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VECTOR BUNDLES ON AN ELLIPTIC CURVE

TADAO ODA

Introduction

Let k be an algebraically closed field of characteristic p ^ 0, and let

X be an abelian variety over k.

The goal of this paper is to answer the following questions, when

ά\ra{X) — 1 and pφO, posed by R. Hartshorne:

(1) Is E(P) indecomposable, when E is an indecomposable vector bundle on

X?

(2) Is the Frobenius m a p F * : H\X, E)-± Hι{X, E^) injective?

We also partly answer the following question posed by D. Mumford:

(3) Classify, or at least say anything about, vector bundles on X when

Let us now summarize our results.

When the Hasse invariant of X is not zero, the answers to (1) and (2)

are both affirmative.

When the Hasse invariant of X is zero and E is an indecomposable

vector bundle on X of rank r and of degree d, then E{V) is indecompos-

able, if either {r,d) = l or [r,d)i=l with rl(r,d) divisible by p. Otherwise

E(P) decomposes into a direct sum of min {(r, d), p} indecomposable compo-

nents.

Also when the Hasse invariant of X is zero and E is an indecompos-

able vector bundle on X, the Frobenius map in (2) is not injective (and in

fact the zero map), if and only if r< p, d = 0 and E has a non-zero section

(i.e. in Atiyah's notation E = ETtQ with r<p). It is surprising that F*

seldom fails to be injective.

When dim (X) = 1, Atiyah [1] classified all the indecomposable vector

bundles on X He also gave the multiplicative structure in case p = 0.

His construction of indecomposable vector bundles is essentially by succes-
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sive extensions of line bundles. To answer (1) and (2), however, it is very

hard to keep track of these extensions after we pull them back by the

Frobenius map.

We give here an entirely different way, inspired by Schwarzenberger's

results [18] and [19], of constructing indecomposable vector bundles, which

is very easy to handle and which gives us a clearer picture, we hope, es-

pecially in characteristic pf=0. This construction, by taking the direct image

of line bundles by isogenies, can also be generalized to higher dimension,

and thus partially answers the question (3).

When k is the field of complex numbers, Morikawa [10] characterized

those indecomposable vector bundles, which we thus get on an abelian

variety, or more generally a complex torus, in terms of their factor of auto-

morphy. We shall re-interpret his result at the end of Section 1, after we

give our construction.

There are lots of other simple vector bundles on an abelian variety of

higher dimension, (cf. Our forthcoming paper, Vector bundles on abelian

surfaces, in Inv. Math.)

We also remark here that R. Hartshorne [7] proved the following: A

vector bundle E on an elliptic curve X is ample, if and only if every

quotient bundle of E has positive degree.

He uses Atiyah's multiplicative structure when p = 0, and our answer

to (2) when p ψ 0.

In Section 1 we state the results valid in arbitrary dimension. In

Section 2 we apply these results to elliptic curves and solve the problems

(1) and (2).

Notation and convention

Throughout this paper we denote by k an algebraically closed field of

characteristic p ^ 0.

We use the words vector bundle and locally free sheaf interchangeably.

For vector bundles E and E' on a scheme X9 we denote by ^nd^ (E) and

^b^.^>{E,E!) the sheaves of ^r-endomorphisms and ^-homomorphisms,

while End^(is) and H o m J £ , £ ' ) mean the sets of global ^-endomorph-

isms and ^-homomorphisms. E—^om^{E^^) is the dual vector bundle.

For an abelian variety X, we denote by X1 the dual abelian variety.

For an isogeny ψ :Y-+X, ψι is its dual isogeny Xt-*Yt.
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When X is an elliptic curve over k with pφO, we denote by Hasse

(X) the Hasse invariant of X, that is, Hasse (X) ψ 0, if there are p /b-valued

points of order p on X, while Hasse (X) = 0, if there is none besides 0.

Section 1 Vector bundles on an abelian variety

Let φ :Y^X be an isogeny of ^-dimensional abelian varieties over k

with scheme-theoretic kernel {φ) = G. Let E be a vector bundle on Y. Since

ψ is finite and flat, it is obvious that φ*E is a vector bundle on X. We

should like to compute End^> (y>*2£). First of all it canonically contains

We have the cartesian diagram

μ
YxG >Y

where μ :YxG-+Y is the restriction of the group law YxY-*Y, and pt is

he projection. Since φ is an isogeny, hence affine, we have φ*φ*E=pι*μ*E.

Thus by the adjointness of φ* and φ*, we get End^(φ^E) = Έloπi^>(φ*φ^E, E)

= Hom^, (px*μ*E, E) = H°(Y, [Vi*μ*E®^Ey). Since the canonical line bundle

ΩQγ is isomorphic to ^ F , this latter is, by Serre duality, dual to Hg(Y,pu,μ*E

®0>E). By the projection formula, Pi*μ*E®^yE = Pι*(μ*E(S}^rxaP*έ)m

Moreover px is finite, hence the cohomology group above is isomorphic to

H%YxG,

Let L be a line bundle on Y. As in Mumford [13], we denote by

A[L) : Y -v 7ϋ the homomorphism sending a point y in F to Tv*L®^Lrι

9

where Tv : F -> Y is the translation.

Moreover, suppose C is a vector bundle on Y, such that on μ*C = pι*C

on YxG. Let us apply our previous calculation to E = L®^C. Then

L-ι)®^Qp^nd^{£). By the definition of λ = Λ(L) :

*, we know that

where j:G-*Y is the injection and & is the normalized Poincare line

bundle on YxY\ that is, the universal family of line bundles algebraically
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equivalent to zero parametrized by Y\ and so normalized that &\Yx{0}

= έ?γ and ^ M t O J x F ' Ξ ^ Λ

Thus End^p {φ*E) is dual to

Hg(YxG,(lxλ o j)*l&®0r

which is isomorphic, since G is affine, to

H°(G9

By the base change theorem (EGA III §7, Mumford [14]), this is isomor-

phic to

H>(G, U o j ) * R o 0 T x r 0 r

We now state a slight generalization of an important result of Mumford.

DEFINITION. A vector bundle U on a scheme Y is called unipotent, if U

has a filtration such that the successive quotients are all isomorphic to #γ.

It is straightforward to see that U is unipotent, if any only if the

transition functions can simultaneously be chosen to be upper triangular

matrices with 1 along the diagonal.

LEMMA 1.1 Let U be a unipotent vector bundle on a ^-dimensional

abelian variety over k, and let & be the normalized Poincard line bundle

on YxY\ Then Rίp2*[&®gPyxγtP*U'] is the zero sheaf on Y\ when i ψ g.

On the other hand, RgP2*l&(8)^> x tPi*U] has support at the origin 0 of Y\

and the stalk there is a rank (f/)-dimensional vector space over k. Moreover,

the stalk modulo the maximal ideal of <ζ?γ\s is isomorphic to H9(Y,U).

Proof. Mumford has shown this when U = έ7Y in [14], Since U has a

filtration with successive quotients all isomorphic to ^7F, we easily get the

first two statements. As for the last, we use the base change theorem.

We now return to our previous situation and suppose further that

^nd0>{C) is unipotent. Examples of vector bundles C with this condition

and the previous μ*C = p*C on FxG are the following:

(i) C is a direct sum of vector bundles of the form L'(g)Ert0 with Lr al-

gebraically equivalent to zero. (cf. Atiyah [1] and our Section 2).

(ii) k is the field of complex numbers, and C is a vector bundle with a

holomorphic (integrable) connection, (cf. Matsushima [9] and Morimoto

[11]).
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Under this further condition, we know by Lemma 1.1 that

has support at the origin of Y\ and the stalk there is of dimension rank

(%fnd^p (C)) = [rank(C)]2 over k. Moreover, modulo the maximal ideal of

^Vf0, this is isomorphic to Hg(Y, ίfnd^C)), which is dual to

(C)) = End^(C). On the other hand, we have seen that End

canonically contains End^> (L® >̂JC) — End^, (C), and that it is dual to

me u o jrR'p

Thus counting the dimension we finally get the following:

THEOREM 1.2 Let ψ : 7 - > I be an isogeny of ^-dimensional abelian

varieties over k, and let L be a line bundle on Y such that the restriction

of A{L) :Y-ϊY* to the (scheme-theoretic) kernel of ψ is an isomorphism.

Then

(i) End^(φ^L) = k. Especially φ*L is an indecomposable vector bundle on

X.

(ii) Suppose φ is separable. If C is a vector bundle on Y such that gfnd^ (C)

is unipotent and that Ta*C=C for all ft-valued points a of ker(^), then

End^>Jl<Pχ(L(g)^C)) is canonically isomorphic to End^(C).

Remark, (i) From what we have seen above, it is easy to see that the

second statement of the theorem is false in general when C ψ ^V, and

Ψ is inseparable.

(ii) Even when the restriction λ © j of Λ{L) to G = ker (̂ ) is not an iso-

morphism, we can identify the algebra End^(^*(L(x)^C)) in the follow-

ing way:

As in Mumford [13], let H{L) be the kernel of A(L) and let K = K(L)

= GΠH(L) be the kernel of λoj. We denote by D{K) the Carrier dual

group scheme of K, and by A{D(K)) the affine A -algebra of D(K), that is,

D(K) = Spec (A(D(K))).

By our previous calculation, we see that End^> (φ*(E)) is isomorphic, as

a fc-vector space, to A{D{K))®t End^(C), where E =

We now identify its algebra structure.
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We denote by μf :YxK-*Y the restriction of the group law. By as-

sumption, we have μ'E ~ p*E on YxK. Then there is an obstruction O (E)

in the group cohomology H^r(K9Au.t^{E))9 where K acts canonically on

the automorphism functor Aut^iE). This is the obstruction to the existence

of an isomorphism between μ'E and p*E on YxK which satisfies the cocycle

condition, i.e. the obstructilon to the descent of E by Y-+Y/K. (cf. FGA

expose 190). Then we can show that the algebra structure on Λ(D(K))®k

End^> (C) is the ordinary one twisted by multiplying the 2-cocycle 0{E).

To see this, let us for simplicity assume that φ is a separable isogeny,

i.e. G = ker (φ) is reduced. Then

(φ*E) = H o r n . {p^μ E,E) = ® H o r n . (Ta*E,E)

K is the subgroup of G of elements a such that T^L^L'1 = £?γ, that is,

those for which Hom^, (Ta*L, L) above is not zero. (cf. Mumford [14]. See

also Lemma 1.1.). Let us fix isomorphisms w{a) : Ta*E^-E for a in K.

Then

y (?>„£) = @ E n d ^ (E) w(a)
^ x a&K c y γ

which is isomorphic, as a A -vector space, to A(D(K))^kEnd^,{E). Note that

A(D(K)) is now isomorphic to the group algebra of K over k. The algebra

structure is defined as follows:

w(a) w(b) = p(a, b)w{a + b)

where p(a, b) = w{a) o Ta*(w(b)) o w{a + b)~ι is in Aut^, (£) and is a 2-cocycle,

which determines 0(E) in H2

gr(K,Aut^>y{E)).

As one application of this, we see that E n d ^ (φ^γ) is canonically

isomorphic, as a ^-algebra, to A{D{G)). We will later identify φ*d7Y more

explicitly, (cf. Remark after (1.7))

We leave the application of Theorem 1.2 to elliptic curves to Section

2. We later show that when 0 = 1 , we get all the stable vector bundles as

in Theorem 1.2 (i). We believe there are lots of other simple vector bundles

when gψ\. Possibly we need direct image of line bundles by a finite

ramified coverings. But then we no longer have abelian varieties above,

cf. Lang and Serre [8], and Schwarzenberger [18] and [19]. We can also
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apply our method in Theorem 1.2 (i) to unramified coverings of a non-

singular curve. Then we get an algebraic family of simple vector bundles,

cf. Our remark after Propositions 1.3 and 2.3 and [15], [20],

PROPOSITION 1.3 Let φ :Y-*X be an isogeny of ^-dimensional abelian

varieties over k, and let L be a line bundle on Y such that Λ(L) induces

an isomorphism on G = ker(φ). Suppose M is another line bundle on Y

algebraically equivalent to L, i.e. Λ{L) = Λ(M). Then φ*L ̂  φ*M, if and

only if there exists a closed point a in G such that L = Ta*M, where

Ta : Y -> Y is the translation by a. Otherwise Hom^, {φ*L, φ*M) = 0.

Proof. In the same way as in the proof of Theorem 1,2, we see that

Hom0,Jίφ*L9φ*M) is dual, as a A -vector space, to

H°(G, (λ o JTR«V2*ίέ?®^γxγtVΆL®^yM-i)-\).

But since L and M are algebraically equivalent, there exists a point h in Yt

such that ύ>®0>rχrtV*(L®0>rM~ι) = (lx Tb)*&. Thus the cohomology group

is equal to H\G9{Tho χ o j)*Rg<p2^&)), This is 1-dimensional if 7W(G) con-

tains 0 of Y\ and otherwise it is zero, by Lemma 1.1. The rest of the

proof is easy. Q.E.D.

This Proposition shows that when we vary the line bundle L in its

universal algebraic family and make φ*L, isomorphic vector bundles on X

occur as often as the number of closed points in G.

THEOREM 1.4, Let φ :Y->X be an isogeny of ^-dimensional abelian

varieties over k, with ker(^) = G. Let L and U be line bundles on Y and

Y\ respectively. Denote by & the normalized Poincare line bundle on

YxY\ We also denote λ = Λ{L) :Y-+Y\ λf = A(L') : F ί -^F, G' = λ(G), and

7r : Yι -> X' = YZ\G'. Assume λ'oχ induces the identi ty m a p o n G. T h e n

the vector bundle {φxlγή^{φ^L®^γ^γtφ2""Lr) on XxY* descends via lΣXπ :

XxY'-tXxX'.

Remark. This Theorem 1.4 says that there exists an algebraic family

of vector bundles on X parametrized by an abelian variety X'9 in which,

isomorphic ones appear only once.

Proof. For simplicity we denote Z = YxY\ M = Pi*L(g)^

and E' = {φxl)*M. First of all A(M) : Z = YxY'-^Z1 = YzxY is the map

sending a point (y,υ) in Z to (t; + λ(y), 2/ + λ'(v)). Hence A{M) sends a
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.point (Λ,Q) in Gx{0} =ker(^xl) to {λ{a\a\ and thus is an isomorphism on

Gx {0}., Thus applying Theorem 1.2 to Mand φxl, we see that

Consider the cartesian diagram

IXJΓ

lXπ
[φXl

-XxY'

We first show that {φxl)*E' = (φxl)*{φxl)*M is isomorphic on Z to (IXTΓ)

Let us simply write G and Gr the subgroup schemes Gx(0] and {0}xGr

of Z. Let us also write μ9j>1:ZxGz£Z and μ'9φ[ : ZxG'zXZ, the actions

and the projections. Since the diagram

Z< ZxG

<pxl

is cartesian, we get (φxΐ)*{φx'l)*M =

where & is the normalized Poincare line bundle on ZxZ\ and U,j):

G-^Zt=YtxY sending a to (λ{a)9a) is equal to the restriction of Λ(M) to

Gx{0} = G. Similarly we get (lXπ)*{lXπ)iM=V\SlxU\λΊ)*{V*M®^z^zt&)\

where U',λ') :Gr ->Zf is the restriction of Λ{M) to Gf.

By assumption, . and λ' are inverse to each other on G and G'. Thus

the diagram

commutes. Thus we get (pxl)*(φxl)*M= (lXπ)*(lXff)+M.

As the first step of the descent, we next show that by μ\vf\ ' {XxYι)xG'

% μ'*E' is isomorphic to p{*E'.. But from the cartesian diagram

φXl

Pi
-ZxG'

ψxlxl
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we have μ'*Er =* μ'*(φxl)*M= (φxlxl)*μ'*M

~ (φxlχl)*{lxλ')*μ*M= {lxlxλ')*(φxlxl)*μ*M from what we have seen

above. But since the diagram

Z< — ZXG

XxYU (XxY')xG

is cartesian, this latter is equal to

(lxlxλΎp*(φxl)*M==pί*(φxl)*M =?[*£[, and we are done.

Thus to show that E' descends via lxXπ, we have to check the existence

of an isomorphism with cocycle conditions, in other words, the vanishing

•of the obstruction. 0(£') in H2

gτ{Gf Aut^^βE')). (cf. Remark after Theorem

1.2) But we know that (φxl)*0{Er) = 0((y>xi)*£') in H2

gr(Gf, Aπt^βφxlTE')

vanishes, since we have shown that {φxYfΈ1 descends via lFx?r :Z->FxX' .

Thus it is enough to show that (φ x 1)* : H2

gr{Gf, Aut^/E')) -+H2

gr(G'^

A\xt^>{{ψxl)*Er)) is injective. From what we have seen before, it is easy

to show that E n d ^ ^ c(£') = Gα, thus A u t ^ x y t ( £ ' ) = Gm> with Gr acting

trivially on these. It is also not hard to see that End^((y>xl)*-E') = A{G'),

and thus Ant^>βφxl)*E') = A{G'f with G' acting trivially on these. Here,

for a fc-algebra A, we define the ring functor A and the group functor A*

.as follows: for a fc-prescheme S, A(S) is the ring A(g)kH\S, έ7s\ and A*{S)

is the multiplicative group of invertible elements in it. In our case A=A(Gf)

is a commutative finite ^-algebra. Since Ared is a direct sum of It as a fc-

algebra, the surjection A-±Ared followed by a projection to one of the

factors gives a splitting of the injection Gm = k*-+A*. Thus we are done.

The choice of E on XxXr such that (lγXπ)*E ~ Er is not unique. By

descent theory, they correspond to the elements of

HUG', Aut^χχ/Er)) = Homgr(G', GJ - ker [Xft(k) -> Y(k)1

by Carrier's duality theorem, (cf. e.g. Oda [16], Section 1)

It is easy to see that this corresponds to the fact that E and E®^> , p2*£o

•give the same vector bundle on XxYύ by the pull back by (ljrXsr), where

LQ is a line bundle on Xr such that τr*L0 = tfYt. Q.E.D.
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THEOREM 1.5 Let φ :Y->X be an isogeny of abelian varieties over kr

and let φ* : X% -> Yι be its dual. If ^ and & are the normalized Poincarc

line bundles on XxXϋ and YxY\ respectively, then (φ x lγή*& and

" are isomorphic simple vector bundles on XxY\

Proof. Consider the cartesian diagram

lxφ*
YxY<< FxΓ

l l ^ x

XxY< < Xx X1

lXφt

We know that {Ixφ*)* <£?= (φxl)*^ on YxXe and they are the normalized

line bundles corresponding to the divisorial correspondences φ : Y -> X and

<Pι : Xt -+Ye. Let us denote these isomorphic line bundles by M. Thus

Λ(M) :YxX* -+(YxXy = XxYz coincides with Ψxφ\ Also let us denote

G = ker(φ) and G' = ker(?>*). Thus H{M) = kerΛ(M) = GxG'. We also

know (cf. Oda [16], Lemma 1.4) that G and Gf are Cartier dual to each

other, the non-degenerate pairing < , > : GxGr -+Gn being induced by the

alternating biadditive pairing eM on H(M).

G x Q ,

H(M) X H(M) > Gm

For simplicity we denote Z—YxX1. For a &-prescheme S, we denote by

Zs the base extension ZxS. Ms is the pull back of M on Zs. Then for

any S-valued points a and b of G and a' and V of G', we have an iso-

morphism

P(a + a') : Ms -> T*+afMs

satisfying (T*+a,p(b + V)) o p(a + a') = <a, bf>p{a + b + a' + br). The 2-cocycle

<a,b'> gives the obstruction 0(M) in H2

gr{H(M),GJ and e"(a +a', b +b') =

<&9b
ry<Jb,ary~ι. (See the remark after Theorem 1.2) Moreover, p satisfies-

the cocycle condition on G and G' separately. ^ and & are the corres-

ponding descent of M to YxY* and XxX\ respectively. Therefore our

theorem is reduced to the following more general situation:
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Let M be a line bundle on an abelian variety Z. Suppose H(M) —

ker Λ{M) contains a product G x Gf of finite group schemes with a non-

degenerate pairing <, > : GxGf ->GTO. Suppose further that for any k-

prescheme S and any S-valued points a and b of G and ar and 6' of G',

there is an isomorphism

P(a + ar) :Ms-+T*+a,Ms

satisying (T*+a,p{b + V)) o ̂ (α + ar) = <α, δ'Xβ + 6 + α' + bf). Let us denote

9> :Z->Y = ZjG', ψ' : Z->Y' = Z/G and I = Z / G x G ' with the projections

φ :Y-+X and φr \Y' ~-± X. Then since p satisfies the cocycle condition on

G and Gf separately, M descends to line bundles L and V on Y and Y'

respectively. Then

LEMMA 1.6 φ*Lf and \_φ*L~ιY are isomorphic vector bundles on X

Proof. It is easy to see that the diagram

Φ
Y< Z

X<

is cartesian. Let us consider the pull back of <p*L and φ*U by φ oψ= ψfoψf.

From the diagram

Φ μ
Y< Z< ZxG

X<
ψ> φ>

we see that Ψ*φ*(φ*L) = Ψ/*φ'*(<P*L)=A(G)<g)kM. Similarly, we get ψf*φ'*(φ'*Lf)

= A{G')®kM.

Let a and af be 5-valued points of G and G' respectively. They define

the translations Ta : Gs-+ Gs and Ta, : G's -> G' s, hence algebra automorph-

isms τ(a) = T* : i4(G)s->A(G)fi and τ'(β') = Tί/ : i4(G')s -^^(G'^ Moreover,

the non-degenerate pairing < , > : GxG' ->GTO defines an isomorphism G=D(G').

Thus the automorphism D{Ta,) : D(G')S-*D(G')S defines a coalgebra auto-

morphism σ(a') = £(τ'(α')) : Λ{G)S -*A{G)8. Since G^S) = D{G){S) = Hom 5 . g r

(G, GJ, it is easy to see that ^(α') is equal to the multiplication in A(G)S of

the character defined by a'. We define the coalgebra automorphism σr{a) =
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D(τ(ά)) : A(G')8 ->A{G')S in a similar manner. From what we have seen

above, we can easily show that

τ{a) o σ(af) = <α, ar}σ{af) o τ{ά)

τf(a') o σ'{a) = <β,a'W{a) o τ'{af).

In view of the diagram above, the descent data on A(G)®kM corres-

ponding to the pull back of φ*L by ψ o ψ is easily seen to be given by

τ(a) o σ(a')®p{a + a') : (Λ(G)®fcM)s -» T*+«, WiG)®^) β

for S-valued points α and a' of G and G' respectively. Taking into account

the skew-symmetry of the Cartier duality for isogenies, we can similarly

show that the descent data on A{G')®kM corresponding to the pull back of

φ'*U by φr o ψr is defined by

τ'(β') ° σf(-a)®(a,afyp(a + a') : {A(G')®kM)s -> T*+a, (A(G')(g)kM)s.
II

σ'(-a)oτ'(a')®p(a + a')

The descent data on D{A{G))®kM corresponding to the pull back of [φ*L~ιY

by φoψ is defined by D(τ(a)oσ(-af))-1^p(a +af) = D{τ{-a))oD{σ{a/))(Sίp(a +ar).

Since D(A(G)) = Λ(Z)(G)) is isomorphic via the pairing < , > to A(G'), and

since D{τ{—a)) and D(σ{a')) correspond to σf{—a) and r'(tf') respectively, it is

easy to see that the isomorphism above D{A(G)) = A(Gf) induces an iso-

morphism from D(A(G))(g)I:M to A(G')®kM which commutes with the descent

data corresponding to [φ^L^Y and φίL\ Thus by the fundamental theorem

of descent theory (FGA, expose 190) we see that φ*U and [φ*L~ιY are

isomorphic on X Q.E.D.

Remark. If we apply the duality theorem for the finite morphism

φ :Y-+X (cf. Hartshorne [6], Chap. III. §6), we see that

Consider a finite A -scheme s : S->Spec(&) and its base change pλ : XxS

-> X. Since the functor 5 -> s! commutes with the flat base change, we see

that

(st:) {Added in proof) We have φ\£?χ — &γ for an isogeny φ : F-> X of abelian varieties,
thanks to the compatipility of the upper shriek functor under composition. Thus [.φ*L~~ιY =
φ*L. Theorem 1.5 and the proof of the results below can^ thus be much simpler.
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Now s!^S p e c ( f t ) = Λ , hence vx\^7x = Λx δ , if and only if S is Goren-

stein, i.e. the affine ring A{S) = H°{S, d7s) is a Gorenstein ringc*}. This can

be seen as follows, s lέ7Spec (fc) is the ^-module associated to the dual space

D{A{S)) = ΐlomk(A(S),k) on which the ^4(S)-module structure is given by

(au)(x) = u(ax) for a and a; in A{S) and M in D(A(S)) (cf. Hartshorne [6]).

Hence sl^Spcc^ = ̂ s if and only if D(A{S)) = A(5) as A(S)-modules, hence

if and only if A(S) is a Gorenstein ring (cf. H. Bass, On the ubiquity of

Gorenstein rings, Math. Zeitschr., 82 (1963), 8-28). A(S) is Gorenstein if

and only if each localization of A(S) is Gorenstein. Hence, for example,

s ! ^ S p e c (A0 = έ?s> if each stalk of έ?s is a complete intersection

k[tl9t29 -,trll(ti\h\ - , * / ' ) .

Thus if

(i) S is a finite subscheme of a non-singular curve or a surface over k

or if

(ii) 5 is a finite group scheme over k (cf. Carrier's structure theorem of

local group schemes [4]),

then slέ?Spec(k) = έ?s, hence <px\<?x - ^ ^ .

COROLLARY 1.7 Let ^ : F - > X be an isogeny of abelian varieties over

k. Then φ*.0γ = p^ij^lXxker(φϋ)) where J^8 is the normalized Poincare

line bundle on XxX* and ψt : X1 -*Yι is the dual of ψ. Especially if φ* is

separable, then φ^γ = ®L where L runs over all the line bundles on X

such that φ*L = ̂ F .

Remark. We have seen in the remark before Proposition 1.3 that

Έnd^Jίφ+tfr) = A{D{ker (φ))). Now we have a sharper result. We also

remark that this result generalizes Atiyah's result in [1] p. 451.

Proof. We have seen in Theorem 1.5 that (<pxl)#&

Thus φ*<yr = φJt&\Yx{0}) = [(φxD*&-\\Xx{0} = [ ( l x Λ ^ T U x {0} =

since the diagram

c*) The relevance of Goernstein ring here was pointed out to us by Masaki Kashiwabara.
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Xx X* < Zxker (?')

XxY* < Xx {0}

is cartesian. Now apply the duality theorem for the finite morphism

Since ker(^c) is a group scheme and hence Gorenstein, we see that

If φ* is separable, ker(p') is reduced, and we easily get the result. Q.E.D.

Let φ : Y -> X be an isogeny of ^-dimensional abelian varieties over k

with G = Ker (φ), and let L and M be line bundles on Y. We are now

going to identify the ^ - m o d u l e ^o^^>{φ^L,φ^M).

By the adjointness of φ* and φ*9 and the fact that φ*φ*L = $ι*μ*L for

Y, we have

Since G is Gorenstein, this is isomorphic to φ^PίJ.μ*L®p1*M'1Y —

L"1)] by the commutative diagram

P i i K )
YxG >YxY*

iφxl [φxl

X< Xx G > XxY<
Pi lxΛ(L~i)

Suppose moreover that L and M are algebraically equivalent. Then

there is a A -valued point b in Yι such that

where Th:Y
l ->• F ( is the translation by 6. Hence

)*(1 X

Thus by Theorem 1.5, we get

0χ{φ*L, φ*M) = p1Hί(lX T6 o
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Suppose, moreover, that Λ(L) = —ΛiL'1) induces an isomorphism on G as in

Theorem 1.2. Then the sheaf is isomorphic to

where Gb is the image of G by Tbo AiL"1) : F->F ί and Gb = (p*)""1^) is the

total inverse image by ψι : X1 -> F* of the subscheme G6.

I x r < IxGfi > X

Pi II
• X

Since Gb is a translation of a finite subgroup scheme of Y\ it is Gorenstein.

Applying the duality theorem for p1 : XxGb-+ X, the sheaf above is iso-

morphic to W l X 9 l ( ^ " Ί I x 6 δ ) ] v =lVul^~ι\XxGb)Y. The second p1

is now the projection ??! : XxGb-*X. Since G6 is again a translation of a

finite subgroup scheme and hence Gorenstein, this sheaf is isomorphic to

Thus we get the following:

PROPOSITION 1.8. Let φ : Y -> X be an isogeny of abelian varieties over

k with ker (ψ) — G. Let L and M be algebraically equivalent line bundles

on Y9 with M= L®^ [&\Yx{b}]. If Λ{L) induces an isomorphism on G.

then J?^o*zg>{<Pi,L, φ*M) = pi*(t^\XxGb) where & is the normalized Poincare

line bundle on XxX1 and Gb = (φ'ΓKΆ o ylfL^XG)) is the total inverse image

in X* by p* of the subscheme TboA{L~l){G) oϊ Y\

COROLLARY 1.9 Let ψ :Y-+X be an isogeny of abelian varieties over

k with ker(p) = G. Let L be a line bundle on Y such that Λ(L) induces

an isomorphism on G. Then

where G is the total inverse image by ψι : Xt -> F J of the subgroup scheme

Λ(L){G) of F' Especially if both φ and ^ are separable,

where U runs over all the line bundles U on X such that

φ*L' =
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for some point a in ker (φ).

Remark. We shall show later that it is a generalization valid in all

characteristic and dimension of Atiyah's key Lemma 22, p. 439 in [1].

PROPOSITION 1.10 In the notation of Theorem 1.4, let E be a univer-

sal vector bundle on XxX' such that (lxXπ)*E = (φxlγή*M. Then

WVvto&Όnt^^pvtE, pu*E) = Δ+£7χt9

where pl2,<pu: XxX'xX' -+XxXr and p2S : XxX'xX' -* X'xX' are the

projections and Δ : X' -+X'xX' is the diagonal map.

Proof. Considering the stalk at each point of Γ x l ' , we conclude, by

Proposition 1.3, that the sheaf on the left hand side has support on the

diagonal Δ{Xr) and that at a point on the diagonal its stalk modulo the

maximal ideal is one dimensional. Moreover, the canonical injection

tfx' -> Vi*£nd jj, (E) dualizes to give a surjection R0p2^nd^ ,(E) -> £?Xf.

Thus from what we have seen above and the flat base change theorem we

get a canonical surjection

To show that this is an isomorphism, it is enough to show that its pull

back by the faithfully flat morphism πXπ lY^xY* -+ X'xX' is an isomorph-

ism. By the flat base change theorem and the fact that (lXπ)*£ = (φxl)*M,

we get

^χκγtχγt{{φ X1Xl)*p12*M, (φXΪX 1)*?1 3*M)

where pl2 and p18 on the right hand side are now the projections for

YxY'xY*.

Thus we are in the situation before Proposition 1.8, and see that this

latter is isomorphic to

where μ : (Y xYι'xYι)xG -+Y'xYι:xFt is induced by the action of G on F,

and various projections are for YxYtxYtxG.

Since M = p *L® &®zp*L', it is not hard to see that (μ*Pι2*M)"1(S>Piz>!M
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P z v ^ ^ p ^ j ^ ^ where

v :YtxYt -^Yt sends a point {u,υ) to v — u, and & is the normalized

Poincare line bundle on Y*xY. Thus we get

= Pi2JW£ / -Hg>J>2*L^

But by the flat base change it is not hard to show that

where p2 — pi — λ o pz : F c xF c xG ->FC is the obvious map. By Lemma 1.1

R9Pi*έ? has support at 0 with one dimensional stalk there. Thus this latter

is isomorphic to i*(?γ*xQ where / : YzxG -^F 'xF 'xG sends {u,a) to (u9 u+λ(a),a)»

Hence

Moreover, keeping track of the isomorphisms, we see that this final iso-

morphism is the (πX:r)* of the original canonical surjection. Thus we are

done. Q.E.D.

Remark. When F = X, φ = 1X9 L = ̂ 7X and U = Λ«, we have X' = Xf

and E = ̂ , and this result is a slight modification of Lemma 1.1 for

i = g.

COROLLARY 1.11 In the notation of Proposition 1.10, suppose 5 is a

Gorenstein finite subscheme of X''. Let E\XxS be the restriction of E on

XxX to Xx5. Then

^ S l ) = A(S)

where px : XxS->X is the projection.

For simplicity, we denote Ef = E \ Xx S. Via scalar multiplica-

tion, A(S) is canonically contained in E n d ^ {pλ*E'). Thus it is enough to

show that the dimension of these, as ^-vector spaces, coincide.

By adjointness of px* and pf, and the cartesian diagram
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XxSxS > Xx S

Xx S > X

^JtpwpJE^E') = H\XxS,

Since S is Gorenstein, we can apply the duality theorem for the finite

morphism px and see that this is equal to

which is dual, by Serre duality, to

Hg(X,p1*(p1>*E'®plt*E')) = mXxSxS, JTo^ {Pn*E',plz*E'))

= H'iSxS, RgPzs*<βTo^^ Jplt*E',pu*E')).

By the base change theorem, the sheaf inside is equal to

(i x irR9V

where i : S -* X' is the injection. By Proposition 1.10 this is equal to

*έ?x, = Δ*έ?s. Thus End^p^E') is dual, as a A -vector space, to

COROLLARY 1.12 Let X be an abelian variety over k and let ^ be

the normalized Poincare line bundle on XxX1. If S is a Gorenstein finite

subscheme of X\ then

^ \XxS]) = A(S)

where ^\XxS is the restriction of & to XxS.

Proof. As we remarked before Corollary 1.11, ^ is a special case of

E in Corollary 1.11.

Remark. When k is the field of complex numbers, Morikawa [10]

characterized those simple vector bundles on a complex torus X which we

get as in Theorem 1.2 (i) as follows:

Let X be the universal covering space of X, that is, a ^-dimensional

vector space over k. Let Γ be the fundamental group, which can be
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identified as the subgroup of periods of X. Then a vector bundle E of

rank r on X corresponds to a cohomology class of a 1-cocycle (a factor of

automorphy or a matric multiplier) h{a,z) in Hι

gr{Γ,GLr{J^)), where £%?

is the ring of all holomorphic functions on X, and h(a,z) in GLr{J%?) for

a in Γ and 2 in I satisfies

h{a + β9z) = h{β,z + a)-h(a,z).

Then E is of the form in Theorem 1.2 (i), if and only if the corresponding

1-cocycle is cohomologous to one of the form

h(a, z) = exp (B{a, z)) C(a)

where B(a, z) is a bilinear form, ^-linear in z, C(a) is a constant matrix in

GLr{k), and the linear envelope of C(a) with a running over Γ is the full

matrix ring Mr{k). (See also Gunning [5])

We can re-interpret this result as follows:

There exists an isogeny ψ : Y -»• X and a line bundle L on Y such that Λ{L)

induces an isomorphism on ker (φ) and that E=φ*L, if and only if the

canonical inclusion &x -> ̂ nd^(E) induces an isomorphism

H'(X, <?z) ~ H\X, &nd^μ))

for y = 0 and 1 (resp. all j).

The necessity follows immediately from (cf. Corollary 1.9)

&nd^{φ*L) = ®U

where U runs over all the line bundles on X such that ψ"L'^TtL®^Lrι

with a in ker(^), and the calculation of the cohomology groups of a line

bundle on an abelian variety in Mumford [14]. (See also Lemma 1.1).

The sufficiency follows from Morikawa's characterization and the following:

First of all h(a9z)~ιdh(a,z) determines a fundamental class in Hι{X,Ωι

x®

^nd^{E)) (cf. Atiyah [2]), which, by assumption, is isomorphic to HKX^Ωx),

since Ωι

x is trivial. Hence we may assume h(a,z) is of the form exp (B{a, z))

C(α). Moreover, since E n d ^ ( £ ) = H°(X, ^nd^{E)) = H*{X,<?Z) = k, the

linear envelope of C(a) is the full matrix ring.

We also remark that Hι{X,^nd^{E)) measures the infinitesimal defor-

mation of E on X, that is, it is isomorphic to the tangent space at E of

the moduli of vector bundles on X. Our characterization above says that
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the vector bundle of the form φ*L as above, moves essentially in a g-

dimensional family.

Section 2 Vector bundles on an elliptic curve

In this section, we let X be an abelian variety of dimension 1 over k

of characteristic p, i.e. an elliptic curve with a base point.

Atiyah [1] classified all the vector bundles on X. Among other things,

he proved the following (Theorems 7 & 10):

(i) Let gf x(r, d) be the set of isomorphism classes of indecomposable vector

bundles of rank r and of degree d. If we fix one E in g^(r, d)9 then

every other vector bundles is of the form E(x)L with L in Pic°(X) = <%fχ(1,0).

Moreover, E(S)L^E(g)L2 if and only if L&r' = Lz®
r' where rr = rl(r,d).

(ii) In %fχ(r,0) there is a unique element ETt0 such that H°(X9Ert0) ψ 0 (in

fact it is one dimensional). We fix this notation hereafter.

(iii) (Riemann-Roch) Let h\E) be the dimension of H\XfE). Then for

E in &x(r,d)9 we have

h°(E) = d and hι{E) = 0 when d is positive.

h°(E) = 0 and h\E) = \d\ when J is negative.

h°(E) = ̂ (£) = 0 when tf = 0 and £ ψ ETt0

h\E) = /zx(£) = 1 when £ = ETt0

(iv) Suppose p = 0. For E in gf^r, rf) with (r, rf) = 1, E n d ^ ( £ ) = i. (In

fact such E is ''stable55 hence simple regardless of p. cf. Raynaud [17]

when p = 0. In general due to Takemoto.)

(v) Suppose 3>=0. For E in gMr,^) with (r,rf) = l, E®Eht0 is in &x(rh, dh).

For these results, the key is his Lemma 7 to the effect that for E in

&x{r9 d) with (r, d) = 1 and p/r, ^nd^(E) = Θ^> where L runs over all the

line bundles on X with L®r=<?z.

(vi) When p = 0, £ r t 0 is isomorphic to the (r-l)-st symmetric power

Sr-ι(E*i0).

(vii) When k is the field of complex numbers, a vector buncle has a

holomorphic integrable connection if and only if it is a direct sum of those

in &x{r,0) for various r. Matsushima [9] and Morimoto [11] generalized

this result to complex tori.

We now apply our results in section 1.
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PROPOSITION 2.1 Let ψ : F -> X be an isogeny of degree r and let L

be a line bundle of degree d on Y with (r, d) = 1. Then ^ L is in %?x(r, <i).

For E in ξfx(r,d), we have End^p (is) = fc.

/V00/. Since F is also an elliptic curve, we have Yt ~Y and Λ{L) = dγ.

Hence Λ{L) induces as isomorphism on ker(^) of order r if and only if

{r,d) = l. Apply Theorem 1.2 (i). φ*L has rank r and degree d by Rie-

mann-Roch theorem for the finite morphism φ.

PROPOSITION 2.2 Let E be an element of ξfx(r9d) with (r9d) = l.

Then

where ^ is the normalized Poincare line bundle on Xx Xt — Xx X and rX

is the (scheme-theoretic) kernel of rx : X-* X.

Proof. Since elements in &x(r,d) differ only by tensor products by

line bundles of degree 0, it is enough to show that for an isogeny ψ : F -» X

of degree r and for a line bundle L on F of degree d, ^nd^> {φ*L) is of

the form in Proposition 2.2.

By Corollary 1.9 we get

where G = {φ'V^ΛiL) (ker (9))). Identifying, as before, X* and Yι with X and

F respectively (via A of a line bundle of degree 1), we can easily show that

Λ{L) = dγ, φ o φt = r x and φ* o φ = γΎ% Since (r,rf) = l, we have 4(L) (ker {ψ))~

ker (9). Thus G = (9T 1 (ker (y>)) = ker {φ o 9*) = ker (rx) = r X

PROPOSITION 2.3 Given r and J with (r9d) = 1 . There exists a (simple)

vector bundle E~E(r,d) on XxX, such that among the vector bundles

E\Xx{a} for <z moving over the ^-valued points of X, each element in

^x{r9d) appears once and only once. Moreover,

where p12,
 /p2z9/Pn ' XxXxX-* XxX are the projections and Δ : X-±XxX is

the diagonal map.

Remark. This is a sharpening of Atiyah's classification oΐ' %fχ{r9d). He

has shown that it is set-theoretically isomorphic to X We now have an
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algebraic family parametrized by X. This family is "universal" in the sense

that for any scheme S over k, the set of S-equivalence classes (cf. FGΛ,

190-24) of vector bundles on Xx S with each fiber in gf (r, d) is isomorphic

to the set of morphisms S -> X' = X, via the pull back of E(r9 d).

We shall see later that this algebraic family is indispensable to handling

the problem (1), when the Hasse invariant of X is zero.

We also remark that when r = 1, we can take E{r9d) = Pi*L<S>^> ^ 9

where ^ is the Poincare line bundle on XxX and L is a line bundle of

degree d on X.

Proof. Let φ :Y -+X be an isogeny of degree r. Let L and U be line

bundles on Y of degree d and df respectively such that d d' = l (mod. r).

Such d' exists since {r,d) = 1. Since λ = Λ{L) = dγ and λ' = A{U) = df

γ, the

conditions of Theorem 1.4 are satisfied. Thus we have π : F = F ί~>X' =

Yzlλ(G). But λ{G) = G. It is easy to show that Xf = X and π = φ. Thus

we are done by Theorem 1.4 and Proposition 1.10.

PROPOSITION 2.4. Let S be a finite subscheme of X. Then for the

vector bundle E = E(r,d) on XxX with (r,d) = 1 defined in Proposition 2.3,

we have

End^pxJLElXxSl) = Λ(S).

Especially when S is an artinian local subscheme of X, the vector bundle

p^[E\XxS] is in ^x(rh,dh) with h = dimkA{S).

Proof. Any finite subscheme of X is Gorenstein, since X is of dimension

1. Thus the Proposition follows from Corollary 1.11.

COROLLARY 2.5 Let E be an element oί tfχ(rh,dh) with {r,d) = 1.

Then

Remark. We shall show in Proposition 2.13 that when there is a separable

isogeny of degree r, we do not need Proposition 2.4 to prove Corollary 2.5.

COROLLARY 2.6 Let S be the (A — l)-st order neighborhood of the

origin 0 of X, i.e. S = Spec(Λ, 0/4,o). Then Pi*(^\XxS) = Ehtθ9 where

^ is the normalized Poincare line bundle on XxX. Moreover, End^, (2£Af0)
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Proof. We know by Proposition 2.4 and the Remark before that, that

this bundle is in %?χ{h,0). It is enough to show that this has a non-zero

global section. But since S is Gorenstein, H\X,p^{^\XxS)) is dual, as a

^-vector space, to

By the base change theorem, this is equal to H\SΛRίP2*J?ί~1)\S) = K since

RιPu*^~ι is also concentrated at 0 and has 1-dimensional stalk there. (This

result is contained in Mumford's result mentioned in Lemma 1.1).

Remark. We have shown in Proposition 2.1 that elements in &χ{r,d)

with (r,d) = 1 can be obtained by the direct image of a line bundle by an

isogeny ψ :Y->X. Corollary 2.6 and in fact Theorem 1.5 says that we get

other bundles when we allow Y to be a non-reduced covering of X.

COROLLARY 2.7 Let E be an element of &χ(r,d) with (r,d) = 1. Sup-

pose r — qr\ with (r',p) = 1 and q a power of p. Then

&nd^(E)=@[L(g)Eqt0] if Hasse (X)ψO9 where L runs over all the line

bundles on X with L®r = ̂ x. (There are r/2q of those). If Hasse(X) = 0,

%?nd^ (E) = ®[L(g)Eq2to], where L runs over all the line bundles on X with

Remark. This generalizes Atiyah's key Lemma 7 in [1].

Proof. As we have seen in Proposition 2.2, the left hand side is iso-

morphic to pu,{^\XxrX). But the subgroup scheme rX is isomorphic to

the product qXxr,X, and r,X is reduced. If Hasse {X) = 0, qX is local. If

Hasse (X) ψ 0, qX is isomorphic to the procudt μqxZI{q), where μq is the

kernel of q : GtΛ -> Gm and is local. Corollary follows immediately from

Corollary 2.6.

Let R=^χt0 be the local ring of X at the origin 0, and let ™ = ̂ χ 0=tR

be its maximal ideal with a generator t. We denote by R the completion

of R with respect to ^ . R is isomorphic to the formal power series ring

k[[f]\. The group law μ : XxX-^X induces a map μ* : R-+R(g)R, which

gives a one-parameter formal group H, the local part of the ^-divisible

group X(p). (For the detail see e.g. Oda [16].) When p = 0,1ί is isomorphic

to the additive group όa. When p¥=0 and Hasse {X) ψ 0. X is isomorphic
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to όm = Glt0, while JC is isomorphic to the group Guu when pψO and

kasse!(X) = 0.

PROPOSITION 2.8 En\<$)g?Eκr,* decomposes into the direct sum of Eh(<i)Λ

(i = 1,2, ,s), where RI™.h®kRI*vht decomposes, as an J?-module via the

group law μ*, into the direct sum of cyclic modules of length h(i) (i = 1,.

2, , s).

Remark. . When p = 0, Atiyah ([1] Theorem 8) found h(i). For A'^A,

ft(f) = (A'_Λ) + (2 f- l ) , (i =1,2, . , * ) .

We can show that when h' = p e ^ /ί, Λ(t) = 2>e (t = 1,2, , A).

Proof. Let S = Spec {R\™h) and S' = Spec (#/*.*') be the (A - l)-st and

the (A7 —l)-st order neighborhood of 0 in X. We have shown in Corollary

2.6 that Ehι0 = Pu>(^ \XxS) and Eh,,0 = P i J ^ l ^ x S ' ) . Then

Λ xxxxjpn*&'\XxS*S')

But P i2*«^® Λ x x x x Pi3*^ = ( l x j " ) * ^ . The rest follows immediately from

this.

COROLLARY 2.9 %fnd^>(Ehto) is a unipotent vector bundle on X.

We denote by F: X-*X(P)^X the Frobenius morphism and by V : X(p'}

-+X the ςίVerschiebung55 morphism. We know (for example Oda [16] Sec-

tion 2) that F* = F, and that

(a) When Hasse {X) ̂ =0, V is separable and coincides with the quotient

map of X by the unique reduced subgroup of order p.

(b) When Hasse {X) = 0, V coincides with F.

After Hartshorne, we denote F*E by EiP) for a vector bundle E on X

PROPOSITION 2.10

When Hasse (X) φ 0, Eg" s EΛ,0.

When Hasse (X) = 0, we have

£ S Ϊ S Λ Λ for 1^A^2?

Eg i = © £[(^0/^1.0 (t =• 1,2, , p), for p < A,

where [ .] is the Gauss symbol.
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Proof. Let S = Spec (Rj^h) be the (A - l)-st order neighborhood of 0

in X. Then Eht0 = pά&ΊXxS). Thus £g>0 = ̂ ^ ( ( F x l ) * ^ |ZxS). But as

we have seen in the proof of Theorem 1.5, (Fxl)* t ^
Γ = ( lxF ί )* t ^

2 r =(lxF)*^ r .

When Hasse(Z)=^=0, F : Z - > X i s separable, hence locally isomorphic at 0.

Therefore E%> ~ Eht0J When Hasse (X) = 0,V coincides with F. Thus E%>0

decomposes into the direct sum of Eh^)tQ, while R/^h, as an i?-module via

the p-th power map F* : R-+ R and the projection R -> /?/*«Λ, decomposes

into the direct sum of cyclic modules of length h{i). It suffices to compute

the decomposition of k[t]l(th) as a &[P]-module, which is easy.

COROLLARY 2.11 If φ : Y -± X is an isogeny such that ψι : X~>Y is

separable, then φ*EhtQ is isomorphic to Zŝ .o of K

The proof is similar to that of Propositioii 2.10, in view of the

fact that φz is locally isomorphic.

PROPOSITION 2.12 Let G be a finite subgroup scheme of X and let;

ion and t

μG*Eht0 =

μG, px : X xG -» X be the action and the projection. Then

on XxG.

Remark, When k is the field of complex numbers, this means that EhtQ

has a holomorphic integrable connection.

Proof. Eht0 = PuiJFlXxS), for the (A — l)-st order neighborhood S of

0. But (μxl)*^= V^'^®^>χχχχχVιz"^& on XxXxX. The ristriction ol

P2z*<^ to X xGxS is trivial, since GxS is finite. Hence we are done.

PROPOSITION 2.13 Let ^ : F - > I b e a separable isogeny of degree r.v FoF

a line bundle L of degree d on F with (r, </) = 1, φ*(L(g)^Ehto) is in g^x

{rA, rfA), and End Λ (9*(L® Λ £ Λ .o)) = End^ r(£Λ f 0) = fc[/]/(ίΛ). If moreover V1"

is separable, ψ^,L®^>Eh^ is in g?x{rh,dh).

Proof. By Corollary 2.9 and Proposition 2.12, C = Eht0 satisfies all the

conditions of Theorem 1.2 (ii). The rank and the degree are as in the

Proposition by the Riemann-Roch theorem for the finite morphism φ. Fόr>

the last statement use Corollary 2.11 and the projection formula.
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Remark, Because of this Proposition and Proposition 2.1 when h = 1,,

we can construct, more easily than Proposition 2.4, an element in ifx{rh9dh}

with (r,d) = l,: if either h — 1, or hψ\ and there is a separable isogeny of

degree r. The reason is that π : Yι -> X' coincides with φ and hence locally

isomorphic. Thus we can take the local family near 0 of (φxl)*M instead

of that of its descent by (lxπ) and then project onto X. If Hasse(X)^0,

r can be arbitrary. If Hasse (X) = 0, however, r should not be divisible by

p, when hψ\. Proposition 2.4 is essential to construct and study E in

&x(rh,dh), when h ψ 1 and r is divisible by p. The last statement of

Proposition 2.3 is the restatement of Atiyah's result (v) quoted at the

beginning of Section 2.

As we have remarked in (vi) at the beginning of Siection 2, Atyah

showed that for p = 0, EhtQ is isomorphic to Sh~x{E2tΐ>). This fact can be

interpreted as follows:

Let u be a non-zero element in Hι{X,έ7x). u defines a principal Gα-bundle

over Xf Let / = Jh be the h X h matrix

1 0

0 1

0

lo 0

Then Jh = 0. With this / we have a representation Ga -> GLh by sending

x to exp(xj). Take the principal GLΛ-bundle exp(&/) over X, which is

obtained from the Gα-bundle u via this representation. The vector bundle

associated to this is easily seen to be Eh,0. This corresponds to the fact

that t = Oa.

We now examine the case when p ψ 0.

scheme over k and W be its Cartier dual,

and [4]. See also Oda [16].)

Let < , > be the dual pairing WxW -+Gm

Let W be the ordinary Witt

(For the detail see Cartier [3}

(u, x> = exp (—
m > 0

defined by

(u x)(m)lpm)
0

where {u x){m) is the mΛh. phantom component of the product Witt vector

u x. The matrix / = Jh is nilpotent, and hence defines an element
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of W.

On the other hand, Hι{X, W(£7X)) coincides with the Dieudonne module oί

the Serre dual of X. (See Oda [16], Proposition 4.3). When Hasse(X)^0,

this is a free W(&)-module of rank 1 with a base u, such that Fu = u and

Vu = pu. When Hasse(X) = 0, this is a free W(&)-module of rank 2, with

an element u and Fu = Vu forming a base.

In either case, take this u and get (u, {/}> = exp (— Σ u(m)jpmlpm) in

Hι{X9GLh{^x)). It is not hard to show that this element determines the

principal GZ^-bundle associated to Eht0.

We can prove Propositions 2.8, 2.10 and 2.12 using this construction of Eht0.

Let us now begin to answer our question (1).

PROPOSITION 2.14 Let E be an element in <^x{pih,dh) with {p9d) = l.

Then E(Pi) is indecomposable and is of the form L®^ Epiht0 with a line

bundle L on X of degree d.

Proof. It is enough to show this for one E, since all the other elements

differ from E by tensor product of a line bundle of degree 0. Hence by

Proposition 2.4 it is enough to assume E = p1J_E(pi

9d)\XxS]9 where E(p\d)

is the "universal" vector bundle on XxX and S is the (/? — l)-st order

neighborhood of a point of X Recall the construction of E{p\ d) in

Theorem 1.4 and Proposition 2.3. There, Y = X, φ = F\ It follows that

λ = X' and π = ψ — F\ We work with the diagram

Pi φ
X < χxS >XxX< XxX

φ[ φ x l [ iφxl [ φ x l

X< XxS >XxX< XxX

We have E™ = φ*pιJίE(pι

9d)\XxS] = Pi*(<PXlUE(p\d)\XxS]

= pί*[(φxl)*E(pί,d)\XxSl

But we know that {φxl)*E(p\d) = (lxφ)*M, where M= p

with L and U line bundles on X of degree d and dr respectively.

Thus £CP<> = VlJi{ixφ)tM\XxS\ = Pi*(lxφUM\Xxφ-KS))

= Pi*(j>i*L®£*\Xxφ-KS))
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But since S is the (h — l)-st order neighborhood of a point on X, φ-^S) =

(Fi)-^(S) is the {pih — l)-st order neighborhood of the same point. Thus we

are done.

Remark. We can prove this Proposition more easily, when Hasse(Z)=^=0.

See the remark after Theorem 2.16.

COROLLARY 2.15 Suppose (pV, d) = \ and (r\ p) — l. For an isogeny

φ:Y-±X of degree r' and an element E' in %?γ(pιh, dh), φ*(E') is in

%?x(plr'h,dh). Moreover, for a vector bundle E in ξ?Apιrfh,dh), £<**> is

indecomposable and is of the form E"(g)^Eptht0 with E" in &χ{r'fd).

Proof, Since ^ is of degree r' with (r', p) — 1, it is separable and the

diagram

F 1

>γ

X >X

is cartesian. (For the proof we use the fact that the inductive limit of all

the finite subgroup schemes of X1 is the dual of the "true fundamental

group55 of X. cf. SGΛ 1960/1961, expose XI.)

Hence (F'Fφ^E') = ̂ (F*)*(£'). By Proposition 2.14, (F*)*(£') is of the

form L(x)̂ > Eptht() with L a line bundle of degree d on Y. Thus by Pro-

position 2.13 (Fi)*φ*(E') = φJίL<g)Epihto) is contained in g^r'ίp*/*), d{pιh)).

Thus φ*(Ef) itself should be contained in gf x{rtpih^dh). As for the second

statement of the Corollary, it is enough to prove for only one E, and we

have done so above, in view of the second statement of Proposition 2.13.

THEOREM 2.16 Let (r,d) = l, and let E be an element of %?χ(rh,dh).

When Hasse(X)=^0, E{Ί>) is indecomposable. When Hasse(X) = 0, E{v) is

indecomposable, if and only if either h — 1, or h ψ 1 and r is divisible by

p. Otherwise, E(p) decomposes into min{p, h} components in the following

manner: If 1 ψ h ̂ p9 E{v) = Erh where Er is an element in &χ(r,dp) with

(r,p) = 1. If p <h, E(p) = ®Ej U = 1,2, ,p), where £, is an element of

dph(j)), with A(;) = [(A - ;)/p] + 1 and (r, p) = 1.

Proof. Write r — pιrf with (r', 3?) = 1.

If t 7^0, we have seen in Corollary 2.15 that E(pi) = [E(^fpi'ι) is indecompos-

able. Thus E(p) itself should be indecomposable. If i = 0, we may, by
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Proposition 2 13. assume E to be of the form 9*(L(x)^ EhtQ) for an isogeny

φ : Y -> X of degree rf and a line bundle Z, of degree d on F. The diagram

>Y

X >X

is cartesian, (cf. Proof of Corollary 2.15). Hence

Suppose Hasse (-Y) ^ 0. Then by Proposition 2.10, Etf?0 = Eht0. Thus we

have E{p) = φ*(L®v(g)^Eht0) and we can apply Proposition 2.13, since φ is

separable and deg(L®*) = dp is prime to deg(^).

Suppose Hasse (X) = 0. Then by Proposition 2.10, we know that

&Δ = έ?χ when h<p, while for p^k, E%>0 = ®Eh(Ao (j = 1,2, -. , p),

where h(j) = [{h — j)lp] +1. Thus applying Proposition 2.13, we get the

required result.

Remark. The cases (a) Hasse (X) ψ 0 and / ψ 0, and (b) Hasse (X) = 0,

i ψ 0 and & = 1 can be proved more easily without using Corollary 2.15.

In both cases E = φ+(L<g)Eh\0) is also an element of ^x^r'h.dh), where

φ :Y-*X is an isogeny (in case (a), separable) of degree pxr' and L is a

line bundle of degree d on Y. In case (a) we can again show that

E(p) = φ*(L®*(g)Eh9θ). Since ker (^) n keτ(A(L®v)) = Z/(3Ϊ) and D(ZI(p)) = μp,

End^(E(p)) is the algebra Aί^^)®,, End^>γ(Eht0) twisted by 0(L®P®£^,0),

where 0{L®?(g)Eht0) is an element of H2

gr{ZI(p), Aut^(Eht0)). (See the remark

after Theorem 1.2.) It is not hard to show that this twisted algebra is

isomorphic to k[f\l{tph). In case (b), E = φ*{L) is an element of ^>χ{pΊ'r'id).

In this case the diagram we had above is no longer cartesian. We decom-

pose φ into a composite ψ o F\ with ψ separable of degree r\ Using

Corollary 2.6 and Corollary 2.13, we can show that Eίpt)

9 hence E(p), is

indecomposable.

We now answer question (2).

THEOREM 2.17 Let E be an element of %*Ar9d). Then the Frobenius

map

.F* : HKX, E)-ΪHKX, E(p))



70 TADAO ODA

is injective, unless Hasse (X) = 0 and E = Ert0 with r< p. In the latter case

F* is the zero map.

Remark. H1{X,E) = 0, unless either d<0 or E = Er$0 (cf. (iii) at the

beginning of Section 2). We only have to consider these cases. E~Eh0-^7x

is the crucial case, which distinguishes whether Hasse (X) is zero or not.

It is surprising that even when Hasse (X) = 0, F* seldom fails to be injective.

Proof. By projection formula, we have F*F*E = E(g)^F*£7x. F* in the

Theorem coincides with the map

U : HKX, E) -> HK

induced by the injection j : έ7x-*F+<Z?x.

We have seen in Corollary 1.7 that F±&x = Vi*{<0* \X xker (F*)). Also F' = V.

Hence when Hasse (X)ψQ, F*^x = ©L where L runs over all the line

bundles on X with L®p = £7X. Especially j splits, hence 10j : E -> E®^, F*&x

also splits. Thus y* is injective.

Suppose now that Hasse (X) — 0. Then ker (i?ί) = ker (F) is the (p—l)-st

order neighborhood of 0, hence F * ^ = EPt0 by Corollary 2.6. jEpi0 is uni-

potent, i.e. has a filtration

= 0

whose successive quotients Ei+1/Ei are isomorphic to #x. The image of

j - d7x -> i^^x- coincides with the last member Ex of the filtration.

We only have to consider the cases (a) d < 0, and (b) E = Er>0, since

otherwise Hι(X9 E) = 0.

Case (a): E®F*£?X inherits a filtration E®Ei9 and the image of l(g)j is

From the exact sequence

0 -> £(><)£* ~> E(g)Ei+ί

we get an exact sequence

H\E) -> H

But i/°(2£) = 0, since J < 0. Hence by induction on i9 we can easily show

that Hί{E(g)E1)^H1(E(S)Ep) is injective.

It only remains to treat the case (b) E = £ r f 0 . Hι(X, Ert0) is one

dimensional and generated by the characteristic class u of the extension
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it is enough to show that F*uψ§ when r^>p, and F*u = 0 when r<p,

F*u is the characteristic class of the pull back

As we have seen in the proof of Proposition 2.10, this extension behaves

in exactly the same manner as the extension of &[ίp]-modules

which is easily seen to be non-trivial when r^p, and trivial when r < p.
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