
H. Fujimoto.
Nagoya Math. J.
Vol. 44 (1971), 1-15

RIEMANN DOMAINS WITH BOUNDARY OF

CAPACITY ZERO

HIROTAKA FUJIMOTO

§ 1. Introduction.

The well-known Thullen-Remmert-Stein's theorem ([9], [7]) asserts that,

for a domain D in CN and an w-dimensional irreducible analytic set S in

D, a purely n-dimensional analytic set A in D — S has an essential singu-

larity at any point in 5 if A has at least one essential singularity in S. In

[1], E. Bishop generalized this to the case that A has the boundary of

capacity zero in his sense. Afterwards, in [8], W. Rothstein obtained more

precise informations on the essential singularities of A under the assumption

dim A = 1. The main purpose in this paper is to generalize these Rothstein's

results to the case of arbitrary dimensional analytic sets.

We consider a Riemann domain {X, π, M) with boundary of capacity

zero, namely, a triple of a connected w-dimensional normal complex space

X, a connected ^-dimensional complex manifold M and a discrete holo-

morphic map π : X->M with the following properties:

For any ZO<BM there are a neighborhood U of z0 and a plurisubharmonic

function u(x) on π~ι(U) such that (i) u{x)^Q, (ii) u{x) & — °° on any con-

nected component of π~ι{U) and (iii) lim u(xv) = — oo for any sequence {#J

without accumulation points in X if \\mπ{xv) exists in U.
V->oo

The first main result is the following

THEOREM I. If {X,π,M) is a Riemann domain with boundary of capacity

zero, then M—π{X) is of capacity zero (c.f. Definition 2.5).

We define a direct boundary point of a Riemann domain on the

analogy of a direct transcendental singularity in the theory of functions of

one complex variable (c.f. Definition 4.3). As an application of Theorem

I, we give the following theorem, which is a generalization of a result in

M.
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THEOREM I I . The projection image of the set of all direct boundary points of

a Riemann domain with boundary of capacity zero is a set of capacity zero in the

base space.

Using Theorem II, we prove Rothstein's results in [8] without the as-

sumption of dimension one. The following theorem is shown.

THEOREM I I I . Let D = DίxD2 be a domain in Cn+k{DίdCn, D2^Ck) and

S be a closed subset of Cn+k(S(zD). If an irreducible n-dimensional analytic set

A in D — S satisfies the conditions (i) there is a plurisubharmonic function u(x) on

A such that 0 ^ u{x) ΐ — oo and \imu(x) = — oo, (U) I n ( A x ^ 2 ) c S and (iii)
a -hS

there is a set P of positive capacity in Dx such that each {z = c}ΠA{c^P) is finite,

then AfλiDiXC10) is analytic in DxxCk.

In this connection, we generalize the well-known Iversen's theorem to

the case of Riemann domains with boundary of capacity zero and give some

other applications.

§ 2. Preliminaries on plurisubharmonic functions.

In this paper a complex space is always assumed to be normal unless

stated to the contrary. Moreover, we assume that all complex spaces and

complex manifolds are <τ-compact and connected.

Let X be a complex space and u(x) be an extended real-valued function

on X which permits the value — oo but not + oo.

DEFINITION 2.1. u(x) is said to be plurisubharmonic on X if (i) u(x) is

upper semi-continuous on X and (ii), for any open set W in the complex

plane C and a holomorphic map ψ : W -+C, the composite wφ : W -^-X is

subharmonic on W in the usual sense or identically equal to — oo.

As is easily seen, it holds that

(2.2) (i) Let φ be a holomorphic map of X into another complex space Y.

If u{x) is plurisubharmonic on Y, then u φ is also plurisubharmonic.

(ii) If u(x) and v(x) are plurisubharmonic on X and c is a positive real

constant, then cu, u + v and max (u, v) are also plurisubharmonic.

The following assertion was proved by H. Grauert and R. Remmert

in [2], Satz 3, p. 181.
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(2.3) Let S be a thin analytic set in a complex space X and u(x) a plurisub-

harmonic function on X — S which is bounded above. Then there exists exactly one

plurisubharmonic function u(x) on X such that ύ(x) = u{x) on X—S and it is

given by u{x) : = ίϊm u{

The assertion (2.3) implies the following

(2.4) If u(x) is a plurisub harmonic function on X and S is a thin analytic

subset of X, then we have u{x) = lim u(xf) for any a ε l .
xf-+x, x&X—S

Now, we give the definition of a subset of capacity zero in a complex

space X (c.f. T. Nishino [6], p. 232).

DEFINITION 2.5. We shall say a subset S of X to be of capacity zero in X

and write it cap (S) = 0 if we can take a countable family f Sv} of subsets

of X such that S = UVSV and, for each Sv, there exists a plurisubharmonic

function uv on a connected open set Uv satisfying the conditions that (i)

uv{x) ^ — oo on Uv and (ii) Sυc{#et/V; uv{x) = — oo}. If 5 is not of capacity

zero, it is said to be a set of positive capacity and denoted by cap (S) > 0.

REMARK. A closed set in the complex plane C is of capacity zero in

the sense of Definition 2.5 if and only if it is of logarithmic capacity zero

in the usual sense.

Easily, we have

(2.6) (i) If each Sv{v = 1,2, •) is of capacity zero, so is the union \JVSV.

(ii) Any subset of a set of capacity zero is of capacity zero.

(iii) If S is of positive capacity, the set

S' : = {x^S; cap (SOU) > 0 for any neighborhood U of x]

is also of positive capacity.

§3. A generalization of the Riemann theorem on removable

sigularities.

For later use, we shall prove

PROPOSITION 3.1. Let X be a complex space and S be a closed subset of

capacity zero in X. If a holomorphic function f on X — S is locally bounded on

S, i.e., bounded on some neighborhood of each x^S, then it has exactly one holo-

morphic continuation to X.
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Proof. Firstly, under the assumption that X is a complex manifold, we

shall show that, for each xo^S, f has a holomorphic continuation to a

neighborhood of x0. Take a sufficiently small neighborhood V of x0 which

can be written V = {\zt\ < 1, l^i^n] with a system of local coordinates

zl9 , zn defined on some neighborhood of V. There is no harm in as-

suming that SaV and S = ΌVSV, where each Sv is included in [x^Uv; uv{x)

= — 00} for a suitable plurisubharmonic function uv (^ — 00) on a connected

open subset Uv of V.

Let {<**;* = 0,1,2,...} (βW f= 0) and {ft<"> : = (&ϊ°, - ,«°); μ = 0,1,2, •}

be countable dense subsets of the sets {|w/i| < 1/2} in C and {|w i |<l/2,

2<i^Ln} in C n - 1 respectively, where we let b{0) : = (0, ,0). By Φκμ we

denote the non-singular linear transformation defined as follows;

z2 = z'2a

Then, each υκμv{zr) — uv(Φκμ{zf)) (K, μ, v = 0,1,2, ) is plurisubharmonic on

Φ7μ

ι(Uv), w h e r e z' = {z'lf ,s£). Since a n y set Fκμv : = Φ7μ(Uv)Π [vκμv{z') = —00}

is of measure zero with respect to the coordinates zr, we can find a point

(c9d) : = (c,d2, -,dn) in CxC"" 1 such that 0 < \c\ < 1, \dt\ < 1 (2^i <n)

and (c,^)$F t p for any /c, j«, y if (c,d)^Φ7μ(Uv). Consider the non-singular

linear transformation

z2 = dzWi + w2

Ψ :

zn = rfnwi + «;„.

We have new local coordinates wl9 w2f , wn which are well-defined on

W : = {\wt\ < 1/2, 1 ̂  i ^ ^}. Let ^ : = (w2, , wn) and ̂  : = (wl9w) =

(wl9 ,wn) The functions uv(wl9w) = uv(Ψ{wl9w)) defined on I f ί l Γ T O

satisfy the condition uMκ\ kw) ^-°° if {a^\ Uμ))^ψ-ι{Uv). So, w K J ^ ΐ - o o

on any connected component of PΓίΊ {w = έw} Π^H^v) because {aM} is dense

in ίlwil < 1/2}. Since
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w π sv n {w = ft^jciM^,^)) = - 00} n w n ? r w j

for any μ and v9 it is considered as a set of capacity zero in the Wi-plane. In

particular, Wf)Sf]{w2 = = wn = 0} is of capacity zero in the tc^-plane.

Then, as is well-known, there is an arbitrarily small real number sx such that

{{\w\ = sί}x{w2 = . = wn =0})ΠS = φ

and so we can find real numbers si, s", s29 9sn such that {{si^lw^^s"} x

{N2I < s2, , \wn\ < sw})ίlS = φ, where 0 < s[< Si< sf{< 1/2 and 0 < s< <

1/2 (2 ̂  / ̂  w).

Put 17 = {l^ίl < Sf (1 ̂  z ̂  n)}. We want to prove that / has a holo-

morphic continuation to U. It may be assumed that / is bounded. Con-

sider the function

l=*ΐ ζ-w, b*

Obviouly, it is holomorphic on U. On the other hand, each hμ(wi) : =

f{wι9b
{μ)) is a bounded holomorphic function on { |M>I|<SI} except a closed

set of capacity zero. It has exactly one holomorphic continuation to the

whole {|wi|<Si} (e.g. [8], p. 171), which ought to be equal to f{wu¥
μ)).

It follows that f(wl9b^)=f{wl9b^) on U - S. Since {&<*>} is dense in

{\Wi\ < 1/2, 2 ̂  i ^ n}9 we conclude f(w) — f[w) on the whole U — S. This

shows that / is a continuation of / to U.

Now, we set about the proof of Proposition 3.1 for an arbitrary complex

space X. By Xreg we denote the set of all regular points of X. Then, it

is considered as a complex manifold and SnX r e g is a closed set of capacity

zero in Xres By the above proof, / has a bounded holomorphic continua-

tion to the whole Xreg- Since X — Xreg is a thin analytic subset of X9

Proposition 3.1 is an immediate consequence of the well-known Riemann

theorem on removable singularities of holomorphic functions on a normal

complex space.

COROLLARY 3.2. If S is a closed set of capacity zero in a complex space,

then D — S is connected for any connected open subset D of X.

Proof. Assume that D — S is not connected, i.e. it can be written

D — S = A U A with mutually disjoint non-empty open sets A and D2. The

bounded holomorphic function f(z) on D — S defined as f(z) = i on Dt
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(i =1,2) is not continuable to D, which is contrary to the assumption by

Proposition 3.1.

§4. The boundary of a Riemann domain.

By definition, a Riemann domain {X, π, M) is a triple of complex spaces

X and M with d i m X = d i m M and a discrete holomorphic map π :X-+M.

In this paper, the base space M is always assumed to be a complex manifold.

Let (X,π,M) be an arbitrary Riemann domain.

DEFINITION 4.1. We shall say a sequence {xv} in X to converge to the

boundary of X (relative to M) if {xv} has no accumulation point in X and

the sequence {π(xv)} has a limit z0 in M. Such a point z0, i.e. the limit of

{π(xv)} for some {xv} converging to the boundary, is said a boundary value

of {X,π,M).

DEFINITION 4.2. An accessible boundary point of {X,π,M) is defined as a

filter r = {Uc c^I] satisfying the conditions (i) there exist a point z in M

and a fundamental system {F, ί £ / ) of open connected neighborhoods of z

such that each Ut is a connected component of TΓ'^FJ and (ii) U(^r is not

relatively compact in X

We denote the set of all accessible boundary points of (X, π, M) by daX

and put X = Xu daX- The set X has a canonically defined locally connected

Hausdorff topology such that a base for neighborhoods of each ro={Ue}^daX

is given by the system {£/,}, where

Ut : = Uc[J{r(ΞdaX there exists some F,Er with VκaU}.

The projection map π is canonically extended to a continuous map π : X-+M.

A sequence {#J in X converges to some r ^ 3aX if and only if {xv}

converges to the boundary of X and there is a continuous curve ΐ(t) (0<

/ ^ 1) in I such that 7{ljv) = xv for any v and lim^(7'(ί)) = lim π{xv).
t>0 v ot—>0

DEFINITION 4.3. An accessible boundary point red α X is said to be a

boundary point if there exists a neighborhood U of π(r) such that the

connected component Ur of π~ι(U) which gives a neighborhood U of r sa-

tisfies the condition ί/'Ππ'Hίί^)) = ^.

By definition, we see easily

(4.4) For a point r^3aX9 if π^iπir)) contains only finitely many points in

X, r is a direct boundary point.
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DEFINITION 4.5. A Riemann domain (X,π,M) is said to have the boundary

of capacity zero if each z e M has a neighborhood U such that there exists a

plurisubharmonic function u(x) on π~ι(U) with the following properties;

( i ) u { ) ,

(ii) u(x) ί - ω on any connected component of π~ι(U),

(iii) \imu(xv) = — oo for any sequence {xv} in X which converges to the
V—> oo

boundary.

EXAMPLE 4.6. (i) Let (X,π,M) be a Riemann domain with boundary

of capacity zero and D be a connected open subset of M. Then, for any

connected component Dt of π~ι{D), (Dt,π\Dt,D) is also a Riemann domain

with boundary of capacity zero.

(ii) If X is a Riemann surface of type OG (e.g., see [10], p. 429) and

ψ{x) is a non-constant meromorphic function on X, a Riemann domain

(X, φ, P) has the boundary of capacity zero, where P is the Riemann sphere.

For, if a Riemann surface X is of type OG, we can find a non-positive

harmonic funcion u{x) on X — Xo for an arbitrarily small suitable relatively

compact open set Xo in X such that \imu(xv) = — oo for any sequence {xv}

in X converging to the ideal boundary (c.f. M. Nakai [5], Theorem, p. 624).

(iii) Let D be a domain in Cn and S be an at most k dimensional

analytic set in D. If A is an irreducible analytic set in D — S and x is a

point in AnS, we can find polydiscs Ux : = {\zt\ < rif l<i<k], U2 : =

{|Zil<^ΐ> fc + l ^ ί ^ w } (r*>0) for a suitable system of local coordinates

zl9 , zn on a neighborhood of x with # = (0) such that the Riemann

domain {X, π μ, Ux) has the boundary of capacity zero, where π : (zί9 , zn)

->(zi> m

9zk) is the canoncal projection and X is the normalization of the

locally analytic set AΠ{U1xU2) with projection map μ.

To see this, we take a system of local coordinates zl9 , zn in a

neighborhood V of x with # = (0) such that the map π : (zl9 , zJ-K^u " > z*)

is discrete on Fn(^4US). Then we can find easily a sufficiently small poly-

disc U2 : = {\zt I < ri9 k + l^Li ^n] {rt>0) with the property {{zx = =

zk =0}xdU2)n(A\jS) = φ a n d h e n c e a polydisc Ux \ = {\zt\ < ri9 l<i^k]

(r<>0) such that (£Λ x 9ί/2) Π (AU S) = φ because A[)S is closed, where

U : = U1XU2GV. On the other hand, by the assumption we may assume
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that £/nSc{/ = 0} with a suitable holomorphic function f(z) on U which

does not vanish identically on A Using the plurisubharmonic function

u{x) : = log I (/•/*)(#) I on X, we can easily conclude that these polydiscs Ux

and U2 satisfy the desired condition.

§ 5. The projection image of a Riemann domain with boundary

of capacity zero.

The following theorem is a generalization of a result in [4] (c.f. Tsuji,

[10]. p. 437) to the case of Riemann domains of arbitrary dimension.

THEOREM 5.1. If (X,π,M) is a Riemann domain with boundary of capacity

zero, then M— π{X) is a closed set of capacity zero in M.

For the proof, we give the following

LEMMA 5.2. Let {X,π,M) be a Riemann domain such that π is proper and

u{x) be a plurisubharmonic function on X. If we put

w{z) : = max {u{x); π{x) = z, x<=X]

for each z^M, then the function w{z) is plurisubharmonic on M.

Proof. By the assumption, there is a thin analytic set Nin M such that

(X — π^iN), π\X— π~x(N), M — N) is an unramified proper covering space.

If we p u t π~\z) = {Xi{z), ,xm(z)} ( z e M — T V ) , t h e n w(z) = m a x u(xt(z)) is

plurisubharmonic on M— N by (2.2). To prove Lemma 5.2, it suffices to

show lim w(z) = w(z0) for any zo<^N because of (2.3).
Z-±Z0, ZEM—N

Take an arbitrary sequence {zv\ in M—TV such that limz, = z0 (zo^N)

and lim w(zv) = lim w(z). By the definition of w(z), there is a sequence

{xv} with the properties π{xv) = zv and w{zv) = u(xv), which may be assumed

to have a limit point x0 in I by the properness of π. Then we get

lim w(z) = lim u(xv) ^ lim u(x) ^ w(z0).

On the other hand, if we take a point xo^X such that w{z0) = u(x0) and

π(x0) — zo> there is a sequence [xv] in X—π'^N) satisfying the condition

= x0 and \Ίmu{xv) = u{x0) because of (2.4). Hence we have

w{z0) = lim u(xv) ^ limw(π{xv)) ^ lim w(z).
V-^oo V-^cx) Z-)Z0, Z<E.M—N
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This completes the proof.

LEMMA 5.3. Let u{x) be a plurisubharmonic function on a Riemann domain

(X,π,M) such that (i) 0 ̂  u(x) ^ — oo and (ii) l i m φ j = - oo for any sequence

{xv} in X which converges to the boundary. If we put

sup [u(x) π(x) = z, a G l ) for any
w(z) = ,

for any z^π(X),
it is plurisub harmonic on M.

Proof Firstly, we shall show that w(z) is upper semicontinuous on M.

For any zoeM, take a sequence {z,} in M such that \imzv = z0 and
y —»oo

K : = lϊmw(zv) exists. We want to prove K<w{z0). Let Kψ — oo because,
V->oo

if not, the proof is trivial. Choosing a subsequence and changing indices

if necessary, we may assume that there is a sequence {xv} in X such that

π(xv) = zv9 limu(xv) = K and, moreover, {xv} has a limit x0 in X by the

assumption (iii) in Lemma 5.3. Since π(x0) = z0 and u(x) is upper semi-

continuous, it holds that
K = lim u(xv) < lim u(x) ^ u(x0) ^ «;(«0).

This shows that w(̂ ) is upper semi-continuous.

To complete the proof, taking an open set W in C and a holomorphic

map φ : W —> M, we shall prove that

(w.φ)(t0)^-±-\ (w ψ)(to + reiθ)dθ
ΔTC J O

for any to^W and a sufficiently small arbitrary positive real number r.

We may assume (w ψ)(to)i= — oo. Consider the set E : = (a ε l ; u(x) = w(z0),

π(x) = zo}9 where zo=π(to). By the properties of π and u9 E is a finite

set. We can find easily neighborhoods V of £ and U of z0 such that the

map π' : = π\V : F-ί^ U is proper. Then the Riemann domain (V,π',U)

satisfies the assumption in Lemma 5.2. So, the function w(z) : = max{^(#);

π(x) — z, x^V} is plurisubharmonic and, obviously, satisfies the conditions

w(z0) = w{z0) and w(z) < w{z) on U. We obtain

w{z0) = (w 0)(f0) ^ - A - J]ff(zί) ψ)(t0

2π
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for any sufficiently small r > 0. This asserts that w(z) is plurisubharmonic

on M.

Proof of Theorem 5.1. Let z0 be an arbitrary point in the boundary

dπ(X) of π(X). By the assumption, for a suitable neighborhood U of z0,

there is a plurisubharmonic function u(x) on π~ι{U) satisfying the conditions

in Definition 4.5, (i)~(iii). For an arbitrarily fixed connected component

Vt of π'^U), the Riemann domain (Vt9π\Vt,U) satisfies the assumption in

Lemma 5.3. The function

sup {u(x) π(x) = z, x^Ve] for any
(s) : = -i

— oo for any z^U — π(Vc)

is plurisubharmonic on U. Obviously, Uf)3π(X)/z{z^U w{z) = — oo}, which

is of capacity zero. Since 3π(X) is covered by countably many t/'s with

the above properties, it is of capacity zero. Then we have M— π{X) = 3π{X)

and hence Theorem 5.1. Indeed, if not, M— π(X) has a boundary point in

M—3π(X) because M— 3π(X) is connected by Corollary 3.2, which is absurd.

§ 6. Direct boundary points of Riemann domains with boundary

of capacity zero.

Using Theorem 5.1, we can prove the following theorem on direct

boundary points of a Riemann domain, which is a generalization of A.

Mori [4], Corollary 2, p. 288.

THEOREM 6.. If (X9π9M) is a Riemann domain with boundary of capacity

zero, the projection image of the set of all direct boundary points of X is a set of

capacity zero in M.

Proof. Let 91 = [Uv] be a countable base for connected open sets in

M. For each Uv9 each connectd component Ui of π'ι{Uv) defines a Riemann

domain (Uί9π\UJ9Uv) which has the boundary of capacity zero. According

to Theorem 5.1, the set Fί : = UV — π{Ui) is of capacity zero in Uv. So,

F: = {je,vFί is also of capacity zero in M. We need only to show that the

π-image of an arbitrary direct boundary point of (X9 π,M) is contained in F.

Let r<=3aX be an arbitrary direct boundary point and put π(r) = z. By

definition, there is a neighborhood U of z such that a connected component

Ur of π~ι{U) with Ό'^r satisfies the condition Ur(\π~ι{π{r)) = φ9 where we



RIEMANN DOMAINS I 1

may assume £/ = [/voe9l and U/ = Ul°0 for some v0 and co Obviously,

z&F'v\cF. This completes the proof.

As an application of Theorem 6,1, we can generalize the result of W.

Rothstein [8], p. 172 to the case of Riemann domains of arbitrary dimen-

sion.

COROLLARY 6.2. Assume that (X,π,M) has the boundary of capacity zero.

If P is a subset of the set of all boundary values of (X,π,M) such that π~ι(c) is

finite for any c^P, it is of capacity zero.

Proof Assume that cap P>0. Without loss of generality, we may

assume that P contains no direct boundary point because of Theorem 6.1.

Consider the set

Pv = {z^P π'^z) consists of at most v points}

for any v = 0,1,2, . Since P— U VPV, there is some v0 such that cap PVQ > 0

by (2.6), (i). Here, it cannot happen to be v0 = 0 in virtue of Theorem 5.1.

Moreover, according to (2.6) (iii),

P' : = {zePVQ cap (PVQΠU) > 0 for any neighborhood U of z}

is of positive capacity. Take a point z0 in Pr and an arbitrary neighborhood

U oΐz0. For any connected component Ut of π~ι{U)9 since cap (U— π{Uc)) =0,

we can choose a point z^P' P[U such that ZiΦ. U, (U—π(Ue))9 whence ^ e Ππ(U().

This shows that π^iU) has at most v0 connected components. Since z0 is

the boundary value of {X, π,M), there is at least one connected component

of π'^U) which is not relatively compact in X. This concludes that z0 is

the ί-image of an accessible boundary point of (X, π, M), which is absurd

because of (4.4). Hence Corollary 6.2 is proved.

The following theorem is essentially another description of the Bishop's

result in [1], Theorem 4, p. 301 (c.f. Theorem 7.3 in the following section).

THEOREM 6.3. Let (X,π,M) be a Riemann domain with boundary of capacity

zero. If there is at least one point in M which is not a boundary value of {X, π, M),

then π~ι(z) is finite for any z^M and, moreover, there exists a closed set N of capa-

city zero in M such that π\X— π~ι{N) : X— π~ι{N) -+M— N is proper.

Proof Since the set S of all boundary values is closed, we can take

a connected open set U in M such that UdS = φ. Obviously, the map

π\π~ι{U) : π~ι{U)-±U is proper. Consider the set G of all points z in M
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with the property that π\π~ι(V) : π~ι(V)-±V is proper for some neighborhood

V of z. Then obviously, π\π~ι(G) : π~1{G)-&G itself is also proper and dGaS.

Moreover, π"x(z) is finite for any z^dG. In view of Corollary 6.2, 3G is

of capacity zero and so N: = M— G = 3G as in the proof of Theorem 5.1.

This concludes Theorem 6.3.

COROLLARY 6.4. For a Riemann domain (X,π,M) with boundary of capacity

zero, if there is a set P in M such that c a p P > 0 and π~ι(z) is a finite set for any

z&P, the same conclusion in Theorem 6.3 is valid (c.f. W. Rothstein [8], Satz 1,

p. 173).

The proof is evident by Corollary 6.2 and Theorem 6.3.

Now, we give another application of Theorem 5.1. The following is

a generalization of the well-known Iversen's theorem.

THEOREM 6.5. Assume that {X, π,M) has the boundary of capacity zero. Take

an arbitrary point z0 in M and a connected neighborhood U of z0. Then, for any

xo&π~ι(U)9 there exists a continuous curve 7(t) ( 0 < ί ^ l ) in π~ι(U) such that

7(1) = Xo and lim (π 7) (t) = z0.

Proof Let {£/„} be a countable base for connected open neighborhoods

of z0. It suffices to show that there is a sequence {xv} such that xv^π'ι(Uv)

and a suitable continuous curve 7v(t) in π~ι{Uv) joins xv with xv+ί for any v.

We proceed by induction on v. Assume that there exist points xμ and

curves 7μ (l^μ<v) with the desired properties. Let U' be a connected

component of π'^U,) which contains xv. Since (£/', π\Uf, Uv) has the boundary

of capacity zero, we see cap (Uv — π(U')) = 0. If we choose an arbitrary

xv+1^U' with π(xv+i)&Uv+l9 xv is joined with xv+1 by a continuous curve 7V+1

in U'. These xv+1 and 7V+1 are the desired ones.

§7. Continuations of Riemann domains and analytic sets.

Applying the results of the previous sections, we can give some sufficient

conditions for the continuability of Riemann domains and analytic sets by

the similar arguments as in W. Rothstein [8].

THEOREM 7.1. Let (X9π,M) be a Riemann domain with boundary of capacity

zero. Assume that there is a set P in M with the properties that (i) c a p P > 0 ,

(ii) for any z^P π~ι(z) is finite and (iii) for each zo^P a suitable bounded holo-
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morphic function f on X satisfies the condition f{Xi)=^f{Xj) (i Ψ j), where

π~ι(z0) = {xl9 ,xm}. Then the space X=Xl)daX defined as in §4 has a structure

of a complex space such that X is an open subspace of X with cap(X — X) = 0

and the projection π is a proper discrete holomorphic map.

For the proof, we need

LEMMA 7.2. For a Riemann domain {X,π,M), if it has the boundary of

capacity zero and π" 1 ^) contains at most finitely many points for any z^M, it holds

that (i) X is dense in X, (ii) Df]X is connected for any connected open subset D

of X, (iii) X is locally compact and (iv) π : X-+M is proper discrete.

Proof The properties (i) and (ii) are evident by the definition of the

topology of X and (iii) follows from (iv). It remains only to prove (iv).

As is easily seen, there is an integer v0 ( >0) such that π~x{z) consists of at

most vo points for any zeM. Moreover, as in the proof of Corollary 6.2,

π~ι(U) has at most v0 connected components for any connected open set U

in M. This implies that any sequence converging to the boundary has a

subsequence converging to an accessible boundary point and so π is proper.

The discreteness of π is obvious because π~ι{z) (zeM) contains at most v0

points.

Proof of Theorem 7.1. By Corollary 6.4, n\X-n'\N) : X-*-l{N)-*M-N

is proper for a suitable closed set N of capacity zero in M, where (X—π~ι(N)9

π\X — π^iN), M— N) may be assumed to be an unramified proper covering

space. Put X' : = X- π~\N) and πf : = π\X- π-^N). Since cap(^-1(iV))=0,

we see easily Xr = X as topological spaces and π' = ί, where Γ = I U 3 α Γ

and πr is an extension of π' to Xf as defined in §4 for a Riemann domain

(Xf,π',M). There is no harm in assuming that X — Xr and π — πr.

Put π"1(z)= {xχ{z), ,tfm(s)} for any z^M—N. Using the holomorphic

function / on X given for some zo^P—N, we define the pseudopolynomial

whose coefficients a^z) are holomorphic on M—N and locally bounded on

N. By virtue of Proposition 3.1, each at{z) has a holomorphic continuation

άi(z) to the whole M. Let Y be the analytic set in MxC defined by the

equation
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wm + d^w™'1 + + άm(z) = 0

and take the normalization μ :Ϋ-^Y of Y. For the canonical projection

7Γi : (z,w)->z, putting π—πx*μ, we have proper finite covering space (Ϋ,π9M).

By the assumption of /, π~ι(z) contains exactly m points for any z e M except

a thin analytic set. Then there is a homeomorphism τ of Ϋ — τt~\N) onto

X—π'^N) such that π τ = π on Ϋ — π'^N). In this situation, by virtue of

Lemma 7.2, we can easily prove that τ has an extension ?:Y->X with

if = 7r which gives a homeomorphism between F and X by the analogous

argument as in the proof of the uniqueness of the normalization of a not

necessarily normal reduced complx space (c.f. [3], Satz 2, p. 250). We can

define a structure of a complex space on X such that τ is biholomorphic.

The Riemann domain {X,π9M) obtained in this manner satisfies obviously

the conditions in Theorem 7.1.

Now, we shall prove Theorem III stated in § 1 under slightly weaker

assumptions.

THEOREM 7.3. Let M be a complex manifold of dimension n. Assume that

an irreducible n-dimensional analytic set A in some open subset of MxCk satisfies

the following conditions;

(i) there is a plurisubharmonic function u{x) on A such that 0 ^ u{x) ^ — oo

and lim u{xv) — — oo for any sequence {xv} in A without accumulation points if
V->oo

lim7Γi(#v) exists,

(ii) π2{A) is a bounded subset of Ck

9

(iii) there is a set P in M such that cap (P) > 0 and πl[ι(z)f)A is finite for

any z<=P,

where πx : MxCk -> M and π2 : MxCk -+Ck are the canonical projections.

Then, A is analytic in MxCk.

Proof Let μ : X-+A be the normalization of A and put π : = πλ μ.

The Riemann domain (X,π,M) has the boundary of capacity zero. By

Corollary 6.4, π\X— π'^N) X— π~ι{N)-^M— N is proper if we take a

suitable closed subset N of capacity zero in M. Then, πλ\A— π\ι{N) :

A^π1ι{N) -> M—N is also proper. As usual, for each coordinate wt(l ^i ^k)

in Ck, we take the equation
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Pt(z wt) = w? + aψ{z)wTι + + d&\z) = 0

on A — π^(N)9 where aψ are bounded holomorphic on M—N and so have

holomorphic continuations άψ to M. If we take the analytic set A' : =

{w™ + άψw™'1 + + & = 0, 1 ^ i <k}, it can be easily seen that the

irreducible component of A' including Af]({M— N)xCk) coincides with the

set A. This shows that A is analytic in MxCk.

Lastly we note that the Thullen-Remmert-Stein's theorem on the essential

singularities of analytic sets in [9] and [7] is an immediate consequence of

Theorem 7.3 and Example 4.6, (iii).
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