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Introduction

In [9], Hartshorne extended the concept of ampleness from line bundles

to vector bundles. At that time, he conjectured that the appropriate Chern

classes of an ample vector bundle were positive, and it was hoped that

there would be some criterion for ampleness of vector bundles similar to

Nakai's criterion for line bundles. In the same paper, Hartshorne also

introduced the notion of p-ample when the ground field had characteristic

φ, proved that a p-ample bundle was ample and asked if the converse were

true.

In the first chapter of this paper, we will show that a p-ample bundle

has positive Chern classes when the characteristic of the ground field is

p ψ 0, and that a quotient bundle of a direct sum of ample line bundles

also has positive Chern classes in any characteristic. We also give a series

of polynomials in the Chern classes of a bundle E which are positive if E

is ample.

The second chapter will be devoted to some criteria for a vector bundle

to be ample. The final chapter gives two examples of ample vector

bundles on P2 when the characteristic of k is p ψ 0. The first example will

be ample, but not p-ample. The second bundle E will be p-ample, but

H1{P2

9Γ
pn(E)(S)F) will be non-zero if F is a bundle and n is large.

We fix our notation, k will denote an algebraically closed field. A

variety X will be a reduced, irreducible scheme of finite type over k. If

X is non-singular, A{X) will denote the Chow ring modulo numerical

equivalence. If X is n-dimensional and complete, we have Λn(X) canonic-

ally identified with Z. We will often call a locally free sheaf over X a

bundle. The bundle E is defined to be ample if for any coherent sheaf F

on X,F(g)Sn(E) is generated by global sections for n large. E is ample if
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92 DAVID GIESEKER

and only if the tautological bundle ^(1) on P{E) is ample. For line

bundles, this definition is equivalent to the usual definition. If X is project-

ive, E is ample if and only if for any coherent sheaf F, W(X, Sn(E)®F) =* 0

for n large and i > 0. Again with X projective, we have that the extension

of two ample bundles is ample and that any quotient bundle of an ample

bundle is ample.

If the characteristic of k is p ψ 0, then we can find a new notion of

p-ample. Let / be the Frobenius endomorphism from X to X. Then Ep

is defined to be /*(£). EpZ is (Ep)p and so forth. E is defined to be p-

ample if for any coherent sheaf F,F(g)Epn is generated by global sections

for n large. E is cohomologically p-ample if fox any coherent sheaf

F, Hι (X, F®Epn) = 0 for i > 0 and n large.

Finally, we have a notion introduced by Griffiths under the name of

ample [5, §4.4],

DEFINITION. A bundle E is strongly ample if E is generated by its

global sections and if for every closed point x with sheaf of ideals m,E®m

is generated by global sections.

We will show that a strongly ample sheaf is ample in Chapter III.

The second condition in this definition was phrased by Griffiths in the

following way: the natural map from E®m to Ω\®E\m is surjective.

However, since Q\®E\m is canonically identified with £(x)m/m2, Nakayama's

lemma show the two conditions are equivalent.

I wish to thank Professor Robin Hartshorπe for his advice and encourage-

ment and Professors David Mumfcrd and Heisuke Hironaka fox their

valuable conversations.

CHAPTER I. Positivity of Bundles and Their Chern Classes

In this chapter, we will be studying the problem of the positivity of

the Chern classes of a bundle E under various assumptions on the positivity

of E. Let I be a nonsingular variety of dimension n. A cycle Z of

dimension r on X is said to be positive if Z.Y >0 for every effective cycle

of codimension r.

We will prove that the appropriate Chern classes of a strongly ample

bundle are positive by showing that these Chern classes are represented by

effective cycles. If E is p-ample, we will see that the Chern classes of E axe

positive by applying the previous result to the strongly ample bundle Ev%>
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where n is some large integer. Finally, we establish the positivity of the

Chern classes of a quotient of a direct sum of ample line bundles by a spe-

cialization argument.

Many of the results of this chapter were first established by Griffiths in

characteristic zero by analytic arguments. Thus he proved Lemma 1.1

and Corollary 1.1 using homology theory and Schubert cycles (6, Prop. 4.13).

Also Bloch and Gieseker [4] have established that cn(E) > 0 when E is an

ample bundle of rank greater than n-l on a non-singular variety of dimension

n, providing the strong Lefschetz theorem holds for all varieties over the ground

field.

Now let £ be a bundle on a variety X and V a finite dimensionaJ

subspace of H*(X, E). V itself is a variety with the Zariski topology. If Y

is a subscheme of X, we will say the generic section in V vanishes on Y at

a set of dimension / if there is an open subset U of V so that if s is a

section in U, then the subset of Y where s vanishes is of dimension /.

LEMMA 1.1. Let E be a bundle of rank r on an n-dimensional space Y and

let V be a finite dimensional subspace of H°(Y, E) so that

i) for every closed point y^Y, the stalk of E at y is generated by the sections

in V;

ii) there is some simple closed point XGY with sheaf of ideals m so that the

stalk of E®m is generated by the sections in VΠH°(Y,E(g)m).

Then the generic section in V vanishes on a subset of codimension r if

and does not vanish otherwise.

Proof We have an exact sequence

0 > / —

where N is the dimension oί V and / is locally free. Hence we get a

diagram

έ$) = YxPN~1

Λ /
pN-1 ,

Now let [al9 , aN\ denote the point in PN~1 with homogeneous coordinates

(au ,aN) and let et denote the image of the ith canonical section of έ?γ
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in HQ(Y, E). Then (x, [al9 , aN]) is in the image of j if and only if

Hence for <p^PN~l, /~ι{p) is identified with the subset of Y on which the

section of E corresponding to p vanishes. We compute

dim (P(/v)) = dimF + rank/ - 1 = (TV- 1) + (r - 1).

If r > n, then / cannot be dominating, so the generic section of E does

not vanish anywhere on Y. So we may assume r-<=n. We can find

/u # >/r in m/m2 so that fl9 , / r are independent. Now locally about

y, we may assume that E is free and has a basis &i, ,hr. Now in

E(g)mltn2, we can consider s = Σ^ί®/< where ^ is the image of /z.z. Let s

be a global section in V which maps onto 5. Then locally about y, s can

be written as Σ^i®Λ where the image of /« is /4. Now if Zi denotes the

zeros of /€ , we have that locally about y, the set Z of zeros of 5 is just

ZiΠ nz r . But

dim Z = dim <?γ,vl{fu , Λ) = w — r

Hence Z has a component of dimension n — r. Now let p be the point in

P^"1 corresponding to s. Then /""Kp) has a component of dimension n—r.

Hence / must be dominating since if it is mapped onto a set of dimension less

than N— 1, the dimension of every component of every fiber of / would

have to be greater than n — r. Since / is dominating, almost every fiber

has pure dimension n — r. So the zeros of the generic section s on Y have

codimension r in X. q.e.d.

Let us introduce some notation. If I—{iu ,ί r) is an r-tuple of

non-negative integers and E is a bundle, we define

Let |/[ = f"1 + 2f2+ +rir.

THEOREM 1.2. Let E be a strongly ample bundle of rank r on a non-singular

quasi-projective variety of dimension n« Let Y be an effective I-cycle. If j

Cj{E) can be represented by an effective cycle Z such that

dim (Supp (ZΠF)) = / - / if / - ^ 0

Supp (ZΠY) = Φ if l-j<0.

Hence c*<Y can be represented by an effective cycle if \I\ < r and | / | < / .
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COROLLARY 1.1. If X is a projective variety of dimension n and E is a

strongly ample bundle of rank r on X, then c*(E) is positive if \I\<r and

Proof of Corollary. If Y is an effective cycle of dimension n — \I\9 then

Y.cr(E) can be represented by an effective cycle of points.

Proof of Theorem 1.2. If the rank of E is greater than n, we can find

a nowhere zero section of E, so

is exact, where E' is again strongly ample. Since €*{£) = c\Ef), we can

reduce to the case in which r^n. We now work by induction on r. Now

let V be a finite dimensional subspace of H°(X, E) so that the image V of

V in H°(Y, E) satisfies conditions i) and ii) of Lemma 1.1 and so that E is

generated by the sections in V at every point a ε X Let s be a section in

V and Z the cycle of zeros of s. By Lemma 1.1, we can choose s so

that

jr Z = r

dim ZΠY = n — r—l

Now cr{E) is represented by Z [7, Corollary to Theorem 2]. Hence

cr.Y = Z.Y

is represented by an effective cycle if n — r — I ;> 0. Now consider

Xr = X - S u p p Z .

Let Er denote E restricted to X'. Then we have an exact sequence of

locally free sheayes over X\

0 > t?χι > E' > F > 0.

So Cj(E') = Cj(F). By induction, Cj{F) is represented by an effective cycle

Z' so that

d i m ( S u p p Z'Π(YΓι X)) = l-j

f o r j < r.

Now if Y is a non-singular quasi-projective variety and Z is a subscheme

of codimension r9 then the map from Ak(Y) to Λk(Y — Z) is an isomorphism

if k< r. Now let Z" be the closure of Z' in X. Then Cj{E) is represented
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by Z" since they both map to Z' in A{X'). Also

dim(SuppZ"nr) = / - / .

LEMMA 1.3. Let X be, quasi-projective. Then there is a strongly ample line

bundle on X.

Proof. Let L be an ample bundle on X. Then, pίL(x)pfL is ample on

XxX, where p1 and p2 are the projections of XxX onto X. Hence if / is-

the ideal sheaf of the diagonal in XxX,
- ' • •• <

is generated by global sections for n large. For each closed point x in Xr

we have

is generated by global sections.

LEMMA 1.4. If E is p-ample on X, then Epn is strongly ample for n large*

Proof. Let M be a strongly^ample bundle on X Then for n large and

q = pΛ, M0Eq is generated b^ global sections. Hence we have a surjection'

0 M > EQ •—> 0.

Since a quotient of a strongly ample bundle is strongly ample, we see E9 is-

strongly ample..

LEMMA 1.5. cn(Ep) = φncJi(E).

Proof We may assume that E has a filtration by line bundles Li by

the usual trick of passing to the flag manifold of E. Now there is a

homogeneous polynomial Φ of degree n so that

and

Cn(EP) =

since L?, , L? is a filtration of Ep. Hence cΛ(£p) = pncn(E).

THEOREM 1.3. If E is a φ-arriple bundle of rank r on a] non-singular pro-

jective variety of dimension n, then cz{E) is positive if \I\ is less than n + 1 and

r + l.
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Proof. E9 is strongly ample for some q of the form pn. Let y be an

•effective cycle of dimension | / | . Then

y.cI(Eq)>0.

Since

we deduce

y.cI(E)>0.

Next, we can extend our results to the quotient F of a direct sum of ample

line bundles. In characteristic p, the result follows immediately since F

is then p-ample. We deduce our general result by specialization. We need

a knowledge of the behavior of Chern classes under specialization. If X is

a variety over a field h and E a coherent sheaf on X, then X and E will de-

note the corresponding objects over k.

LEMMA 1.6. Let Y >Z be a smooth projective^ morphism oj ψetherian

integral schemes and X\ a subscheme of Y which is flat over Z and so that all the

fibers Xz of g : X—> Z are geometrically reduced and k-dimensional. Let E be a

locally free sheaf of rank r on Y. Then for each z in Z^ consider Ez on the fiber

over Xz over k{z). Then given I so thai \I\ = n — k,

Xz.c\Ez)

is an integer independent of z.

Proof. We actually prove that if Lu , Lv are line bundles, then

is constant for | / | -n — k— I. We work by induction on r. If r — 1,

then

can be computed as the coefficient of w ^ «ι+1 in

Ί>(n, , n ί + 1 ) ϊ

[Kleiman 12]. However, we may omit the bars, since the dimension of

cohomology groups is invariant under field extension. But this Euler
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characteristic is constant. Now if we have proved Our claim for r — 1 we can*

consider the projection p :P{E)~—>Y. Then if Q denotes the tautological

bundle on P{E), we have

XM.cI{E).Li- >-Lt = Q*-\τfU* c'(p*EB).p*(Xa).

However, we have an exact sequence

0—>E'—>p*E >Q—>0.

Hence cz(p*Ez) is a sum of c^QY.^iEί) for various (r — l)-tuples /. Since

rank E' = r — 1, we are done by induction.

THEOREM 1.4. Let X be an n-dimensional projective variety and E a bundle

of rank r which is a quotient of a direct sum of ample line bundles ©L*. Then

cτ(E) is positive for \I\ less than r -f 1 and n + 1.

Proof Let Z be a subvariety of dimension / in X. Then there is a

subring A of k with the following properties: A is of finite type over Z%

there is a scheme Xr and a subscheme Zf of Xf and a smooth projective

morphism / : X' — > Spec A so that Z' is flat over Spec A and all the fibers-

Z'a are varieties for a in Spec A Furthermore, there are ample invertible

sheaves L[ and a locally free sheaf E' on X1 so that Ef is a quotient of a

direct sum of the L'/s. Finally, if we tensor the whole situation with k, XΓ

becomes X, Er becomes E, etc. [cf. 8, IV. 8.5, 8.10]. Since intersection

numbers are invariant under field extension,

cI(E).Z=cI(Ei).Zΰ

where g is the generic point of Spec A. But by Lemma 1.5,

where y' is any point of Spec A. In particular, we may choose y so that

the residue field of y has non-zero characteristic. Then E'v is p-ample, so

cτ(Ey) is positive.

Finally, we introduce a sequence of polynomials in the Chern classes oί

E which are positive if E is ample. These were studied by Griffiths in [5],

who proved Theorem 1.5 in characteristic zero by analytic arguments.

LEMMA 1.7. Let Yl9 , F Λ be indeterminates over Z. Let Lo = 1. Then

for each k there is a unique symmetric polynomial Lk in the F t satisfying

* Lk — SiLfc-i + 52Zfe*2 — = 0
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where s< is the i-th symmetric polynomial. We have

Lk(γί9 . - , γ n ) = Σ3 r ί* . r « \

Proof. Let LΛ be defined by **. We show the Lk satisfy * by induction

on n. We abbreviate (Yί9 ,Γn_i) to Y.

sn-k(Y,Yn) = sn-k(Y) + sn-UY).Yn

Lk(Y9Yn) = Lfc(F) + L^CnY* + L f c _ 2 ( r ) F J . . . .

Hence we get

Lk(Y,Yn)sn_k(Y9Yn) = Lk(Y)sn_k(Y) + Ak + Ak+1

where

So

ΐl(-l)kLk(Y,Yk)sn.k(Yk) = ilLk(Y)sn.k(Y) = 0.
h=0 k=0

Since Lk is symmetric, it can be written as a polynomial in the sym-

metric functions:

Lk(Yl9 -,Yr) = Φk(s» •• , s f )

For a vector bundle of rank r, we set

Φk(E) = Φk(Cι(E)9 ,

For instance,

Φi(E) = d

Φ2(£) = c\ — c2

We have

(E) + = 0.

LEMMA 1.8. Let Z be a non-singular projectiυe variety of dimension n and E

a bundle of rank r. Let ζ denote the class of έ?(ϊ) in A^PiE)). Then for k<r

and any cycle y of dimension k on Z9



100 DAVID GIESEKER

(Note: An(X) = An+r^(P(E)) = Z\ π : P{E)—>Z.)

Proof. We work by induction on k and denote π*y by y'. If k = 0,

then we can take ί/ to be a point and then it is well known that

l = y'.ξr-1.

Now suppose we have proved the theorem for all V < fc. Now we have

€ r - c 1 f r " 1 + c ί €
r " 2 - =0 .

Hence multiplying by y'.?*"1, we get

y'. ξ^"1 ~ 2/'. clβξ
k+r~- + . = 0.

We also have

y.Φk — y.cuΦk-ι + ' = °

But by our induction hypothesis,

y.cί.Φ^ί = y\ci.ξ
k+r'i'1

for i > 0. Hence we see

y'.ξk+r-][ = y.Φk.

THEOREM 1.5. Let Z be a non-singular projeciive n-dimensional variety and

E an ample bundle on Z. Then Φk{E) is positive for k^n.

Proof. Iί y is a /c-cycle,

Φk(E).y =-e+r"1.y/>0

since £ is the class of an ample line bundle.

We note that Griffiths has a cone Π of "positive" polynomials so that

if P ε Π , then P(cl9 , c r ) > 0 if cu - * -9cr are the Chern classes of a

strongly ample bundle. Π contains monomials c1 and the Φk [6, Theorem

D).

CHAPTER II. Ample Bundles on Curves

A major deficiency in the theory of ample vector bundles is the lack of

an adequate test for the ampleness of a bundle E on a variety X. Barton

[2] has given a test similar to Kϊeiman's criterion for ampleness of a line bundle.

If I is a non-singular curve over C, a necessary and sufficient condition

for a bundle £ on I to be ample is that the degree of every quotient
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bundle be positive [11]. Iί E has rank two, and X is a non-singular curve

of genus g over a field of characteristic p, then E is ample if every quotient

bundle of E is ample and if deg E > — (g — 1) [9],

First we will give a test for a vector bundle E on any variety to be ample

if E is generated by global sections. We need a lemma.

LEMMA 2.1. Suppose X is a curve', E is a bundle on X> and s a section oj

E which does not vanish at any singular point of x. Then E has a sub-bundle L

so that s is a section of L. If s vanishes at any point, L is ample.

Proof. Let xί9 , xn be the points at which s vanishes. Now s

determines a section of P ( £ v ) over Y•— {xu ,x n ) and hence a section of

P ( £ v ) over all Y since #i, •••,#» are non-singular. Such a section is

equivalent to a sub-line bundle L of E and s is actually a section of L.

If 5 actually vanishes, then deg L > 0, so L is ample.

PROPOSITION 2.1. Suppose Y is proper over k and E is a bundle over Y

generated by its global sections. Then E is ample if and only if every quotient line

bundle of E\c is ample for every curve C in Y,

Proof. First suppose E is a line bundle. Then E gives a map / to

protective space so that E = f*{g?{l)). But / is a quasi-finite map. For if

/ collapsed a curve C to a point, we would have E\c2Zέ7C9 and so E\G

would not be ample. Since / is proper, / is finite and so /*(^(1)) is

ample.

Now suppose Y is a curve. We work by induction on the rank of E

so we may suppose every quotient bundle F of E is ample if Fψ E. Let

S be the set of singular points of Y. We will establish that E has a section

which does not vanish at any point of S, but which does vanish. Bγ

Lemma 2.1, E will have an ample sub-line bundle L and so will be ample

as the extension of E and E/L.

Let n be the dimension of Γ(E). Then there is a surjective map from

έ?γ to E, and we may suppose that E is a quotient of £??-. Now the Gras-

smannian G of all n — r planes in kn represents the functor which assigns

to any variety Z the set of all locally free quotients of rank r of ^ J . So

we get a map φ from Y to G so that E is the pull back of the universal

bundle U on G. Now φ(Y) is not a point, since then E would be trivial

as the pull back of U restricted to <p(Y). So we can pick a closed point
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so that f(x)<ξf(S). Now if z and w are two closed points of G, then

the universal mapping property of G shows that z = w if and only if

Γ(U®mz) = Γ{U®nQ.

So Γ{U®mf{y)){λΓ{U®mf{g)) is a proper subspace of Γ(U®nιf{y)) for all seS.

Since A; is infinite and S is finite, we can choose a section of U which

vanishes at f(y), but not at any point f(s). Pulling back this section to

E — φ*(U), we get a section of E with the required property.

Now if E has rank greater than one, on an arbitrary complete variety

F, consider the tautological bundle ^(1) on P(E). We denote the projec-

tion from P(E) to Y by φ. Then to show E is ample, we need only show

^7(1) is ample. Now let C be any curve in P{E). If C is contained in a

fiber of φ, then ^(1) is ample on C. If C is not contained in a fiber, the

map from C to p(C) is finite. Hence φ*E is ample on C. Since ^(1) is a

quotient of p*E, we see έ?{l) is ample on C. Since έ?{l) is generated by

global sections, it is ample.

Before proceeding to our discussion of curves, we prove a strongly ample

bundle is ample. See the introduction for the definition of strongly ample.

This was proved by Griffiths [6] in characteristic zero.

THEOREM 2.1. A strongly ample bundle E on a proper variety Y is ample.

Proof. We need only show that E is ample on each curve C in F.

Let a? be a non-singular point of C with sheaf of ideals / £ ^ c Then E®I

is generated by global sections, so E\c can be written as a quotient of a

direct sum of line bundles Γ. Hence E\c is ample.

The following proposition gives a class of bundles on a curve so that

all quotients have positive degree.

PROPOSITION 2.2. Let X be a non-singular curve and suppose F an ample

bundle on X and that we have a non-trivial extension

0 — > 0 7 x — > E — > F — > 0

Then every quotient bundle G of E has positive degree.

Proof We have a map s from tfx to G which factors through E. s

factors through a sub-line bundle L of G. If s is zero, G is a quotient of

F and so has positive degree. If s ψ 0, then degL>:0 since L has a section.

Now if G is a line bundle, L = G. In this case degL must be greater than
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zero, since if it were zero, L would be isomorphic to &x and 0X would

be a direct factor of E. If rank G > 1, then G/L is ample as a quotient of

F and so

deg G = deg G\L + deg L > 0.

The following lemma is sometimes useful as a test for ampleness.

LEMMA 2* 2* Let X be a non-singular curve of genus g and E a bundle of

rank r. Suppose deg E >rg and that every quotient bundle F of E is ample if

F^E. Then E is ample.

Proof Let lx be the ideal sheaf of a point aieX Then by Riemann-

Roch,

dimΓ{E®IX) ^ deg E - r + r(l - g) > 0

Hence E has a section which vanishes at some point, and hence an ample

sub-line bundle L. Hence E is ample as the extension of L and E\L.

We will now study bundles E on the curve X which are non-trivial

extensions of the form

0 • <?Σ — > E — > F > 0

where F is ample. We will show E is ample if the characteristic of k is

zero and give an example of Serre which shows E need not be ample even

if F is a line bundle when char k = 3.

LEMMA 2.3 (char k = 0). Z,^ f be a finite, flat map from a variety X to a

variety Y, and let E be a vector bundle on Y. Then the natural map from Hι(Y, E)

to H\X,f*(E)) is injective.

Proof We have a natural map from tfγ to f*&x and the trace map

gives an ^TV-linear map from f*έ?x to &γ. Since the characteristic of k is

zero, it follows that tfΎ is a direct summand of f*(?x. So E is a direct

summand of f*(έTχ)(8)E. But H\X, f*(E)) is canonically isomorphic to

H\Y9f*{f*{E)) and Mf*(E)) is isomorphic to £(x)/*(Λr). So the map from

H\Y,E) to H\X,f*(E)) is injective.

THEOREM 2.2 (char & = 0). Suppose that X is a complete non-singular curve,

that F is an ample bundle on X, and that we have a non-trivial extension
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Then E is ample.

Proof. We must show έ?{l) is ample on P(E). We may regard P(F)

as a subvariety of P(E). Let s be the section of E given by the map from

d?x to E. Then s gives a section of p*(E) and hence a section s' of έ?(l)

on P(£). The divisor consisting of the zeros of s' is just P(F). Further,

έ7p(E){l) restricted to P{F) is just ^ W l ) . Now to prove that ^ P ( 2 ? ) ( 1 ) is

ample, it suffices to prove that if Y is any sub-variety of P{E), then there

is a section of d7{n) for some n which vanishes at some point of F, but

does not vanish identically [Theorem 1, Chapter I I I , 12]. If Y is contained

in P(F), this condition certainly obtains, since έ?γ(l) is ample and if Y

meets P(F), and is not contained in P{F), the condition also obtains since

s' does not vanish identically, but does vanish on YΓiP(F). So it suffices

to prove that every Y on P{E) meets P(F). Suppose it does not. Clearly

we may assume Y is a curve. If Y is contained in a fiber of the map from

P{E) to X, it certainly meets F. If Y is not contained in a fiber, we have

a finite map / from Y to X and f*(E) has ^7F as a quotient, since d7Y{l)

has a nowhere zero section. So by Lemma 2.3, the extension

<? • <£*, > f*E > f*F—+ 0

would be trivial. But then the map from HX{X,F^) to H\X,f*F") would

not be injective. So Y must meet P(F) and έ?(l) is ample.

The following is a special case of a recent result of Hartshorne's [11],

who used the theory of semi-stable bundles and unitary representations.

COROLLARY 2.1 (char & = 0). Let E be a bundle on a complete non-singular

curve X and suppose every quotient bundle F of E is ample if Fψ E. Then E is

ample if

Proof. The section 5 of E factors through a subline bundle L of E.

If 5 vanishes at some point of X, L is ample and E is ample as the ex-

tension of E\L and L. If 5 vanishes nowhere, E is ample since it is a non-

trivial extension

0 — > d7x — > E —>E\<?X — > 0.

The following example of Serre shows that a bundle E may not be

ample even though the degree of every quotient is positive and the rank of

E is two.
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Suppose the characteristic of k is three and let C be the non-singular

curve of genus 3 in P2 given by

0 - f(X, Y, Z) = X4 - Y3Z - ZΎ.

LEMMA 2.4. The Frobenius endomorphism p* oj H\C,d7c) is identically zero.

ProoJ. Ux ={{X,Y,Z)\Yi=0} and U2 = {{X,Y,Z)\Zi= 0} will denote affine

subvarieties of P2, which has homogeneous coordinates (X,Y,Z). Then

Cc[/,n[/2. Now let a<aHι{έ7c). Since CntΛ and CΠU2 are an affine

covering of C, we can realize a as a function h on Cnί/iΠί/2. This func-
Γ X V 7 Ί

tion extends to a function h on UιΓ\U2, i.e., in the ring k\-γ-9 -y-> ~V~\*

Now hz represents p*(α), so we wish to show hz is a coboundary. Since

h is the sum of monomials Xιl(YJZ}~j) = gitj, we need only show each

monomial is a coboundary, that is, that there are functions hitJ and /i%ί

in kϊ~, -yλ and *[-^-, -ζ-Ί respectively so that

Ouj^kij —sitj (mod f)

Now if z ^ 4 , we can write

X1 X1"4 Xl~A

9 ~ ^ ^ m

So to show gl,j is a coboundary, we assume i < 4. Clearly, we may also

assume 0<j<i. So the only cases are X2IYZ, XZ/Y2Z and X*IZΎ. But

X° ^ - ^ (mod/)
V3 73 V2

and

X9 X

and by the symmetry of Y and Z, Z9/F3Z6 is also a coboundary. So p* is

zero. q.e.d.

Now let P be a point on C. Then the Frobenius map / from H\&{ —

to Hι{έ7{—?>P)) cannot be injective. For we have an exact diagram

H\K)
ϊf
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where K is the cokernel of the map £?(— 3P)—>^7\ Since the map from

Hι(^) to Hl(£7) is zero, Hx{£7(—P)) must be mapped to the image of

H°{K) in H^iSP)). However, since dim H°(K) is 3, this image has

dimension 2; since Hι{tf{—P)) has dimension 3, / is p-linear, and k is

perfect, we see / cannot be injective.

Now we can construct the example. Let a be a non-zero element of

the kernel of /. Thus a determines a non-trivial extension

0 >& >E ><?{P) >0

The degree of every, quotient bundle of E is positive, but the extension

0 >έ? >E* >^(3P) >0

splits, so Ez is not ample and hence neither is E.

We will now prove that a vector bundle over an elliptic curve X is

ample if and only if every direct summand has positive degree. This result

has been proved independently by Hartshorne [11]. The idea of our proof

is the following: We use induction on the rank of E and Lemma 2.5 to

reduce our problem to the case of a non-trivial extension E of an ample bundle

by the structure sheaf. We construct another elliptic curve X' and a map

of high degree / from X' to X so the extension remains non-trivial. Then

Proposition 2.2 and Lemma 2.2 show f*(E) is ample, and hence E is ample.

LEMMA 2.5. Let E be an indecomposable bundle over an elliptic curve X and

F an indecomposable quotient of E. If deg E > 0, then deg F > 0.

Proof For any line bundle L of degree zero, Γ(£v(x)L) = 0, since

dim Γ(E*(g)L) = dimΓ(£(x)Z/) - degE = 0

by the Riemann-Roch Theorem and the fact that if F is indecomposable

and deg.F >0, then dimΓ{F) = deg,F [1, Lemma 15]. Hence Γ(Fv(x)Z,) = 0.

But if deg F < 0, then Γ(Fv(g)L) ψ 0. If degF = 0, then F = Fr®L for one of

Atiyah's canonical bundles Fr and some L of degree zero. It again follows

that Γ(F(x)L v)^0 (cf. Theorem 5 [1]), since Γ{Fr)ψ0.

LEMMA 2.6. Let X be an elliptic curve, E an ample bundle on X and n a

positive integer. Then there is another elliptic curve Xr and a map f from Xf to

X so that degf>n and the map from Hι(X,E") to HX{X', /*(£ v ' )) is injective.
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Proof Let X be elliptic and / any map of degree 2 from another

complete non-singular curve X'. Then there is an exact sequence

0 > <?x > /* &χ, > L > 0

where L is a line bundle on X. I claim d e g L ^ O . For there is an exact

sequence

0 >LV >

and if deg L > 0, we would have an exact sequence

0 >H*{X9<?Z) >HKX,L") >H\X\f*{Ly'))

since H\LT%f%ί7χ) is naturally isomorphic to H*(/*LV) and tf°(/*(Lv)) = 0

since /*(LV) is negative. But then we would have a non-trivial extension

0 >t?χ >E >L >0,

but the extension

0 ><?χ, >f*E >f*L >0

would be trivial. This is impossible since E and f*E are ample by Corollary

7.8 of [9].

Now let E be any ample bundle. Then the map from ^{X.E^) to

HKX',f*{Ey')) has kernel H\X,E^®L). Since (£v<g)L)v is ample, £v(x)L has

no sections, so our map is injective.

If X is an elliptic curve, we can find another elliptic curve X' and a

map / of degree two from X' to X. We can consider X as a group by

choosing an identity for the group law, and then multiplication by two in

X is a map of degree four. Thus if K(X) denotes the function field of X,

multiplication by two defines K{X) as a sub-field of degree 4 in K(X).

Then there is a sub-field K' of degree 2 between K(X) and a non-singular

model of K' gives us our curve X'.

Finally, we can construct the curve X' and the map / of the Lemma

of large degree by letting / be the composition of morphisms of degree

two.

THEOREM 2.3. Let X be an elliptic curve and E a bundle on X. Then E

is ample if and only if every direct summand of E has positive degree.
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Proof. We use induction on the rank of E. The induction hypothesis

and Lemma 2.5 show we may assume every quotient bundle F of E is

ample if Fψ E. Since d e g £ > 0 , there is a non-zero map / from &x to

E. This map factors through a sub-line bundle L of E. Now either &x

is mapped isomorphically to L or L is ample. If L is ample, E is ample

since it is an extension of two ample bundles, E\L and L. If L is iso-

morphic to (?X9 we have a non-trivial extension

0—><?χ—>E—>E'—>0

where E' is ample. Now let Xr be an elliptic curve and / a map from

X' to X so that d e g / > r a n k E and the map from H'iX.E^) to H*(X,f*{E"))

is injective. Then the extension

0 —» Λ , —> /*(£) —> /*(£') —» 0

is non-trivial. By Lemma 2,5 and the induction hypothesis, every quotient

bundle F of f*E is ample if Fψ f*E. Also deg f*E = deg/* deg £ > rank

/ * £ . So Lemma 2.2 shows /*2s is ample, and hence E is ample.

CHAPTER III. Ample Bundles on P2

Suppose the characteristic of k is p ψ 0. Then a line bundle is ample

if and only if it is p-ample. Furthermore, a bundle over a non-singular

curve is p-ample if and only if it is ample. The first purpose of this

chapter is to construct an ample bundle on P 2 which is not p-ample.

Using this bundle we will construct a series of ample bundles Fn on P2 so

that Fn(k) has no sections if k<n. Such a sequence exists even if the

characteristic of k is zero. We note a result of Barton [3] which says in

this case that there is a kn so that E{k) is generated by global sections if

E is ample, cx{E) = nH and k^kn.

Our second main purpose is to study the cohomology of Γn(E)(g)F where

E is an ample bundle and F is coherent. In characteristic zero, we have

Γn(E) is isomorphic to Sn(E)9 so the higher cohomology groups vanish for

n large. But in characteristic p the higher cohomology groups no longer

vanish.

The non-vanishing of these cohomology groups has implications for

relative cohomology. To illustrate this, we let Y be P2 and E a vector

bundle over P 2 with the property that for any locally free F, then
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for n large. We will exhibit such a p-ample E later. Let X be

and consider the natural embedding of Y in X. The normal bundle of Y

in X is £, and we let / denote the sheaf of ideals of Y. Then Hι{X/γ,F)

is infinite dimensional since

and since

Hι(Y, InUn+i(g)F)

is dual to

H1Qr

9F~<g>Γ*(E)(-3)).

(Γn(E) = (InUn+ιΓ). Now by [10, 4.4], H2(X-Y,F) is infinite dimensional,

and taking into account the long exact sequence of local cohomology, HY(F)

is also infinite dimensional. Hence the situation in characteristic p is com-

pletely different from that in characteristic zero, where H2(W — Z,F) is

finite dimentional if Z is a non-singular projective surface with ample normal

bundle in a non-singular projective fourfold [10].

THEOREM 3.1. In any characteristic, there is on P2 an exact sequence of locally

free sheaves

with E ample. E is not p-ample when char k = p.

The idea of the proof is to construct a surjection from £7* to ^(7) 2 of

a sufficiently general nature. Then we will show E restricted to every curve

is ample. The integer seven above may be replaced by any larger integer.

Let X denote P\ and H denote a line in X.

LEMMA 3.1. The generic linear system of dimension 3 in \ΊH\ has no base

points and contains no divisor with multiple components.

Proof Using the formula,

dim\mH\ = (m+l)(m + 2) _λ

we readily verify that
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dim | 7 # | : > 4 4-diml(7-ί)i/ | +άim\iH\,

for 0 < i < 7. On the other hand,

dim | ( 7 - i)H\ + dim \iH\

is the dimension of the subset Gt of \7H\ consisting of all divisors D which

can be written as Dt + D2 where Dx is in \(7—i)H\ and D2 is in \iH\.

Since codim Gί<4, it follows that the generic linear system of dimension

3 does not meet G^ and so all divisors in this system are prime.

It is also clear the generic linear system of dimension 3 has no base

points since four divisors usually do not have a point in common.

Now given a linear map D of P 3 into \7H\, we can get a map from

&* to ^(7). Indeed any linear map between projective spaces comes from

a linear map on the corresponding vector spaces, in this case ¥ and

HQ{X,έ?(7)). Hence given two maps D and D", we get a map

LEMMA 3.2. It is possible to choose D and D" so that the above map is

surjectiue. Furthermore, DtΓ\D'ί is a finite collection of points for all t in P3.

Proof. Let L and U be disjoint linear systems of dimension 3 in \7H\

which have no base points and which contain no divisors with multiple

components, and let D and D' be linear maps of P 3 onto L and Lf res-

pectively. We will alter D' by an automorphism of P 3 to obtain D". For

x in P 2 and σ in PGL{3), consider the planes

F(x) =

F'(x) =

and the subset B of PGL(3)xP2

B= {(σ,x)\σF{x) =

Let φi and p2 denote the projections of B into PGL(3) and P 2 . Now if

Bx = p?{x}9 then

codimPσi(8)(-ββ) = 3

since Bx is just the set of σ which map F{x) onto F'{x). So dim B< dim

PGL(S). Hence there is a σ in PGL(S) so that σ is not in p2{B). Now

define
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Ώ" : P 3 — > \7H\

by

v ι = Λ'<*>

But then for each x, there ~are 5 and t in P 3 so that

Hence the map f : ^4—>^(7)2 is surjective. For let w be a section of

,^7A corresponding to 5 and let Pi and p2 be the projections of ^(7) 2 onto

^7(7). Then pj corresponds to D and p2f to D", Then p2{f{w)) vanishes

at x, but Vι(f{w)) does not. Since L and U are disjoint and contain only

irreducible divisors, Df[[\Dt is a finite set of points for all /.

We are now ready to construct our ample bundle. We take a surjective

map of the type constructed above and let £ v be the kernel.

0 > £ v > ^ 4 >^(7)2 >0

0 »^(-7) 2 >&A >E >0.

Now E is not p-ample since H*{Epn(g)£?{—l)) = 0 for all n. Indeed, we

have the exact sequence

0 = HK<?{-1)A) > H»(Epn(-l)) > H\&{-Ί<pn - D2) = 0.

To show E is ample, we use the criterion of Proposition 2.1. Let C

be an irreducible curve on P 2. We must show every quotient line bundle

of E\c is ample. But if L were not ample, we would have L isomorphic

to tfc since L is generated by global sections. This in turn would give a

nowhere zero section of E\c. Hence we would get a section of ^ J . This

section would extend to a section d?*x. Finally, the image of this section

in έ?(7)2 would vanish on C. But this section would correspond to a point

t in P 3 and then

But this intersection has only a finite number of points. Hence L is ample

and so E is ample.

We now construct a series of ample bundles Fn so that Fn(k) has no

sections if k<n. First, suppose the characteristic of k is p ψ 0. A theorem

of Barton states that if E is ample and F is a bundle, then Epl(g)F is ample
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for / large [3]. Hence we choose Fn to be Epl®#(—ή) where / is large

enough so that Fn is ample. We have an exact sequence

0—><?(-7pι-n)*—>&{-ny—> Fn—>0

Using the long exact sequence of cohomology, we see Fn(k) has no sections

for k< n.

Now we can also construct such bundles in characteristic zero. Let A

be a local integral domain so that the residue field k has characteristic p

and whose quotient field K has characteristic zero. Then we can extend the

two maps from d?p$.{n) to έ?p2

k{7pι + n) to maps from d7P\(n) to έ?p2

A{n-\-7pι).

So we can construct a new locally free sheaf E" over P\

0—>έ?pl(-7pι-nY—>&P%{-ny—> E"—>0

Now letting Fn = E"®K, we see that

,Q — > έ?pκ(~7pι - n)2 — » έ?P*κ{-nY — > Fn — > 0.

Furthermore, Fn is ampίe since the set of x^SpecΛ such that E" is ample

on the fiber over x is open and non-empty.

As we promised in the introduction, we now give an example of a p-

ample bundle E on P 2 so that for any bundle F,

for all n large. We need the following lemma which will enable us to

relate the cohomology of Γpn(E) and Epn.

LEMMA 3.3 (char k = p). Let E be a vector bundle of rank 2. Then for

each n > 1, there is an exact sequence

* 0 — > S^'1 (Ep) — > SP\E) > ΓP\E) — > Γpn'x (Ep) — > 0.

Proof Let A be a ring of characteristic p. Let P denote the repre-

sentation of Gl(2,A) on A2 defined by

τ>(a t>\_(ap bp\
r\c dj- \cp dp)

Sk will denote the symmetric power representation of Gl(2.A) on Ak+ι.

Then we define a new representation Γn by

Γ(F) =
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However, since Sn is actually a group homomorphism and since transpose

and inverse commute, we have

rn(F) = (&(&'))'.

We let q = pn and r = pn~ι. So to prove *, we merely have to show there

is an exact sequence of representations

** 0 >SrP—>Sq >Γq >ΓP—>0.

Now let / be the largest integer such that pι divides kl(q — k)\ for all k.

Denote pι by s and the (q + I) x (q + 1) diagonal matrix given by

by B. Now let gθ9 >,gq be the usual basis for Aq+1 and /0, , / r the

usual basis for Ar+ι. Let C be the linear map from Ar+ι to A9+1 which

sends fk to ^pfc and D the map of Aρ + 1 to Ar+ι which sends ^ to fk and

..& to zero if p does not divide /. Now p divides bkk if and only if p

divides k. I claim that for any F in Gl(2,A) we have a commutative

•diagram with exact rows,

C B D
0 > A r + ι > A q + 1 > A q + ί > A r + ι > 0

SrP(F) Sq(F) Γq(F) ΓP{F)

— > Λ β + 1 —
C B D

This will prove ** and hence *.

We need only check commutativity of the diagram for F of the form

fa 0\ (\ 1\ ^Λ /0 IV
(o i> Vo I )

 a n d Ki o)

As a sample of these checks, we prove commutativity of the middle square

-when

F-(λ *)

Sg(Ft)(gt)= Σ
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So we have

So

BS<(F)(gk) = J (9 Z

However the reader may easily verify that in Z,

(j\ k\(q~k)\ ^(q- k\ j\(q-j)\
w s \q — JJ s

The above lemma gives us a hold on the cohomology of Γpn{E).

THEOREM 3.2. Let F be a projective surface, E a sample bundle of rank Z

on F, and G a coherent sheaf on F. Then for large n,

dim H1 (Γp\E)(g)G) ^ dim H^E^G).

Proof First, there are m0 and n0 so that

H2(Spn (Epm)®G) = 0

if m^:m0 or n^n0. Indeed, let ^(1) be an ample line bundle so that

for all k > 0. Now choose mQ so that if m^mQ then Epn is a quotient of"

a direct sum of έ?(iYs. Then Spn(Epm)(g)G is a quotient of a direct sum of

έ?{k)®G's for fc>0. Hence * holds if m^m0. On the other hand, the*

bundles E, Ep, yE
pn° are all ample. So there is an n0 so that if

then

H2(Spn(Epm)®G) = 0

if m<^o So * is established if m~^m0 or n;>:n0. Now from Lemma 3.3y.

we have exact sequences

0 — > S^1 (Epn+1 )(g)G — > Sp\Epm) <g> G—>Dmtn — > 0
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0 >Dm>n—>rp\E

Now * and the fact that H2 is right exact show that

H*{Dn,n) = 0

if m^n0 or n^>n0. So we have an exact sequence

Hι{Γp\Ep~)®G) — > H\Γpn~\Evm+ι)(g)G) —>0

So if n is greater than 2m0 and 2n0, we have exact sequences

> H'iΓ^'1(Ep)(g)G) — > 0

1 {Ep)(g)G) — > mr*"'2 (Ep2)(g)G) — > 0

)®) (®G) > 0.

So our theorem follows.

Now we can give our example, which is one of a series constructed by

Kleiman [13], Fix a surjection on P2

Dualizing and twisting by < (̂1), we get an exact sequence

0 >έ?(-l) >&{!)* >E >0.

Then E is p-ample since it is a quotient of a direct sum of ample line

bundles. Now let G be a bundle on P 2 . Then

ψ 0,

for n large. For if n is large, WiGip")) and H2(G{pn)) are both zero, so

H^G^E^) and H2(G{-pn)) are isomorphic. However,

dim H2{G(-pn)) = dim H°{G^^(pn - 3)).

Hence by our theorem,

Hι{ΓpΛ{E)(g)G) ψ 0

for n large.

We give the following theorem which clarifies somewhat the relations

between the various properties we have been discussing.
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THEOREM 3.3 (char k = p). Let F be a projectiυe surface and E a p-ample

bundle of rank 2 on F. Then if for any coherent sheaf G,

= 0

for n large, then E is cohomologically p-ample.

Proof From Theorem 3.2, we see Hι{Epn®G) vanishes for large n.

Now if L is a line bundle so that H2{L) = 0, we write G®Epn as a quotient

of copies of L. Then H2(G®Epn) vanishes.
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