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LINEAR IMBEDDINGS OF SELF-DUAL
HOMOGENEOUS CONES

I. SATAKE®»

Introduction. Let G be a reductive algebraic Lie group? acting
linearly on a (finite-dimensional) real vector-space U with a maximal com-
pact isotropy subgroup K and suppose that the quotient @ = G/K is a self-
dual homogeneous cone in U. Let (G’, K’) be another such pair correspond-
ing to a self~dual homogeneous cone 2’ in U’. Given a homomorphism
p : G— G’ such that po(K)c K’, one has an equivariant map 2 — Q' induced
by p, which we denote again by p. If this map is a restriction to @ of an
injective linear map of U into U’, it will simply be called a linear imbedding
of 2 into 2’. The purpose of this paper is to determine all homomorphisms
p : G— G’ giving rise to a linear imbedding of 2 into Q' in this sense, for
the case where G'=GL(n, %) (% =R, C, K) (see 1.2). After a brief
summary of known facts in 1 (due mainly to Koecher [2] and Vinberg [4]),
we will in 2 reformulate our problem in terms of the representation-theory of
Lie algebras and state the main results. Sections 3 and 6 are devoted to
the reductions of the problem to the case where %" = C and where both 2
and p are irreducible. The solutions for this particular case are given in 4.

Our problem is closely related to a similar problem concerning holo-
morphic imbeddings of symmetric domains ([3a]). (Actually, our method
here is nothing but a replica of the old one.) It will turn out (as the result
of the classification) that every linear imbedding p : 2 > Q' = Z(n, C) is an
isometry such that the image p(2) is totally geodesic in £’, and can be
extended to a holomorphic imbedding of the corresponding tube domain:
U+ i2—-U +iQ'. It would be desirable to prove these facts more directly
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1) Here by a (reductive) algebraic Lie group we mean a Lie group whose identity connect-
ed component is that of the group of R-rational points of a connected (reductive) algebraic
group & defined over R. & is reductive, if its radical is an (algebraic) torus.
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122 1. SATAKE

(without using the classification) and including possibly the case where £’
is not of classical type. Out study was motivated by, and in turn has some
applications to, the theory of (rational) Siegel domains of the third kind,
which we hope to discuss elsewhere.

1. Self-dual homogeneous cones.

1.1. In the following, U is a real vector-space of dimension m and @ is
a (non-empty) open convex cone in U. We suppose that the vertex of 2 is
the origin of U and 2 does not contain any straight line. Let G = Aut,(2)
be the identity connected component of the (linear) automorphism group of
Q, i.e., the subgroup of GL(U) formed of all linear transformations g such
that g(2) = 2. We shall always assume 2 to be “homogeneous” and “self-
dual”; these mean, respectively, that G is transitive on 2 and that there
exists a positive-definite inner product { » on U such that one has

(1) 0w E R Lo, 0y >0 for all 0w €2, o #0.

It is known ([4]) that G is then a reductive (algebraic) Lie group with the
center isomorphic to a vector group and that for any w, € Q the isotropy
subgroup K = K, of G at o, is a maximal compact subgroup of G. Thus
2 has a structure of a symmetric space with non-positive curvature (with a
flat part) with respect to a G-invariant Riemannian metric. Furthermore,
there exists a unique direct decomposition

(2) Q=X+ X2, U=U@®.-- DU,

such that 2; is an irreducible (i.e., indecomposable) self-dual homogeneous
cone in U;, and correspondingly the automorphism group is also decomposed
in the form:

(3) G=Gy X «++ XG, G;=Auty(2,),

where each G; is the direct product of a simple (semisimple) Lie group
(which may reduce to the identity group) and the group of dilatations on
U,, isomorphic to R.

1.2. The irreducible self-dual homogeneous cones are completely clas-
sified (up to linear isomorphisms) into the following five types ([2], [4]):

1° 2=P0, B, m=-1+1),

2°. R =Py, C), m=1r?
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3° =Py, K), m=2%—y,

where, as usual, R, C, K denote the field of reals, complexes and quater-
nions, respectively, and the symbol (v, . %) (¥ = R, C, K) stands for the
cone formed of all positive hermitian elements in M,(_%") (the ring of all
v X v matrices with entries in _%") with respect to the standard involution
% = (%;;)—> ‘% = (&£;;). The semisimple part G5 of G = Auty(2) is identified
with SL(v, % )/center, if the action of g SL(v, %) on P(v, ¥) is
defined by #+—tg7'xg . (SL(v, %") denotes the multiplicative group of
all elements in M,/ %") with reduced norm 1.) These three types are called
“classical.”” Note that, for v =1, they all reduce to the “half-line”
{x € R|x > 0}, for which one has G = {1}.

4°, Q:{x:(xi)ERm]x€—~§x§>0, 2, >0} (m >3, m*4).

G* is the identity connected component of SO(1, m — 1).
5°. =76, %), m=2I,

where & denotes the Cayley’s octonion algebra and (3, &) is the cone
formed of all positive  elements in the 27-dimensional exceptional Jordan
algebra. The semisimple part G® is a simple Lie group of type E; with
real rank 2.

2. Linear imbeddings.

2.1. Let 2 and 2’ be self-dual homogeneous cones in real vector-spaces
U and U’, respectively, and let G = Auty(2), G’ = Auty(2’). An injection p
of 2 into Q' is called a linear imbedding if the following conditions are satis-
fied:

(i) o is ‘“equivariant”, i.e., there exists a local monomorphism of G (that
is, a monomorphism from a covering group of G) into G’, denoted again by
o, such that one has

(4) p(g(w)) = p(g)o(w)) forgeG, 0ne9;

(ii) p is “linear”, i.e.,, p can be extended to a linear map (also denoted
by p) from U into U'.

Let g and g’ be the Lie algebra of G and G’, respectively. Take w, €
2 and put o) = p(w,). We denote by f=£,, (resp. f ={i,) the subalgebra
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of g (resp. g’) corresponding to the isotropy subgroup K = K, (resp. K’ =
K',,) of G (resp. G’') at w, (resp. ;). Then, the condition (i) implies that
one has a monomorphism of g into g’ (denoted again by p) such that

(G) o(f,,) C ..

Conversely, if one has a monomorphism p : g— g’ satisfying (C) (for given
w € 2, wj € '), then, using the corresponding local monomorphism p :
G — G’, one can define an equivariant injection p : 2 -2’ by putting p(g(w,))
= p(g)(w§). (Note that such a monomorphism p :g— g’ is 7o uniquely de-
termined by the corresponding injection p : 2 — 2'.)

We denote by ¢ = g,, the Cartan involution of g with respect to {, i.e.,
the (unique) involution of g such that ¥ = {X € g|¢(X) = X}. Similarly, let
o' = g/,, be the Cartan involution of ¢’ with respect to ¥. Then clearly
the condition (C,) is implied by the condition

(O) P00,y = 04,0 P.

It is well-known (see, e.g., [3a]) that, in general, an equivariant injection
p:2— 2 of symmetric spaces comes from a monomorphism of g satisfying
(C) if and only if it is an isometry and p(2) is totally geodesic in 2’ (for a
suitable choice of the invariant Riemannian metrics on 2 and 7). It should
also be noted that, in our case, if one denotes by ¢ the adjoint with respect
to an inner product < » on U for which the condition (1) makes sense, then
one has ‘G=G, ‘g=g, and the map X+ —‘X (X =g) is a Cartan in-
volution of g. It follows that a linear imbedding p : 2 > 2’ comes from a
monomorphism of g satisfying (C) if and only if one can find a K- (resp.
K’-) invariant inner product <{ ) (resp. < »’) on U (resp. U’) satisfying
(1) for 2 (resp. £') and such that

(5) o(®), p(y) =<, y> for all z, y e U.

2.2. In the following, we fix v, € 2 (and hence f=¥,, ¢=o0,) once
and for all. Our problem is then to find all pairs (p, wf) formed of a mo-
nomorphism p : g— g’ and wj € 2’ satisfying the condition (C,) and giving
rise to a linear imbedding p : 2 > Q’; a solution (p, w{) satisfying the stronger
condition (C) will be called a strong solution. As we mentioned in the In-
troduction, we shall consider this problem only for the case where 2’ is of
classical type, but in a slightly extended form, by dropping the injectivity
of p and the effectiveness of G and G’. Since the case % = R or K can
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be deduced from the case . %" = C (see 6), we shall henceforth restrict ourselves
to the case ' = & (n, C). Thus, changing the notation, we let G be a con-
nected reductive Lie group acting on U through a representation z : G —
GL(U), such that z(G) = Auty(2), n7%(1) = K, : compact, and let K be the
isotropy subgroup of G at w, which is again a maximal compact subgroup
of G. On the other hand, let V be a complex vector-space of dimension
n and set G’ = GL(V), 2’ = (V) (the cone of all positive-definite hermitian
forms on V), U’ = ZZ(V) (the space of all hermitian forms on V), the action
of ¢ € G’ on U’ being defined by

(¢ (F))x, y)=Flg'2, ¢'y) (2, y€V)
for Fe U’. Then, our problem can be formulated as follows:

ProBLEM. For a given pair (g, w,), find all triples (V, p, F) formed of a re-
presentation (V, p) of the Lie algebra g and F e F(V), such that o(X) is skewt
hermitian with respect to F for all X € ¥ and that the induced equivariant map o :
Q- Q" = P(V) is linear.

A solution (V, p, F) is called a strong solution, if it satisfies the stronger

condition
() p(a(X)) = —p(X)* for all X e g,

where ¢ is the Cartan involution of g with respect to £ and * denotes the
adjoint with respect to the hermitian form F. Two triples (V, o, F) and
(V', o', F') are said to be equivalent (resp. conjugate or anti-equivalent), if there
exists a linear (resp. antilinear) isomorphism ¢ : ¥V — ¥V’ such that one has

p'(X) = o p(X)o 9! for all X eg,
(6) F'(x, y) = F(¢~ (), $7(y)) (resp. = F(¢7(y), ¢7'(x)))
for all z, y e V.

It is clear that if (V, p, F) and (V’, o', F’) are equivalent or conjugate and
if one of them is a (strong) solution, then so is also the other. Since g is
real, it is clear that for any solution (V, p, F) one also has a solution con-
jugate to it. A solution conjugate to itself is called a self-conjugate solution.
For two triples (Vi, o, Fy) (i =1, 2) with p;:g—g(V;), F,e FV,), the
triple (Vi® Ve, 01 @ 02, F1@ F,) is called the direct sum of them. The direct
sum of (Vi pi, Fy) (i =1, 2) is a (strong) solution if and only if both of
them are (strong) solutions. A triple (V, p, F) is called i#rreducible (resp.
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primary) if the representation p of g is irreducible (resp. primary, i.e., de-
composable into a direct sum of mutually equivalent irreducible represen-
tations).

2.3. Now, to state our main results, we introduce some more notation.
From the decomposition (2) of 2 one obtains the following decomposition
of the Lie algebra g of G:

(7) ga=(DadD:--Dag,

where f, is the Lie algebra of the maximal compact normal subgroup K,
of G and g; is the Lie algebra of G, = Aut,(2;) (1< i <¢#). We denote the
semisimple (resp. abelian) part of g; by ai (resp. a,;) and put

t t
(8) g% = 218% G = X
Then one has g =f ®Da,Dgas. One writes also

¢
(9) Wy = leoi, ®o; € 2.
1=

TueoreM 1. (a) A4 solution (V, p, F) of the above problem can be decomposed
uniquely into the direct sum of primary solutions (V®, p®, F®), corresponding to the
primary components of the representation po. The solution (V, p, F) is a strong solu-
tion if and only if all its primary components (V?, p®, FP) are strong solutions.

(b) A primary solution (V, p, F) can be expressed in the following form

V=V®V,
(10) p=0p1®1+1& p,
F=F1®F0,

where (Vy, oy, Fy) is an irreducible strong solution for (g:,, wo:,) for some index i,
1< i, < ¢, V,is a (finite-dimensional) complex vector-space, Fy & FP(V,), and p, is
a primary representation of ¥, @ a, into w(Vo, Fo) (the Lie algebra of all skéw-
hermitian transformations of V, with respect to F,). Here we understand that the
representations p, and p, are extended in a trivial manner to the representations of
a, which are denoted by the same letters®.  Conversely, any triple (V, p, F) defined

2) Let g, be an ideal of a Lie algebra @ such that there exists a unique complementary
ideal 8} such that 8 =8,@®g§. Then, any representation of g, of g, can be extended (in
a unique manner) to a representation of g by putting po(X) =0 for X € 8j. The repre-
sentation of 8 thus obtained is called a “‘trivial extension” of p, and is usually denoted by
the same letter p,.
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in this manner is a primary solution for (a, w,). The primary solution (V, p, F) is
a strong solution if and only if one has po(as) = {0}.

It_follows that any solution (V, p, F) is decomposable into a direct sum
of irreducible solutions (though such a decomposition is not unique). This
fact can trivially be verified for a strong solution, for in that case the
condition (C’) implies that, if W is any p(g)-invariant subspace of V, then
the orthogonal complement W+ of W in V (with respect to F) is also p(g)-
invariant. The proof of Theorem 1 for the general case will be given in
3-5.

Theorem 1 also implies that, if (V, p, F) is a solution, then p is a “com-
mutative sum” of two representations p! and p°®, where (V, p!, F) is a strong
solution with p'(f;) =0 and p° is a trivial extension of a representation of
f, @ a, into w(V, F). Thus the representations p and p! induce the same
map of 2 into Q' = F(V), so that the image p(2) is always totally geodesic
in 2. It should also be noted that, when the representation p comes from
an R-rational homomorphism of an algebraic group defined over R, the con-
dition p%a,) = {0} is automatically satisfied, so that (V, p, F) is a strong
solution.

A key step in the proof of Theorem 1 is to show that for an irreducible
solution (V;, p,, Fy) the hermitian form F, is uniquely determined up to a
positive scalar multiple by the representation (Vi, e;). This fact, which is
again trivial for strong solutions, will be proved in 5 by using the classi-
fication given in 4. This uniqueness, along with Theorem 1, will imply the
following

THEOREM 2. The equivalence class of a solution (V, p, F) is uniquely deter-
mined only by the equivalence class of the representation p.

3. Reduction of the problem.

3.1. Our first step is to reduce the problem according to the decom-
position (8) of the abelian part a,. The notation being as in 2.3, let Z; be
the unique generator of a,; such that exp(1Z;)(€ G;) is the dilatation z+—
¢z in U; (1<i<t). (In other words, Z; viewed as a linear transformation

3) If p’ and p” are two representations of a Lie algebra 8§ on the same representation-
space V such that p/(X) and p”(X’) commute with each other for all X, X’ € ¢, then the
sum p = o' + p” is also a representation of § on V, which we call a “commutative sum” of
o' and p”.
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of U; is the identity transformation 1y.) Then one has
(11) exp (B uZ) T z:) = Zeha;

for all ,€R, 2,€U;,, 1<i<t Hence, if (V, p, F))fis a solution for
(8, wo), one has from the conditions (i), (ii)

exp (?J 2:0(Z))F) = p(exp (; 2:Z ) (o))
= P(;ehwoi)

= ;e"p(wm)-
Hence, putting Z; = p(Z;), F; = p(wy), one has

F(eXP(—;liZi)x, exP(—;‘hZ{-)y) = iEe“Fi(x, )

for all #, y € V. Differentiating both sides of this equality with respect to
the variable 1;, one obtains

~F(Zix', y')— F(a', Zy') = Fi(x, y),
where «’ = exp (32;Z))x, y’' = exp(214;Z})y. From this, one obtains im-
JF

J#i
mediately the following relations:

(13) F(Zjx, y)+ Fi(zx, Zjy) = —é;;Fi(x, y)

for all z, yeV and 1<, j< L

Now, since F; belongs to the closure of p(2), the hermitian form F; is
positive semi-definite. Hence

Wi={x e V|Fix) =0}

is a linear subspace of V. Let W; be the orthogonal complement of W}
with respect to F. Then one has

V=W,® Wi
F;|W,; >0, F;| Wi=0.

(14)

From (12) and (13) itis clear that both W; and W/ are invariant under ZJ.

Moreover, from (13) one sees that Z}| W; + —é—~lw, is skew-hermitian with res-

pect to F;| W;. Hence Z;| W, is diagonalizable and all its eigen-values have
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the real part = —é—. Similarly, from (12) one sees that Z}| W/ is skew-
hermitian with respect to F| W/, hence also diagonalizable, and all its eigen-
values "are purely imaginary. Since Z{, - - -, Z! are mutually commutative,
it follows that the decomposition (14) is invariant under all Z}, 1< j<t.
We now assert that, for i + j, W; and W, are orthogonal with respect
to F. In fact, since one has (F; + F;)|(W; + W,) >0, one sees from (13) by

the same argument as above that all eigen-values of (Z}+ Z))|(W;+ W)

have the real part = —%. Since one has

this implies that W; N W, = {0}, and so W;c W}, W, c W/, which proves
our assertion.
On the other hand, since F = Yl F; is positive-definite, it is clear that

t

_ﬂle = {0}. Hence, one obtains the following orthogonal decomposition
(15) V=W®--- @ W.

If P, denotes the orthogonal projection of V onto W; then Z} +%Pi is
skew-hermitian (with respect to F) and one has

(16) Fy(x, y) = F(P», Py) for z, y e V.

3.2. Now, since a, is in the center of g, it is clear that the decom-
position (15) is invariant under o(g). Hence the solution (V, p, F) decomposes
into the direct sum of the solutions corresponding to W;, 1< i<¢. Thus
the whole problem can be reduced to the case V = W, for some i,. For brevity
when this condition is satisfied, i.e., when one has p(ay)cw(V, F) for

all i #+ i,, we shall say that the solution (V, p, F) belongs to the component
[LEP

LemMA. Let (V, p, F) be a solution such that ome has p(ay:) < w(V, F).
Then, one has o(af) = {0} and o(U;) = {0}.

Proof. Let g= G;. Then, since p(w,;) =0, one has
p(gIF) = p(g(wo)) = p(g(wo:) +j§wo,»)

= p(glwe)) + F.

Writing ¢ in the form g = gSexp(1Z;) with g5 € G§, 1= R, one has
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P(9)(F) = p(gS)(F) = €'+ p(g5(wsy)) + F.
It follows that

p(gS)NF) = F, p(g%(wo)) =0

for all g5 € G§. The first relation implies that p(G§) c U(V, F). But, since
G§ is either a non-compact simple Lie group or = {1}, one concludes that
p(g$) = {0}. On the other hand, since g5(wy) (¢° € Gf) generate linearly the
whole space U;, the second relation implies that o(U;) = {0}, q.e.d.

It follows that, if (V, p, F) is a solution belonging to the component
8, then one has p(af)= {0} and p(U;)={0} for all i+i, so that
(V, plai, F) is clearly a solution for (g;, wo;,) and p is a commutative sum
of two representations p' and p° which are the trivial extensions of p|g;,
and ‘Ol(f°®;§ ), respectively.

Our result can be summarized as follows.

ProrposiTiON 1. A solution for (8, w,) can be decomposed uniquely into the
direct sum of solutions belonging to ome of the componenis ¢; (1<i<t). If
(V, o, F) is a solution belonging to a component §;, then p can be expressed as a
commutative sum of two representations p' and p°, where p' is a trivial extension® of
a representation of a; such that (V, p'lg;, F) is a solution for (i, wy:) and p° is a
trivial extension of a representation of % @ a, into u(V, F).

The decomposition p = p! + p° mentioned in Proposition 1 is not uni-
que, but will become unique if p! is normalized by the condition p'(Z;) =
-1

2"

3.3. By virtue of Proposition 1, the proofs of Theorems 1 and 2 can
be reduced to the case where Q is irreducible and g is the Lie algebra of
Aut,(2), and where the representation p is “normalized” by the condition

(17) p(ly) = =51y

Actually, we shall prove in 5 the following

ProrosiTiON 2.  Suppose Q is irreducible and g is the Lie algebra of Auty(R).
Let (V, p, F) be a solution for (8, w,) normalized by the condition (17). Then:

(@) If V=32V is the decomposition of V into the direct sum of primary
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components with respect to the representation p, then the V’s are mutually ortho-
gonal with respect to F.

(b) A normalized primary solution (V, p, F) can be expressed in the form

V=V®V,
F=FQ®F,

where (Vy, py, Fy) is an trreducible strong solution, Vi, is a complex vector-space and
Foe Z(V,).

(c) For an irreducible strong solution (Vi, p1, F), Fi is uniquely determined by
(Vi, p1) up to a positive scalar multiple.

It is immediate that Theorem 1 follows from Propositions 1 and 2, (a),
(b). Also, assuming Proposition 2, Theorem 2 can be proved as follows.
Let (V, o, F) and (V, p’, F') be two solutions for (g, w,) and suppose that p
and p’ are equivalent. By Theorem 1, (a) we may assume that both p
and p’ are primary. Then, by Theorem 1, (b) we may write

V=VQ®V, V=VIiQVi
p=p1& o, p' = p1® pq,
F=F Q®F, F =F{QF;.

Let ¢ be a linear isomorphism of V onto V'’ such that ¢o p(X) = p'(X)o ¢
for all X =g. Since p; and p{ are the trivial extensions of mutually equiva-
lent irreducible representations of g;, one has by Shur’s lemma that ¢ =
$Q @ with ¢, : Vi—> V]|, ¢ : Vo— Vi (cf. [3a], p. 441). Then, by Proposition
2, (c), one has

Fi(¢(2), ¢i(y)) = cFi(z, y) for x, y €V,
with ¢ > 0. On the other hand, one can write
Fi(go(), ¢o(y)) = Folx, Ty) for 2, y eV,

with a linear transformation 7 of V,, which is hermitian and positive-definite
with respect to F, and commutes with py(X) (X €f, @ a,. Hence we may
replace ¢ by c¢72¢; @ (g o T7'2) to obtain the relation

F'(¢(x), ¢(y)) = F(x, y) for x, ye V.

Therefore, (V, o, F) and (V’, p’, F’) are equivalent.
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3.4. Under the assumption of Proposition 2, one has g = a, + g5, a =
Rl1y, g5 :simple. Ifgs = {0}, i.e., 2 = (1, R), then Proposition 2 is trivially
true. Hence, in the following, we shall assume that g5+ {0}. Then, since
p is normalized, p is uniquely determined by its restriction p$ on g5.

Let g5 =f+ mS be the Cartan decomposition of g% corresponding to
o, and let a5 be a maximal abelian subalgebra of g5 contained in mS. Then
a = a,+ a’ is a maximal abelian subalgebra of g contained in m = a, + m5.
Let (V, p, F) be a normalized solution for (g, w,) and put p¥ = p|gS. Then,
as is well-known, one can find a basis (v, « - -, v,) of V over C such that

(19) o(X)v;, = 2(X)v; for all X € a$,

where 2;’s are real-valued linear forms on a5, called the “restricted weights®
of o5, Similarly, one can find a basis («y, « » -, #,) of U over R such that

(20) o(X)u; = p(X)u; for all X € as

with (real-valued) linear forms g; on aS. Put oy = 3c;u;. Then, from the
linearity of p one has

p(exp (X)wo) = p(X} e"Vcyu;) = X3 e D p(uy).

On the other hand, if one puts F(v;, v;) = @;;, the matrix of the hermitian
form p(exp (X)w,) in the basis (v;) is

diag(e™#™M). (a;;) - diag(e~#(D) = (e~ GN*1(Xg, ;),

Since a;; > 0, this implies that ¢™?*(® js a linear combination of the e“¥’s
(1<j<m). It follows that, for each i, 1< i <mn, there exisis a j, 1 < j < m,

such that one has 1,(X) = ——%y #X) (X =a5). In general, when a representa-

tion p$ of g5 has this property, we say that e satisfies the condition (L).
It is clear that, if a representation pS satisfies the condition (L), then so
does also every irreducible component of pS. In the next section, we shall
determine case-by-case all irreducible representations pS of g% satisfying the
condition (L), and show that for each such irreducible representation pS
one can find at least one F e & (V) such that (V, p, F) is a strong solution
for (g, w,), where p is the unique extension of pS to g normalized by (17).
The uniqueness of such F will be shown later in 5.
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4. Determination of irreducible representations p® satisfying
the condition (L).

In this section, we use the following notation. J is a Cartan subalgebra
of g¢ invariant under ¢ and containing as. Let g¢ = g @& C be the com-
plexification of g% and put hc = Ch. Except for the case 2° (were g& is not
simple), let (e, - - -, @;) (I = dimY) be a s-fundamental system of roots with
respect to hc® and put

P={Xebcla;(X)eR for 1<i < {}.

Let (@, + - -, @) be the corresponding system of fundamental weights, and
put 7; = @;las. Let (V, p5) be an irreducible representation of g satisfying
the condition (L) and p the unique normalized irreducible representation of
g extending pS. We denote by 4,s the highest weight of p5 and put 2,s =
Aps|as,

In the classical cases 1° — 3°, one has

=P, ¥) a°=8lv, X&) (v>2) with ¥ =R, C, K,

and one may take
aS = {X = diag(slr D) év)léi S R, ;éi = 0}'

In each case, we denote by V a real vector-space of dimension »-dim %7
having a structure of a g-_%"-module, g and %" acting on V¥ from the left
and right, respectively. Then g5 may be written as g5 = 8V /.%").

Case 1°. One has §' =a%, [ =v—1, and
(21) =&+ e & for1<i<v—1,

where &; stands for the linear form on oS assigning to a diagonal matrix
X €af its (¢,¢) component. Since the action of G5 = SL(v, R) on @ is given
by glw)="‘g'-w:g7, the restricted weights of the representation =% = z|g*

are of the form x = —(&;, + &;,). Hence ——%—,u can be a restricted weight

of pSonlyif j = j’, and the condition (L) implies that 2,s = & =7, i.e., 4ps =
@. This means that we may identify V with V¢ in such a way that p
becomes the canonical injection g = g{(V/R)— gi(V/C), which we will simply
denote by id. Moreover, for this representation, any given o, € Z(V/R)

4 For the notion of s-fundamental system, see Annals of Math., Vol. 71 (1960), p. 80.
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can naturally be extended to an F e Z(V/C), and the triple (V, id., F) is
clearly a strong solution for (g, w,).

Case 2°. In this case, one has
VC = V'@ VN, V// = V/,

where V' and V" are the (4i)-eigen-subspaces of the given complex struc-
ture on V. Then one has gc =g @ g’’ with g’S = 8|(V’/C), ¢'’s = 3 (V"'|C),
and, if one denotes by p’ and p’’ the projection of gc¢ onto the factors g’
and g/, respectively, then the restriction of p’ (resp. »’’) on g is a C-linear
(resp. C-antilinear) isomorphism of g onto g’ (resp. g’’). One has hc = Cp’(a¥)
+ Cp'’(as). The irreducible representation (V, p5) of g¥ can be written in
the form

V=W QW' p5=(p'5p)Q@(p"50p"),

where (W7, p’S) and (W, p’’S) are irreducible representations of g’S and g’’s,
respectively. If 47, -, 47, ' = dim W’ (resp. 47, « « «, A3, n”’=dim W"’) are
the weights of p’S (resp. o’’%) with respect to p’(§c) (resp. p”'(c)), then the
weights of o are given by Aje p’ + 47,0 p"’. By the similar argument, as in
the case 1°, one sees from the condition (L) that (4}0 p’ 4+ A7, 0 p"")|as = ¢;
for some j. On the other hand, one can choose the fundamental weights
@} (resp. @7) of g’s (resp. g’’S) with respect to p’(h¢) (resp. p”/(h¢)) in such a
way that 7; = @ p’]a’ = @7 o p’’|a’ are given by (21). It follows that one
has either p'S =id., p”’$ = triv.,, or p’S = triv., p’$ = id.; in other words,
(V, 05) can be identified with either (V’, »’|g®) or (V”/, p'’|gS). Again it is
clear that w, € Z(V/C) determines an element Fe Z(V’'/C) in a natural
manner and one gets two mutually conjugate strong solutions (V’, p’lg, F)
(~(V/C, id., w,)) and (V", p'’|a, F).

Case 3°. As usual, we take a standard basis (1, i, 7, ij) of K over R
and denote by I, J the (real) linear transformations of V¥ defined by the
right multiplication of i, j, respectively. One has [/ =2v—1 and one may
take

b= {X+ X'I|X = diag(,), X’ = diag(§;), &, é € R, 236 =0}

Then a o-fundamental system is given as follows:

ey (X + X'T) = 2/=1°¢;, (
o (X + X'I) = (6 — &x41) — 1/:1—(51: + Ezlcn) (
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Hence one has
af = {X € §le(X) =0 for i : odd},

and

Nop—1 = 2(E1+ « o+ + Eoy) + & 1
(22)
1

k<
Mo = 281+ « -+ + &) ( E<v—1).

It follows again from condition (L) that one has 1,s = & =7, lLe., 4,5 = @;.
This means that » = 2v and V may be identified with V, viewed as a 2v-
dimensional complex vector-space, and p is given by the canonical injection
gl(V/K)— gV/C), denoted by id. Moreover, for any F e Z#(V/K), there
corresponds uniquely an element F € &7 (V/C) such that one has

F(J=z, Jy) = F(y, )
F(x, y) = F(x, y) — F(x, Jy)j for all z, y eV

(see 6.1). At w, = F the condition (C’) is trivially satisfied, and the above
correspondence F+— F is clearly equivariant and linear. Thus, denoting
by F the element in Z(V/C) corresponding to w, = F, one obtains a strong
solution (V/C, id., F) for (g, w,).

Case 4°. Let U be areal vector-space of dimension » and @ a quadratic
form on U of signature (1, m —1). 2 is given by one of the two connected
components of {x € U|Q(x) >0}, and one has G35 = SO,U, Q). One has
dimy=1= [%] and dima$=1. If one enumerates the s-fundamental

system as shown in the diagram,

(29381

o/.

v (m : even)
o a at—2\°

(29

o—>e (m : odd)

o ay (2478 ] a,
then one has
aS={Xehla(X)=0 for 2< i< 1}.

The corresponding restricted fundamental weights are given as follows (cf.
[1], Planche II, IV):
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T for1<i<i-—-2
ni:{%ﬂ for i=1—-1,1 (m : even),
(23)
7 for 1<i<l—1
7 {—;—71 for i =1 (m : odd).

Since the restricted weights of the (irreducible) representation =¥ of g5 are
of the form g =0, +7;, one has from the condition (L) that 2,s = %Tl, i.e.,
Aps = @,y or @, if m is even, and =@, if m is odd. Hence (V, p5) is a spin
representation.

To show that one can actually construct a strong solution (V, e, F) for
a spin representation pS, let C* = C*(U, Q) be the even part of the Clifford
algebra, and let ¢ be the canonical involution of C*. Then the spin group
G* and the covering homomorphism ¢ : GS— GS are defined as follows:

Gs=Spin(U, Q)= {ge C*lgg=1, gUg" = U},
#(g)u) = gug™ for ue U, ge G
The Lie algebra g5 of G5 can also be identified with
{freCz+x=0, [z, Ulc U}.

The spin representation p% of G and g9 is by definition the restriction on G% and
g® of an absolutely irreducible representation ¢ of the associative algebra C¢.
It is known that, for ¢ € U with Q(a) >0, the correspondence z~—>
a’'z‘a (x € C*) is a positive involution of C* ([3b]). Put
ap . X —> 0y 2w,
and let . denote the cone of all positive elements in C* with respect to
this positive involution, i.e.,

F = {bes CHb% =b, tr(x*bx) >0 for all x € C*, x +0}.

Then & is a self-dual homogeneous cone of classical type (the type depen-
ding on m mod. 8) and it is easy to see that o € 2 implies b = o' € Z
The imbedding 2 — & thus defined is equivariant, for ¢(g)o = gwg™' goes to

w7 gog ! = (07! gos) (w3 w)g™ = (g%) by
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Clearly it is also linear. On the other hand, if one takes a basis of the
representation-space V such that one has ¢(z%) = ‘¢(x) for all x € C*, then
every element in & is represented by a positive-definite hermitian matrix,
and ¢| & is a linear imbedding as discussed above (1° —3°). Therefore,
the above imbedding 2 — &7, combined with ¢, gives a linear imbedding
Q- P(N, C), N=dimV. Moreover, since the Cartan involution ¢ = g,, of
gS is given by o(x) = w3'®w, = —a%, the condition (C') is also satisfied. Thus,
denoting by F the standard hermitian form on V with respect to the above
basis, one obtains a strong solution (V, p, F) for (g, o).

Case 5°. One has I =dim) =6 and dimaS=2. We enumerate the
o-fundamental system as shown in the diagram.

Then one has
S ={Xe)|a(X)=0 for i =2, 3, 4, 6}.
Put
71 = aila’, 7. = aslas.

Then the restricted fundamental weights are given as follows (cf. [1]
Planche V):

=T+ 2T,
N2 = —g—n + %Tz,
N = 21y + 27y,
(24)
N = %7’1 + —g—rz,
Te=2Ti 5T,
\ g = T1+ Ta.

Since z% is the unique irreducible representation of g5 of dimension 27, the
highest (resp. lowest) weight of z5 is @ (resp. —@;), so that all restricted
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weights of z5 are of the form

==t = Tat s+ mls, my, my >0,

o8 = L(—Z— — my)ry+ %(‘37 — iy )T,

But the above list shows that the coefficient of 7; in 2,5 must be >—§—,

which is impossible. Thus we have no solution in this case.

5. Proof of Proposition 2.

5.1. Let (V, o, F) be a solution of our problem for (g, ;) (satisfying
the conditions mentioned in 3.4). We consider the following two conditions
for the representation p5:

(K1) For any irreducible subrepresentation p{ of p%, the restriction pf|fs
is irreducible.

(K2) For any two inequivalent irreducible subrepresentations p§ and p§ of
pS, p$|¥S and p5|fS contain no irreducible representations of ¥ in common.

If the condition (K2) holds, then a primary component of V with res-
pect to p¥ is a direct sum of a certain number of primary components of
V with respect to pS|fS, which are mutually orthogonal. Hence one
obtains the assertion (a) in Proposition 2. On the other hand, if the con-
dition (K1) holds, then one obtains the assertion (c) in Proposition 2, whence
follows immediately the assertion (b) (for a primary p) by an argument
similar to that in [3a], p. 441. In view of the result of 4, the only cases
where the conditions (K1), (K2) are violated are

(1) The case 4° with m even, where one has two spin representations p§ and
p3 of g5, but pi|f5 and p3|fS are irreducible and equivalent. Thus (K2)
does not hold, if ¢S contains both p{ and p3.

(2) The case 4° with m odd, where one has only one spin representation p3,
but pf|fS decomposes into the direct sum of two inequivalent irreducible
representations of £5. Thus (K1) does not hold.

Therefore, to complete the proof of Proposition 2, it is enough to show
that the assertions (a) and (c) of Proposition 2 remain true even for these
exceptional cases.
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5.2. The case 4°, m: even. As is well-known, one has the direct de-
composition

(25) Cc=60C, € =MyC) (N=2m27)

We fix an orthogonal basis (e, - - -+, ¢,) of U such that o, = ce,(c > 0), Q(e))
=1, Qle)=—12<i<m) Put é=ee,---.¢, Then the unit element of
€; is given by ‘

(26) o= 2L+ 82), &= —(1—¢0)

N[H

where ¢ is a 4-th root of unity such that & = &* = (—1)*2*, Clearly the
inner automorphism x — e,2e; of C¢ interchanges the simple components
€, and €, and leaves the subalgebra C'* of C* generated by e;e; (2< i< j
< m) elementwise invariant. Since one has & = ¢, the correspondence  —>
e, %'e, (x = @€,;) is a positive involution on each €;,. Therefore there exists an
isomorphism ¢,: € — My(C) such that one has

(27) PileEe;) = ‘Py() for all z = @,.

Then, the spin representations p$ (i =1, 2) (as matrix representations) are
given as follows:

(28) { P3(9) = ¢i(ger)

03(9) = ¢i(eigeie;) = ¢i(ergeqer)

for g= G5. In view of the relations § = ¢ = g}, & = e,, one obtains from
(27) and (28) the relation

(29) p3(g™) = 'p$(g) = p3(g)™ for g = G*.

In particular, for an element k¥ of the maximal compact subgroup K% =
G5 N C'*, one has

(30) p§(k) = p3(k): unitary.

Now let (V, p, F) be any solution for (g, ) and let V=V®@V® be
the decomposition of V into the direct sum of primary components such
that o = p|V® contains p§. If V® and V® were not orthogonal with res-
pect to F, there would exist an irreducible subspace V; in V® for i =1, 2,
such that V, and V, are not orthogonal. For a suitable choice of basis in
Vi, we may assume that the corresponding representations of G on V; are
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given by (28). Then the matrix of F|(V; + V,) would be of the form

[ aly aply }
aoly azly
with a;, @; >0 and a;; 0. Hence, for g € G5, one has

0‘1(."1(9)‘?’—1_(5))_1 a(px(9) 01(g))! }

P(g(wo))] Vi+ V) = [
a12(01(9) 02(9))™ aa(02(9)"02(9)) 7

[ * aply J
aply * '

It would follow that there exists a linear function ® on U such that &(w) =1
for all w € GS(w,), which is absurd.

5.3. The case 4°, m: odd. We denote again by C'* the subalgebra of
C* generated by ee; (2<i <j<m). Then one has
Ct = My(C) (N = 2m=0r2),

(31)
Cc=C®C;, € =C;=MysC).

We put e_ = ¢;- - - ¢,,. Then the unit element of €] (i =1, 2) is given by
(32) ef = L+ e), ef = —(1—e.)
2 ’ 2 ’

where & is a 4-th root of unity such that {2 = €2 = (—1)""b/2,  Again we fix
an isomorphism ¢: C¢— My(C) such that

(33) d(e'ey) = 'P(x) for all = € C¢.

Since one has {e_‘ = {’e_, ¢(e}) is hermitian. Hence one may further assume
that

1y, 0 0 0
Pel) = { } Ples) = [ ] (N = Nj2).
0 0 0 1y,

The spin representation p% is given by the restriction of ¢ on G5. Then
pS|K5 is unitary and decomposes into the sum p{S@ 0;5, where p}5 is the
spin representation of K corresponding to the simple component €.

Now let (V, o, F) be an irreducible solution for (g, w,) and let V =V}
@ V; be the decomposition of V into the direct sum of ¥S-invariant sub-
spaces V] corresponding to the representation p;5. Then, in the basis
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chosen above, the matrix of F is of the form

[ allNl 0 J
0 (XglNl

with a; > 0. Therefore, to prove the assertion (c) of Proposition 2, it is
enough to show that ¢; = @;. One has
o(@o) = and(e]) + agd(es)
= ﬂlN + Tao<e-)’

where 8= %(al + ay), T = —g‘(“‘ — a;). Hence, for g € G5, one has

= ‘p(g)"X(Bly + To(e-))o(g)™?
= p(esge;)(Bly + Tp(e-))o(g)™
= Bo(esgerg™) + Tole-),

[

p(g(wo))

where e,ge;97! is linear in o = g(w,) = gwog™. Therefore, if 7+ 0, there would
again exist a linear function ® on U such that &(w) =1 for all o G3w,),
which is absurd.

6. Real and quaternionic solutions.

<

6.1. Let V be a complex vector-space of dimension #. By a “real
(resp. quaternion) structure” J on V we mean an antilinear transformation J
of V such that J2 =1 (resp. —1). Given a real structure / on V, the set
Vr of all fixed elements of J in V becomes a real vector-space of dimension
n such that V= Vr®rC. Given a quaternion structure J on V, 7z is neces-

sarily even, and one can define a structure of a right K-vector-space of

dimension % on V by putting

(34) xj=Jx for x eV,

where as usual K is identified with €+ Cj by means of a fixed standard
basis (1, i, j, ij) of K over R.

Now, let (V, p, F) be a triple formed of a representation (V, p) of g and
Fe & (V). If one has a real or quaternion structure J on V satisfying the
following conditions

o(X)] = Jo(X) for all X e g,

(35)
F(Jz, Jy) = F(y, x) for all z, y €V,
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then we say that the triple (V, p, F) admits a real or quaternion structure J, or |
is compatible with (o, F). If (V, p, F) admits a real structure J, then the
real vector-space Vg defined above is p(g)-invariant, and the restriction pr
of p on Vr is a real representation pr:g— gl(Vr). Moreover, F(Jzx, y)
(z,y € V) is bilinear and symmetric, so that, denoting by S the restriction of
F on Vr X VR, one obtains an element S & & (Vg). Thus, if (V, o, F) is a
(complex) solution for (g, »,) admitting a real structure J, then the corres-
ponding triple (Vg, pr, S) is a ‘“real solution” for (g, w,) (i.e., a solution
relative to g’ = gl(n, R)). Clearly, all real solutions are obtained in this
way, and the equivalence classes of real solutions are in one-to-one corre-
spondence with the equivalence classes of the quadruples (V, p, F, J) defined
in a natural manner.

Similarly, if a (complex) solution (V, p, F) admits a quaternion struc-
ture /, then (V/K, p) may be regarded as a quaternion representation p: g
— gl(V/K) and one can define a quaternion hermitian form F on V by
putting

(36) F(z, y) = F(x, y) — F(x, Jy)j for z, ye V.

The triple (V/K, p, F) is then a ‘“quaternionic solution” of our problem
for (g, w). All quaternionic solutions are obtained in this way, and the
equivalence classes of quaternionic solutions are in one-to-one correspondence
with the equivalence classes of the quadruples (V, p, F, J) defined in a
natural manner.

6.2. We have seen above that the problem of finding all real or qua-
ternionic solutions is equivalent to the determination of all complex solutions
admitting a real or quaternion structure J. This latter problem can again
be reduced to the irreducible case by the following Propositions.

ProrosiTiON 3.  Let (V, p, F) be a solution for (g, w,) and let
V=VO@®...V"
be the direct decomposition of V into primary components with respect to p. Put p®
=p|V?, FO=F|V® and let p; be an irreducible representation of g contained in

0@, Then (V, p, F) admits a real (resp. quaternion) structure J, if and only if
the following conditions are satisfied for all 1 <i<r:

(1) If pi~ ps then the primary solution (V°, p®, F®¥) admits a real (resp. qua-
ternion) structure.
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(1) If pi4ps, then there exists a (unique) index i’ such that §; ~ oy and one has
dim V® = dim V&,  (In other words, p; and p; appear in p with the same multi-
plicity.)

Suppose first that (V, p, F) admits a real or quaternion structure J.
Then J induces a permutation of the V®’s of order at most 2. If JV® = V@,
then the primary solution (V®, p®, F®) admits a real or quaternion struc-
ture J? = J|V®, In this case, (V?, p®, F®) is self-conjugate, and one has
pi~ 0. If JVO =V6 with i+ i', two primary solutions (V®, o®, F®) and
(Van, pth, F@) are conjugate to each other so that one has p; ~ py and
dim V® = dim V. To prove the converse (“if”” part), suppose the condi-
tions (i), (ii) are satisfied. It is enough to show that, in the case (ii), the
direct sum

(VO@ VO, p@@ e, FP@ F©)
admits both real and quaternion structure. By the assumption, there exists
a C-antilinear isomorphism ¢: V® — V@ such that one has
p(X) = ¢ o pV(X) 0 g7 for X e g.
Put
F'(xz, y) = F(4(y), ¢(x)) for z, y e V.

Then the triple (V®, p®, F’) is a solution conjugate to (V¢, p@) F@) and
hence, by Theorem 2, it is equivalent to (V®, p®, F®). Therefore, by a
suitable modification of ¢, we may assume that F’ = F®, Then, putting

J@ 1 (2, @) —> (£47Y(2"), g(x)) (v€ VP, 2’ € V),
one obtains a real or quaternion structure (according to the sign +) on
VO @ V4 compatible with (p@ + p@, F® 4 F@), (Note that the equiva-

lence class of such areal or quaternion structure is uniquely determined, in-
dependently of the choice of ¢.)

ProrosiTiON 4.  The notation being as in Theorem 1, (b), suppose that a
primary solution (V, p, F) admits a real (resp. quaternion) structure J. Then, J can
be written uniquely in the form

(37) ]=]1®]01

where J, is a real or quaternion structure on Vy compatible with (py, Fy) and J, is
a real or quaternion (resp. quaternion or real) structure on V, compatible with
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(00, Fo). Conversely, an antilinear automorphism ] of V defined in this way is a real
(resp. quaternion) structure on V compatible with (p, F).

This follows immediately from Schur’s lemma and the uniqueness of
F, (Prop. 2, (c)). Note that the condition (35) for J, means that the re-
presentation p, is essentially a representation of £, @® a, into o(n,, R) (the Lie

algebra of all 7, X n, real skew-symmetric matrices) or u<%, K) (the Lie

algebra of all "7° X % quaternion skew-hermitian matrices), where 7, =
dimcV,.

6.3. It remains to check for each (self-conjugate) irreducible solution
given in 4 whether or not it admits a real or quaternion structure. Note
that, if an irreducible solution admits a real (resp. quaternion) solution, then
such a structure is unique, and the solution does not admit any quaternion
(resp. real) structure.

Case 1°.  'The unique irreducible solution clearly admits a real structure.

Case 2°. 'The two irreducible solutions are conjugate to each other, so
that neither of them admits a real or quaternion structure.

Case 3°. 'The unique irreducible solution clearly admits a quaternion
structure.

Case 4°, m: even. It is known that
My(C) if m=0 (mod. 4),
C* = { My(R)® My(R) if m=2 (mod. 8),
My (K)® My(K) if m=6 (mod. 8),
where N = 27271, Therefore, if m =0 (mod. 4), the two irreducible solutions
are not self-conjugate, admitting no real or quaternion structure. If m=2
(mod. 4), then from what we mentioned in 4 and 5 each of the two ir-

reducible solutions admits a real or quaternion structure, according as m =
2 or 6 (mod. 8).

Case 4°, m: odd. One has
{ My(R) if m=1,3 (mod. 8),
MN/z(K) if m E5, 7 (mod. 8),

+ ~

where N = 2m~b/2,  Therefore, the unique irreducible solution admits a real
or quaternion structure according as m =1, 3 or 5, 7 (mod. 8).
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