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COMPARISON THEOREMS ON REGULAR POINTS

FOR MULTIDIMENSIONAL MARKOV PROCESSES

OF TRANSIENT TYPE1)

MAMORU KANDA

§ 1. Introduction

The study of regular points for the Dirichlet problem has a long history.

The probabilistic approach to regular points is originated by Doob [2] and [3]

for Brownian motion and the heat process. The extension to general Markov

processes is discussed in Dynkin [4] and [5]. They also clarified the relation

between the fine topology and regular points.

Regular points are by definition reflected in the behaviour of sample paths of

Markov processes. Further the inclusion relation of collections of regular points

for open sets determines the strength and the weakness of fine topologies between

two processes. Hence it is meaningful to compare the collections of regular

points for compact or open sets between two Markov processes apart from the

Dirichlet problem.

Our aim of this article is to give a certain answer to the following problem.

Given two Markov processes. Can we give any characteristic quantities which determine

whether a point is regular or not for one process provided that it is regular for the other

process ? This type of problem has been studied for a certain class of uniformly

elliptic differential operators of second order in Rn(n^3) by many authors.

They have shown that regular points for operators of such a class are the

same as those for the Laplace operator by proving that there exist Green

functions with singularity r2~n. The relation between singularities of Green

functions and regular points plays main roles in this article, too. Here we

note that certain answer to the above problem has been given for diffusion

processes by N.V. Krylov [17], [18], [19] and Markov processes having Green

functions with monotone and isotropic singularities by the author [13], [14],

[15].

Received April 28, 1971
χ) This research was supported in part by Yukawa Foundation.

165



166 MAMORU KANDA

Now we state the outline of our results.

In §2 we will establish the basic notations and give some elementary
remarks.

In § 3 and § 4 we will show that a certain kind of order of singularities
of Green functions for two Markov processes is reflected in the inclusion relation
of sets of regular points for such processes. For example it will be proved that
a collection of regular points for one process coincides with that for the other
process if Green functions of two processes have the same singularity. The
results in § 3 includes the result of Theorem 5 in [14].

The converse of the above result will be discussed in §4 for a class of
Markov processes having Green functions with monotone and isotropic sin-
gularities. As a result of §4 we have the following. The singularity of a
Green function for a Markov process of the above class is ra~n, 0 < a ^ 2,
if and only if regular points coincide with those of an isotropic stable pro-
cess of index a. This has been established in the previous paper [15] in
case 1 < a ^ 2.

In sections 5—8 we will deal with more concrete Markov processes on
Rn. Using the results in §3 and §4, we will study another quantity which
decides whether a point is regular for one process or not provided that it is
regular for the other process.

In §5 we will consider diffusion processes corresponding to uniformly
elliptic differential operators of second order on Rn{n^3) which are not of
divergence form. As mentioned before it is known that regular points for
the above processes coincide with those for Brownian motion provided that
the coefficients are smooth. We will prove in this section that a point is regular
for diffusion processes with continuous coefficients if it is regular for some iso-
tropic stable process of index a, 0 < a < 2. We will also show the known
result by another method that regular points coincide with those for Brownian
motion if the coefficients are uniformly Dini continuous.

The object of §6 is a class of Markov processes subordinate to diffusion
processes with uniformly Holder continuous coefficients. Singularities of Green
functions for Markov processes of this class are monotone and isotropic, but
fairly abound in variety. We will introduce some inclusion relations of collec-
tions of regular points by comparing singularities at infinity of exponents of
subordinators.

In §7 and §8 we will deal with Markov processes with homogeneity.
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Our object in § 7 is the class of Levy processes with mixed homogeneous

exponents. It will be shown that, for two processes of the above class, regular

points for the one are also regular for the other provided that exponents are

sufficiently smooth and that they have same degree of mixed homogeneity.

If exponents are not smooth, there arises certain difficulty.

In § 8 we will consider Markov processes with C°°-homogeneous Levy

measure n(x, y)dy of degree a, 0 < α < 1 or 1 < a < 2. (That is, n(x, y) is

O°°-homogeneous function of y of degree a for each fixed x). Under certain

regularity condition on n{x, y), we will show that there exists Green functions

with singularity ra~n for the above processes. From this fact it follows that

regular points are the same as those for an isotropic stable process of index a.

For the construction of Green functions, the theory of pseudo-differential

operators plays essential roles.
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§ 2 Preliminaries

This section contains some preliminary materials that will appear in this

article. We will denote a Markov process2) with state space E bγ X = (Ω,

^jt, ^ , xt, θt9 Px) on E or simply by X on E, where E is a locally com-

pact separable Hausdorff space. Throughout this paper Markov processes

are assumed to satisfy Hunt's Hypothesis (A) (G. A. Hunt [9]) without special

mentioning. In other words they are Hunt processes in the sense of [1], For

a subset A of E we define two functions

σA{ω) = inf {/ > 0, xt(ω) e A), τA(ω) = inf [t ^ 0, xt(ω) e Ac],

where the infimum of the empty set is understood to be +oo. A point x is

called a regular point (an irregular point) of a nearly Borel set A for X pro-

vided that Px{σA = 0) = 1 (resp. Px{σA = 0) = 0). If A is simply a subset of E9

we say that x is a regular point of A (an irregular point of A) for X pro-

vided that x is a regular point of B (an irregular point of B) for X for every

nearly Borel set B containing A (resp. some nearly Borel set B contained in

2) We use the terminology in Blumenthal-Getoor [1],
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A). We denote the collection of all regular points of A (the collection of

all irregular points of A) for X by Ar

x (resp. Ax

r). A set A c E is called

finely open if Ac is thin at each x in A. In other words, for each x ^ A

there is a nearly Borel set D such that Ac a D and x <E Dx

r. Let ^ be the

collection of all finely open subset of E. One checks that 0 is a topology

on £ . It is called the fine topology on E. For terminologies relative to

the fine topology we add the adverb "^-finely". Suppose that x is in A

and Ac is thin at x. Then there exists a compact set K such that x & K a A

and Kc is thin at a?. (See Blumenthal-Getoor [1], p. 85.) Hence the first

half of the following remark is proved.

Remark 1. Let £7i9 i = 1, 2, be fine topologies induced by Markov pro-

cesses Xif i = 1, 2, on E respectively. Then

a) Ar

Xι c Ar

X2 for every open subset A

implies

b) & is stronger than &.

Conversely, if Xλ has a reference measure, b) implies a).

For the proof of the latter half we note that A is finely closed if and

only if Ar

x c A and the fine closure of A is A U Ar

x for a nearly Borel set A

(see. (4.9), p. 87, [1]). Further if X has a reference measure, the above state-

ment is also valid for any subset A. (See Prop. 1.8, p. 199, [1].) Let B

be open. Since Br

X2 = 5 U BX2, Br

X2 is ^-finely closed , and accordingly Br

X2

is ^Ί-finely closed by b). Hence it follows that Br

Xl c {Br

X2)
r

Xl c Br

X2.

Remark 2. If there exists a compact set B c E such that Br

Xί ψ φ and

Br

X2 = φy then ^ is not equivalent to ^ 2 provided that Pχ(<r{2/} < +°o) = 0,

z = 1, 2, for each x, y <E E.

Indeed, if we set K = (E — B) U {#0} for some fixed #0 e 5 ^ , we have

and

(£ - ίOK = (B - xo)x[ = Bx\ =& *o.

Hence i£ is ^-finely open but not ^-finely open.

Now we will list up some conditions which will be assumed on Markov

processes on E in theorems of §3 and §4. Let {Gα}α>0 be a resolvent on E



MARKOV PROCESSES 169

and {Tt} be a semi-group of X.

M 1) Ga maps CK(E) into C(£)3> for each a>0

M2) \+°°Ttfdt is bounded on E for f e CK(E).
Jo

MS) For each points xu x2 e E, PXl(σ[Xs} < + 00) = 0.

Let us consider the following condition.

Rl) For every compact set K and a sequence {On}n=ί,2,.,. of open sets such

that (Ί On = Ky it holds that
n

lim Px{σOn < +00) = Px{σκ < +00), x & K.

Then we have

LEMMA 1 Let X be a Markov process on E with the properties M 1) and M 2).

Then X satisfies R 1).

Proof Since K is compact, it is sufficient to show that for each fixed

#0 $ K we can choose a sequence {On}n=lt2,,.. of open sets such that On =) K

and P^0(^On <+oo)φP_ r o( (7 j β : < + c o ) . Let {On} be a sequence of open sets

such that On I K and PXQ{σOn^σκ) = 1 (for the existence see (11.3) in [1]).

Let A be a compact set containing On for all n. Then it follows from M 1)

and Af 2) that

(See for example, (4.24), p. 89, [1].) Noting

( Π {σOn{ω) < +00}) Π {σκ(ω) = +00} c {^no(ω); v n > no(ω),
n

+ 00 >σOn{ω)> δA(ω)}; PXQ-a.e.,

we have

Px (σχ((ΰ) = + c o , Π {(TOn(cΰ) <C +co}) = 0.

Hence it holds that

3) C(JE), CQ(E) and CK(E) denote the space of continuous functions on E which are
bounded, vanishing at infinity and of compact support respectively.
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We say that G(x9 y) is a kernel on E if it is a universally measurable

function4^ on E x E. We will sometimes discuss a kernel G(x, y) on E with

the following properties:

GB) G(x9 y) is bounded outside each neighborhood of the diagonal set of E x E;

GC) G(x, y) is continuous except at the diagonal set of E x E and lower semi-

continuous on E x E

GS) for each z e E and a sequence {On}n=i,2,... of open sets in E such that

Π On = {z}, zί /b/ώ ίAαί
n

lim inf G{xy y) = +00.
n—>-J-oo x,yEϊOn

In this article we will adopt the next definition of Green functions.

DEFINITION 1. A nonnegative kernel G(x, y) is called a Green function

of a Markov process X on E if it satisfies:

Gϊ) G{x, y) is an excessive function of x relative to X for each fixed y <Ξ E;

GΊϊ) there exists a σfinite measure dy on E such that

\ G(x, y)f{y)dy = [~TJ(x)dt < +00
<JE JO

for every f e CK(E).

For a Green function G(x, y) we write Gf(x) instead of

\ G(x, y)f{y)dy for simplicity.

The next condition on Markov process X plays essential roles in later

discussions on regular points.

R2) There exists a kernel G{x, y) on E satisfying:

i) G(x, y) is an excessive function of x relative to X for each fixed y <= E;

ii) For each compact set K c E there exists a finite measure μκ(dy) concentrated

on K such that

Pχ{crκ < +<*>) = ί G(x, y)μκ(dy), x e E.

For convenience we call G(x, y) in R 2) the potential kernel of X and

4) In this paper a function on a set 5 may attain the value +00 on 5.
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the capacitary measure on K for (X, G). If we can choose Green func-

tion G{x, y) of X as a potential kernel of X, we call it a Green function with

the property R 2). Note that M 3) holds provided X has a Green function

G(xy y) with R2) and GS). We will close this section with the remark that

Hunt's condition F) and G) is sufficient for R2) (see G.A. Hunt [10]) and

another sufficient condition on R2) is given in [14], [15].

§ 3. Comparison theorems (I)

In this section we will show certain results on the comparison of regular

points and hitting probabilities. First we introduce some notations which are

convenient to state out results. As in § 2 X is a Markov process on E.

DEFINITION 2 Let Q be an open set in E containing x0 and Ck, k = 1,

2 be constants such that +oo > C2 J>1 i^Ci > 0. A universally measurable

function / on E is called d-subharmonic (C2-superharmonic) at (x09 Q) relative

to X provided that for each open set S such that x0 ^ S cz S cz Q one has

ExJ{xτs)^CJ{xQ) (resp. ExJ(xtt)^C2f(xQ)).

DEFINITION 3 Let D be a subset of E. We say that two kernels Gk(x,

y), k = 1, 2, have the same local singularity on D provided that for each point of

D there exists a neighborhood V a E and constants C i ^ C 2 > 0 5 ) such that

(1) C2G2(x, y) s£ Gx{x9 y) ^ dG2(a;, y), x, y e= D n F.

I t is clear that the above inequality implies

(2) HCίG1(x9 y) < G2(xf y) <£ 1/C 2G^, 2/), a, y e 2) ΓΊ F.

Sometimes we will write

GΛ&, y) ~ G2(&, 2/) o n A

if GΛ(#, t/)» A = 1, 2, have the same local singularity on D.

I n the sequel we use following symbols for a kernel G{x, y) on Λ x A:

i) Gv{%) = G(a?, 2/); ii) GyU(») = G(x, y) iΐ x SΞ A and G^l^aj) = 0 if x φ A

Remark 3 Let G2(#, 1/) be a kernel on £ which is an excessive function

of x relative to X2 and Gχ(x9 y) be a kernel satisfying (1) on an open set

V a E, Then G\\v is Ci/C2-superharmonic at (α?0, V) relative to X2 for each

fixed x09 1 / G F .

5) Ck, k = 1, 2, may depend on V.
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Indeed we have

ElfiXWixl^CtElfilWWJ^CiGtiXo, y), x0, y^V9

where S is an open set such that #0 e S c S c F.

DEFINITION 4. Let Xkf Jc = 1, 2, be Markov processes on E and x0 e D

c E. We say that hitting probabilities of X1 are Cι-dominated by those of X2 at

{xQ, D) provided that

PI MB < +°o) ^ d P ^ f o < +oo)6)

holds for each compact set B in D. We say that hitting probabilities of

Xk9 k = 1, 2, are (CΊ, C2) dominated each other at (α?0, £>), if in addition hitting

probabilities of X2 are C2-dominated by those of Xλ at (x0, D). Here Ck, k =

1, 2 denote positive constants.

Now we prepare the following preliminary but essential Lemmas in discuss-

ing regular points.

LEMMA 2. Let X be a Markov process on E with the properties Rl) and MS).

Then, for each nearly Borel set B,

i) x e Br

x <=> vM> Px{σBnOn < +oo) = 1;

ii) x €= ̂ ΐ r < = » lim Px{<?Br\on< + T O ) = 0 ;

{On}n=i,2,... w ^ sequence of open sets in E such that O n + i c On and Π On
n

Let us fix n0 and denote Ono by O'. Then

+ Px(σs ^ τ0/,

Combining MS) with Rl) we have

(3) lim Px(σBr\Ok < +°°) = lim Pχ(<Tβ

On the other hand- if x e ^ ί r , it holds

1 = P*(<7£ > 0) = P x (U (0 < v/

6) Precisely P£>1 < +oo) ^ Q P i ^ σ i < +oo). We will remove the suffix of the hitting
time in the sequel without confusions.
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because Px( lim τOn — 0) = 1. Hence, for each ε > 0, we can choose n0 so that
«->+oo

Pχ(0 < *t < τor, xt Φ B) > 1 — ε. Accordingly, by (3), we have

lim Px(σBr\Ok < +°°) ^ ε

for every ε > 0 provided a; G 5^ r. It is clear that Px{σBr\On < -f oo) = l for

every n provided x <= Br

x. Consequently we can finish the proof of i) and

ii) if only we note E = Br

x U Bx

r.

In the next Lemma 3 Xk, k = 1, 2, denote Markov processes on E with

properties M 3) and Rl) without referring. Choose a point x0 <= E and an

open set Q (Z E containing x0 and fix them.

LEMMA 3a Suppose further that X1 has a potential kernel Gχ(x9 y) satisfying

R2). If for each fixed y e Q,G\(x) (G\\Q{x)) is Ci-sub harmonic at (xo,Q — {y}) (resp.

C2-superharmonic at {x0. Q)) relative to X2, where C1 {resp. C2) is independent of y,

then x0 e Br

Xl implies x0 e Br

X2 (resp. x0 e Brχ2 implies x0 e Br

Σl) for each compact

or open set B in Q.

LEMMA 3b In addition to the assumption in Lemma 3a, suppose that X2 has a

potential kernel G2{x, y) satisfying R2) and both Gk(x, y) k = 1, 2, have properties

GS) and GB). Then hitting probabilities of X1 are Cx\2-dominated by those of X2

(resp. hitting probabilities of X2 are 1/2C2-dominated by those of Xx) at (x0, Q) for

a certain open set Q such that x0 e Q c Q.

Proof of Lemma 3a We will divide the proof into two steps. Let us fix

an open set Qf in E such that x0 e Qf c Q' c Q.

s tep 1. We will show that

(4) Plo(σM < +^)>:C1PXo(σM < +CXD) - \QfCPl(σM < +™)Plo(xlQ, e dz)

(resp. (40 PlQ(σM < +co)^C2Pi0(σM < +cχ>) + \Q/CP
2z(σM < +™)P2*0(xlQf e dz))

for each compact or open set M in E such that M c Q\ We prove (4) at first

by breaking up the proof into three cases.

Case (I): Mis compact in Q' and M$x0. Choose an open set S in

E such that M c S c k f f and S $ x0. Then we have

(5) P2φs < +oo) ̂  E2

X0(Plt (σM < oo), σs < τQf)



174 MAMORU KANDA

= \_Pl(σM < +™)P2Φ*Q,^ e dz).

Combining (5) and (R 2) we get

(6) Plo{σs < +co) ̂  \_\ Gx{z, y)μ1

M(dy)Pl0(xloι_7 e dz).
J 8 J M lalf A

Using CΊ-subharmonicity of G\ at (aj0, Q — {y}) and the fact that Plo(x2

τQ,_Ί

<= A)< P2

Xo{xlQ, e Λ) for yl c Q/c, we have, by (6),

(7) P2

Xo(σs < +™)^C1P
ι

Xo(σM < +00) -

Since M is compact, we can get the inequality (4) for M by (i?l).

Cβ^ ( I I ) : Λf is compact in Q' and M 3 #0. Choose a sequence

{OA}*=I.2.... of open sets such that C^+i c OA and f) Ok = {x0} and set Mk =
k

M i l O|. Then the inequality (4) holds for every Mk9 k = 1, 2,... Since {σMA <

+ 00} is monotone increasing as k ->• +00, (4) also holds for M— {^0}. Noting

that σM = inf {σ^_{J.o}, σίJ?o}} and Λf 3), we see that (4) is valid for M

Case ( I I I ) : M i s open in Q. Choose an increasing sequence of {Mk},

& = 1, 2,... of compact sets such that U Mk = M. Then it is clear that
k

PlJ,σχ* < +00) t Plo(σM < +00). Accordingly (4) holds.

Secondly we prove (4'). Let M be the set of the case (I).

Then we have

(8) P*t(σκ < τQr) = \ Pl(σs < +™)PUx*ci,-M e dz)>

where S is an open set in Qr such that I c 5 c S c f f , S $ % Using (R2)

and C2-superharmonicity of G\\Q at (xQ, Q), we have, by (8),

(9) Plo(σM < τQ!) < \ [G^Z, y)μi(dy)P*0(x2

t e dz) £ C2P
ι

Xo(σΈ < +00).
OMΰS Qf-M

Since S is arbitrary, we get, by (9) and (Rl),

(10) Plo(σM <τQί)^ C2Pl0(σM < + 00).

N o t i n g t h a t P2

Xo(σM < τQr) = P2

XQ(σM < +00) ~ E2

XQ(P2

χ2 (σM < +00), TQf < +00),

the inequality (4f) holds for M in the case (I). The proof of (4r) in other
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cases is similar to that of (4).

step 2. Suppose x0 e Br

Xl. Then, by Lemma 2, PXo{σBn0n < +co) = 1 for

all n, where {0n} is a sequence of open sets such that 0 0n = {x0}- On
n

the other hand lim Pl(σBnOn < +°°) = 0 for 2 e= Qfc by (i?l) and Af3).

Combining this fact with the inequality (4), we get

which implies x0 e i?χ2 by Lemma 2. On the same way we can prove that

x0 e Bχ2 implies x0 <Ξ BXί by using (4') provided G\\Q is C2-superharmonic at

(α?0, Q). The proof is complete.

Proof of Lemma 3b Using GB) and G£) for G^sc, y), fc = 1, 2, we can

choose an open set Q such that x0 <= Q a Q' and

inf Gfcteo, 2/) ̂  2/d sup GΛ(2, 2/), k = 1, 2.

2/EQ

Then, for each compact set Ma Q, it holds that

(Π) ( ePi(*M < +°o)PΪ 0(a 2 e Λ) ^ sup Gk[z, y)μ«M{M) < (C^P^M < +oo)

2/eQ

fc = 1, 2. Combining (11) with (4) ((40), we get

PlQ(σM < +oo) < (CJZjP^σM < +<XD) (resp. (1 -C\l2)Pι

XQ{σM < +oo)

for every compact set M a Q. The proof is complete.

Remark 4 Further suppose that Gι{%9 y) in Lemma 3a satisfies GC).

Then the following conditions are equivalent.

i) For each fixed y^Q, G\\Q{x) is'C2-superharmonic at {x0, Q) relative to X2.

ii) For each fixed y e Q, G\\Q{x) is C2-superharmonic at (x0, Q — {y})

relative to X2.

We will prove that ii) implies i). Let S be an open set such that x0, y e

S c S c Q , and let {Qn}n=i.2... be a sequence of open sets converging to y.

Then, setting Sn = S — Qn, it holds for every n that

(12) Eip\\Q{x\) £ Elβ\\Q{x\Sn) + EXO(PIQ (G\\Q(xls)), σQn < +oo)
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< C2G\(x0) + sup G\\Q{z) Plo(σQn < +00).
S

Since sup G\\Q(z) < +™ by GC) and lim Plo{σQn < +oo) = 0 by Af 3) and Rl),

it follows from (11) that

(13) El0G\\Q(xl)<O2G\(x0).

Next let us consider the case that x0 <E S C S C Q but y $ S, y e S. Let

{2/nln=i,2,... be a sequence converging to 2/ such that i / n ί 5 for evrey n.

Then it follows from the assumption (ii) that

(14) £ί0G?"|Q(a?f.)^C2G? (a?0).

Combinig (14) with GC), we have (13) for the above case. Thus we have

proved (i). This remark will be used in § 5.

Now we are ready to state our theorem. Let

φ™ = {<p; ψ is nonnegative, monotone decreasing function

on [0, +°°] such that ^(0) = +°o and ψ(+oo) = 0}.

Then we have

THEOREM 1 Let Xk, Jc = 1, 2 be Markov processes on E with

which have Green functions Gk(x, y), k = 1, 2, with R2). Suppose that there exists

an open set Q and a finite nonnegative kernel p{x, y) on Q such that

(15) Gk(x, y)« φk(p(x, y)) on Q, k = 1, 2,

where φk(r) e Φΐ. If

(16) ΨzWIΨiir) is monotone decreasing on (0, +00),

then it follows that

(17) Kr

Xl c Kr

Xι

for each compact or open set K c Q.

Proof Fix an arbitrary x0 e Q. Let us choose a neighborhood F of x0

such that F c Q and

(18) C2tkφk(p(x, y))£Gk(x, y)^CUkφk{p(x, y)), x, y e F,

where ClfJfe > 0, I, Jc = 1, 2. For a fixed 2/ e V we set Fi = F Π {2; p(x0, y)

^ />(«» 2/)} and F 2 = F ί l {2;; p(ίc0, 2/) > p(z9 y)\. Then, for each open set S

such that x0 G 5 c S c F, it follows from (18) and (16) that
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(19) El0G\\v(xί.) < Cn

„ y)) if p(x0. y) = 0

), y)Λ dz)-

if p(x09 y) > 0.

Combining (19) with (18) we have

(20) 09 y)
2^ '

, if p(x09 y) > 0.

Since G2(x9 y) is an excessive function of x relative to X29 we have

(21) ElQG\\v(x\s)±

In other words G\\v is (Cn/C21 + CnC2i/Ci2C22)-superharmonic at (αj0, F) relative

to JY2 for each ί / e F , Noting that XΛ, & = 1, 2, satisfy Rl) by Lemma 1,

the conclusion follows from Lemma 3a immediately. The proof has been

finished.

COROLLARY 1 If Gk(x, y), k = 1, 2, have the same local singularity on Q,

then

holds for each compact or open set K c Q.

Indeed it suffices to choose p{x, y) = 1/G2(xf y) and ψk{r) = 1/r, k = 1, 2,

in Theorem 1. We note that Corollary 1 also follows immediately from

Remark 3 and Lemma 3a.

COROLLARY 2 Let f ε Φ J be such that rψ{r) is monotone increasing on (0,

+00). If

Gι{xt y)ίZφ{llG2(x, y)) on Q, G2{x, y) > 0 on Q,

then it follows that
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for each compact or open set K a Q.

Indeed it is sufficient to choose p(x, y) — 1/G2(#, y), ψχ{r) = φ(r) and φ2(r)

= IIr in Theorem 1.

Next we will refine the above Theorem 1. A subset D of E is said to

have the property D)x provided

D)x D is closed and Dr

x = D.

T H E O R E M Γ. If the assumption (15) holds for a subset D with D)Xk9 k = 1,2,

instead of Q, then the conclusion (17) follows from (16) for each compact or relatively

open set K c D.

After this theorem is established, the refinement of Corollary 1, 2 will

be clear. We denote them by Corollary 1', 2' respectively.

To prove Theorem 1' we will study the time changed process by a local

time on D introduced by M. Motoo [22]. Let us consider Markov process

X on E with a reference measure and a subset D with D)x. For each a > 0

fixed there exists a unique additive functional Φa{t9 ω) defined by

Λ ζ))9

where ζ is the killing time of X. It is called the α-th order sweeping-out

on D of inf {t, ζ}f or the local time on D for X. Let τ be the inverse of

Φa. Then, choosing an adequate set ΩD such that PX{Ω — ΩD) = 0 for every

x e E, we can construct a Markov process XD = (ΩD, ̂ D , ^£Ό

t, xD

t, θ
Ό

t, Pξ)

on D, where xD

t{ω) = α?r<t)(ω) if t < +oo, χD

t(ω) = J if t = +oo and PΏ

X is the

restriction of Px on ΩD. (M. Motoo [22].) Moreover we have

LEMMA 4 i) (M. Motoo [22]) Px{σB < +oo) = p»(σ» < +α>) / o r each Borel

set B in D and x s D . ii) Br

x = J3>/or <̂2̂A jBor̂ / set B in D.

The statement i) is Lemma 6.13 of [22] itself7 .̂ For the proof

of ii) we note that τ{t) is right continuous and strictly increasing. (See [22]).

Now it is clear that x e Bχ» implies x ^ Bx by the definition of XD. Sup-

pose x e Bx. Then, for almost all ω there is a sequence tn l0 such that

xtn e B. Since x*!un) = %tn and lim τ{tn) = 0, it follows that x e Bx*>. The

proof is complete.

7) In Lemma 6.13 in [22] the statement is asserted for a closed set B. But it is valid
for a Borel set B. (See for example [1] p. 233, (4.13), ii).)
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Proof of theorem V First we note that, if / is an excessive function of

X, where X — Xx or X29 then it is an excessive function of XD. This is proved

as follows. Since f{xt) is right continuous on [0, oo) almost surely Px (Theo-

rem 5.7, iii), [1]), it holds that

(22) Inn £S/(a>?ctB)) - J^Qim f(xτun))) = f(x)

for each monotone decreasing sequence Un}π=i,2,... converging to 0. On the

other hand we have

(23) Eζf(xΐ) = Exf(xτω)^f(x).

Combining (22) with (23), we see that / is an excessive function of XD.

Since from the above result Gk{x,y)t k = 1,2, are excessive functions of x

relative to Xkf k — 1,2, we can choose them as potential kernels of Xk9

k = 1.2 by using Lemma 4 i). It will be clear by Lemma 4 i) that X% satisfy Rl),

k = 1,2, because Xk satisfy Rl), k = 1,2. Now let us note that Theorem 1

is also Valid even if we replace the conditions Ml) and M.2) by Rl).

Then, applying it to XD

k, k=l,2, we see that BXDCZBXD. Therefore Bl2(zBr

Xι

holds by Lemma 4 ii). The proof is complete.

Even if the state spaces Ek, k = 1, 2, of Xk> k = 1, 2, are different,

Theorem Γ is also valid provided that both Ek are subspaces of E and

DdEίf]E2 satisfying D)Xkl, fc = l,2.

In the following we will discuss the converse of the above results. Let

Xk9 fe = l, 2, be Markov processes on E with MΪ)~M3). Suppose that

Xk, k = l,2 h a v e G r e e n functions Gk{x,y), k = l,2 w i th R2).

Let us consider the next three conditions.

i) For each point there exists a neighborhood V and positive constants

Ck, k = 1,2 so that hitting probabilities of Xk, k = 1, 2 are (d, C2)-dominated

each other at (x,V) for every x ε F .

ii) For each point there exists a neighborhood V and positive constants

Lk>0, k = 1,2 such that GJ(αs), & = 1, 2 is Lfc-superharmonic at (cc,F) for each

x, y e Frelative to X, / = 1,2, / ̂  fc.

iii) Gk(x,y), k = 1,2, have the same local singularity on £.

Then we have the following
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THEOREM 2 Suppose that Gk(x,y), fe = 1,2, have the properties GB), GC)

and GS). Then i), ii) and iii) are equivalent each other.

Proof. The fact that iii) ==> ii) follows from Proposition 2. We can

prove that ii) —> i) on the same way as in the proof of Lemma 3b. The

proof of i) = > iii) is as follows. Let us choose an open set V of E such

that inf Gk{xy y)>0 for fe = 1,2 and

χ,VΈ.V

(24) C\Pι

x(σM < + oo) < Pi(σM < + oo) < 1/C2 Px{σM < + oo)

for every compact set MaV. Let Vk, fe = 1, 2, be open sets such that

F j C ^ c F a C ^ c K and set M\ = sup Gk{xy y) and M\ = inf Gk(xf y), where

the supremum and the infimum are taken over the set (V — V2)xV1. Then

it follows from (24) that

(25) C2MIIMI μ2

M (M) < μUM) < M\\C,M\.

for every compact set MaVu where μk

M{dy), fe = 1,2, denote the capacitary

measures on M for (Xk,Gk)9 fe = 1,2. Now let us fix arbitrary #, y&Vu

xψ y, and choose a neighborhood U oΐ y such that UcVγ and sup GΛ(α;, z):<2

inf Gfc(ίP,s), fe = 1,2. Then, substituting U in (24) and (25) instead of M, we

get

G*x, y) < G ί (x, y) < - ^ L - G&. y).

Consequently Gk(x, y), k — 1,2 have the same local singularity on E. The

proof is complete.

Naturally i) implies that Kr

Xl = Kr

X2 for each compact or open set KaE

by Lemma 2. But it is open whether the converse is valid. We will give

a certain converse to Theorem 1 concerning regular points within a rest-

ricted class of Markov processes on Rn in the next section.

We close this section with the remark that the conclusions of Theorem 1

and its Corollaries are expressed in the strength and the weakness of the

fine topology by using Remark 1 of § 2.

§4. Comparison theorems (II)

Throughout this section we will consider Markov processes in Rn (n^3).

We always assume that Markov processes satisfy Ml)^M3) and have Green

functions with R2) without referring.
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Set

Φ = [ψ ψ is positive, continuous and monotone decreasing function on (0, o)

S δ "I

rn~ιψ{r)dr < + oo and \imψ{r) = + oo
0 y^O >

Φp = {ψ Ψ^Φ and rpψ{r) is monotone on (0, δ)}.

We say that a kernel G{x,y) on i?n has an isotropic singularity ψ^Φ{Φp)

provided that

G{x,y)^φ{\x-y\) on R\

Let Xo be a Markov process on Rn which has a Green function G0{x,y)

with isotropic singularity φo^Φn^a for some 2 > α > 0. Moreover let us assume

that Xo satisfies Hunt's condition {H)8). In other words, Kr

XQ ψ φ for a

compact set X provided that PJ(σ^ < + oo) > o for some x<=Rn.

Our aim is to show the following

T H E O R E M 39 ) Let X be a Markov process which has a Green function G{x, y)

with isotropic singularity <p^Φ. Suppose that X satisfies Hunt's condition (H) and

(1) Kr

x=K'Xo

for every compact set KczRn. Then it follows that

(2) <P(r)X<Po(r), r^0 1 0 >

For the proof of Theorem 2 we will prepare two lemmas.

LEMMA 5 Let Xki k = l>2 be Markov processes which have Green functions

Gk{x,y), k = 1,2 with isotropic singularities <pk^Φ, k = 1, 2, respectively. If we

suppose that

1 fr

i) ψi^Φn and there exists a positive constant λ such that ~γr~n\ sn~1<pί(s)ds<<p1{r)

for 0<s <δ;

ϋ) lim φ1{r)lφ2(r) = 0,

then there exists a compact set K such that

8) The condition (H) holds for a fairly large class of Markov processes. See Remark 6.
9) In case 2 ^ α > l this theorem has been established in [15].

10) We write ψλ{r) X <p2(r), r -• a, if

0<lim ψ2{r)lΨι{r) < Urn φ
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(3) μικ(K)>0 and μ2

κ{K) = 0,

where μt{dy), k = 1,2, denote the capacitary measures on K for Xk, k = 1,2.

This lemma follows immediately from Theorem 4 and Remark in SJ.

Taylor [29], Indeed, if we choose n + 1 as k in [29], φx{t) satisfies (12) and

f-k+i I S

k"2φ1(s)ds ^λφx{t) in Theorem 4 and Remark [29] respectively by the

condition (i). Hence, using Theorem 4 in [29], we see that there exists a

compact set KaRk"ι^Rn such that Cφi{K) > 0n ) and h2-m(K) < + ex?11), where

A2(/) = ll<Pz{t) under the condition (i) and (ii). Now (4) follows from the fact

that C**(K) > 0 is equivalent to μi(K) > 0, k = 1,2 and h2-m(K) < + oo implies

C^(K) = o.

LEMMA 6. Lei X be a Markov process which has a Green function G{x,y) with

isotropic singularity φ^Φ and Ba be an isotropic stable process of index a, 0 < α ^ 2 .

Suppose

(4)

for every compact set K<zRn. Then it holds

(5) Hψ(r) X μQr{Qr) X UΦ(r), r-» 0,

where Qr = {α; |a;| < r

(6)

Proo/. Set Q{xo,r) = {x \x — xo\^r] and Q r = {α; r / 2 ^ \x\ < r } . Let

us fix a constant C such that 0 < C < l / 2 and choose a sequence {rk}k=U2t...

decreasing to zero. Let {xk}k=i,2,... be a sequence of points such that

\xk\ = rk(l-C). We define

Q=UQ r t U{0}, Q=UQ(xk, Crk)l)[0}.
k k

In the following discussions we will denote the total mass of finite measure

μ(dy) by μ and denote various positive absolute constants by Mk, fc = 1,2,

3, . Let μa

κ{dy) be a capacitary measure on K relative to Ba. Since

^ r) = Mxr
n~a (for example see [21], p. 204), we have

ii) <>(#) denotes the ^-capacity of K and h-m{K) denote the ̂ -measure of K in the sense
of [29].



MARKOV PROCESSES 183

(7) μ\r :

Hence it holds

(8) Pi(σQrn < + °°) ^ M3 a n d Pt{σQ(Xk>Crk) < + °°) ^ Ml.

Combining Lemma 4.2 in [13] with (8), we have

Next we will prove that

(10) lim P0{σ~Qr < + oo) = M5 > 0,

(11) lim P0(σQ(xr,cr) < +" oo) = M% > 0,

where \xr\ = (1 — C)r. If (10) ((11)) did not hold, we can choose a sequence

t^*I*=i,2,... decreasing to zero such that

(12) ΣJPofo, < + oo)< + oo (resp S P 0 ( ^ ( * r , cπ) < + oo)< + co).

Using the Borel-Cantelli lemma, it follows from (12) that

(13)

Since (13) contradicts to (9) and (4), both (10) and (11) must hold. From

(10), we get

(14) Hφ(r) ^ μir ^ M-J2 Il<p(rl2).

From (11) we get

(15)

Since μQcr ^ M8l<p(Cr), it follows from (15) that

(16)

Combining (14) with (16), we have

(17)

12) Note that μ§ X i"Q(iricr)> r-> 0.
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Now, noting that

(18) 7%72 :

it follows from (17) that

(19)

Next we will prove

(20)

Since we have

sup \ ψ (I z —
y=Qr J ρ r

^ M i μ~Qr ^ MnμQr,

r->0.

), r-+0.

it holds that

M12φ(r) < + Λf1

where Qr is the volume of ζ?r. Hence (20) has been proved13). Combining

(19) with (20), we have (5). The proof is complete.

Remark 5. If we assume that (4) holds for each open set K instead of

each compact set, then (5) is also valid. For the proof we only need a

slight modification of the above.

Proof of theorem 3. Since φ^Φn-a<> it follows from Theorem 1 that the

condition (4) holds for Xo and X. Hence Ψo{r)^==^φo{r)f r-+0 and ^ ( r ) X

ψ{r)9 r->0. Note that φo{r) and φ(r) satisfy i) in Lemma 5. Since X and

Xo satisfy Hunt's condition (if), it follows from (1) that φQ(r) X φ(r), r -> 0

by using Lemma 5. Thus we have proved (2).

Using Remark 2 of §<2 and Remark 5, we can prove

THEOREM 3'. Let

If έ7x is equivalent to ^

Finally we note

o and &x be fine topologies of Xo and X respectively,

then <p{r)^=^<po{r), r->0.

Remark 6. Let X be a Markov process having a Green function G{x,y)

such that

13) Note that the second term of the above inequality equals to 1.
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)^g{x-y) on Rn,

where g(x—y) is a Green function with GS) of some symmetric Levy process

X. Then X satisfies the condition (H).

This is proved as follows. Note that it follows immediately from Proposi-

tion (4.10) in [1], p. 289 that X satisfies (H). Combining Lemma 3b with

Remark 3, we can choose a neighborhood V for each fixed point and

constants d ^ C 2 > 0 such that hitting probabilities of X and X are (Cl9C2)-

dominated each other at V. On the other hand it holds by Corollary 1

of Theorem 1 that Kr

x = Kr

Xo for each compact or open set K. Summing

up the above results, we can show that X satisfies (H).

§ 5. Regular points for diffusion processes with continuous

coefficients

Throughout this section we let (aJk(x)) be a symmetric matrix such that

(1) λ2\ξ\2^ Σ ajkWξjξk^λJξW l ί l ^ O , £e=Λ n ,
j,Jc=l

where + oo > ; k 2 ^>;^ > o and the entries ajlc{x) are bounded, continuous on

Rn. For a differential operator A defined by

(2) Au{x)= Σ aJk{x) ~ °~ u(x),
y f c i oXjOXjc

there exists a minimal diffusion process XA on a bounded domain D with a

smooth boundary 3D. XA satisfies

XA i) the strong infinitesimal operator % of {Tt} coincides with A on O2(D);

XA iϊ) {Tt} is strongly continuous on CQ{D);

XA iii) XA is of strongly Feller type;

XA iv) XA satisfies M2).

(See[17], [27] and[28].) Hereafter we shall always deal with the above process

XA. The property M3) does not always hold. But in case n ̂  3 we can

prove M3) by using the next Lemma obtained by Girbarg-Serrin [7].

LEMMA 7. Suppose n^3. Let u{x) be a non-constant function which is

14) \γ e s a y thaf; u is subharmonic (harmonic) in an open set Q if it holds that
Exu(xτ)^u(x) (resp. Exu(xtJ = u(x)) for every open set S such that
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subharmonicU) in the punctured ball So (= {x 0 < \x\ <r0}) and continuous on

{x ;0<\x\ ^r0). We set Λf = m a x φ ) , - Then, if
|xl=rβ

u{x) = 0(\x\2'n+δ) as \x\ ->0

for some δ > 0, it follows that u < M in So, βft^ furthermore lim sup #(#) < M.

The above Lemma is proved for u^C2(S0) such that Λu^O in So in

[7], but without any change of the proof the assertion is valid for the func-

tion u in the above Lemma 7.

Now, set u(x) = Pχ(σ{XQ}< + co). Then u is harmonic14) in D — {x0}.

By XA iii) u(x) is continuous on D - {x0}. Further lim u{x) = 0 by XA i)
x—>dD

and XA ii). Applying Lemma 5 to u, we have lim u(x) = 0. Since ^ is

excessive relative to XA, it follows that u === 0. Consequently we get

X^ v) XA satisfies M3) provided n^3.

In order to state our result we will prepare some notations. We let the

matrix (Ajk{x)) be the inverse of the coefficients matrix (aJk(x)). Set

L= sup \AJk(x)\ M=L2n*lλu

j,k,xeDSQ

where DδQ = [x distance (x,D) < dolλi). We define

(3) a(r) = sup sup \ajk{x + h) — ajk{x)\
j,k \h\<r/λt

(4) Py(x) = { Σ Λjk(y)(xj - yj)(xk -

We will denote FA{FA) the collection of positive continuous functions / on

(0,50) for some 0 < sQ<δ0 which saitsfies

(5) f(o) > (n-V + n(M+L)a(p) 0 < p < s
{b} n p ) ~ p(l-n*Ma(p)) > ϋ < 9 < So'

frpςn W) f(o) < (^ ~ 1) ~ ^ 2 ( ^ + L)a{ρ) Ω . . v
(resp. (5) /(/>) = p(i + n*Ma(PY) ' ° < p < 5 ° ' }

For a positive continuous function / on (0, s0) for some 0 < s0 < δ0, we

define

(6) f(r)

Let us consider the following conditions on a function φ on (0, s0) :
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(ψl) for every fixed 0<t < 1 it holds φ{tr)lφ{r)^Ct< + °° ./or every

0<r<s0:

(2ψ) {(ψ2f)) φ(r)Xf(r), r -+ 0, /or www f<ΞFA {resp.

Set ^ ( 0 J = {<P 9 is a positive function on (0, s0) for some 0 < s0 < δ0 which

satisfies ψl) and ^2) (resp ^2'))}. The sets ψA a n d j ^ depend on the degree

of the continuity of the coefficients of A.

LEMMA 8. Suppose w ^ 3 . i) For each 0 < a < 2, ra~n<^ψA ii) If the

coefficients of A are uniformly Dini continuous, that is,

(7) ( '•_«(£)_<+ 00,
- • J o p

then r2~n belongs to both φA and ψA.

Proof i) For 0 < a < 2, if we choose sufficientely small s0 > 0, we see

that F(p) = (n + l-a)lp<=FA. It is clear that f(r) X ra~n, r-K). ii) If

So is sufficiently small, we can choose constants Mk>0, k = 1, 2, so that

(n — l)lp + M1a{p)IP^FA and (n - 1)1 p — M2a(p)/p(=FA. Hence, using (7), r2'71

belongs to both ψA and ψA.

Now we are ready to state our theorem.

T H E O R E M 4. Suppose n>,3. Let X be a Markov process on Rn with the

properties Mί)^M3) which has a Green function G{x,y) with GC) and R2). If

G(x,y) has an isotropic singularity <p^φA{ψA), then

(8) Kr

xaKr

XA {resp. (80 KXACZKX)

for each compact or open set KaD.

Combining Theorem 4 with Lemma 8, we get the followings.15)

COROLLARY 1. For an isotropic stable process Ba of index a, 0 < a < 2, it

follows that

COROLLARY 2. Suppose that the coefficients of A are uniformly Dini con-

tinuous. Then

Kr

Xλ = Kr

B,

15) In the sequel we assume that n ^ 3 and K is a compact or an open set in D.
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where B denotes the n-dimensional Brownian motion.

Proof of theorem 4. We define

Λy(x)=

Bv

jk{x) = Σ Ajι{y){xι - yι)Λkm(y){xm - y
l,m = l

Then we have

(9) Λy(x) =

and

(10) Jj*

Combining (3), (9) and (10), we get

(n — 1) — n2(L + M)a{py{x)) ^ Δ ιx\ ^ (ft — 1) + n2(L + M)a(ρy(x))
Py(x) + n2Ma(py(x))py(x) ~ y[ ~ py(x) - n2Ma{py{x))Py{x) '

Let us choose f^FA(FA) and set Fy(a;) = f(py{x)) for each fixed t/, where /

is defined by (6). Since we have

(12) AFv(x) = Σ ^ A:(^)4^-(a

for X G ^ — {i/}, where Q y = {cc ρy(x) < s0}, it follows from (12) and (5)

(resp. (50) that

AFy(x) ^ 0 (resp. AFy(x) ^ 0)

for x^Qy — {y}. Accordingly F y( ) is 1-subharmonic (resp. 1-superharmo-

nic) at {x,Qy — {y}) relative to XA. On the other hand, since φeψΛ (resp.

) , there exists constants Ck > 0, fc = 1,2,3,4 and δ > 0 such that

Cj(py(x)) <Czφ(py{x)) <φ(\x- yI) <C2φ(py(x))<

H e n c e , sett ing Q — \x \x — xQ\ <-Λ-\ for a fixed xo^D, φ(\ —y\) is

CVCj-subharmonic (resp. Cj/C^superharmonic) at (xθ9 Q— {y}) for every
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Since XA satisfies Ml), M2) by XA ii), XA iv) respectively, Rί) holds for

XA by Lemma 1. Now let us apply Lemma 3a (resp. Lemma 3a and

Remark 4) to XA and X. Then (8) (resp (8')) follows immediately. The

proof is complete.

§ 6. Regular points for Markov processes subordinate to the

diffusion process with uniformly Holder continuous coefficients.

Our object of this section is the class of Markov processes subordinate to the

diffusion processes with uniformly Holder continuous coefficients. Singularities

of Green functions of Markov processes of such a class are fairly abound in the

variety, though they are isotropic.

Let ^? be the class of diffusion processes XίG) on Rn whose generator

is a uniformly elliptic partial differential operator A of second order with

bounded, uniformly Holder continuous coefficients. For convenience we will

denote by (B(t),Pb) the w-dimensional Brownian motion. A process (z(t),P)

is called a subordinator provided that it is one-sided Levy process on [0, +°°)

starting at the origin which has increasing paths. It is known that for such

a process E{e~"ω} = e~tφω for all t^O and s ̂  0, where

(1) φ(s) = bs + Π l ~ e-su)v(du).
Jo

In (1), b is a nonnegative constant and v is a Borel measure on (0, + oo)

satisfying \ u{l + u)~ιv{du) < + oo. The function ψ is called the exponent
Jo

of z(t) and v is called the Levy measure of z(t). We let J be a collection

of the subordiantors. If we set

Pz{t,x,dy) = \+~P(s,x,dy)P(z(t)(Ξds)
Jo

(2)

(Pb

z(t,x,dy) = \**Pb(s,x,dy)P(z(t)€Ξds)y7\
Jo

then there exists a Markov process on Rn whose transition probability is

Pz(t,x,dy) (resp. Pb

z(t,x,dy)) and the semi-group of such a process is strongly

1 6 ) X is of s trongly Fel ler type a n d its semi-group is s t rongly c o n t i n u o u s o n C0(Rn).
(For e x a m p l e see [11].)

1 7 ) P{s,x,dy) (Pb(s,x,dy)) denotes the transition probability of X (resp. B). It is known
that p(s,x,dy) (Ph(s,x,dy)) has a density φ(s,x,y) (resp. φb(s,x,y)) with respect to the
Lebesque measure dy such that

φi) φ(s,x,y) is positive, continuous on (0, +co) x Rn x Rn.
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continuous on C0(Rn). (See, for example, N. Ikeda-S. Watanabe [11].) We

will denote it by Xz (resp. Bz) in the sequel. Set

(3) U(t) =

for %{f)^X with an exponent ψ(u). Then

(4) llΦ{u)=

First note that

LEMMA 9. Suppose the Levy measure v{du) of z{t)^X is non-triυal. The%

for U(t) of the form (3), we have

(5) Γ *_</£/(*)< + «>
J§ i

for every fixed a>0 and δ > 0.

Proof. Since v is non-trivial, we can choose constants K > 0 and u0 > 0

so that for every 0< s^u0

(6) ^(

Combining (6) with (4) it follows that

for each fixed δ > 0, which implies (5). The proof is complete.

For the transition probability density p(t,x,y) (pb(t, x, y)) of I G ^ 7 (resp.

-B) we define

G.(x,y) = [~p(t,x,y)dU(t), (resp. gz(\x - 2/!) = ( + V ( ί , x,y)dU(t)).
Jo Jo

Combining (5) with the following estimate:

φ ϋ) Mot-
n/2 exp ( - ao\y - x \ηt) ^ p(t, x, y) ^

M x r n / 2 exp ( - ax\y- x\ηt) - M2t~
n/2+> exp ( - α 2 | y - x\ηt)y

where Mo, Mu M2, cc0, au a2 and λ are positive constants [12]; we get

18) rb

In the following the integral sign \ dU(t) means that the Lebesgue-Stieltjes integral

on (o,b] in case a> b are finite. \ dU{t) is defined as usual.
Ja
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LEMMA 10. If n ^ 3, Gz(x, y) is a Green function of Xz which has the

properties GB) and GC).

Indeed, noting that for each fixed δ > 0

sup p(t, x, y) < M0t-
n/2 exp ( - a0δ

2lt),
\χ-y\>δ

GB) follows immediately and G2{x,y) is continuous on \x — y\ >δ by Le-

besgue convergence theorem.

Hereafter we shall always assume that n ^ 3.

Let Jzf be the class of continuous positive functions L on (0, + oo)

which vary slowly at zero, that is, \ιm L(tx)jL(t) = 1 for each fixed x > 0.

The following relation is essential in our theorem.:

(7) llψ{u)^iΓaL{llu), u-+ + oo")

is equivalent to

(8) J7(/)___l__rL(0, ^

where L^J^f and U{t)9 ψ(t) are the ones of (3) and (4) respectively. (See,

for example, W. Feller [6], Th. 3, p. 422.) Set ^ ? = {L(t)^^ which is

monotone increasing on (0, S) for some 3 > 0} and J^fd = {L(t)&J^f which is

monotone decreasing on (0,3) for some G>>0}. We define

Xί (Zf) = W)SΞ%whose exponent ψ satisfies (7) for L G ^ (resp.

Remark 7. L(t)^Sf has the following representation:

(9) L(t) = b(t) exp ί -
I

where a(ύ), b(u) are continuous such that lim a(u) = 0 and lira b(u) > 0. From

(9) it is easily proved that t7L(t)/b(t) (t~rL(t)lb(t)), ϊ > 0, is monotone in-

creasing (resp. monotone decreasing) on some interval (0, δ0).

Now we are ready to state our results.

THEOREM 5. Let X^^ and z(t)^βΓί(^ίί) fir some 0 < a ^ 1. Then it

follows tfiat, for every a! such that a < af < l 2 0 ) (resp. 0 < a! < a),

19) We will write f(x)~g(x), x-^a provided lim f(x)jg(x) = l
2 0 ) In this case we assume that l>α>0.
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(10) K^cKi.cKi^, (resp. KBtβ,<zKx.<zKr

Bu)

holds for each compact or open set K<zRn, where B2a, B2ar are isotropic stable pro-

cesses of index 2a, 2af respectively. Furthermore there exists compact set K, K such

that

(11) Kr

B2a S KΣ, Kr

Xs S Kr

Btα, (resp. Kr

Bzα g Kx, KXi £ £;,.)">

provided that \ϊmL(t) = 0 (resp. HmL(t) = + oo.)
/ » o * » o

THEOREM 6. Let Xk^^ and zk{t)^^i (jfi), k = l,2, for 0 < α ^ l .

Suppose that

(12) φ1(s) X Φάs), s -> + oo,

where ψk{s), k = 1,2, αr£ exponents of zk(t), k = 1,2, respectively. Then

holds for each compact or open set K<zRn.

For the proof we will prepare two Lemmas.

LEMMA 11.

(14) < 7 2 M > < r 2 α - U ( r 2 ) ,

provided z(t)^Zl or ^ί for 0 < α ^ l .

f. For simplicity we assume that Z,(ί) is monotone on (0,2]. Let

us set

I^x) = f2^2 φ\t, 0, x)dU(t).

Then, by the formula of the integral by part and (8), we get

_«_, _ J _ _ J _
" 2 Λ 4 Λ 2

where

2 Ji 2 Ji

21) As we see from the proof below, we can choose K and K such that Kβ2a = Kχg =
(resp. Klu=K\=φ).
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Now, replacing U(t) with ta in the integral I^x), we have

(16) lim . f f i L =KS.

On the other hand, in case U(t) = ta, it holds by changing the variable

(17) h{%) = \x\2«~n

Combining (16) with (17), we see that Ks > 0, which together with (15)

implies

(18) / i ( » ) X M 2 - n L(\x\η, \x\-+0.

If we set

h(χ) = [x[2pb(t,o,χ)dU(t)t
Jo

then we have

(19) I2(x)<K4\x\2*-nL(\x\ηf

for sufficiently s m a l l x a n d s o m e c o n s t a n t K4, b e c a u s e I2(x) < p b ( \ x \ 2 , 0 , x) x

U(\x\2) + n/2- (2π) 2 \x \'n\ u-n/2^e-i/2uU{u\x\2)du. Choose ε > 0 so that
Jo

U{t)^2taL{t)IΓ(l + a) for 0<t<ε and define

Then it holds that, for some constant K^

(20) Ux)<K, + n(2π)

If Z,€=j£5, we have from (20)

(21) Iz(x)^

In case L G ^ we will use the representation (9). Choose ϊ0 such that

Kΐo<nl2. Then, by Remark 7, u~n/2+r<>L(u)lb(u) is monotone decreasing.

Hence, from (20) we have (21) for L ε ^ . Since /2(α)+/3(α0+ (%*(£, 0, a)x

ί/£/(0^^(l»l)^Λ(»)» we have (14) by combining (5), (19), (21) and (18).

The proof is complete.

Remark 8. gz(r) for z{t)^%i or %% satisfies
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(22) v o o , *Kc>0, *δc>0, gz(Cr)lgz(r)^Kc for 0<r<δc.

LEMMA 12. For, z{t)^Zί or %% it holds that

(23) G2(x,y)^gz(\x-y\) on R\

Proof, For each fixed δ > 0 we have, by P ii),

(24) G,(x, y) ̂  \'φ(t, x , y)dU(t) ^ 7 ^ , y) -M,δλ{2π)^gzy2^\x - y \ ) ,
Jo

/,(*, y) = M, j V » Λ exp (-ai\y - x\*lt)dU{t).

On the other hand

(25) /,(«, 2/) ̂  M I (2 π ) "^(/2« 1 I* - »I)

where /(δ) = Γ t~nndU{t). Let us choose δx > 0, K{alt α2) > 0 such that
J«5

(26) gz(j2a2 \x~y\)^ K(au aύgΛ^2ax \ x - y |)

for |a? — y | < ^ i This is possible by (22). Set

l V "

)
0

4M2 K(au a2)

Since I(δ0) < + oo by (5) and lim^2([α; — y\) = + oo by (14), we can choose

^ 2 > 0 so that

(27)

for 11/ — a I < δ2. Combining (24) with (27), we get

(28) G,(x, y) ̂  ^ - ((2π)-/2^(1/2^Γ| a? - yI)

for 0 < \x — y\ < min (^!,δ2). Since it is clear that

(29) G.(x9y) < M(2π)n/%(1/2^'\x - y \ )

by P i ) , the proof of (23) is complete by using (22).

Proof of theorem 5 and theorem 6. As mentioned before, the semi-group

of Xz is strongly continuous on C0{Rn). Furthermore, Gz(x,y) satisfies GB)

and GO) by Lemma 8 and has an isotropic singularity gz(r) by Lemma 9.

Therefore it follows immediately from Lemma 1 in [15] that R.2) holds for

Xz. Using Lemma 1 in §2, Rΐ) follows from Ml) and M2). M3) is clear
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from R2) and from the fact that lim Gg(x, y) = + oo. Consequently we can

apply the result in § 3 to the above process Xz. If we assume (12), then

flr-xW X g.2(r), r^Oby (14). H e n c e Gl^x, y) « Gl2(x, y), \x-y\-+0by (23),

where Gι

Zι(x,y) and G\z{x,y) are Green functions of X\x and X\χ respecitvely.

This implies (13) by the Corollary 1 of Theorem 1. Thus Theorem 5 has

been proved. If z{t)&βt't (J^t), it follows immediately from Corollary 3 of

Theorem 1 that KB2aczKBz (resp. KB2aZ)KBz). Using the representation (9), we

have

9z(r) X r2a~n exp | —

and r2(α"α/) exp — 1 . g W du\ is monotone increasing (monotone decreasing)

provided that a > ar (resp. a! < a). Accordingly KBz c KB2ar (resp. KB2a, c ϋĈ J

holds for z e ^ j (resp. ^ 2 ) provided a < a' (resp. α > ar). Since i^^ = Kr

Xί

by Lemma 12 and Corollary 1 of Theorem 1, we have proved (10). Noting

that Xz, B2a and B2af satisfy the condition (H) by Remark 6, (11) follows

from Theorem 3.

Using Remark 1 and Theorem 5, we get

T H E O R E M 5'. Let £7> έ?2a and <?72a, be fine topologies induced by XZί B2a and

B2a, respectively. Then

d7i* -*\ & ~K d?<L*i (resp. &ia, -< & <^ ^ 2 α ) 2 2 )

Furthermore

&ia < & < (?2ar, (resp. &2a, < <? < ^ 2 α )
Φ Φ 4= 4=

provided that X\mL(t) = 0 ( r ^ . limL(0 = + oo).

Finally we will give simple examples. Consider

(30) φ(s) = Γ sβdβ, 1 ̂  α > α' ̂  0.

Since ψ has a completely monotone derivative and (̂0) = 0, it is an expo-

nent of some z ( ί ) ε ^ (for example, see W. Feller [6], Theorem 1, p. 425).

By a computation

22) &\ -K έ?2 (έ?i -*\ ^2) implies that ^ is stronger than ^72 (resp. ^ is stronger
4=

than £?2

 a n d &\ is not equivalent to &2).
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s~" log s, s —>• + co.

Hence

9z(r) X ^ 2 α" n log 1/r, r -» 0.

If we set

0i(s) = \ [0(s)]^& 1 ̂  α > α' > 0,

where ψ is of the form (30), then it is also an exponent of some

and

llΦi(s) - s-a2 (log s)1+«, 5 -> + oo.

Hence

0.x W X r2a2~n (log l/r)1+α, r -> 0.

§7. Green functions and regular points for a certain class of

Markov processes with homogeneity (I).

In this section we will study Levy processes with homogeneity. Let £ff

S^\ JS?, ££?', &, &''t 2&i}, etc. be the space of distributions or functions

in Schwartz' sense [24]. For / e ^ , ^fx{Rn) or £f\Rn) we denote the

Fourier transform, (the Fourier inverse transform.) by

f(x) = f ne-ί<x>ζ>f(ξ)dξ (resp. f(ξ) = ( ne
u*>t>f(x)dx, dx = {2π)~ndx),

o R J R

and denote the extension of * (resp. *) to &" by , ^ ( r e s p . J^~ι) as usual.

Now we will summarize some elementary facts about Levy processes on

Rn. Let X be a Levy process on i?n such that

(1) £ 0 ( e - ί < M ί >) = e-tφ&, $<=Rn

ψ{ζ) is called the exponent of X. I t is known that ψ(ζ) is a negative difinite

function on Rn, Suppose that j^~ι(e~tφ)(x) is a bounded continuous func-

tion for each fixed t > 0. Then, setting p(t, x) = ̂ " " H β " ^ ) ^ ) * P(̂ » χ ~ 2/) is

a transition probability density of X If in addition it holds that

(2) W(e)ejSfί o c (Λ n ),

S+oo

p(t,x—y)dt. More-
0

over g(x — y) satisfies GS) provided n^3 and symmetric. Indeed, since Re
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Φ(ξ)<C\ξ\2 for large \ζ\ and some constant C> 0, we have

(3) limg(x) ^ ΓΊimJT-^e-'ηWdt = [ llReψ(ζ)dξ = + oo.

I n the above case X satisfies Rl) by L e m m a 1 and also satisfies R2), because

H u n t ' s conditions F) and G) hold for X (see G.A. H u n t [10]).

Let a = (al9a2, , an) and β=(βi,β29 " ,|8ft) be real vectors. We write

as α ^ j 9 provided ak ^ β * for all k. If αΛ = α for all k, we write simply

as a instead of α. A function / on Rn is called a homogeneous function

of degree a provided f{tί/a^ίf , t1/a»ζn) = tf(ζ) for t > 0. If in addtion

/eC°°(i?n — {0}), we say that / is a O*-homogeneous function of degree a. Define

= {ψ(£) a homogeneous {resp. C"-homogeneous) function of degree a};

{resp. J^Z)(λ{ψ{ζ) a negative definite function}',

l {resp. J*f7+)Γi{ψ(ζ) ;Reψ(ς)>0for \ξ\¥=0}.

In this section we consider the following two types of Levy processes

in Rn (n ̂  3)23>. Let 2 > a > 0 :

(/)β Levy process whose exponents belong to s/7++2A) and symmetric,

(II)a Levy processes obtained by assuming that the coordinate processes are in-

dependent symmetric stable processes of index ak9 k = 1, , n in R1.

Note that the exponent ^(ς) of a Levy process of type (II)Λ has the

form

(4) ψ{$ = J2Ck\ξk\", where Ck > 0.

Hence ψ(ξ)^S/T but

Define

(5) ra(y) = ( | j yfj)in for real vector a = (α l f , α n ) .

LEMMA 13. Let 2 > a > 0. Suppose that X is a Levy process of type (I)a

or (II)a. Then X has Green function g(x — y) with GS) and R2). Furthermore

i) if X is of type (/),

23) W e always assume n ̂  3 in t h e sequel w i t h o u t referring.
2 4 ) W e d o n o t discuss a b o u t t h e existence of such Levy processes h e r e . F o r t h e existence of

such process for cer ta in a, see Proposi t ion 1.
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n

(6) g(x - y) « rα(α - y)~^hi on Rn

ii) if X is of type (II)a the following cases occur:

ii. 1) in case n^tδ, g(x) is infinite on each coordinate axis;
n

ii. 2) in case n^3 and 1— 2 1 / « j ^ — 1 for some k, g(x) is infinite on

the xk-axis\
n

ii. 3) in case n — 3 or 4 and 1 —- Y]llctj > — 1 for every k, it follows
jψlc

that (6) holds.

Remark 9. If n = 3 and 2 > α > 1, then 1 — Σ \\aά > — 1 for all fc.

For the proof of Lemma 13 we will prepare some facts. Suppose

β = (βuβz, ' m ,βn)>0 or β<0. Let /ô (3/) be a positive CVfunction on

Rn-{0} uniquely defined by

n V2

(7) y J = l
1 ] h p(y)2/β<
Then we can easily prove that

(8) C2rβ(y) ^ pβ(y) ^ C^/j/), y ψ 0

provided β > 0, and

(9) C2r^(2/) ^ ^/ί/)

provided β < 0, where CΊ ̂  C2 > 0 are absolute constants and r ,̂ r~β are

functions defined by (5). Let us note that for a C^-homogeneous function

/ of degree β it holds

(10)

where k is a positive integer and M2k is a positive absolute constant.

Proof of Lemma 13. Let ^ be the exponent of X. Then φ(t, x) —

J^~ι(e~tφ)(x) is a bounded continuous function of x for each fixed t > 0.

Since ^ satisfies (2) because n ^ 3, there exists a Green function g(x — y) =

ί+oo

p(ί, ^ — 2/)fifί with GS) and i?) as mentioned before. We will first prove
0

(i). Note that
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(ID g{χ) =

Combining (10) with (9), we have

(12) , ίi-0,

Since n + ra(ξ)2 ^ 2 |f7 |2«<> ̂  (l/n)αo|f |2«o for α0 = min aJ9 it follows from

(12) that

(13)

for large | £ | . Combining (11) with (13), we can show that g(x)^Cco(Rn-{0})

by the standard method. If we set

it holds that

(14) g(χ) =

by changing the variable of the coordinates in (11). Combining (8), GS)

and the fact that g(x)&C°°(Rn-{0}), it follows from (14) that (6) holds. Next

we will prove ii). For the estimate of g(x), we note the following : Let

p(t, x ~ y) be transition probability density of X of type (//)«. Then

n
(15) φ{t, x - y) = Π Pk(t, %k - VR), x = (xu , a? J , 2/ = (2/i, , y n ) ,

where pk(t,xk — yk) denotes the transition probability density of a symmetric

stable process xk(t) of index ak on E1. We use the estimate [25] :

and

1^
/pk(lfx)^C2 for \x\^l

3 ^ \x\1+a*1>k{l,x)^CA for | a ; | ^

for each r > 0,

where a e i ? 1 and Cj9j = 1,2,3,4, are positive constants. Let us fix x =

(0, ,0, 05Λ,0, ,0) where \xh\ > δ > 0. Then we have25)

2 5) In the following Mu / = 1,2, ••• denote positive absolute constants.
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S S 1 - Σ 1/α,
t >* dt.

0

« ft 1 . .
Hence ii. 2) follows immediately. Since 1 — Σ 1/cCj ^ 1 — — ^ — ii. 1) also

iΦfe .

holds. Now we will estimate g{x) on {|ίc| = 1}. If x is on the a; Λ-axis, we

have

g(x) ^ M2 \Jo

(16)

0 J<5

L e t α; = (xu x2, , #Λ) be a p o i n t o n {\x \ = 1} such t h a t xk i=09 k = 1,

. . . , / , αj ί + 1 = = xn = 0 a n d l ^ l ' i ^ | α ; 2 | α 2 ^ . . . ^ |αjf|
β» w h e r e / ^ 2 .

W e define

S - Σ l / α w

ί m = 1 rfί, α;0 = 0.
Since

(17) l#ί|*1 — (i/n)(1+1/αo)/2α = C, a0 = min au a = max α^,

we have

(18)

Combining (17) with

ij<M'ji)x^~i~am\Ta't

we get

m—j JO

ί-l n

(19) ^ M T C " 1 - 1 ^ Π |aj m | - 1 - β - |αj i |
β i C / " J ) + m -^ / β "f I X / l % 1 "" m * ι l / *"rfί

W=7 Jθ

Z - l
| x , I * / 1 - Σ l / « m _ . . « j ( / - i ) + Σ . o

ί
l 1 - Σ 1/tfm

0
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Combining (16) (18) and (19), it follows that

g(x)^M9 on |a?| = 1,

n

provided that 1 — Σ V « y > — 1 for all k. Noting that g(x — y) satisfies GS),
y=t=fc

we can prove (6) by using the representation (14). The proof is complete.

THEOREM 7. Let a, β be real vectors such that 2 > a = Cβ > for some

C ^ l and

(20) 1 — Σ l/«i > - 1 for every k.

Let X1{X2) be a Levy process of type (/)« or type (II)a (resp. type (I)β or type

(II) β). Then

(21) Kr

X2aKr

Xί

holds for every compact set KcRn. If both Xλ and X2 are of type (I), then

(21) holds without the assumption (20).

Proof By Lemma 13 X1{X2) has Green function g^x —y) (resp. g2(^—y))

such that

1 - Σ 1/o.j . 1 - Σ 1/βj

(22) g,(x -y)tt ra(x - y) ^ (resp. g2(x - y) « rβ(x - y) ^ )

on Rn.

On the other hand it holds

(23) ncra(xY ^ rβ(x)2C ^—ra(x)\
IV

C- Σ l/βj 1- Σ 1/βj

Hence, setting p{x,y) = rβ(x — y), ψι(r) = r j=ι and φ2(r) = r ?=1 , it

follows from (22) and (23)

)) on Rn

9 fc = i,2.

Using Theorem 1, we can prove (21). The proof is complete.

Next we will construct Levy processes of type (/) for a certain class of

α. Let X be a Levy process on Rn and A be the generator of X. We

say that n(dy) is Levy measure of X if for each / e ϋ ? " vanishing on a

neighborhood of the origin it holds

(24) ( J(y)n(dy) = Af(x).
J R
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For convenience we introduce

N°β = {n{y) a C°° homogeneous function of degree — (n + β) such that

n(y)>0 for y φθ}.

We define J ^ e ^ i by

(25) (jf,u) = \Rn{u(y)-u(0) - ^ ^

provided n(y)<=N% for 2 > β > 1 and

(26) ( j ^ f «) = f {M(y) - u{0)}n(y)dy,

provided n(y)t=Nj for l > £ > 0 . Set

(27)

and

(28)

Then it is known that there exists a Levy process whose generator coincides

with A of (27) on J& and exponent is ψ(ξ) defined by (28). Furthermore,

it we set

(29) a ••

it is a Levy process of type (7)β as is shown in the following proposition.

PROPOSITION 1. Suppose 2 < £ < 1 or l > £ > 0 . Then, for each

the function ψ{ζ) defined through (25) or (26) and (28) belongs to Jϊ?7++, where a is

defined by (29).

Proof Note that ψ(ζ) = — ( j ^ , e~u f >), because J ^ e ^ ^ i . Changing

the variable of the coordinates, we see that ψ(ξ) is homogeneous of degree

α. It is known that ψ(ζ) is negative definite. Further

Reφ(ξ) < min w(
\y\=l

Λf ί (1 - cos <ί, t/» 1 . dy

26) If β = a9 then <z = α. If there exist j^k such that βj^βk, then sup βj>a> inf jfy.



MARKOV PROCESSES 203

by using (9), where M is positive constant. Hence ψ{ξ) e S/V Next we

will prove that ψ(ξ)eC(Rn - {0}). Let Q(y)eC such that Q(y) = 0 for

M < l / 2 and Q(y) = 1 for | y | ^ l . Set

&(ί) = - ( aQ(y)e-i<y (>n(y)dy, ψ<(ξ) =
JRn

in case 2 > £ > 1 and

^ α - Q[y)){l - e-ι<y>ζ>}n(y)dy, ψ4(ί) = 0 ,

in case 1 > /3 > 0. Then it follows immediately that ψi(ζ), ψ2(ξ) and ^4(

C°°(i?n - {0}). On the other hand we have

_ nk
2 k - - - • • n+2Qiv)n(y)

for large y on the same way as in the proof of (13). Hence we can prove

that Ψs(ξ)^Ccx>(Rn ~ {0}) by the standard method. Since φ(ζ) = Σ$M£), it

follows that φ(ξ)<=C°°(Rn — {0}). Consequently. ^(f)Gj/; > + + . The proof is

complete.

We will close this section with the following Remarks.

Remark 10. Let a be a vector defined by (29) for 2>β>l. Then

there exists a Levy process ^ of class (I)a on i?3 by Proposition 2. Fur-

thermore it follows from Theroem 7 that

for every compact or open set KaRz

9 where X2 is a Levy process of type

[II)a on i?3. On the other hand the Levy measures of X1 and X2 are

n(y)dy and M-.——ffV-xό{dy*dyz)+ M2 , ffi—Xdίdy^y^+M^-,—rr^—xd{dy2dyι)yI2/1I * 12/21 2 12/31 3

respectively^ where n{y)<=NJ and o[dyόdyk) denote the Dirac measure at the

origin on y5 x^-space .

Remark 11. Using Corollary 2r of Theorem 1', we can show the follow-

ing. Let -XΊCX2) be a Levy process of type (/)β (resp. type (I)β) on Rn,

where 2> a,β>l. Suppose that {au , an^) = (βu ,βn-ι) and an ^ βn.
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Then

holds for every compact or relatively open set K in (xlf , a^-

§8. Green functions and regular points for Markov processes

with homogeneity (II).

Let us consider a function n{x,y) which satisfies:

nΐ) n(xy )e j/ ! ( n+α) for each fixed x^Rn;

n2) for each multi-indices β,T, (Dx)
β(Dy)

rn(x,y) is bounded on Rnx{\y\ = 1};

nS) for some constants C1^C2> 0, C2 < n(x, y)<Cι on Rn x {| y \ = 1}

nA) there exists L>0 and w(oo, # ) e j ^ ~ C n + α ) such that n{x,y) = n(oo9 y) for

For the above n(x, y) we define a distribution Sfx by

(1)

provided 1 < a < 2 and

(2) (J*£ f «) = \Rn{u{y) -

provided 0 < a < 1. We let Λ be a operator on ^ 2 7 ) defined by

(3) Λu(x) = Sfx * w(α).

We call w(α?, 2/)ί/2/ the Levy measure of A as usual. O u r result is the

following

T H E O R E M 8. Suppose that n^3 and 2 > a> 1 or 1 > # > 0. Tifow Â̂ r̂

mVfo a Markov process X on Rn28) which has a Green function G(x,y) with GB),

GC) and R2) such that

G(x,y)& \x-y\-n, on R\
(4)

AGf = -f

denotes the space of C°°-functions whose derivatives of any order are

bounded (resp. vanishing at infinity). The topology in J${&) is that introduced by L.
Schwartz [24].

28> It is known that there exists a Markov process on Rn whose generator is A [26]. Our
aim is to construct the kernel G(x,y) satisfying (4). But in our proof the existence of a Markov
process also follows in this connection.
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Furthermore {Tt} of X is strongly continuous on C0(Rn).

Combining (4) with R2), MS) holds for the above X. Hence, using

Corollary 1 of Theorem 1, we have

COROLLARY. Let Ba be an isotropic stable process in Rn(n^3). Then

Kr

x = Kr

Ba

holds for every compact or open set KaRn.

We will break up the proof of Theorem 6 into several Lemmas. Set

(5) a(x,ξ) = ( T ( J / I ) ( f ) .

Then we can prove the following on the similar way as in Lemma 10.

LEMMA 14. a{x,ξ) of (5) satisfies:

al) —a{x, )<ΞJ^«1+

02) for each multi-index β, ϊ, (Dx)
β{Dξ)

7a(x,ξ) is bounded on Rnx{\ξ\ = 1 } ;

a3) for some constants M^M2> 0, M2 ^—Re a{x, ξ)^M1 on Rn x {| ζ \ = 1}

a4) a(x,ξ) is independent of x for \x\>L.

we set a°°(ζ) = a(x, ξ) for \x\^L.

Suppose u<^£S. Then, since ^~(j&c*u) = ^(J&ϊ)ύ, it holds

(6) Au(x)=\ eι<x>ξ>a{x,ξ)ύ(ξ)dξ,

We call a{x,ξ) the symbol of A. Let u ^ ^ and let {un} be a sequence

of functions belonging to £/* such that un-^u in J$. Then, since J^"{un)

- v ^ M in &" and S/x* un-+Jχfx* u in S^1', it follows that ^~(S/x * u)

= lim ^~(j&Z*un) = a(x,ξ)J?~(u) in &", Therefore we have

(7) Au(x) =

Next for our later use we will prepare some notations. For any real

number 5 we define the norm \\u\\s:

\\U\\2

S =

and denote by Hs the Hubert space obtained by the completion of & in this

norm. We let £L (#_«,) be Π Hs (resp. \J Hs). Then #«, c &. A linear

operator L : £f -> £f is said to have order r, or to be of order r, if for
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each real 5 there exists a constant Cs such that

||LM||,<C,||κ||,+ r for all

Let β(α;, f ) e j ^ ~ , α ^ O , be the one with a2) and α4) in Lemma 14 and let

/(f) be a bounded measurable function. We define A(a,f) as follows.

(8) A(a9 f)u(x) =

If / = 1 we will simply write /!(#) instead of 4̂(β, 1). Especially, for ao(x, ξ)

&J&00 with <z2) and #4), A(<20) has order zero. (See Kohn-Nirenberg [16],

Theorem 1 and Lemma 3.1). Hence A{a0) can be extended to the operator

mapping Hs continuously into Hs for every 5. We use the same symbol

A(a0) for such an extended operator. Further suppose that ao{x,ξ) satisfies a3).

Then A(a0) is a Fredholm operator on j£?2(Rn), This is proved as follows.

Set bo(x,ξ) = llao(x,ξ). Then A(ao)A{bo) — / and A{bo)A{a0) — / have order —1

where I denotes the identity operator. (See, [16], Lemma 5.1 and Lemma

3.1.) Let Φ be a bounded set in ^?2(Rn). Then the set φ = (A{ao)A{bo)

— I)Φ or (A(bo)A(ao) — I)Φ satisfies that for each fixed R > 0 the collection

of the Fourier transform of the elements of φ are uniformly equicontinuous

on J2^2(l£l <R). This can be proved on the same way as in the proof of

Theorem 7 in [16], Hence φ is relatively compact in J?f2(Rn) by Lemma

8 in [16]. In other words A(aQ)A{bQ) — I and A(bQ)A(a0) — / are compact

operators on J?f2(Rn), which implies that A(a0) is a Fredholm operator on

^f2(Rn) by the definition. Next we define the quantity

KM, V) = exp (- If - v\2ί(l/t) - 1]), 0 < t < 1,

Kt = \ Kt{ξ, η)dσ{ξ)™\ 5n_i the surface of a unit ball
v Sn-1

al(x,ξ)= \ Kt(ξl\ξ\,v)a0(x,η)dσ(ri),
JSn-1

a7ι(ξ)=\ Kt($l\$\,η)a0(co,ξ)dσ(η), 0,(00, ξ) =

Set a/

o

t(xfξ)=at

o(xfξ)~a^'t(ξ). Then, using the following estimate

\\A(ai')u\\0 <: M\\u\\0 sup { |Γl - Σ (-Λ-YΊV(*. f)
#eSn_iJΛwIL j=i \ oXj / J

dx,

29) dσ{η) is the Lebesgue measure on Sn-X.
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where p is the integer such that φ > n/2 (Palais et al [23], Th. 4), we can

prove that {Λ{at

0)}Ost^
0) is a strongly continuous family of operators on Jzf2(Rn)

by a computation. From this the index of A{a0) equals to that of A{a\) (see

[23], Th. 4). Since the index of A(a\) equals to zero, it follows that the

index of A{a0) is zero. Summing up the above results, we have

LEMMA 15. Suppose that ao{x,ξ)&J%f^ for each fixed x and satisfies α2)~α4)

in Lemma 14. Then the operator A{a0) is a Fredholm operator on J^f2{Rn) whose

index is zero

A function #eC°° is called a "patch function" if Θ vanishes in a neigh-

borhood of zero and 1 — θ vanishes in a neighborhood of oo. The next two

properties31) will be used in the proof of Lemma 16.

-41) Let a{x,ξ)<^j^~*2\ a; real, be the one with a2) and a3). Suppose

that, A(a,θ)u — f for f.u^H^ and /<ΞC°°(£/), where U is an open set. Then

ueC"{U). {See Hδrmander [8].)

-42) Let a{x,ξ)&j%f", a real, be the one with a2) and a4). Suppose that

ueH-o>nC"(U) for some open set U. Then A(a,θ)ueC"(U). (See Kohn-Nirenberg

[16], Corollary 9.2.)

LEMMA 16. Let ao{xfξ)^j^f^ be the one with a2)^a4). Suppose thn*

u^Sf2{Rn) and A{ao)u^£S'(Ά). Then u can be represented in the form

(9) u(ξ) =

where g^S^ (resp. HJ).

Proof Set / = A{ao)u. Since we can easily show that A{a0,1 — θ)u e

C"(Rn) Π^f2(Rn)f A(a0, θ)u = f - A(a0,1 - θ)u eU*(Rn)n£?z. Hence u^C°°)(Rn)

by Al). Set a'Q(x,ξ) = ao{x,ξ) - aQ{oo, ξ) and dϊ(£) = βo(oo,f). T h e n A{a'0)u<=&.

Indeed A{a'o, θ)u G C°°{Rn) by A2 and A(a'Q,l - θ) e C°°(i?n). Consequently

A(aX)u = f — A{ai)ue£f (resp. flL). Setting g=f-A{a'0)u, we get (9). T h e

proof is complete.

Remark 12. T h e above u belongs to ϋ» by (9).

so) Here a°0(x,ξ)=:aQ(x,ξ).
3 1 ) I n t h e following we will always denote a p a t c h function by θ.
3 2) Precisely CL{^Λ)^S^Z. f°r each fixed x. In the sequel we will simply write as
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Now we will study the operator A defined by (3). First we give

Remark 13. (Maximum principle) Suppose that u(x0) = sup u{x)

(u(x0) = IΏΪU(X)) for real function u^&. Then M Ξ O or Au{x0) < 0 (resp.

^ ( # 0 ) > 0 ) . From this we see that u==0 provided Au = 0 for w ε ^ .

LEMMA 17. Let A be a operator defined by (3) with a Levy measure n{x, y)dy

satisfying nΐ)^n4) for 0 < a < 1 or 1 < α < 2. Then there exists a unique solution

v^& of the equation

(10) Aυ = /

jfar tf^ry / e i ΐ o provided n^S.

Proof Let #(#,£) be the one defined by (5). Then #(#,£) satisfies al)^

a&) by Lemma 14. Hence, setting ao(x,ξ) - a{x,ξ)l \ξ\a, α o (a;,?)Gj/; and

satisfies <z2)~β4). We will prove this lemma dividing into steps.

step 1. Let u be a function of the form ^(5) = ^ ~ 1 ( 0 ( )/̂ o( •))(£), where

Define

(f
Then t e ^ . Indeed, since y(f) = ίί(f)/|ίΓ, we have

tf(ξ))(x)+^-K{l-Q{S))g{&lf {&)(*), where Q(f)e^r such that Q(ί) = 1 on

some neighborhood of the origin. The first term belongs to J& using

Riemann-Lebesgue lemma repeatedly. The second term also belongs to

J because g&H*. Hence v^Jff.

step 2. For every given / e J?f2(Rn) there exists a unique solution

Rn) of the equation A(ao)u = / . This is proved as follows. Since the

index of A{a0) equals to zero by Lemma 15, we have only to prove

ker A{a0) = {0}. If A{ao)u = 0, then u(ξ) = ̂ ΰ t KtOKfl for some g^S^

by Lemma 16. Let υ be a function defined by (11) for the above u. Since

J by the result of step 1, we have

(12) Aυ(x) =

by (7). Noting that jrψ) = u{ξ)l\ξ\a, it follows from (12) that Av{x) =

^t"1{a0(x9ζ)ύ{ξ)) — A(ao)u(x) = 0. Therefore, using the remark 13, we have

v = 0, which implies &Ξ=0. Hence ker^4(β0) = {0}.



MARKOV PROCESSES 209

step 3. For a given / e i £ o we let u^^f2{Rn) be a solution of Λ(aQ)u = f

in the step 2. Then the function v(x) defined by (11) for u belongs to J$

and satisfies Av = f, as is shown in step 2. Thus the proof of Lemma 15

is complete.

Remark 14. Let G be a operator: H*> -+ J$ defined by

(13) G : / € = # . - > ι / e ^ ,

where Av = — / . Then G maps iί» into ^ continuously.

By the closed graph theorem we have only to show that G is closed.

Let {fn} and {vn} be sequences such that fn-±f in H* and vn-ϊv in _ ^

respectively. Since we see that lim Avn(x) = Av(x) for every x<=Rn, it fol-

lows that — f(x) = — lim fn{%) = Av{x), which implies Gf = v.
n~> -j-oo

Next we will give a kernel representation of the above operator G.

For the symbol a(x,ξ) of A we choose a sequence {e/aj, £)} .7=0,1,2.... such that

^0(a?, £)β(a?, ξ) = 1
33)

Σ (i/r!)3 t

r«,(a? f ί)Z>5β(*,f) = i , r = (r l f ,rn).
J,r

Then ej(x,ζ)Gj#la-j for each fixed a; and satisfy a2). Let us fix a function

9(£)eC%ftn) such that φ{ζ) = 0 for | ί | < l / 2 and 9(ί) = 1 for | ί | > l . We

choose a sequence 1 = t0 < tx < tz < -> + 00 such that

(14) \D'xDΪ(φ(ζltj)ej(x, ζ)) | ^ (1/2 )̂ | £ | — - H

for | ί l ^ 2 ^ , |r| + |i3|^i. Define

J2φ(lj)j(,), Ek(x,ξ)=

Then, for a fixed patch function θ, A{a,θ)A{Ek)-I and A{Eh)A{a,θ)-I have

order — fc — «, fc = 0,1,2, , + oo. (See Hόrmander [8].) Let us set

(15) Lj(x,z) = \ ji<z i>ψ(ξltj)ej(x,ξ)dξ.

If we fix P{z)^& such that P{z) = 1 on some neighborhood of the origin,

then we have

33) dlf(ξ) implies - ^ r d / l r ' f(ξ)
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(16) Lj(x,z) = l)(x,z)P(z)

where /}(a?,z)ej^+i-» for each fixed x and l){x, z) EΪ C°{Rn x Rn - {0}),

l2

j{x,z)(=Ca{RnxRn). Moreover, for each multi-indices T, β, (Dxy(Dz)
βl*-(x,z)

is bounded on RnxRn. If we set

we have

(17) Λ(Ek)f(x) = J ^ t f (ifc)(*, a? - y)f(y)dy, / e ^

On the other hand, if we set

(18) ίΠPφ, a) = ί ^ ^ ( α , £)</£, k>:n,

we can prove that K^\xiz)^Ck~n{RnxRn) and bounded on RnxRn

9 because

for each multi-indices β, ϊ there exists a constants C(k, β, ΐ) such that

DtDr

ξEk{x,ξ) <C{k,βJ)\ξ\-a-k for large |f|. Moreover we have

(19) A(Ek)f(x) = \ nK?>(x, x - y)f(y)dy, f^&.

Next we will prove that A(a,l — Θ) has order — oo34). For & e ^ , set

vλ = A(a\ l-θ)u and v2 = A(a~, l-θ)u, where af{x,ξ)-ct{ζ) and β°°(ί) = β(oo f).

Since 02(z) = cΓ{z){l — θ{z))ύ{z), it is clear that A(cΓ, 1 — θ) has order — oo.

Set a'0{x,ξ) = ar{x,ξ)l\ξ\a and let ά'0(%9ζ) be the Fourier transform of a'0(x, ξ)

with respect to x. Then it holds, for each fixed real 5, 5'

(20)

( i + l ί l 2 ) 2

Using Peetre's inequality, we have

(21)

Because of the fact that «$(»,?) belongs to £f uniformly in ξ we see that

for any power p

34) Since a(x, ξ) becomes irregular at the origin with respect to 6, we cannot refer to the
result of pseudo-differential operators directly.
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(22) \a'0(y-ξ,ξ)\^ M

where M is a constant which is independent of η, ξ. Combining (20), (21)

and (22) with p large, we get

which implies that A(a\ 1 — θ) has order — oo.

Now, if we set L°° = A{a, Θ)A(E) — I, L°° has order — oo as mentioned

before. Since G maps H^ into & continuously by Remark 14, GA{al—θf )A{E)

and GL~ maps H^ into J%? continuously. Hence, using Schwartz kernel

theorem, we see that there exists a bounded kernel Kz(x,y)<=Cco{RnxRn) such

that

(23) (GL- + GA(a, 1 - θ)A(E))f(x) = \RnK*{

Since A(a)A(E) = 1+ IT + A{a, 1 - Θ)A(E), we have

(24) - Gf = (A(£) + GLOT + GA(af 1 - θ)A(E))f, fe&r.

Combining (17), (19) and (23), it follows from (24) that

(25) - Gf(x) = \Rn {Kr(*, x - v ) + K?(x, x - y ) + K*(x, y)}f(y)dy,

for every k^zn.

Consequently we have

L E M M A 1835). The operator G defined by (13) has a kernel representation

(26) Gf{x)=\ G(x,y)f(y)dy,
J Ft

where G(x,y) satisfies GB), GC). Furthermore G{xfy) is C°° except at the diagonal

set.

Next we are going to study the properties of the above G{x,y).

LEMMA 19. G{x,y) satisfies

Gl) if we set Gf{x) = \ G{x9y)f(y)dy9 G maps Cκ{Rn) into C0{Rn);

G2) for every nonnegative f^Cκ{Rn) such that f m 0, Gf>0;

3δ) We assume n ^ 3.
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G3) G satisfies the weak principle of the positive maximum; in other words,

if m (= sup G/(α?)) is positive for real f^Cκ{Rn)9 m equals to sup Gf{x), where
%<=Rn a εS

S= {x; f(x) > 0}

G4) G{x<9y)& \x~y\a~n on Rn.

Proof Gl) follows immediately from GC) and the fact that

for f&& by the definition. We prove G2). Let / be a nonnegative, non-

constant function belonging to £p. If inf Gf{x) =/Gf{xQ) for some xo^Rn,

then AGf{x0)>0. On the other hand AGf{x0) = - / ( α ? 0 ) ^ 0 . Hence Gf

cannot attain the infimum in Rn, which implies Gf > 0 everywhere. Here

let us note that G(x,y)^tO by using the continuity of G{x,y) except at the

diagonal set. Next we prove G3). Suppose that m>suρG/(aO for / e j ^ .
xt=S

Then, since Gf^C0(Rn), there exists a point xo<=Sc such that m = Gf(x0).

Then AGf{x0) < 0 by the maximum principle of A (see Remark 13), which

contradicts to the fact that AGf(x0) = — f(x0) ^ 0. Thus 6?3) holds for

/ e j ^ . We can prove that G3) also holds for / e Cκ{Rn), because there

exists a sequence {fn} of functions in & such that / n - > / and Gfn~^Gf

uniformly on Rn. Finally we will prove. G4). Set

Then, for each fixed x, gx{z — y) is a Green function of a Levy process on

Rn whose exponent ψ(ξ) is — **(&, f) and gx{z — y) & \z — y\a~n, \z — y\->0

as in Lemma 13. Moreover we can prove gx(z)<E.Ca{Rnx(Rn — {0})) on the same

way as in the proof of a2) in Lemma 14. Hence, using the homogeneity of

gx(z) with respect to z, for each fixed compact set Q there exist constants

Nί>:N2>0 such that

(27) N2\z\a-n^gx(z)^Nί\z\a-n

for every X<ΞQ a n d z(ΞRn. Since -L0{x,z) = gx(z)+^-1{{l—<p{ ))xlla{x9 -)){z)

and the second term belongs to Cco{RnxRn)f we see that for some d > 0

(28) -±-N2\z\a-n^~ L0(x,z)^2Nί\z\a-n, XΪΞQ, \z\<δ

by (27). Combining (28) with (25), we get

G{x,y)tt \x -y\a~n, \x-y\-+0.
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Thus the proof is complete.

Proof of Theorem 8. By the properties Gl)~G4) together with GB), GC)
we can construct a Markov process X on Rn whose Green function is G{x,y)
in Lemma 17 by using Theorem 1.1 in [13]36). Further it has been proved
in the above Theorem 1.1 that {Tt} of X is strongly continuous on CQ(Rn).
From the properties Gl) G2), G4), GB) and GC) it follows that R2) holds
for X by Lemma 1 in [15]. The proof is complete.
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