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A CHARACTERIZATION OF ODD ORDER EXTENSIONS

OF THE FINITE SIMPLE GROUPS PSp(4,q), G2(q), D4

2(q)

MORTON E. HARRIS1

Let p denote an odd prime integer and let q = φf where / is a positive

integer. Let J^ denote the projective symplectic group PSp{4,q), the

Dickson group G2(q), or the Steinberg "triality twisted" group D\{q) over

a field Fq of q elements. Then β^ is simple and the Sylow 2-subgrouρs of

^ have centers of order 2 so that involutions which centralize a Sylow 2-

subgroup of J%f form a single conjugacy class of β^m

Let σ denote an automorphism of Fq. Then a induces, in the natural way,

an automorphism of ^ (cf. [2]) which fixes an involution in the center of

a Sylow 2-subgroup of gf?m In fact, <σ>, the cyclic subgroup of Aat(Fg)

generated by σ, acts faithfully on βff and we may form the natural semi-

direct product <<7>Ĵ \ If σ is an odd ordered automorphism of FQ9 then

(p><%? is an odd order extension of J%f with trivial 2-core. In fact, any

odd order extension of βίf with trivial 2-core is of this form (cf. [2]).

Let j be an involution in the center of a Sylow 2-subgroup of ^ such

that j is fixed by σ. Then the centralizer C{j) of j in <cr>J^ is a semi-direct

product (σ)Cβί?(j) with trivial 2-core.

For each of the 3 possibilities for J%f, Cβ^U) has a subgroup 3/ of index

2 containing subgroups Lu L2 such that Lx = SL{2, qx), L2~SL{2, q2) (where

qu q2 are prime powers), [Li, L2] = {1}, L1f)L2 = <i> and 3^= LλL2.

It has been shown in [4], [5], and [9] that if a finite group G contains

an involution j such that CG{j) has a subgroup 3/ of index 2 of the above

type, then G = CG(j) 0{G) (O(G) denotes the 2-core of G; i.e., the largest normal

subgroup of odd order in G) or G = PSp(4,q) or G s G2(q) or G = D\(q) for

some odd prime power q. However, for example, in classifying finite groups

by the structure of their Sylow 2-subgroups, one may arrive at a situation
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in which the centralizer CGU) of an involution j in a group G has trivial

2-core and has a normal subgroup J%~ of odd index such that J3Γ has a

subgroup 3/ of index 2 of the above type. This is, of course, the case with

the groups (σ)J%? above where J%? is PSp{4,q), G2{q) or D\{q), q is an odd

prime power and σ is an odd ordered automorphism of Fq. To handle this

situation we prove the following more general result:

THEOREM. If G is a finite group with an involution j such that

a) O(CG(j)) = {1} and

b) CG(j) contains a normal subgroup 3^ of index 23 with δ odd or a normal

subgroup J%" of index δ with δ odd such that J%Γ contains a subgroup 3^ of index

2 where in either case 3/ contains subgroups Ll9 L2 such that Lx = SL(2fq1)f L2 =

SL(2, q2) {where qlf q2 are prime powers), [Lu L2~\ = {1}, LiC]L2 = <;> and 3^ =

LXL2, then j is in the center of some Sylow 2-subgroup of G, gx and g2 are both odd

and one of the following holds:

(i) G - Cβ(j)O(G).

(ii) qί = q2, Lγ and L2 are not normal in CG{j) and G = <σ>P5p(4, q) where

σ is an automorphism of order δ of a field of q = qt = q2 elements.

(iii) qx = q2, Lx < CG(j), L2 < CG(j) and G = <<τ> G2(q) where σ is an auto-

morphism of order δ of a field of q = qι = q2 elements.

(iv) one of the numbers qu q2 is the cube of the other, Lι<^CG{j)y L2<\CG(j)

and G = (σ}Dl(q) where σ is an automorphism of order δ of a field of q = min

{qlf q2} elements.

Thus, for the rest of the paper we assume that the theorem is false.

Hence we assume that G is a finite group with an involution j such that

CG(j) satisfies the hypotheses of the theorem and that G does not satisfy

the conclusion of the theorem and we shall arrive at a contradiction. By

induction, we may assume that all groups of order less than IG \ satisfy the

theorem and that o is minimal among all groups of order | G \ contradicting

the theorem.

If δ = 1, then the theorem follows from [4], [5], and [9]. Thus we

have δ > 1.

Note that j^Z{Lι)^Z{L2) so both q1 and q2 are odd prime powers.

Our notation is fairly standard. If X is a finite group, then O(X)

denotes the 2-core of X i.e., the largest odd order normal subgroup of G.
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If xy = y~ιxy = z, we write y : x -> z. If y : x -> 2; and 2/ 1 z—> x, then we

write t/ : # <—» 2. If y : # -> a;"1, then we say that t/ inverts cc. If p is a

prime, then an Sp-subgroup of a group X is a Sylow p-subgroup of X.

Let #1 = Pi™1, q2 = V212 where pl9 p2 are odd prime integers and nu n2

are positive integers. Then:

where ε̂  = ± 1 , ^ j > 2 and «f, ŷ  are odd for i = 1,2.

Also let F u F2 denote fields of qu q2 elements respectively and view

SL(2iqί) as the group of 2x2 matrices with coefficients in Ft of determinant

1 for i = 1,2. As is well known, Aut (Ft) acts faithfully in the natural way

on GL(2,qi) and SL{2fqι) as follows:

if g J)eGL(2,^) or SL(2,^) where

#, 6, c, ύ ί ε ^ and if <τeAut(F;), then

aa bσ\ r . _
; ί o r ' -

Finally fix isomorphisms

Φi:SL{29qt)->Li for ί = l , 2 .

Clearly 0t{(~J _ ? ) ) - ; for ί = 1,2.

The paper is organized as follows. In § 1, we study CG(j) to obtain

various properties of G and to factorize CG(j) m ^o a semi-direct product

CβU) = J^Λ where \A\ = δ and A acts like "field automorphisms" on Jfr

In § 2, we examine CG(̂ 4) to show, among other facts, that pi = p2. Then,

in § 3 and 4, we construct a semi-direct product subgroup GA of G such

that CG(j)<GA and such that (5.4 is strongly embedded in G. Using [1], it

is then easy to obtain a contradiction to prove the theorem.

§ 1. In this section we examine the structure of CG(j) and prove, among

other facts, that «i = a2, 0{G) = {1} and that G has only one conjugacy class

of involutions.

LEMMA 1.1. gf= LίL2<^CG(j).

Proof. lϊJΓ<^ CG{j) and \JSΓ\ &\=2, then O\^r) = 3/ since Lx and L2

are generated by their elements of odd order and thus «̂ /

The proof of [4, (2£)] yields:
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LEMMA 1.2. If H^G and T is an S2-subgroup of CH{j) such that j is

characteristic in T, then T is an S2-subgroup of H, In particular, an S2-subgroup

of CG{j) is an S2-subgroup of G so that j is in the center of an S2-subgroup of G.

Clearly:

LEMMA 1.3. Z{3/) = <;> and all involutions of 3/ ' — <;> = LXL2 — <j> are

conjugate in 3/.

Since \CG{j)jg^\ = 2δ, there exists a unique subgroup Sf of CG(j) such

that \CβU) : Sf I = 2 and & > &.

LEMMA 1.4. {LUL2} is invariant in CG(j) and Jzf^NG(Lι) = NG(L2).

Proof The first part follows easily from the Krull-Schmidt theorem

applied to the group 3ΊΦ = PSL{21qί)xPSL{2yq2), Since \£f: g/\ = δ and

\CG(j) : Sf\ =2, the lemma follows.

LEMMA 1.5. Csf{3/) = <;>.

Proof Since \£f \ &\ =δ and C^{^){\^ = <i>, \CmSf{3^)\=2d where

d\δ. But C£f{g/)<3CG{j) and 0(CG{j)) = {1} so that d = 1.

LEMMA 1.6. There exists a subgroup A of Sf of order δ and homomorphisms

βi : A-ϊAut(Fi) for i = 1,2 such that: if a^A and fcteSL(2,ςrt), then

(1.1) Φitk)a = Φi(kiβ<(a)) for i = 1 , 2 .

Moreover, £? = # M , ^ n i = {1}, Ker (ft) Π Ker (/S2) = {1} and A is abelian on at

most 2 genegrators.

Proof Clearly C^(LX) = L2 < Cjgf (LJ <3 ̂  and | ^ : UC^LJ \ divides

5. It follows from the structure of Aut {Lx) that there exists a subgroup

4̂i of .Sf and a homomorphism ft : A -> Aut (Fi) such that

jgf = LiΛ, ^ n ^ i ^ C ^ L i ) and such that ΦM" = φiikS^) for all 1

and fcx e SL(2, QΊ). Hence Lj Π i4x = C^f{Lx) Γ\Li = <;>, J ^ Π ̂ i = L2 < Ax and

|i4i/L2 | divides δ. Again it follows that there exists a subgroup A2 of Ax

and a homomorphism β2 : Λ2 -> Aut (F2) such that i4 2^C i 4 l(L2), Ax = L2A2,

L2f)A2^CAι{L2) and such that Φ2(k2)
a = φ2{k2

β^a)) for alla<=A2 and k2(=SL(2,q2).

Hence i 4 2 Π ^ = Λ n i i n ^ = i 2 n L 2 = CAι(L2)C\L2 = <;> so that <;> is an 52-

subgroup of 4̂2 Hence 4̂2 has a normal 2-complement 4̂. Then Jzf = 3Ά,

= {1} and the restrictions of ft, β2 to 4̂ give the desired homomorph-
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isms. Also Ker (ft) n Ker (ft) = {1} follows from Lemma 1.5. Now it follows

that conjugation induces a monomorphism of A into O2/((Aut (Li)/Inn (Li))X

(Aut (L2)/Inn (L2))) so that A is abelian on at most 2 generators as required*

Let |Im(ft) | = ^ ; then δt\δ and <5j|^ so that ni = διfι where ft is a

positive integer for z = 1,2. Hence if nt is a 2-power, then δt = 1, A is

cyclic, A centralizes Z^ and is faithful on Lj where {/,;} = {1,2}. So that

if both nlt n2 are 2-powers? then δ = 1 which is not the case. Thus we

have:

(1.2) and n2 are not both 2-powers.

Let σi^Aut (Ft) be such that σt : x -> xp* * for all tfeF*; then Im (ft) =

<σi> for z = 1,2. Let Ff denote the fixed subfield of σu and let \F*\ = q*;

then q* = 39/' for i = 1,2. Let Γ̂  be a primitive root of Ft for f .= 1,2. If

Si = 1, then —YiU*GF* and —TV** is a non-square in F^ and we can choose

\ such that ^i + μt -J—Ίλu is a generator for the group of elements

in the field Fi( \/—ΐi

uή of Ft — norm 1. In this case, set:

Pi =

o rr

0 1"

- 1 0.

If 6̂  = — 1, choose Λf, such that λt + μn/— 1 is a generator for the

^ in.group of elements in the field F^—l ) of Ft — norm 1 and choose

F* such that η\ + ζ\ = 1. In this case, set:

(1.3)

Then we always have:

Γ-i 01

0 - 1
Pt* = Pι~\ 0(Pt) = Q i - ei9 = qt +

Let:

(1.4) at = P i \ t% = αf* r a n d Qt = <alf bt>.

Then:

(1.5) iCi* = ιcfι and Q̂  is an S2-subgroup oΐ SL(2fqί).

Moreover,
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(Ϊ..6) bf* = bu Pi

σi = Pi

εy\ af* = at and φ = κf^\

In order to simplify the notation, we shall identify elements of SL(2, gj

with their ^-images in Lt and we shall suppress the homomorphism βt in

the action of the elements of i on Lj for i = 1,2. Thus we shall utilize

Lemma 1.6 with this in mind.

Set:

(1.7) x = txt2 and y — bxb2.

Then x and y are involutions of ^ — <i>.

A slight modification of the argument of [4, (2D)] yields:

LEMMA 1.7. If LiφCG(j) for i = 1 or i = 2, then there exists an element

n<=CGU)-S>? such that n2(=φ and L\ = L2.

Note that if there is an involution n^CG{j) — 3^ such that L\ = L2 then

[7] implies that G satisfies conclusion (ii) of our theorem. However, we also

have:

LEMMA 1.8. If CG{j) contains an element n such that n2 = j and L\ — L2,

then G = CG(j)O(G).

Proof Since [A, Qi] = 1, by conjugating n by an element of L2, we

may assume that Q2 = Q1}. Now C^f{QxQ2) = (j}xA so that n normalizes A.

A slight modification of the proof of [4, (2E)] yields that CG(j) — 3^ contains

no involutions and then the remainder of the proof of [4, (2E)] applies

directly to yield the lemma.

Thus we may henceforth assume:

<1.8) Lt < Cσ(j) for i = 1 and i = 2.

LEMMA 1.9. CGU) contains a unique normal subgroup J^Γ of index δ containing

3/ such that CG(j) = JίTA and Jf[\A= {1}.

Proof Conjugation induces a homomorphism θ : CG(j) -• Aut (LJ x Aut(L2).

By Lemma 1.5, Ker (θ) Π 3f = O">. Thus an S2-subgroup of Ker (θ) has order

2 or 4. However, <;> < Z (Ker (̂ )) so that Ker (β) has a normal 2-comple-

ment which must be {1} since O {CG(j)) = {1}. Thus |Ker(0)| = 2 or 4. If

I Ker (0)| = 4, then ^ Ker (0) is a normal subgroup of CG(;) of index δ. If

Ker (θ) = <;>, consider the natural homomorphism

/3 : Aut (Li) x (Aut (L2) -^ (Aut (LO/Inn (LO) x (Aut (L2)/Inn (L2)).
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Then β θ has kernel 3^ so that CG(j)\3f is abelian; hence, there always exists

a normal subgroup J%Γoϊ CG(j) of index δ such that & ^,JίΓ and the rest

readily follows.

Observe that J%" satisfies the hypotheses on the structure of the centra-

lizer of an involution in [4] and that if H^ G, then all 52-subgroups of

CHU) He in J f n f f .

We now can prove:

LEMMA 1.10.

(i) G has only one conjugacy class of involutions.

(ii) There exists an involution w ε j " — 3^ such that n acts by conjugation on

Li as:

(1.9)

0 1Ί Γ - l 01

\ if Si = 1 and as \ if εt = - 1
-r?' oj L o l j

for i = 1,2.

(iii) «! = a2

(iv)

Proof The proof of [4, (2F)] yields (i), (iii), and the fact that there

exists an involution w e X — J/ which acts on Lt = SL(2, qt) as an involution

in PGL{2, qt) — SL{2, qt) for i = 1,2. Then, by conjugating n by an element

of &f = LiL2, we arrive at (ii).

Henceforth, let a = aι — a2.

We now have:

(1.10) Pi = P~\ d\ = a~\ κn

t = κt for i = 1,2.

When 6i = l, we also have&"=Mi. However, if ε£ = —1, then b~ιb7l^(pιy

and frj1^ is fixed by σj. Then, as in [4, p. 146], there is an integer m such

that p7? is fixed by σt and such that (MTΓ = (bip7)^ Replacing bt by ft^?

in this case, we have:

(1.11) bϊ = btat for ί = 1,2.

COROLLARY 1.10.1. O(G) = {1}.

Clearly <n, i> is a 4-subgroup of G whose three involutions are

conjugate in G. Since CG{t)Πθ{G) <0{Cσ(t)) = {1} for any involution t of

<n,;> and O(G) = <Cσ(0nθ(G)| *e<n, ./>*>, the corollary follows.
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LEMMA 1.11...

(i) n normalizes Qt for i = 1 and 2 so that QιQ2(ri) is an S2-subgroup of G.

(ii) [n,A]={l}.

(iii)

Proof Clearly (i) holds. Since n normalizes C^f(Q1Q2) = </> x A, n

normalizes A so that [n,A]^AΠJΓ = {1} and (ii) holds. Finally, if θ de-

notes the homomorphism defined in the proof of Lemma 1.9, then <i><

Ker (0) = CG{^)^Cjr{3^) = <j> and (iii) follows.

LEMMA 1.12. O2'(CG(j)) =

Proof If q% > 3, then Lt is generated by 2-elements and if qt = 3, then

Li<n> = GL(2,3) is also generated by 2-elements. Hence ^Γ = L1L2{ny^t

O2''(Cβ(j)) < JίT and we are done.

COROLLARY 1.12.1. If an involution t of CG(j) inverts an odd order subgroup

Q ofCoU), then Q^

For future reference, we have:

(1.12) CJT(X, j) = <Pu Pi, V, n> and CG{x, j) =± Cjr(x, j)A.

(1.13) Cjr(n, j) = (κu κ2, %, n> and CG(n, j) = Cjr(n, j)A.

Since n inverts pu p2 and x inverts tcu κ2 we have:

(1.14) O*'(CG(x,j))=Cjr(xJ)

(1.15) O*'(Cσ(nJ))=Cjr(nJ).

§2. In this section, we obtain information about CG(A) and show,

among other facts, that φλ = p2

The proof of [4, (3A)] yields:

LEMMA 2.1. If D is a A-subgroup of G, then D is conjugate in G to <tf,i>

or (n, j} and NG{D)jCG{D) = S3, the symmetric group on 3 symbols.

From this lemma, we can demonstrate:

LEMMA 2.2. If E=<n, j>, then E < CG{A) and {NG{E) n CG(A))/(CG(E) Π CG{A))

= S8, ^ symmetric group on 3-symbols.
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Proof. Let Vt = <*?> for i = 1,2 and F = FiXF 2 ; then | F t | = ι;t for i = 1,2

and IV| = 0^2 is odd. By (1.15), O2'(CG{E)) = (Fx£)<α> and the Frattini

argument yields iVG(£) = CG(£) (Λ7G(£l)niVG(£<x<ίc»). Hence there exists a

3-element ζ<=NG{E) f)NG(Ex(x}) such that ζ : j ->n-+nj -+ j . Since ξ* norma-

lizes CG{Ex(x» = Ex(x}xA, it follows that ζeNG{A). On the other hand,

tι fixes i, ίi : n<—> nj and [*i,i4]={l}. Consequently t\ fixes n, ^ : nj <—>j

and [t\,A\= {1}. Thus <ί l f ic

x> ^NG(E)nCe(A) and the lemma follows.

LEMMA 2.3.

(i) C$e(A) = L\L\ where L% = CLi{A) = SL(2, q*) for i = 1, 2 awrf [L*, L?]= {1}

and L*ΠLf = <;>.

(ii) C0(A,j) =

Proo/. If /iEif for ί = l , 2 and (hh)a = hh for α e Λ then ijΊ

ΓϊL2 = <i>. Since α is of odd order, /?=/i, then 2̂ = 2̂ and the lemma follows

easily.

LEMMA 2.4.

(i) ?! = 2>2.

(ii) Cβ(A)/A is isomorphic to G2{q*) or D2

4(q*) where ζ?* = min [q*u qt).

Proof Let M=CG(A); then CM/AUA) = CM(j)AIA = CG(AJ)IA=Cjr(A).

But Ul =z Li(\CG(A)<\CG{A,j) for f = 1,2 and j is conjugate to n in M.

Hence M/̂ 4 f= CMlA{jA)O(MIA) and [4], [5] yield the result.

§ 3. In this section, we lay the groundwork for the construction of a

strongly embedded subgroup of G and we prove that an S^-subgroup of

CG(j) is not an Sp-subgroup of G.

Let v — V\ — P2. Since ax = a2 — a> we have βi = ε2, so let ε = εx = ε2.

We now introduce the following notation: let the images of

1 a

0 1

1 OΊ Va OΊ Γ 0 1

α lJ, LO e r 1 ! L-1 0.

under the isomorhism φt : SL(2t qt) -> Lt be denoted by Xi(a), X-t{a)t hi{a),ω{

respectively and let Xlf X-u Hi be the subgroups of Lt generated by elements

of the form xι(a), x-i(a), ht(a) respectivley for i =1,2. We have:
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U = XtHi U XtHtωtXt for i = 1,2.

Set:

ro - η
if ε = 1 and rf< = 1 if ε = 1 for t = 1,2 and let:

Ll Oj

(3.1) λ0 = wrfirf2.

Then J Γ = <LiL2, λo>, K^C^H^) and h\^HΆ. Let:

(3.2) H=<HίH2, ho>.

Then | i / | = (<2Ί —1)(#2 — 1) and, as on [4, p. 163], if is abelian and is the

direct product of two cyclic subgroups of orders qx — 1 and #2 — 1.

Let D denote the 4-subgroup contained in H and denote the involutions

in D by:

J ~ Jθt Jί* J2"

Clearly D = <#,;> if ε = 1 and D = <n, y> if ε = — 1 . The involution

inverts ί ί and \Cjr(D)\ = 2{qx — l){q2 — 1); hence:

(3.3) Cσ(D) = CJT{D)A where

(3.4)

The case gx = #2 = 3 has been excluded so that DψH and H is the unique

subgroup of its isomorphism type in 02'{CG{D)) so that NG(D) = NG(H).

By Lemma 2.1, there exists a 3-element η^NG{H) = NG{D) such that

^ : io -> h -> 7*2 -^ io Since β>i fixes i = j 0 and ωx : Ί <—• j 2 , NG(D) = (CG(D),

ωl9 ω\} by Lemma 2.1. Also αh centralizes CG(D)IO2'{CG(D)) = O2'{CG(D))AIO2'(CG(D))

so that β>ϊ also centralizes CG(D)IO2'(CG(D)) and hence <O2'(CG(Z>)), <»i, <wϊ> < iVG(Z)).

Thus O2/(JVσ(Z>))=<Oί/(CG(D))fω1,ωϊ> and CG(D)/O2/(CG(D)) ^Z(NG(D)!O2'(CG(D))).

By Lemma 2.1, there exists a unique normal subgroup M of NG{D) such that

IΛWD) : M\ =2, CG{D)^Mf ω^M and \M:C0(D)\ = 3. Then M/02'(CG(D))

is abelian of order 3<5 and <ϋi acts non-trivially on this abelian group. I t

follows that M contains a normal subgroup M* containing O2'(CG(D)) such

that ω, normalizes M*f ωx inverts M*IO2'(CG{D)), |M*/O2'(CG(Z)))|=3, M=M*CG{D)

and M* nCσ(Z>) = O2'{CG{D)). Moreover, M*<ω!> < O2/ (JVσ(Z))), M = M*A,

M* Π A = M* Π Cσ(Z)) Π A = CJΓ(Z)) Π A = {I} and M*<ω!> < AΓG (D) =

Thus O2'(NG(D)) = M*<ω1> and O2'(NG(D))DA = M*ΠΛ = {1} so that
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O2f(NG(D))A,O2'(NG(D))nA = {1},O2'(NG(D))ΠCG(D) = O2f(CG(D)) and O2f(NG(D))/O2'

(NG(D))Γ\CG{D)) = S3. We may now assume that the 3-element η lies in

O2'(NG(D)). Let T denote the S2-subgroup of H; we have [Λ Tn(fti72)]= {1}

and [A,ho]= {1} so that [A, T] = {1} since T = (TnCf^ft))/^. Consequently,

[i4, T<ω1ω2>] = {1} where T{ωxω2y is an S2-subgroup of 02/{CG{D)). The Frattini

argument implies that we may assume that η^NG{T'<<ui<y2» also. Then [8,

Kapital I, Satz 18.6] implies that η centralizes an element Γe Tζωχω2} ~ T

which must be an involution. Note that CG{D) — H ((ωιω2y x A) has a normal

2-complement 0{H)A. However, C0(H)A{T) = A which implies that η^NG{A)

and hence [?, A]*£ O2'(NG{D)) f]A = {1}. Since CA{HλH2) = {1} and 02'{NG{D))jH

is clearly dihedral of order 12, we have proved:

LEMMA 3.1. Let D be the 4-subgroup of H. Then D ψ H, NG(H) = NG(D) =

O2'(NG{D))A, O2'(NG(D))nA= {1}, H<O2'(NG(D)) andW = O2'(NG{D))IHis dihedral

of order 12. Moreover, CG(H) = H, there exists a 3-element η<^O2'{NG(D))ΐ\CG(A)

such that O2/(NG(D)) - <p,ωuωz,ηy and O2'{NG{D))f]CG{j) = O2'\CG(D)) = #<<>W.

Combining Corollary 1.12.1 and the proof of [4, {AB)\ we have:

LEMMA 3.2. If P is a p-subgroup of CG{j) which is inverted by j t or j 2 , then

P<XaXb where atΞ {1, —1} and b^{2, —2}.

As in [4, (4C)], since H normalizes Xz and X-t for i = 1 and 2, we have:

LEMMA 3.3. Let π<={XaXb)* with a e {1, —1} and 6 G { 2 , —2}. 7% ŵ:

(i) If π&XaΌXb, then π has -7— (qx — 1) (̂ 2 — 1) conjugates under H, all of

which belong to XaXb — Xa ~ Xb>

(ii) If π e l f or XJ, ίA^ ^ conjugates of π under H consist of X\ or X\y

respectively.

Let X= X,xX2. Then:

(3.5) Njr(X) = XH<lNG(X)nCG(j) = Nxr(X)A.

(3.6) CG(X,j) = Xxφ

We can now demonstrate:

LEMMA 3.4. 4̂?z Sp-subgroup of CG(j) is not an Sv-subgroup of G.

Proof Assume that the lemma is false. If pfδ = \A\ then X is an Sp-

subgroup of G which contradicts Lemma 2.4 (ii) since an S^-subgroup of
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G2(q*) or of D\(q*) is not elementary abelian; hence p\δ. Let Ap denote

the Sp-subgroup of A. Then T — XΛP is an S^-subgroup of G. We claim

that X is the unique elementary abelian subgroup of T of order qxq2. For,

let U be an elementary abelian subgroup of T such that U < X. Since Ap

is abelian on at most 2-generators, \U/Ur\X\\p2. If \U/UnX\ = φ, let u - za

E ί / - ί / Π l where z<=X and a^A\. But \Cx{u)\ = \Cx{a)\ and a acts as a

non-trivial "field automorphism" of order φ on Xi or X2. It follows that

ICzWIjXftft and hence \U\ = p\Uf]X\ ^p}Cx(u)\ = v\Cx(a)\ < qγq2. If

\UIUΓ)X\ = p2, then the "projection" of U into Ap is a subgroup F of Ap

which is elementary abelian of type {$,$). Since F is not cyclic, [F,
1 11 _ _

for i = 1 and 2 and hence |CZ(F)| = qί

Ύq2

p. But Xn U<CX(U)= CX(Y) so
JL _L

that I ί/| = p21 E/n XI < p2gip q2P < qiQz* Thus X is the unique elementary

abelian subgroup of T of order qλq2 and X is weakly closed in T with res-

pect to G.

Now Lemma 1.2 and (3.6) imply that O"> is an S2-subgroup of CG{X).

Hence CG(X) has a normal 2-complement and the Frattini argument gives:

(3.7) NG(X) = O(CG(X)) (NG(X) Π CG(j)) = O(CG(X)) HA where O(CG(X)) Π (HA) =

θ(cG(X))r\cG(X)n(HA) = θ(CG(Z))n<i> = {i}.

Thus (0(CG(X))H) ΠA= (0(Cσ(X)H) Π (iJA) n ^ = ^ Γ n A= {l},0(CG(X))H<iNG(X)

and NG(X)/0{CG{X))H=A. Since p||^4|, NG{X) has a normal subgroup of index p.

Applying [6, Theorem 14.4.2] to the weakly closed subgroup X of T

with respect to G, we conclude that G has a normal subgroup / of index

p. Now Lemma 1.12 implies that Cj(j)^JΓ so that CjU) = JΓ(AΓiJ)<C0U)

and hence O(Cj(j)) = {1}. Also Lemma 2.1 implies that there is a 2-element

w<BNG((n,j}) such t h a t w:j<—• n. Since w^J9 J ψ Cj(j)0(J); t h e n , since

I/I < |G| , we conclude that / satisfies conclusions (iii) or (iv) of the theo-

rem. Hence / ' < G, |G//' | is odd and either qi = q2 = q and Jf~G2(q) or

one of the numbers qu q2 is the cube of the other and Jr^D\(q) where

q = min {#i, #2}. However, 0{G) = {1} by Corollary 1.10.1 so that G satisfies

conclusions (iii) or (iv) of the theorem. But this is false and the lemma

follows.

§4. In this section we construct a strongly embedded subgroup and

use it to obtain a final contradiction.

Let {«, b] = {1,2} and let U be a non-trivial subgroup of Xb. Then:
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(4.1) CJT{U) = XbxLa^CG(UJ).

Thus Qb is an 52-subgroup of CG(U,j) and Lemma 1.2 and the proof

of [4, (3C)] yields:

L E M M A 4 . 1 . 7/ {α, £} = {1,2} and U is a non-trivial subgroup of Xb, then:

(i) Cσ(U) = O(CG(U))CG(U, j) and Xb <: O(CG(U)).

(ii) NG(U) = O(Ca(U))(CoU) n JVO(Ϊ7)).

(iii) ζ) α w ΛW Sz subgroup of CG{U).

For Ϊ7 = X6, we have:

(4.2) N^(Xb) = XbLaH<3 NG(Xb)f)CG(j) = Njr(Xb)A.

In this case, we also have:

LEMMA 4.2.

(i) o(cG(xb))ncG(j) = xb.

(ii) O(CG{Xb))/Xb is abelian and inverted by j .

(iii) O(CG(Xb)) is nilpotenL

Proof Let Y = O(CG(Xδ)) n Cσ(;) clearly Zδ < F and [F, L J < Lα n O(CG{Xb))

= {!}. Hence F^CG(Lα) so that F<O(CG(Z&))Π CG(Xα)Π CG(Lα) ̂ Xb which

implies (i). Since (ii), (iii) follow immediately from (i), we are done.

LEMMA 4.3. Let {a,b} = {1,2} and let M denote the Sp~subgroup of O(CG(Xb)).

Then MψXb.

Proof Assume that M = Xb and let Q be an S^-subgroup of CG(j) such

that Z = XίXX2^Q. By (3.6), <i> is an S2-subgroup of CG{Q,j) so that <;>

is an 52-subgroup of CG(Q). Hence CG(Q) = Lφ where L = O(CG(Q)). Since

Z(Q) ^ L, we may choose an S^-subgroup Q* of CL(j) such that Q* ̂  Q.

Then Q*Q is a ^-subgroup of CG(j) and hence Q* = Z(Q). By Lemma 3.4,

Q is not an Sp-subgroup of NG{Q). Since JVG(O) = L{NG{Q)f)CG{j)), we have:

| p _ \L\P ^ ^

Now let Qx be an S^-subgroup of L normalized by j . Since Z(Q) is the

Sp-sbugroup of CL(j)f Qi> Z(Q) = Lf)Q. Hence there exists an element
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zeQ* inverted by . But Qι^CG{Xb) = O(CG{Xb))CG{Xb,j) so that ztΞθ{CG(Xb))

and z$O(CG{Xb))f]CG{j) = Xb which implies that MψXby proving the lemma.

Again let {a, b} = {1,2} and let M denote the Sp-subgroup of O(CG(Xb)).

Then D, the 4-subgroup contained in H, acts on M. Since D* = {/0,/i, ΛL

letting

(4.3) Mt = Mf] CG{ji) for ί = 0,1,2,

we have:

(4.4) H normalizes Mt for i — 0,1, 2.

(4.5) Mo = X6 and M= M0MίM2.

(4.6) Mf° = M2 and M2

ω« = Mu

Since y inverst Mi and M2, we have:

(4.7) Mi<O2'(CGUi)) and M, is elementary abelian for i = 1,2.

(4.8) IMI - | M 2 | < ^ 2 and \M\ = qb\Mι\K

Hence 1 < \M/Xb\ <q\q2

2y M\Xb is an elementary abelian 25-group which

admits La and M/Xb has Lα-composition factors which are faithful irreducible

Lα-modules over the field of p elements (since j inverts MjXb).

Also if 7]<BO2'(NG(D)) is the 3-element of Lemma 3.1, then (4.7) and

Lemma 3.2 yield:

(4.9) Mι^{XaXby and M2^(XcXd)
v2 where «,ce{l, -1} and b,d<ZΞ{2, -2}.

Arrange notation so that qγ >. q2 and set a = 1 and b = 2 in the above.

Since 1 < \M/X2\ ^q\qt<q\, we have the following 3 possiblities by [4, (IE)]:

(I) \MIX2\=qi, (Π) \MIX2\=qV\ and (III) \M\X2\ = q\.

If (I), then qi = q2, \MX\ = \M2\ = qγq2, equality holds in (4. 9), and

\M\X2\ = q\ql If (II), then \M,\ = |M 2 | = ^ / 3 > ^ ^ ^ 2 , and, as on [4, p.

165], we conclude that qi = q\, equality holds in (4.9) and that \MIX2\—q\q\.

However, in order to treat possibility (III), we shall need a deeper

analysis. To this end, let P = MXlf let M denote the S^-subgroup of

O(CG(X1))f let P=MX2, let Mo = MΠCGU) = Xu and let Mι = MΠCG(jί) for

i = 1, 2.

LEMMA 4.4. If \MjX2\ = q\, then \MIXA = q\q\.
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Proof. Assume \MjX2\ = q\, then |M X | = \M2\ = qx > 3 and it follows

from the discussion in [4, p. 166] that:

(i) Mi = XI or qx = q2 and Mt = XI and

(ii) M2 = Xf or qx = q2 and M2 = Xv

d

2. Taking into account (4.6), we

have one of the following 4 cases:

(1) M=X2XlxXf

(2) M=X2X\Xl\

(3) M= X2X\Xt and qx = q2

(4) M= X2Xl2Xl\ and Qι = q2.

If we have case (1), set ω = ωxωzηeNG(H); then, as in [5, (6C)l Pf]Pω =

XliXf. The proof of [5, (βC)] yields that M is elementary abelian and

Xlλ^Z(P). Hence P«v = X_XX2X1\ centralizes Xλ\ since inverts X1UX\

and Zl2!, Lemma 4.1 implies that Pωiv^M. Thus ( Z - i ^ ' ^ M and

| M | 2 = IM/Xil^iqlql so that |M/Xi| = ^ 1 . A similar argument yields the

result for case (2). If we have case (3), then η normalizes M and X2<Z(M)

so that M is elementary abelian. Then, as in the proof of [5, (6C)],

Xl'^CoίXi) for ί = 1 or 2. Since j inverts X\\ we have XV

2^M. Thus,

if the conclusion of the lemma is false, then we would have case (1) or (2)

for M which implies that \MjX2\ = q\q\ and the lemma holds in case (3).

Finally, assume case (4), then, as in the proof of [5, (6C)],

[Xl2, Xl\] = X2, Z(M) = X2 and Z(P) = X2.

Let Ap denote the S^-subgroup of A (possibly AP={1}). Then P*=PAP

is an 5p-subgroup of NG(X2) by Lemma 4.1. Let R be an S^-subgroup of

G containing P*; clearly Z(R) < RnCG(X2)ΠCG(X1) = (P(ApΠCβ(X2))nCβ(Xi).

However, Apf]CG{X2) acts faithfully on P/M^ Xx so Z{R) ^PΓιZ(P) = Z(P) = X2..

Now Lemma 4.1 implies that Qi is an S2-subgroup of CG{Z(R)). However,

if \M/Xi\ ψ q\q\, then we must have case (4) for M. Then there would

exist an Sp-subgroup R of G such that Z(R) ^ Xx and Q2 is an 52-subgroup

of CG(Z{R)). I t follows that Qλ and Q2 are conjugate in G which implies

that Qi and Q2 are conjugate to each other in CG{j) which is impossible so

the lemma also holds in case (4).

We now have:
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LEMMA 4.5. There is a choice for a,β with {a,β} = {1,2} such that

\O(CG(Xβ))IXβ\p = q\al

We now assume that a9β are chosen so as to satisfy this lemma.

Xhe proof of [4, (4i7)] now yields:

LEMMA 4.6. Let M be the Spsubgroup of O(CG(Xβ)) and let P = XaM. Then:

(i) M/Xβ is elementary abelian of order q\q\.

(ii) With a suitable choice of notation, we have:

(a) P = XaXβ(X-aXβy(XaXβy
2

(4.10) or

(b) p = xaxβ(x-ax-βnxax-βy\

Let ΛT = O2'(NG(H)) = O2'(NG(D)) = <Hfωlfω2fηy and let W = J^\H. As

we have seen in Lemma 3.1, W is dihedral of order 12.

As in [4, §6] it follows that:

LEMMA 4.7. With suitable notation, we may assume that (4.10) {b) holds.

Since H^NG{P) and HΠP= {1}, if we set

(4.1) %> = HP

then 93 is a subgroup of G of order (qt — 1)(^2 — l)q\ql. Set

(4.12) G = 8^8.

Then [4, (6£>) and (β£)] yield:

LEMMA 4.8. G £r ^ subgroup of G.

We can now show:

LEMMA 4.9. Let ω : W-+ΛS' be a transversal; then:

(i) G £r ί& disjoint union of the 12 ώwέ/tf cosets $5ω(w)$$ for w^W.

(ii) A < iVσ(β) and GnΛ= {1}.

(iii) Cg(i) = 8

(iv) Either qx = ^2 ^̂ ?̂ G = G2(q) where q — qx = g2 or oŵ  #f ^ , ^2 w ^ cube

of the other and G = D\(q) where q = min {qlf q2}.
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Proof. Clearly G is the union of the double cosets ^3ω(w)^8 for

and Sn^xT = H{Pn^K). Let π e P n «^T, then [>, ff]<ίf Π P = {1} so

j τ ε C 6 ( ί ί ) n ι # n P = f f n P = { l } . Now (i) follows. Since A<NG{P)Γ\NG(H),

A<NG(G) and Y = GA is a subgroup of G. Clearly iVΓ(P) = Ns(P)A = 23,4;

let αeβnA, then αeiV~(P) = $8 and a^PHnCG(j)f] A={XaXβH)Γ\A^JΓriA^ {1},

so (ii) holds. Now La = <X, XΓ> ^ G similarly Lβ < G, so that ^ = LXL2H<G

and (iii) follows. But then (iv) follows from [4] and [5] and the fact that

η:j-»h. Q.E.D.

Using the subgroup GA we can arrive at a final contradiction. Since

GA satisfies conclusions (iii) or (iv) of the theorem, G ψ GA. Assume that

G has a proper normal subgroup N\ then |7V| is even by Corollary 1.10.1.

But QxQ2<yC)<G and Q1Q2<n> is an 52-subgroup of G, hence Nf)G i= {1}.

Since G is simple by Lemma 4.10 (iv), G^N and CN(j) = JTiAnN) <\CG(j).

Thus 0{CN{j)) = {1} and the theorem holds for N by our choice of G. But

then either qx = q2 and iNP = G2(q) where q = qx = q2 or one of qu q2 is the

cube of the other and Nf = D\{q) where q - min {qu q2}. Since N' < G and

O(G) = {1}, the theorem holds for Gy which is false. Thus G is simple and

GA cannot contain all elements of G of even order. However, GA has only

one conjugacy class of involutions and CG{j) < GA. Thus, in the language

of [1], GA is strongly embedded in G. Then [1, Satz 4] implies that

G = PSL{2,q) or Sz(q) or PSU(3,q) where q = 2 m ^ 4 . Hence an S2-subgroup

of G has center of order q > 4 (cf. [1, § 4]). However, we know that QiQ2(n>

is an 52-subgroup of G and ZiQίQ^n}) = <;> which is a contradiction and

the theorem follows.
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