0 ) . Hence we may

replace φ by c~λl2φi (g) (0O ° T~1/2) to obtain the relation

F'(Φ(x)9 Φ(y)) = F(a?, 2/) for

Therefore, (F, p9 F) and (F7, /or, Fr) are equivalent.
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3.4. Under the assumption of Proposition 2, one has g = α0 + g5, α0 =

Rlm g5 : simple. If g s = {0}, i.e., Ω = ^ ( 1 , Λ), then Proposition 2 is trivially

true. Hence, in the following, we shall assume that $s ψ {0}. Then, since

p is normalized, p is uniquely determined by its restriction ps on &s.

Let QS = ϊ 4- ms be the Cartan decomposition of g5 corresponding to

ω0 and let α5 be a maximal abelian subalgebra of qs contained in ms. Then

α = ct0 + as is a maximal abelian subalgebra of g contained in m — α0 + m5.

Let (V, p9 F) be a normalized solution for (g, <y0) and put ps = P\QS. Then,

as is well-known, one can find a basis {vu , vn) of V over C such that

(19) p(X)υt = λi(X)Vi for all X e α5,

where Vs are real-valued linear forms on as, called the "restricted weights"

of ps. Similarly, one can find a basis (uu , un) of U over R such that

(20) π(X)Ui = μt(X)ut for all I ε α s

with (real-valued) linear forms μt on αΛ Put ω0 = 2 Ci«(. Then, from the

linearity of p one has

Kexp (X)ω0) = p(Σ e"WctUi) = Σ ^ i ( j r ) c^(^,).

On the other hand, if one puts F(t;if υά) = α^ , the matrix of the hermitian

form |θ(exp (X)a>o) in the basis (t;f) is

Since α^ > 0, this implies that e~2λ«X) is a linear combination of the

(1 < j < m). It follows that, /or α̂̂ Λ ί, 1 < i < n, #^r£ m^5 α ; , 1 < j < m,

one has λt{X) = —-κ-μj(X) (X e α5). In general, when a representa-

tion /o5 of ^ has this property, we say that ps satisfies the condition (L).

It is clear that, if a representation ps satisfies the condition (L), then so

does also every irreducible component of ps. In the next section, we shall

determine case-by-case all irreducible representations ps of &s satisfying the

condition (L), and show that for each such irreducible representation ps

one can find at least one F G ̂ (V) such that {V, p, F) is a strong solution

for (g, ω0), where p is the unique extension of ps to g normalized by (17).

The uniqueness of such F will be shown later in 5.
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4. Determination of irreducible representations ps satisfying

the condition (L).

In this section, we use the following notation. 5 is a Cartan subalgebra

of QS invariant under a and containing αΛ Let g<? = 9 S ® Λ C be the com-

plexification of QS and put §c = Cf). Except for the case 2° (were QS

C is not

simple), let {alt . -, «2) (/ = dimί)) be a ^-fundamental system of roots with

respect to ϊ)c4) and put

5° = [X^^c\ai{X)^R for 1< i < /}.

Let (ώ0, , ώι) be the corresponding system of fundamental weights, and

put f]i — ώi\as. Let (V, ps) be an irreducible representation of $s satisfying

the condition (L) and p the unique normalized irreducible representation of

g extending ps. W.e denote by Λβs the highest weight of ps and put λP* =

Λβs\as.

I n the classical cases 1° — 3°, one has

(̂  > 2) with ^ r = R, C, K,

and one may take

α* = {X = diag(flf , fJIfi, e Λ, Σ3 ίι = 0}.
i

I n each case, we denote by V a raz/ vector-space of dimension y dim

having a structure of a g-J3Γ-module, g and . ^ acting on F from the left

and right, respectively. Then g5 may be written as g5 = %1{VIJ%Γ).

Case 1°. One has ψ = as, I = v - 1, and

(21) ?i = f i + + & for 1 < i < y - 1,

where $t stands for the linear form on as assigning to a diagonal matrix

I e α s its (ι, ί) component. Since the action of Gs = SL(v, R) on Ω is given

by g(ω) = ί^~1 ω g~\ the restricted weights of the representation πs = π\&s

are of the form μ = —(ςj + ξjr). Hence — ~ μ can be a restricted weight

of ps only if j = i ' , and the condition (L) implies that P̂« = ίi = ̂ i, i.e., ΛPs =

ώi. This means that we may identify V with Vc in such a way that />

becomes the canonical injection g = gl(F/Λ)-> gt(V/C), which we will simply

denote by id. Moreover, for this representation, any given ω0

4) For the notion of σ-fundamental system, see Annals of Math., Vol. 71 (1960), p. 80.
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can naturally be extended to an F e ^ ( F / C ) , and the triple (F, id., F) is

clearly a strong solution for (g, ω0).

Case 2°. In this case, one has

Vc = V® V", V" = V',

where V and F " are the (±f)-eigen-subspaces of the given complex struc-

ture on F. Then one has qc = g' ® g" with &'s = &l(V'IO, q"s = 3l(F"/C),

and, if one denotes by pr and p" the projection of gc onto the factors g'

and g", respectively, then the restriction of pr (resp. p") on g is a C-linear

(resp. C-antilinear) isomorphism of g onto g' (resp. g"). One has ϊjc = Cp'{as)

+ Cp"(as). The irreducible representation (F, ps) of g^ can be written in

the form

V=W'<® W", Ps = (p's o φf) (x)(p"s o Q"\

where (W, ρ's) and (W"', pπs) are irreducible representations of &rs and g//<s,

respectively. If Λ'l9 , idί,, w' = dirnT^' (resp. Λ'u , ̂ /,, w/r= dim W") are

the weights of prs (resp. /o'/ίS) with respect to p'ifyc) (resp. pr/(5c)), then the

weights of ps are given hy Λ[o <p' -\- Λ"f ° p". By the similar argument, as in

the case 1°, one sees from the condition (L) that (A't ° p
r + Jί[t ° φ")\as = ζj

for some y. On the other hand, one can choose the fundamental weights

ώ'i (resp. ώ") of Q'S (resp. Q"S) with respect to p'(fyc) (resp. ^^(^c)) in such a

way that ^ = ώ{ © ^ ' | α δ = ό)'/ o ̂ " [ α 5 are given by (21). It follows that one

has either prs = id., ρ"s = triv., or p's = triv., prfs = id.; in other words,

(F, /0s) can be identified with either (V, p'\&s) or (F/ ;, J)"|95). Again it is

clear that ω0 e J^(VIC) determines an element F e ^{VjC) in a natural

manner and one gets two mutually conjugate strong solutions {V, pf\&, F)

rf., α)o)) and (F/r, pr/[g, F).

Case 3°. As usual, we take a standard basis (1, /, j9 ij) of K over Λ

and denote by /, / the (real) linear transformations of F defined by the

right multiplication of i, j , respectively. One has / = 2v — 1 and one may

take

'/1*=diag(f f c), X' = diagtfί), ζk, $'k e Λ, Σ ί , =0}.

Then a (/-fundamental system is given as follows:

H_,(.X + JΓ7) = 2/^Γίί (1 < A < n),

o,*(X + X7) = (ζk - ξk+1) - /ZΓ(ξί + ξ'k+1) (1 < k < v - 1).
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Hence one has

as = { I G ^ I ^ I ) = 0 for i : odd},

and

( 2 2 ) * - " • "

It follows again from condition (L) that one has λps = ίi = Vu i e ? Λ 5 = &i

This means that n — 2v and V may be identified with F, viewed as a 2v-

dimensional complex vector-space, and p is given by the canonical injection

ql(VIK) -> gl(F/C), denoted by trf. Moreover, for any F e ^ F / ί ί ) , there

corresponds uniquely an element F e ^{VjC) such that one has

, a?)

, y) = F{x, y) — F{x, Jy)j for all x, y e F

(see 6.1). At ω0 = F the condition (C) is trivially satisfied, and the above

correspondence F«—> F is clearly equivariant and linear. Thus, denoting

by F the element in ^{VjC) corresponding to ω0 = F9 one obtains a strong

solution (F/C, id., F) for (g, ω0).

Case 4°. Let ί/ be a real vector-space of dimension m and Q a quadratic

form on U of signature (1, m — 1). i2 is given by one of the two connected

components of {x <^ U\Q{x) > 0], and one has Gs = SO0(U, Q). One has

dimϊj = / = -y- and dim as = 1. If one enumerates the ^--fundamental

system as shown in the diagram,

: even)

o . •=>• (m : odd)

then one has

α^= {Λ"e5°|αi(X) = 0 for 2< f < /}.

The corresponding restricted fundamental weights are given as follows (cf.

[11 Planche II, IV):
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1

for 1 < ί < / — 2

for / = / - ! , / (w : even),

(23)

Vι = 1 γ

for 1 < f < / — 1

for i = I {m : odd).

Since the restricted weights of the (irreducible) representation πs of $s are

of the form μ = 0, +7Ί, one has from the condition (L) that ΛP« = -s-7Ί> i e.,

yips = cD .̂j or ώi if m is even, and —ώt if m is odd. Hence (V, ps) is a spin

representation.

To show that one can actually construct a strong solution (F, p,F) for

a spin representation ps, let C+ = C+(t/, Q) be the even part of the Clifford

algebra, and let t be the canonical involution of C+. Then the spin group

Gs and the covering homomorphism φ : Gs-> Gs are defined as follows:

Gs = Spin(ί/, 0) = {g e C + | ^ = 1, ^ r 1 = t/},

for MGί/, gr e G 5 .

can also be identified with

C+\x' + x = 0, lx, U]ci U}.

The Lie algebra g5 of

The spin representation ps oίGs and &s is by definition the restriction on Gs and

a^of an absolutely irreducible representation ψ of the associative algebra Cc>

It is known that, for a&U with Q{a) > 0, the correspondence χ\—>

a~ιx'a {x G C+) is a positive involution of C+ ([3b]). Put

- ω0

ιxeω0a0 : x i

and let ^ denote the cone of all positive elements in C+ with respect to

this positive involution, i.e.,

C+\bao = b, tr(xaobx) > 0 for all x e C+, 0}.

Then ^ is a self-dual homogeneous cone of classical type (the type depen-

ding on m mod. 8) and it is easy to see that ω e Ω implies δ = ω;1© e j ^

The imbedding £ -> ^ thus defined is equivariant, for φ{g)ω = ^ω^"1 goes to
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Clearly it is also linear. On the other hand, if one takes a basis of the

representation-space V such that one has ψ{xao) = ιΦ{x) for all x <= C+, then

every element in ^ is represented by a positive-definite hermitian matrix,

and φ'I^ is a linear imbedding as discussed above (1° — 3°). Therefore,

the above imbedding Ω -» j ^ , combined with ψ, gives a linear imbedding

Ω -> ̂ (iV, C), iV = dim F. Moreover, since the Cartan involution σ = σωo of

&s is given by σ(x) = ω^xω0 = — xa<>, the condition (C) is also satisfied. Thus,

denoting by F the standard hermitian form on V with respect to the above

basis, one obtains a strong solution (V, p, F) for (g, ω0).

Case 5°. One has / = dimί) = 6 and dimα 5 = 2.

(/-fundamental system as shown in the diagram.

We enumerate the

«2- —a4

Then one has

Put

= 0 for / = 2, 3, 4, 6}.

Then the restricted fundamental weights are given as follows (cf. [1],

Planche V):

(24)
= 27! + 2Γ2,

Since πs is the unique irreducible representation of &s of dimension 27, the

highest (resp. lowest) weight of πs is ώj (resp. —ώ5), so that all restricted
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weights of πs are of the form

2 4
μ = —g-7Ί ^-T2 + mJi + mj2f mu m2 > 0.

Hence by the condition (L) one has

But the above list shows that the coefficient of 7X in λPs must be >-f-,
o

which is impossible. Thus we have no solution in this case.

5. Proof of Proposition 2.

5.1. Let (V, p9 F) be a solution of our problem for (g, ω0) (satisfying

the conditions mentioned in 3.4). We consider the following two conditions

for the representation ps:

(Kl) For any irreducible subrepresentation pf of ps, the restriction pf [F

is irreducible.

(K2) For any two inequivalent irreducible subrepresentations p\ and pi of

Ps, ps

x\ϊs and /of|I5 contain no irreducible representations of Is in common.

If the condition (K2) holds, then a primary component of V with res-

pect to ps is a direct sum of a certain number of primary components of

V with respect to ρs\ls, which are mutually orthogonal. Hence one

obtains the assertion (a) in Proposition 2. On the other hand, if the con-

dition (Kl) holds, then one obtains the assertion (c) in Proposition 2, whence

follows immediately the assertion (b) (for a primary p) by an argument

similar to that in [3a], p. 441. In view of the result of 4, the only cases

where the conditions (Kl), (K2) are violated are

(1) The case 4° with m even, where one has two spin representations pf and

pi of g5, but ρf\ίs and pi\ts are irreducible and equivalent. Thus (K2)

does not hold, if ps contains both />f and pi.

(2) The case 4° with m odd, where one has only one spin representation /of,

but pflP decomposes into the direct sum of two inequivalent irreducible

representations of ts. Thus (Kl) does not hold.

Therefore, to complete the proof of Proposition 2, it is enough to show

that the assertions (a) and (c) of Proposition 2 remain true even for these

exceptional cases.
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5.2. The case 4°, m: even. As is well-known, one has the direct de-

composition

(25) C£ = <& ® <Ea, ®i = MN(C) (N=2m'2~1).

We fix an orthogonal basis (eu , em) of U such that ω0 = ce^c > 0), QieJ

= 1, Q(et) = —1 (2 < i < m). Put £ = e ^ em Then the unit element of

(£* is given by

(26) ε1=^(l + ζe), ε2 = -L(l - ζe\

where ζ is a 4-th root of unity such that ζ2 = e2 = (—l)m/2+1. Clearly the

inner automorphism x ι—• ^a;^ of Cc interchanges the simple components

©i and ©2, and leaves the subalgebra C'+ of C+ generated by etej (2 < i < j

< m) elementwise invariant. Since one has ε{ = ε2? the correspondence x ι—>

exx'e1 (a; G KJ) is a positive involution on each S ί β Therefore there exists an

isomorphism ψγ\ ©x -> MN{C) such that one has

(27) Φiieix'e^ = Vi(») for all α e K1#

Then, the spin representations /of (/ = 1, 2) (as matrix representations) are

given as follows:

ί Pι(9) = ^i(
(28)

I ϊi) ^ ) = Φι{e1gε2e1)

for ^re G^. In view of the relations g' = gι = g'1, §[ = e2, one obtains from

(27) and (28) the relation

(29) pϊ(gaή = β ) = ^f(^)-1 for g e G5.

In particular, for an element A; of the maximal compact subgroup Ks =

Gs Π C/+, one has

(30) pUk) = pf(fc): unitary.

Now let (7, /o, F) be any solution for (g, ω0) and let F = F̂ > © V™ be

the decomposition of V into the direct sum of primary components such

that p{i) = p\V{i) contains p\. If F ( 1 ) and F ( 2 ) were not orthogonal with res-

pect to F9 there would exist an irreducible subspace Vt in V(ί) for i = 1, 2,

such that Fi and F2 are not orthogonal. For a suitable choice of basis in

Vu we may assume that the corresponding representations of Gs on Vt are
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given by (28). Then the matrix of F\(VΊ + V2) would be of the form

Γ a{LN aί2lN 1

L aί2lN a2lN J

with al9 a2 > 0 and a12 Ψ 0. Hence, for g e Gs, one has

ά12lN *

It would follow that there exists a linear function Φ on U such that Φ{ω) = 1

for all ω e Gs(ω0), which is absurd.

5.3. The case 4°, m: odd. We denote again by C'+ the subalgebra of

C+ generated by ^^^ (2 < i < ./' < w). Then one has

() ( ) ,
(31)

C^+ = ©ί © Kί, ®ί s <£ί = M^ / 2(C).

We put β- = e2 -^m. Then the unit element of (££ (ι* = 1, 2) is given by

(32) el = \{1 + ?^-), β2' = -|-(1 - ?^-),

where ζ' is a 4-th root of unity such that ζ'2 = el = (—i)(w-υ/2# Again we fix

an isomorphism ^: Ch-*MN(C) such that

(33) Ψfax'et) = ιψ{x) for all a? e C^.

Since one has ζ'eJ = f̂ _, ^(e{) is hermitian. Hence one may further assume

that

1*/ 0 1 f 0 0

o o J L o i ^ ,

The spin representation ps is given by the restriction of φ on G 5 . Then

PS\KS is unitary and decomposes into the sum p[s®p'2
s

y where piS is the

spin representation of Ks corresponding to the simple component (£{.

Now let (F, /o, F) be an irreducible solution for (g, α>0) and let V —V[

© Fg be the decomposition of V into the direct sum of F-invariant sub-

spaces VI corresponding to the representation p[s. Then, in the basis
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chosen above, the matrix of F is of the form

{ίNf 0

0

with at > 0. Therefore, to prove the assertion (c) of Proposition 2, it is

enough to show that ax = α2. One has

p(ω0) = axψ{ε[) + cc2φ(eί)

= βlN + Tp(e-),

where β = -^Γ{aι + a2), T = ~{cίi — a2). Hence, for g e Gs, one has

ρ(g(a>o)) = t~

= p(e1ge1)(βlN

where e^ge^g"1 is linear in ω = g(ω0) = gωog~K Therefore, if Γ^O, there would

again exist a linear function Φ on U such that Φ{ω) = 1 for all ω e Gs(ω0),

which is absurd.

6. Real and quaternionic solutions.

6.1. Let F be a complex vector-space of dimension n. By a "real

(resp. quaternion) structure" / on F we mean an antilinear transformation /

of F such that J2 = 1 (resp. —1). Given a real structure / on F, the set

VJR of all fixed elements of / in F becomes a real vector-space of dimension

n such that F = VJR (8)Λ C. Given a quaternion structure / on F, n is neces-

sarily even, and one can define a structure of a right /£-vector-space of

dimension y on F by putting

(34) xj = Jx for x e F,

where as usual Hi is identified with C + C; by means of a fixed standard

basis (1, i, j, ij) of K over 22.

Now, let (F, |0, JF) be a triple formed of a representation (F, p) of g and

F e J^(F). If one has a real or quaternion structure / on F satisfying the

following conditions

P(X)J = JP(X) for all l e g ,
(35) \

F{J%, Jy) = F(y, x) for all x9 y e F,
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then we say that the triple (V, p, F) admits a real or quaternion structure / , or /

is compatible with (p, F). If (V, p, F) admits a real structure /, then the

real vector-space VR defined above is jθ(g)-invariant, and the restriction PR

of p on VR is a real representation PR : g -• gl(Vj?). Moreover, F{Jxf y)

(x, y e V) is bilinear and symmetric, so that, denoting by S the restriction of

F on VR x VR, one obtains an element S e ^(VR). Thus, if (V, p, F) is a

(complex) solution for (g, ω0) admitting a real structure /, then the corres-

ponding triple (VJR, />Λ, 5) is a "real solution" for (g, ω0) (i.e., a solution

relative to g' = gl(w, 12)). Clearly, all real solutions are obtained in this

way, and the equivalence classes of real solutions are in one-to-one corre-

spondence with the equivalence classes of the quadruples (V, p, F, J) defined

in a natural manner.

Similarly, if a (complex) solution (V, p, F) admits a quaternion struc-

ture /, then (VIK, p) may be regarded as a quaternion representation p: g

-> gl(V/ϋO and one can define a quaternion hermitian form F on V by

putting

(36) F(x, y) = F(aί, y) - F(a?, /t/); for a ι , y s 7 .

The triple (F/JSΓ, |0, .F) is then a c'quaternionic solution" of our problem

for (g, ω0). All quaternionic solutions are obtained in this way, and the

equivalence classes of quaternionic solutions are in one-to-one correspondence

with the equivalence classes of the quadruples (V, pf F, J) defined in a

natural manner.

6.2. We have seen above that the problem of finding all real or qua-

ternionic solutions is equivalent to the determination of all complex solutions

admitting a real or quaternion structure / . This latter problem can again

be reduced to the irreducible case by the following Propositions.

PROPOSITION 3. Let (V, p, F) be a solution for (g, ω0) and let

v = vv e . . . © vω

be the direct decomposition of V into primary components with respect to p. Put pw

= p I V(ί\ F(i) = F\ V{i) and let pt be an irreducible representation of g contained in

Pω. Then (V, p, F) admits a real (resp. quaternion) structure / , if and only if

the following conditions are satisfied for all 1 < i < r:

(i) If pi — Pu then the primary solution (V(i\ p{ί\ F(ί)) admits a real (resp. qua-

ternion) structure.
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(ii) If piΛ'pu then there exists a [unique) index V such that p t ^ pt' and one has

d i m V{ί) = d i m V(ί'\ (In other words, p t and pv appear in p with the same multi-

plicity.)

Suppose first that (V, p, F) admits a real or quaternion structure /.

Then / induces a permutation of the F ( ί )5s of order at most 2. If JV(i) = V(i\

then the primary solution (V(i\ p(i\ F(ί)) admits a real or quaternion struc-

ture Jω = JI V{ί\ In this case, (F ( i ), p{ί\ F(ί)) is self-conjugate, and one has

pt ~ p^ If JVW = F<*'> with i ψ if, two primary solutions (V(ί\ p(ί\ Fω) and

(VQ'\ pw\ F^f) are conjugate to each other so that one has pt — pt' and

dim V{ί) = dim V{i'K To prove the converse ("if" part), suppose the condi-

tions (i), (ii) are satisfied. It is enough to show that, in the case (ii), the

direct sum

admits both real and quaternion structure. By the assumption, there exists

a C-antilinear isomorphism φ: V(ί) -* V{V) such that one has

P«'KX) = Φ o p«\X) o φ-i for I s g .

Put

F'(x, y) = F«'Wv), ΦM) for x, y^V.

Then the triple (V(ί\ p(ί\ Fr) is a solution conjugate to {V^\ pw\ F^) and

hence, by Theorem 2, it is equivalent to (Vω, p(i\ F(ί)). Therefore, by a

suitable modification of φ, we may assume that Ff = F(i). Then, putting

/(i.o : (χ9 X') ^ (±φ~i(x')f φ(x)) (x e V(ί\ xf e V^\

one obtains a real or quaternion structure (according to the sign ± ) on

yω @ γ«>) compatible with {p(ί) + p«'\ Fω + F^). (Note that the equiva-

lence class of such a real or quaternion structure is uniquely determined, in-

dependently of the choice of φ.)

PROPOSITION 4. The notation being as in Theorem 1, (b), suppose that a

primary solution (V, p, F) admits a real (resp. quaternion) structure /. Then, J can

be written uniquely in the form

(37) / = /i(g)/o,

where / i is a real or quaternion structure on VΊ compatible with (ρl9 FJ and Jo is

a real or quaternion (resp. quaternion or real) structure on Vo compatible with
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{po,Fo). Conversely, an antilinear automorphism J of V defined in this way is a real

{resp. quaternion) structure on V compatible with (p9 F).

This follows immediately from Schur's lemma and the uniqueness of

Fί (Prop. 2, (c)). Note that the condition (35) for / 0 means that the re-

presentation Po is essentially a representation of ϊ0 © α0 into o(wo, R) (the Lie

algebra of all n0 x n0 real skew-symmetric matrices) or u(-^S K) (the Lie

algebra of all -^- x -^- quaternion skew-hermitian matrices), where nQ —s),

6.3. It remains to check for each (self-conjugate) irreducible solution

given in 4 whether or not it admits a real or quaternion structure. Note

that, if an irreducible solution admits a real (resp. quaternion) solution, then

such a structure is unique, and the solution does not admit any quaternion

(resp. real) structure.

Case 1°. The unique irreducible solution clearly admits a real structure.

Case 2°. The two irreducible solutions are conjugate to each other, so

that neither of them admits a real or quaternion structure.

Case 3°. The unique irreducible solution clearly admits a quaternion

structure.

Case 4°, m: even. It is known that

( MN(C) ίfmΞO (mod. 4),

C+ = j MN(R) ® MN(R) if m =Ξ 2 (mod. 8),

I MN/2{K) ® MN/2{K) if m == 6 (mod. 8),

where N = 2m/2~1. Therefore, if m Ξ=0 (mod. 4), the two irreducible solutions

are not self-conjugate, admitting no real or quaternion structure. If m Ξ= 2

(mod. 4), then from what we mentioned in 4 and 5 each of the two ir-

reducible solutions admits a real or quaternion structure, according as m Ξ=

2 or 6 (mod. 8).

Case 4°, m: odd. One has

MN{R) if m = l9 3 (mod. 8),

MN/2(K) if m = 5 , 7 (mod. 8),

where JV = 2(m"1)/2. Therefore, the unique irreducible solution admits a real

or quaternion structure according as m Ξ= 1, 3 or 5, 7 (mod. 8).
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