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ON PROJECTIVE DIFFERENTIAL EQUATIONS ON

COMPLEX ANALYTIC MANIFOLDS

HISASI MORIKAWA

Introduction.

Linear differential equations have been studied more throughly than any

other class. They posses a group of characteristic properties: the invariance of

linearity by linear transformations, the linearly dependence of solutions on their

initial values, e.t.c. The next simple type of differential equations is quadratic

type

dy n n

~-^r~ = Σ aiUh{u)yιyh+ Έ^ί.iWVi + a^u)
ΰ u λ l,h = l 1 = 1

The totality of solutions of a quadratic type of differential equations is too big

for the standard of our knowledge, so we should choose a nice properly defined

family of solutions on which a reasonable theory can be expected. The pro-

jective point of view, on which we shall be concerned with in this paper, is a

standard way to pick up compact family of solutions.

Before to interpret the main idea we introduce some terminologies briefly.

M denote a connected complex analytic manifold of dimension r. A holo-

morphic linear differential equation of rank n on M means a system of

differential equations for y = (yl9 , yn)

dy — yΩ =0

where Ω is an nxn-matrix whose entries are holomorphic differential 1-

forms on M. A holomorphic projective differential equation of rank n1) on

M i s a system of differential equations for y = (yθ9 yl9 , yn)

y t\dy \-ω{y) =0,
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χ) We change the terminology in [3].
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18 HISASI MORIKAWA

where

with holomorphic differential 1-forms ωijuh on M. The projective differen-

tial equation is equivalent to the next overdetermined system of partial

differential equations

A projective solution is the ratio [<po(u) : : ψniu)] of a non-vanishing

solution {ψo(u), , 9n(^)) of the equation. The initial variety WUo at a

point &o is defined as the set of all the point w = [w0 : '. wn] in the

projective w-space such that one can choose a formal power series solution

{ψM9 , φn{u)) satisfying the initial condition [φo(u) : : φn{u)~\ = [w0 :

• : Wni at u0.

It must be, first of all, notice that for a holomorphic linear equation

of rank n dy — yΩ = 0 we can associate a projective equation of rank n

for (2/0,2/) = (2/o, 2/i, , 2/J

(2/0, v)A(dy09 dy) - (y0, y)A(0, yΩ) = 0

This equation is equivalent to the pair of equations

2/o 2/o

and

yAdy — yAyΩ = 0 .

The solutions of the linear equation dy — yΩ = 0 correspond bijectively to

the projective solutions [1 : φ^u) : : φn(u)'] of the projective equation

with non-vanishing first component φo{u) and the projective solutions of

yAdy — yAyΩ = 0 are the rations tψι(u) : : ψn(u)] of non-trivial solution

(ΨiM, , Ψn{u)) of the linear equation. This means that linear differential

equations may be regarded as special type of projective differential equations

in some sense.
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We are now able to explain the characteristic properties of a holomorphic

projective differential equation on M

VAdy --^ω(y) =0

which correspond to the fundamental properties of linear equations :

I INVARIANCE OF PROJECTIVITY : If φ is a solution, then ψa is a

solution of

VAdy — -γ {2yA{ya)~ίda) + ω{ya'ι)af\ά\ = 0

for any holomorphic everywhere non-singular (n + l)x(wxl)-matirix a.

II UNIQUENESS AND ANALYTICITY OF PROJECTIVE SOLUTIONS: For each

point w = [w0 : : wn~\ in an initial variety WUQ there exists a unique

formal projective solution [φo{u\uo,w) : : 9n{u\uQ,w)\ satisfying the initial

condition [φo{uo\uQ9w) : : φn(u0\u09w)] = [w0 : : wn~\ and moreover the

projective solution [<po{u\uo,w) : : φn(^\u0,w)'] is analytic everywhere on

M, i.e. it can be analytically continuated freely on M.

III RATIONAL DEPENDENCE OF PROJECTIVE SOLUTIONS ON THEIR INITIAL

CONDITIONS :

If an initial variety is not empty, then all the initial varieties Wu are

projective varieties in the projective n-space which are biregularly and

birationally equivalent each other such that the equivalence of WUo to Wu

is given by means of the projective solution

w = {w0 : : wn]-ϊ[<Po(u\uo,w) : : φn{u\u0,w)"\,

where the equivalence, of course, depends on the path of analytic con-

tinuation.

IV INVARIANT CASE: Assume that i) M i s simply conneted, ii) a

connected complex Lie group G acts transitively on M9 iii) the

differential forms 6 ) ^ : ^ ( 0 ^ / , j , I, h^Ln) are invariant by the action of

G. Then for a given point u0 on M there exists a holomorphic group

homomorphism p of G into the group of automorphisms of the initial

variety WUo such that
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\.9o(g'1Uo\uQfw) : : φn(9'1uo\uθ9w)'] = p(g)(w)

Notations.

M : a connected complex analytic manifold of dimension r9

En+i : the vector space of complex {n + l)-row vector,

Pn : the complex projective n-space whose points are ratios [a0: : #w]

of non-zero vector (a09 , an) in En+lf

En+1/\En+1 : the exterior product of En+i with En+l9

«Λ« : the exterior product of a with a with a where a is an endo-

morphism of En+1.

§ 1. Projective differential equations and projective solutions.

Though we have already touched on several concepts in Introduction,

we repeat here the precise definition of fundamental terminologies.

DEFINITION 1. A holomorphic projective differential equation of rank n on M

is a system of differential equations for y = (yθ9 , yn)

(1) yΛdy--±-ω(y) =0,

where

{yAdy)ij =-~-(yidyj — yjdyi),

n

<*)(y)ij = Ύ^ωijMhyιyh (o^i9 j-^n)

with holomorphic differential 1-forms ωij;ιh9 0<f , /, /, h<n on M.

For each holomorphic functions vector ξ(u) = {ξo{u)9 , ξn{u)) the nota-

tions ξ(u)Adζ(u) and ω(ζ(u)) are differential 1-forms with values in the vector

space En+1AEn+1.

DEFINITION 2. The inhomogeneous expression of the projective differential equation

(1) means the system of holomorphic differential equations for the quotient

(2)
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which are obtained from (1) by dividing by the square of yt (O^t < n ) .

We have another expression of (1) as a usual system of differential equa-

tions plus a system of algebraic relation as follows

n

(3) dyij = Σ <»ij .ihViiyjh

(4) Vu = 1, VijVjic = Vac (0 ̂  i, j , k < n).

DEFINITION 3. A projective solution of (1) is the ratio [φ0 : : ψn\ of a

system of a non-zero solution [̂ 0> •> pΛ) of (1).

This definition makes sense by virtue of the next proposition:

PROPOSITION 1. If {φ = φ09 , ψn) is a solution of (1) and f is a holo-

morphic scalar function, then the function vector fψ = (fφ0, , fψn) is also a

solution of (1).

Proof Since φf\ω = 0 and ω{fφ) = f2ω{φ), we have

(fψ)Ad(fφ) - -jrω(fφ) = f<pΛ(dfφ + fφΛfdφ - - | - Pω{ψ)

= (fdf)φAφ + f2 [<PAdφ - -i-ω(^)) = 0.

DEFINITION 4. The initial variety, denoted by WUQ, of (1) at a point u0

of M is the subset in Pn consisting of all the point w = [w0 : : wn] such

that one can choose a formal power series solution (φo{u), , φn(u)) of (1)

satisfying [φo(uo) : : φn(uo)] = [w0 : : ιvn\ where formal power series

mean those with respect to local coordinates of M with the origin at u0 and

Ψi(u0) mean the constant terms of ψί(u) respectively.

PROPOSITION 2. (Invariance of projectivity). Let a be a holomorphic

{n + l)x[n + l)-matήx such that det a does not vanish on M. If φ is a solution

of (1), then ψa is a solution of the next projective differential equation

V Ady ί- {2yMya~1da) + ωiyoΓ^aAa] = 0.

Proof Replacing ψ by (φaja'1, we see that

ψAdψ τ^ω(φ) = (φa)a-1
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= (φa)a~1 f\d{ψa)a~ι — (φa)a~ι/\{φa)a~ι da a"1 — ω{{φa)a"1

\{<pa)Ad{φa) - -\~{2{φa)K{ψa)a'1da + -\-ω{{φa)a-ι)af\a

This proves Proposition 2.

§ 2. Analyticity of projective solutions.

This paragraph is the main part of this paper and contains a rather long

process of the estimations of coefficients of power series solutions of projective

differential equations.

THEOREM 1. {Uniqueness of projective solution). Let w = [w0 : : wn] be

a point in initial variety WUQ of a holomorphic projective differential equation. Then

the ratio l<po(u) : : φn(u)~\ of a formal power series solution {φo(u), , φn(u))

satisfying [φo(uo) : : ψn{uύ)1 — \wQ : : wn] is uniquely determined by (uo,w).

Proof. By virtue of Proposition 2 we may assume that w0 = 1 without

loss of generality. Choosing a system of local coordinates tu ,tr on M

with the origin at u0, we express ω(y) explicitely

Σ Σ g

with local holomorphic functions gλ tijuh(t) Let {φo{t), •• ,φn(t)) be a

formal power series solution of y f\dy —ω(y) = 0 satisfying the initial con-

dition [̂ o(O) : : <Pή{0) = [w0 : : wn~\. Since φo(O) j=0, the quotients

ΨiWIψoit), , φn{t)lψo(t) are regarded as formal power series in tl9 , tr

and (<Pi(t)/<Po(t), ,<pn{t)l<Po{t)) is a formal power series solution of the system

of partial differential equations

dz n

"Λ7~ = Σ7 Σ giiOt ;oι(t))Zι + gλ;oi;oo{t)

Successive application of these partial differential equations makes possible

for us to determine all the higher derivatives of Ψi(t)lφo(t) (l^Li^n) at the

origin from the given initial value (wl9 9wn). This means the uniqueness

of the formal power series solution {ψι{t)lφo{t), - ,φn(t)lφ0(t)) and thus the

ratio [ψo(t) : : φn{t]\ is uniquely determined by (u09w).



PROJECTIVE DIFFERENTIAL EQUATIONS 23

DEFINITION 5. For each point w in the initial variety WUQ we denote

by

[φ(u\u09w)] = [φo(u\uo,w) : : φn(u\u09w)']

the unique projective solution in Theorem 1 satisfying [<p(uQ\u0,w)] = w and

call it the projective solution with the initial point w at uQ.

Let us recollect the definition of an associated convergence radious of

a power series

<P(t» ,*r) = Σ ah ιrtγ- . - t ϊ
ιlt..., /r=o

w h i c h is a system (pl9 9pr) of positive real n u m b e r s such t h a t t h e poly-

disk \tλ\ < pλ(l^λ^r) is a m a x i m a l polydisk w h e r e φ(tl9 ,tr) converges

absolutely.

CAUCHY-HADAMARD FORMULA2). An associated convergence radious (pί9 , pr)

of a power series

, Σ ah lτt\y.'tϊ

is characterized by the relation

(5) lim(K ιAPΪ -PΪ)h+-+l' =1.

The next elementary result is very powerful for the estimations of co-

efficients of power series solutions of differential equations of quadratic type.

LEMMA 1. Let p be a positive real number less than one and Ytl %r

(Ii9 •> lr = 0,1,2, •) be non-negative real numbers such that

To o ^ l

and

{lλ + 1 ) ) \ , . . . £ , _ ! , lχ + Uh+1 lr

^=2-1 2-1 r ' Pl-Ql Pr-Qr' Ql' -'Qr

(/l, , / r = 0 , 1 , 2 , •).

2) See standard text books on several complex variables, for an example [2].
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Then

, i r < ( - { 1 ^ p ) r ) h + ' " l r ( / „ ,/ r = 0 , 1 , 2 , •)•

Proof. Let us introduce an auxiliary system of positive real numbers

atl ιr(lγ, , lr = 0,1,2, ) which are defined by

(
ai> ' ' /,!• Ίrϊ V I - p

(/„ ,lr =0,1,2, •)•

They are also defined by the power series expansion

1g(t) =
1 - (1 - p)-r(tt + +tr)

This function g(t) satisfies the partial differential equation

dg{t) _
~ PY

Comparing the coefficients of t^ tι

r

r of the both sides, we obtain the

relation

h-i, h + i,h+ι ιr

{ll9 . ,/ r =0,1,2,

Since (1 - /o)"1 > 1

and

ί o r

we get inequalities

(**) α t l ί r ^ « Λ l Λr for ^ < / A

Let us now prove inductively

(•**) Th lr^at lr (ll9 - ,lr = 0 , 1 , 2 , •)

T h i s holds ev ident ly for (0, ,0). A s s u m e this i n e q u a l i t y for (hu ,hr)
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satisfying hλ^lλ {l^λ^Lr). Then by virtue of (**) and the assumption of

the induction it follows that

r-Pl Vr

r-Pl Pr/y, τ ff

«ι-β l i r- ί r« β l , ,

Hence by virtue of the equality (*) we have

and thus

?li,...,h-l,h+l,h+1 lr^Cίlχ l j , _ l f l ; , + l , l i + 1 lr

This proves

Tkl fcr^α*lf...,jfcr (*i, ,ftr = 0,1,2,

On the other hand

Z i ! . . mlrl

and

£ μ Aiί Ar! /i! / r !

Hence we can conclude that

y i + ' " + l r (ll9 ,/r = 0 , 1 , 2 ,

The next is the key stone result in this paper with which we can prove

the analyticity of projective solutions.

P R O P O S I T I O N 3. Let gvr.ικ(t) (l^λ^r l^i ^n ;0^l,h^n) be holo-

morphic functions in a neighbourhood of the origin t = (0, ,0) and let φ(t) =
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{<Pι(t)9 , ψn{t)) be a formal power series solution in t = (t19

of partial differential equations

, t-t) of the system

-= Σ QiM
tχ l,h = l

Assume the following relations

and

, Max
1 ^

(Λ, , / r =0,1,2, . •),

where K is a real number. Then the formal power series <pt{t) (l^Li^Ln) converge

absolutely in the polydisk

sup I tλ\ < 2~r{n + 1)~2K~2.

Proof For the sake of convenience φo(t) denote the constant 1. Putting

Ψt(t)= Σ ctill ιrt[*- tV (O^i^n),
11, •• , /j.=o

we shall estimate \ct Λ ι ιr\ by the induction on ll9 , / r :

\Ci;il9 * ' " , lλ-19 h + 9 lr\

h\- . / r ! dt\-

1 dι

lλ + l II / i ! lri d t \ i

1

QλMMhΨlΨh
o

\1
)

/it

(n + I)2

/̂  + 1

Max k , ; ί ) 1 . g i , Max
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Put

Th,...,ιr = ((» + l ) 2 ^ 2 ) - ^ - - ^ ^ - 1 Max \cvll I p |

(Λ, . . , / r = 0 , 1 , 2 , . . •)

and

9 = ((n + l) 2 ^)- 1 .

Let us prove the relations in Lemma 1

and

i,iz+i ιr

Zj r x ' V\-Q\ Pr-Qr' Qit ,qr

(Λ, , / r =0,1,2, . . . ) .

Since c i ; o o = ΨiW (O^i^n) and Max |^i(0)| = 1, we have the first rela-

tion To o=K~ί^l From the above inductive estimation the second in-

equality is obtained as follows

l ) 2 χ 2 r i l - . - ^ - i ^ - i M a x | c j ; i l i .

-^ ιr-^R-\n + I)2

Max|c, ; ί ) 1_? I P r _ ? J | , : ? 1 J

= {(n + l)2K2)-ιi ι -iK-\n + I)2 Σ 2 Kh*---+h~Pi ί>,+i
0 £ l

r
Pί-qi,...,pr-Qr' 5

= • Σ3 Σ

Hence we can apply Lemma 1 and conclude that
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- yf r(** + l) 2# 2 \'i+-+ 'r
I (1 - (n + l)-2ίC-1)r J

( / „ , / r = 0 , 1 , 2 , •)•

_1_

Since lim K ι — 1, the above estimation implies

By virtue of Cauchy-Hadamard formula this means that ψi(t) —

cίUί iTt[
l9 ίr" (l<i<n) converge absolutely in the polydisk

sup | ί 2 | < ( 2 r ( n Γ)

PROPOSITION 4. Let y f\dy — —^~ ω(y) = 0 be a holomorphic protective differ-

ential equation on M. Then for each point u0 on M there exists a neighboruhood

UUQ such that the projectίve solutions [φ(u\uo,w)] {w^WUQ) are holomorphic in UUQ.

Proof. C h o o s e a sys tem of local c o o r d i n a t e s (tl9 tr) of M w i t h t h e

o r i g i n a t u0 a n d express expl ic i te ly

ω(y)ij = Σ Σ gχMjUh{t)yιyhdtλ (0</, j^n).
λ l lh 0

with holomorphic functions gλujuh{t) {l^λ < r 0 ^ i, j, I, h^n) in a

certain polydisk

SUp \tλ\<η

By virtue of Cauchy-Hadamard formula we have the estimation

Hence we can choose a real positive number K such that

and
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Let w = [w0 : : w] be any point in the initial variety WWQ. We may

assume without loss of generality that wίo = l and \wj\ ^ 1 (O^j^n). Let

9<Pn(t)) be a formal power series solution such that

and

Then φio(t) {0<i<n) satisfy the conditions:

Max l^ί(0)[ = 1

and

£o9i.iOttπh()φι{)φh() ( f0)

Hence by virtue of Proposition 3 we can conclude that ψi(t) (O^Li ̂ Ln)

converge absolutely in the polydisk

sup 1̂ 1 < (2rK\n + I)2)"1.

This proves Proposition 4.

THEOREM 2. (Analyticity of projective solutions).

Let yί\dy — —Fr~ω(y) = 0 be a holomorphic projective differential equation on a

connected complex analytic manifold M. Then the projective solutions [φ(u\uo,w)]

(we WUQ, M O E M ) are analytic everywhere on M, i.e. they can be freely analytically

continuated on M.

Proof This is an immediate consequence of the previous proposition.

Let σ : [0,1] -> M be any path starting at uQ. Since the image σ([0,1]) is

compact, we can choose real numbers ζlf , ζm such that 0 = £i < £2<

< ξm = 1 and the neighbourhoods Uσ(ξj)9 , Uσ($my. given in Proposition 4 cover

the image <τ([0,1]), where we may assume that Uσ(ζi) (1 < i ^ m) are simply

connected open sets. We may assume that <r(£i+i)^^cet) Then for each

point Xi in the projective solution [φ(u\σ[$i)9 xj] is analytic in U^. Let
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us define a system of points (vl9 9vm) induct ive ly by

υι = w9 vi+ί = [φ(σ((ςi+ι)\σ($i)9 Vi)] {l<i<tn — 1).

This make sense, because [φ(σ(ξi+ι)\σ(ξi)9 vt)\ (l<Li<m-*l) are points in

Wσ(ξί+1) respectively. This means that the projective solution [φ(u\σ{ζi+1)9vi+1y]

is the immediate analytic continuation of [φ(u\σ(ζi)9vi)'] along the path σ,

therefore we can conclude that the projective solution [φ{u\u09w)'\ is analytic

everywhere on M.

COROLLARY. Let {φQ{u)9 , ψn{u)) be a formal power series solution at u0

such that (<Po(uo), , φn(uo)) Ψ (0, , 0). Then the ratio [φo{u) : : φn(u)]

is analytic and [φo(u) : : φn(u)] ψ [0 : : 0] everywhere on M.

Proof. Put w=[<Po(uo) : : φn(u0)ί Then the ratio [φo(u) : : φn(u)]

is the projective solution [φ{u\u09w)].

§ 3. Initial varieties.

We shall show that, if an initial variety WUo is not empty, all the

initial varieties Wu(u^M) are projective algebraic varieties which are bi-

regularly and birationally equivalent each other and the equivalence are

given by mean of projective solutions.

PROPOSITION 5. Let y/\dy—^-ω(?/) = 0 be a holomorphic projective differ-

ential equation of rank n on M and let u0 be a point on M such that WUQ is not

empty, then WUQ is a projective algebraic variety in Pn.

Proof We shall construct the homogeneous ideal associated with WUQ.

Choosing a system of local coordinates (tί9 , ί r ) of M with the origin at

u09 we may consider the projective differential equation as the following

system of partial differential equations

with holomorphic coefficients g\ijih(t). We mean by A the local ring of

formal power series in tl9 ,tr and mean by m the maximal ideal of A.

Let Y09 , F n be indeterminates and DiΛ9 9DUr be the derivations of

d e f i n e d b y
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for

- ) = Έ glj
s l h Q

We define operators Eit(0^i ^n l^λ^r) acting on the polynomial al-

gebra A[Y0, , Yn] as follows:

r)F(t)

E(<i ( Σ F, (/, F)) = - ^ p - + Σ IT'DUYΊ'FAt, Y)),
1 = 0 aτλ 1 = 1

where Ft{t,Y) means a homogeneous polynomial of degree / in Fo, *,Yn

(I =0,1,2, .)•
Denote

HtJkM,Y) =

LiJtμμ(t,Y) = YKDUλDίtμ-DUμDίtλ

Then Hijkfλ(t,Y), Lίjίλμ(t9Y) are homogeneous polynomials of degree three

with coefficients in A. We mean by $ί the smallest homogeneous ideal of

A[YQ, ,F n ] such that i) Hijktλ{t,Y\ LiJtlμ(t,Y) (O^ί, ;,ft^w l < ^ , ^ ^ w )

are contained in a and ii) £ M 9 l c ^ (0< / ̂  w 1 <λ <r). Let ¥ be the

homogeneous ideal of C\Y09 ,^n] given by

where Ajm is canonically identified with C, We denote by V the projective

algebraic variety (reducible in general) in Pn associated with the homo-

geneous ideal 2L Then our goal is to show WUQ=V. Let w=\_wQ : : wn]

be any point in WUQ and (φo(t\υ), ',φn(t\v)) be a formal solution of the

equation such that φQ(0\w) : • : φn{0\w]\ = [wo : : wn~\. Then, since

Ψi{t\w) Ψj{t\w)

dψj{t\w) dψj{t\w) = Σ flrί

it follows
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•Hjkl,λ(t,<Po(t\w),

= <Pj(t\w)

Ψι{t\w)

dψk{t\w) dψι{t\w)

+ <Pι(t\w)

ψj{t\w)

<Pj(t\w)

dtλ

Ψk{t\w) Ψι{t\w)

<Pk(t\w) Ψι{t\w)

d<Pj(t\w) dφk(t\w) d<Pt(t\w)
dtλdtλ

dtλ

and

Lίjtλμ(t,φ0(t\w), -

d d

Ψι(t\w)

dφt{t\w)
dtλ

Ψj{t\w) Ψk{t\w)

d<fj(t\w) dφk(t\w)
dtλ

Ψλt\w)\ =

Ψj{t\w)

dψj{t\w)
dtλ

( 0 < y , k, l^n l^λ^

dtλ dtμ dtμ di

The homogeneous ideal % is generated by

(0 <; t, , k, i!, , in < n 1 < A, A«, λi, , ^

and for a homogeneous polynomian F(t,Y)

), ,<Pn(t\w))

(0

m = 0,1,2,

, . -,φn(t\w)))

w 1 ̂  t < r)

This shows that F(t9φ0(t\w), ,9n(*Iw>)) = 0 for every i^ in 51 and thus

F{09w0, , wn) = JF(O, ^o(O|w), * 3^n(0|w)) = 0 for every Fin $. This means that

w = [w0 : : wn] belongs to W, namely WUQaV. Let us prove the other

direction "WU{pV. Let w = [w0 : : tί;n] be a point of F and wt be a

non-vanishing component of (w09 , w j , where we may assume that Wt — l.
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We denote by % the ideal of A Γ-^- , , - | ^ Ί
oo

U {YiιFι\Fι are homogeneous polynomials of degree / in 91}. Then

«t, is the smallest ideal such that i) Y~3Hjkl,x(t,Y) (DitiDitμ - Di%μDiti

(O^y, k, l<n ;1<A, μ^r) are contained in % and ii) DitX%a%

We define formal power series

Since

we have

X

\y 1 ΓΓίPi-Qi . . . Γ)Pr-Qr YI

(J>i-?i)! (j>r-ffr)! L"'-1 ^ < > r F

1 Γ dV *ι<-»χ--*' ,

^ Γ ^Qfl + +ffr

; l < 2 < r /„/«, ,/ r =0,1,2, . . . ) .
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This means that

dtλ ΊMO'

H e n c e b y t h e i n d u c t i o n o n ll9 , / r we h a v e

V«~+<>φJ(t) _ Γ . Y

dtιs"'dtι

r> ~ ί i Λ * r r

( 0 < y < n ; /„ ,/ r =0,1,2, • . •)

Since ^ ( 0 = 1 and [£>{,v •C{rf.(rr
3fli/*.1(/,y))](t.F).(o.«I) = 0, it follows

ΨAt) φk{t)

dt. dtχ Λ=0

= ΓDJ?, z><:r(r73(V,.r?z>M ^ - Y,Y\DUI

This means that

dφk{t)

dtλ dt,

Namely (Φo{t), ,φn{t)) is a formal solution of the projective differential
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equation with the initial value ( 0̂(0), , <pn{0)) = (w09 , wn), and thus the

point w = [w0 : : wn~\ belongs to WUQ. This completes the proof.

We shall prove the main theorem of this paragraph which is a direct

consequence of the above results and Chow's Lemma3).

THEOREM 3. Let yΛdy--^-ω(y) =0 be a holomorphic protective equation of

rank n on a connected complex manifold M. If the initial variety WUQ at a point

u0 is not empty, then initial varieties Wu{u^M)are projective algebraic varieties which

are biregularly and bίrationally equivalent to Wu. The equivalence of WUQ with Wu

is given by means of projective solutions

w -> [φ(u I Uo, w)1 (we WUo),

where the equivalence depends on the path of analytic continuation connecting u0 with

u.

Proof. Let u0 be point of M such that the initial point WUQ is not

empty. Then by virtue of Proposition 4 there exists a simply connected

neighbourhood U such that for each point w in WUQ there exists a holo-

morphic solution (<Po(u\uo,w), ,φn(u\uo,w)) in U with the initial condition

[<Po(uo,w) : : φn(uo\uo,w)] = w. Since the equation is holomorphic and

the initial variety WUo is a compact analytic subvariety in Pn, we can
m

choose a finite covering WUQ= U Wa and holomorphic solutions (φ^{u\uo,w)f

• -,af\u\uo,w)) (l^a<m) such that {φT{u\u09 w), , φCn\u\u0, w)) is holo-

morphic in Wa with respect to w. We denote by Φ(ϊu,Uo) the map of WUo

into Wu such that Φ(Tu,u0)M is the analytic continuation of the projective

solution [φ[u\uo,w)~\ along a path Tu,u0 connecting u0 with u. The above

result means that Φ{TUtUo) is a holomorphic map of WUQ into Wu. Exchang-

ing u0 with u9 we see that i) Φ(TUtuQ) is one-to-one and ii) Φ{rz}uo)°Φ{Tu,u°) =

idWuj namely Φ{Tu,u0) is a biregular equivalence of WUQ onto Wu. Since

the graph of Φ(Tu,u0) is a closed analytic subvariety in PnxPn, by virtue of

Chow's Lemma it must be a projective algebraic variety. This means that

the equivalence Φ(ϊu,u0) is also birational.

§4. Invariant case.

Let us first recall the simplest linear example: Let Λl9 9Ar be mu-

tually commutative complex nxn-matrices. Then the solutions of the linear

3) See [1].
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equation dy — 2/ Σ Aλdux = 0 are given by

r

φ(u\w) = (wί9 -,wn)exp {J]Aλuλ}.
λ = 1

The situation is similar for projective equations in the following sense:

THEOREM 4. Let yAdy—-7Γw(y) — 0 be a holomorphic projective differential

equation of rank n on a simply connected complex analytic manifold M on which a

connected complex Lie group G acts transitively on M. Assume further that the

equation is leaved invariant by the action of G, i.e. ω o zΛ (0:< f, j , I, h^n) are

invariant, where

Σ

Then if an initial variety WUQ is non-empty, there exists a holomorphic group holo-

morphism p of G into the group of automorphisms of the initial variety WUQ such

that the projective solution lφ(u\uθ9w)'] are given by

[φig-'uoluoiw)] = p(g)(w) (we WUo, g<=G).

Proof Since the equation yAdy — -^-ω[y)=0 is invariant by the ac-

tion of G9 the initial varieties Wu(u&M) coincide with WUQ. This means

that, if we denote

[<p(g~1uo\uo,w)'] = p(g)(w),

the maps w-*p{g)w are automorphisms of the initial variety WUo. There-

fore it is enough to show that the map (g, w) -> p{g){w) is an action of G on

WUQ, namely

P(gh)(w) = P(g)(p(h)(w)) (g,h<=G wt=WUo).

Since G leaves the equation invariant, [φ(g~ίu\u09w)'] is also a projective

solution with the initial point w at gu0. Hence by virtue of the uniqueness

of projective solutions we can conclude that

Muo,™)] = [φ(u\guo,w)]

Since

[φ{uo\huo,w)'] =
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we have

[φ(u \hu0, U))~] = [φ(u I Uo, [φ{u0\ hll0, w)])] (h<=G).

Hence from these relations it follows

p{gh)(w) =[^((flfA)"1«ol«o,w)] = ί(p{h~1g~1uo\uo,w)']

g^uo I hu0, ιv)] = [φig^uo 1 u0, [φ{u01 uu0,

= p(g)(p\h)(w))

(g,heiG w e WUQ).

This completes the proof of Theorem.
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