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BOUNDED ENERGY-FINITE SOLUTIONS OF 4u = Pu
ON A RIEMANNIAN MANIFOLD

Y.K. KWON, L. SARIO, AND J. SCHIFF

Introduction

1. The classification of Riemann surfaces with respect to the equation
du = Pu (P=0, P =% 0) was initiated by Ozawa [13] and further developed by
L. Myrberg [8,9], Royden [14], Nakai [10,11], Sario-Nakai [15], Nakai-Sario
[12], Glasner-Katz [3], and Kwon-Sario [7].

The objective of the present paper is to establish properties of bounded
energy finite solutions of 4u = Pu in terms of the P-harmonic boundary of a
Riemannian manifold R. The occurrence of the P-singular point (Nakai-
Sario [12]), at which all functions in the P-algebra vanish, necessitates deli-
cate new arguments.

The P-algebra My(R) is not, in general, uniformly dense in the space
B(R%) of bounded continuous functions on the P-compactification Rf. How-
ever, we shall prove the following Urysohn-type theorem. Let K, K; be
any disjoint compact subsets of R} with the P-singular point sK,. Then
there exists a function f&Mp(R) such that 0=<f=<1 on R} and f|K;,=1
(i =0,1).

Although the standard maximum-minimum principle does not hold, the
following modification can be established. Let # be P-superharmonic and
bounded from below on a Riemannian manifold R such that lim inf # = 0
at the P-harmonic boundary 4. Then #=0 on R. As a consequence,
|#] <limsup,,|u| for every bounded P-harmonic function # on R.

This maximum princip'e together with the orthogonal decomposition
enables us to prove the existence of a positive linear operator

n: B(4p) ~ PB(R)
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such that

sup |a(f)| < max | 7|
R dp

for all feB,(4p). Here By(4p) is the space of bounded continuous functions
on 4p which vanish at the P-singular point s, and PB(R) is the space of
bounded P-harmonic functions on R.

For functions =z(f) we deduce the following integral representation.
There exist, for a fixed z,=R, a regular Borel measure ¢ on 4, and a
nonnegative measurable Kp(z,t) on 4, such that

w(A)w) = |, F®)Ks(@, D)D)

on R for all feB,dp) and Kp(®o,p) =1 on 4. Here g is unique up to a
Dirac measure § with §(4dp —s) = 0. Consequently uePBE(R) if and only if

u(@) = | f0)K oz, p)dp(p)

on R for some feMpy(R). In this case u = f on 4p.

§1. P-algebra M;(R)

2. On a connected, separable, oriented, smooth Riemannian manifold
R of dimension N, consider the P-algebra Mp(R) of bounded Tonelli functions
f with finite energy integrals,

N
Ed) = [2,0" 22 1 pp]av <o,

Here P (% 0) is a fixed nonnegative continuous function on R, (¢%) the
inverse of the matrix (g;;) of the fundamental metric tensor of R, z = (!,

+«+,2%) a local coordinate system, and dV = *1 the volume element of R
(cf. Nakai-Sario [12] and Kwon-Sario [7]).
We endow Mp(R) with the norm

171 = sup 1 /1 + A/DR<f>+ SRPﬂdV

where Dg(f) = ng f A *df is the Dirichlet integral of f over R.

We first show that the P-algebra Mp(R) with norm || -|| is a Banach algebra,
closed under the lattice operations fUg = max (f,g) and fNg= min (f,g).
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The latter property is obvious by the definition of Mp(R). To establish
the former property choose a | -|-Cauchy sequence {f,} in Mp(R). Let f
be a bounded continuous function on R with supg|f — fz| =0. In view of
the BD-completeness of the Royden algebra M(R) (cf. Sario-Nakai [15] and
Chang-Sario [1]) we have

feM(R) and Dg(f — f.)—O0.

Since the sequence ({f,} is [ -[-Cauchy, the sequence of integrals
SRPf,Z,dV is, by the Schwarz inequality, a Cauchy sequence of real numbers,
and consequently

lim SRPfE,dV —d<o.

n—00

Again by the Schwarz inequality

lim SR PfofndV = d,

n, m—co

and therefore by Fatou’s lemma

| Pt = sarav =1 tim Prn— farrav <tim § P(rn— forav

m—>oo M—ro0

<iim | P(fu— furav=d—2tim § Prafuav +{ Priav.

On letting n—> o we obtain lim, .., SRP( f—fu2dV =0. Thus feM,(R) and
ILf = fall 0. Since |fgil <|IfIl-llgil for f,g&Mp(R), the proof is complete.

3. Next we prove that every function in the P-algebra can be ||-|-
approximated by smooth functions in it: Given any f& Mp(R) and € >0 there
exists a function f,eC(R)NMp(R) such that || f — f.|| <e.

Set |x]?= 2¥(x")?? and consider first a function f with compact support
in a ball V':|x]|<1/2, with V: |z]<1 a parametric ball. Choose a sequence
{f.} in C(R)NM(R) such that f, =0 on R—V, supglf— f.|—=0 and
Dy(f — fa) =0 (cf. Sario-Nakai [15] and Chang-Sario [1]). It is easily seen
that

fnE€C(R)INMp(R) and [ f — fall = 0.
For the general case consider a locally finite open covering of R by

parametric balls {V,: [z] <1}. Take a partition of unity {¢,} such that
¢, €C*(R), ¢,=0o0on R—V} and >%¢,=1 on R.
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Since fy,eMp(R) and f¢,=0 on R—V, we can find a function
foeC(R)NMp(R) such that f,=0 on R—V, and |fe,— fall<<e/2®. Let
f=205fn Then f.eC™(R), |f—fl=<ZEIfe.—Sfall<e, and f.eC(R)NMp(R).

§2. Subalgebra M;,

4. Set f= BE-lim,f, on R if {f,} is uniformly bounded on R, con-
verges to f uniformly on compact subsets, and En(f — f) = 0. Let Mpy(R)
be the family of functions in Mp(R) which have compact supports in R, and
Mp,(R) the family of BE-limits f of sequences {f.} in Mpo(R).

By an argument similar to that in No. 2, it can be shown that M,(R)
is complete in the BE-topology. We shall prove: The family Mpy(R) is complete
in the BE-topology and is an ideal of Mp(R).

For the proof consider a BE-Cauchy sequence {f,} in Mps«R) and let
f be its BE-limit in Mp(R). For each n choose a sequence {f,,} in Mpo(R)
such that f, = BE-lim,fm.m On R.

Let {R,} be a regular exhaustion of R. We may assume that

Sp |/ = foml < 5 and Exlfn~ fun) < <5
for all m=1 and »=1. Upon truncating the f,, if necessary, by the
uniform bound of {f,}, we may assume that the sequence {f,,} is uniformly
bounded. Since f..=Mpo(R) it suffices to prove that f= CE-lim,fn. on R.
Now,

1

L 1
Ex(f = fan)® <Ep(f— fa)* + Ep(fa— fan)

1
< Eplf — fa)F + L0

L
2

For a compact set K of R choose k so large that KcR,. Then for »n=F,

Suplf”fnnlésup[f—fnl +sup‘fn_f7ml
K R Ry
1
< Sup |f = fal + >0,

and we have f = BE-lim,f., as desired.
The rest of the proof is obvious.

§3. P-compactification

5. By means of the P-algebra M,(R) we can construct a compactifica-
tion R of R (cf. e.g. Constantinescu-Cornea [2] and Kwon-Sario [7]) with
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the following properties:

- (i) R% is a compact Hausdorff space and contains R as an open dense
subset.

(ii) Every feMy(R) has a continuous extension to R3.

(iii) Mp(R) separates points of Rj.

The space R} is unique up to homeomorphisms which fix R elementwise.
We shall refer to R} as the P-compactification, and to I'p = R — R as the P-
boundary of R (Nakai-Sario [12]).

A point seR} is called a P-singular point if f(s)=0 for all feMp(R)
(loc. cit.). It exists and is unique if and only if SR PdV =co, It can be
given a complete characterization (Kwon-Sario [7]): seR} is P-singular if
and only if for every neighborhood U of s in R%, Smu PdV = .

Points of R% which are not P-singular will be called P-regular.

6. We turn to the question of the Urysohn property on R}. First we

prove:

LemmA. Let K be a compact subset of the P-compactification R}, and N an
open neighborhood of K in R%. Then there exists a Dirichlet-finite Tonelli jfunction
f on R such that f is continuously extendable to R}, 0<f=<1 on R} fIK=1,
and f=0 on R} — N.

Proof. Let Mp(R) be the family of Dirichlet-finite bounded Tonelli
functions on R with continuous extensions to R} Obviously Mp(R) is a
subalgebra of B(R%), contains the constants, and is closed under fUg and
fnag.

Since Mp(R)CMp(R), the Stone-Weierstrass theorem is applicable and
we conclude that My(R) is uniformly dense in B(R%).

Choose an open set U in R¥ with KcUcUCcN, and a function g€ B(R})
such that —1=g¢g<2 on R% ¢g|K=2, and ¢g|Ri—U= —1. By the above
argument there exists a function heMp(R) such that |g— k| <1 on R%.
Then f= (hU0)N1 has the required properties.

7. The occurrence of the P-singular point s entails that the Urysohn
property is only valid in the following modified form:
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TueOREM. For disjoint compact subsets K, and K, of R} such that K, con-
tains the P-singular point s, there exists a function fe Mp(R) such that 0< f<1
on R and f1K,=1 (i =0,1).

Proof. Since every xz<K, is P-regular there exists an open set N, in

R} such that zeN,, K,nN, = ¢, and SN . PdV < co. By virtue of the

o
compactness of K; we can choose a finite set {x,, +-.,2,}CK, such that
K,cN= UTN,, NnK,= ¢, and SNnRPdV<00.

By the above lemma there exists a function feMp(R) such that 0<f=<1
on R% flK,=1, and f|Rs — N=0. Then E4f)< Dgf) + SNHRPdV< o and
f has the desired property.

§4. P-superharmonic functions

8. A function v on R is called P-superharmonic if

(1) v is lower semicontinuous on R, — oo <p=<oo, v # © on R,

(ii) for any parametric ball V,

() = — SW v(y)*dov(y, x)

on V, where gy(y,z) is the P-harmonic Green’s function on V with pole z.
A function v is P-subharmonic if —v is P-superharmonic.

Let 2 be a regular subregion of R and v a Cifunction on 2. We
shall make use of the following basic property of P-harmonic and P-super-
harmonic functions (Nakai [11]): If dv<Pv on Q, then v dominates any P-
harmonic function u on Q, continuous on 2 with u|dQ<v|6Q, that is, v is P-
superharmonic on Q.

For the proof set w=v—u on 2. Then Jw<Pw on 2 and w|aR=0.
Let 2, be a component of the open set {zeQ|w(x)<0}. Since w is super-
harmonic on 2, we have

0> w(x)=infw = minw = 0,
20 820
which implies that 2,= ¢, hence w=0 on Q as desired.

We also have at once: If a sequence {v;} of continuous P-superharmonic
functions on R converges to a function v uniformly on compact subsets, then v is also
P-superharmonic.
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§5. P-harmonic projection

9. Next we shall establish the orthogonal decomposition theorem which
plays an important role in our discussion (cf. Nakai-Sario [12]): Every feMp(R)
possesses the following properties :

(1) f has the unique decomposition f = u + 9, ucPBE(R), g<MpiR).

(i) E(f) = E(u)+ E(9).

(iil) If f=0, then u=0.

(iv) If f is P-superharmonic (resp. P-subharmonic), then u < f (resp. u=f).

For the sake of completeness we shall sketch the proof. Take a regular
exhaustion {R,} of R and let u} (resp. u;) be the continuous function on R
which is P-harmonic on R, with u}|R— R, = f* (resp. uz|R— R, = 7).
Since 0< u} <<supg|f| and 0= u; < supg|f| on R, we may assume that both
{us} and {u;} converge to #* and «~, say, uniformly on compact subsets of
R (cf. Royden [14]). Since these sequences are E-Cauchy, we have

u* = BE-limu}, u~ = BE-lim u;

on R and u*, u~PBE(R).

Set u=u*—u"ePBE(R) and g= f —ucsMy,(R). Then f=u+ ¢ is the
desired decomposition. Its uniqueness and property (ii) are immediate con-
sequences of the energy principle (cf. Royden [14]).

If /=0 then ;=0 and hence ¥~ =0 on R. Consequently u=u*—u"=
u* =0 as asserted. If f is P-superhamonic on R then u,< f since u,= f
on R— R,. Therefore u< f.

The function « is called the P-harmonic projection of f.

§6. P-harmonic boundary

10. The set 4, = {zeR}|f(x) = 0 for all feMp,(R)} is a compact subset
of I'p, called the P-harmonic boundary of R (Nakai-Sario [12]). If 4, = ¢, it
is easily seen that 1€ Mp,R) and hence Mp,R)= Mp(R).

The following two properties of 4, are fundamental (cf. Kwon-Sario
[6,7]):

(i) Mpy(R)= {fEM(R)|f=0 on 45}.

(i1) If usPBE(R) and u|dp =0, then u=0 on R.
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11. We are now ready to establish the existence of an Evans P-super-
harmonic function on R. It brings forth the P-harmonically negligible
nature of the set I'p — 45.

THEOREM. Let F be a nonempty compact subset of I'p — dp. Then there
exists .a nonnegative continuous P-superharmonic function v on R such that v|dp = 0,
v|F = oo, and Eg(v) << oo.

Progf. There exists a compact subset K of R} such that K= KNR,

KNndp = ¢, dKNR) is smooth, and F is contained in the interior K° of K.
Choose a function feMy(R) such that 0<< f<1-on R, f|K=1, and f|4,=0.
For a fixed regular exhaustion {R,} of R set K, = K — R,.
, Construct continuous functions #,, on R such that #,,=f on R—(R,—K,)
and #,,€P(R,— K,). Since {u#,,} is E-Cauchy for each fixed #n, and
0=<nm=1, we may assume that {u,,} is BE-Cauchy for each n. Let
#n = BE-limp#n,. Then u,ePBE(R—K,), 0<u,<1, and #,|K, = 1.

Let g, = BE-limn(f — #.m) On R. Since ¢, € Mpy(R), gnldp = 0. Thus
#,=f=0on 4dp and u,ePBE(R — K,)NMp,(R). It is not difficult to see
that the sequence {u,} has a BE-convergent subsequence, again denoted by
{u,}. Let u = BE-lim,u, on R. Since u#PBE(R)NMp4sR), =0 on R.

For a fixed point z,&R, we can choose a subsequence, say again {u,},
such that

un(xo) < 2—”, ER(un) < 2-""

Let v, = >17u; and v = 3%u;. Then Ex(v — v,) —0. By Harnack’s inequality
{vn} converges to v uniformly on compact subsets of R, and v is a con-
tinuous P-superharmonic function on R.

The remainder of the proof is obvious.
12. We claim:

THEOREM. Suppose u is P-superharmonic (resp. P-subharmonic), bounded from
below (resp. above) on R, and satisfies

lim inf #(x) =0 (resp. lim sup u(z)=0)
*—p, zER P, TER

Jor every pedp. Then u=0 (resp. u<0) on R.
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Proof. It suffices to consider the case in which # is P-superharmonic
on R. For each n=1 the set

Fy = [pels|lim inf u() < — L.

2—p, 2ER

is compact and F,Ndp=¢. Let v, be Evans’ P-superharmonic function
corresponding to F,. Then

lim inf (# + &v,) (%) > — L
29, t€R n

for all €>0 and perlp. Since u + év, is P-superharmonic and bounded
from below on R we have

1
u + v, > —'—n—

on R. On letting ¢ >0 and then n—> o we obtain the desired conclusion.
13. We are now able to prove:

TueorEM. If usPB(R), then

|#| < sup lim sup |u{w)|
PE 4p 2D, ER

on R.

Proof. Set M = supyeg4, lim SUp,p, serlu(x)] <. Then M—u 1is P-

superharmonic on R and has the property

inf lim inf (M — u(x)) =0.

pEdp x—p, 2€R

Therefore M—u=0 on R. By considering —« we similarly obtain M+#x=0.

14. We turn to the problem of determining the dimension of the vector
space PBE(R) in terms of the P-harmonic boundary 4,. Note that 4, here
is different from that in Kwon-Sario [7], where it was defined as a quotient
space of the Royden harmonic boundary 4. In the present case the P-
singular point always lies on 4p.

ProrositioN.  The dimension of the space PBE(R) of bounded energy-finite P-
harmonic functions on R s equal to the cardinality of the set dp —s in the sense
that either both are infinite, or finite and equal.
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The proof is the same as in Kwon-Sario [7].

§7. Type problem

15. For a regular exhaustion {R,} of R we consider continuous func-
tions e, on R such that ¢,€P(R,) and ¢, =1 on R—R,. Since 0< ¢y, =
e,<1 on R, the sequence {e,} converges to a P-harmonic function e, uni-
formly on compact subsets of R. The function e is called the elliptic measure
of the ideal boundary of R (Royden [14]). It is known (loc. cit.) that the
vanishing of ¢ on R is independent of the choice of the exhaustion. We
shall denote by O, the class of pairs (R, P) for which e=0.

The class O, has the following relation to the P-harmonic boundary:

TueorReM. [If 4p = ¢, then (R,P)e0,. Conversely if (R,P)€0,, then either
dp= ¢ or dp = {s}.

Proof. If 4, = ¢, 1€Mp,(R) and hence 1= BE-lim,f, on R of a se-
quence {f,} in Mpo(R). The elliptic measure ¢ has a finite energy integral
in this case and e = BE-lim,ef, on R in view of SRPdV< . Thus

ER<e) = lim Eg(efn,e) =0

7n—>00

by virtue of the energy principle. We conclude that e=0 and (R, P)=0..
Conversely if (R, P)e0,, then dim PBE(R) = 0 since |u|=< e supz|u| for each
usPBE(R). A fortiori either 4, = ¢ or 4p = {s}.

16. Consider the sequence {w,} of continuous functions w, on R such
that w, € P(R, — R,), w,|Ry=1, and w,|R— R,=0. Then w= B-lim,w.
exists on R and wePB(R — R,).

CororrArY 1. [If infpw >0, then (R,P)€O..

Proof. In view of
ER(wn+p — Wy, wn+p) = ERn4p—Ro(wn+p — Wa, wn+p) =0,

we conclude that w = BE-lim,w, and we Mp,(R). Therefore infzw >0 implies
that 4, = ¢ and (R, P)=0,.

CororLrArY 2 (Ozawa [13]). A Riemannian manifold R is parabolic if
and only if infrw >0 for some density P on R.
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§8. Dirichlet problem

17. Let B(R%) be the space of bounded continuous functions on R} and
B,(R}¥) the space of functions in B(R%) which vanish at the P-singular point
s. In view of the construction of R% the P-algebra Mp(R) is a subalgebra
of B(R%¥). It is natural to ask what is the uniform closure of Mp(R) in the
space B(R}).

We maintain:

THEOREM. With respect to the sup-norm iopology, the P-algebra Mp(R) is
dense in B,(R%) or B(RY) according as there does or does not exist a P-singular point
s.

Proof. The uniform closure Mp(R) of Mp(R) is a closed subalgebra of
B(R}) and separates points in the compact Hausdorff space R}. Hence

M_y(R) is either B(R}) or B,(R%) for some xR} (see e.g. Hewitt-Stromberg
[4, p. 98]), as asserted.

18. Let B,(4p) and B(4p) be the families of functions on 4, defined as
above. If there exists no P-singular point s we understand that B,(4,)=B(d4p)
and B,(R¥) = B(RY).

THEOREM. There exists a positive linear mapping =: By(dp) — PB(R) such that
supgla(f)| =max,,|f| for all f&By(4p).

Proof. By Tietze’s extension theorem every fe&B,(4p) has a continuous
extension f to R} with

gaXIfl = rganIfI-

Choose f,=Mp(R) such that maxgps|f — f,| <1/n, and let u, be the P-har-
monic projection of f, on R (cf. No. 9). Then

.1 1
su Uy, — U = max (%4, — U < — _
RpI,. m 0. |t — ) P e

Thus there exists a function uePB(R) such that supg|lu — u,| >0 as n—oo.

Set n(f)=wu. Since z(f)=f on 4r and z(f)ePB(R) the mapping
z: By(4p) — PB(R) is well-defined. Theorem 13 yields

sgp {z(f)| <sup lim sup |z(f) (¢)] = max | f|

PEdp 2P, t€R dp
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as required. The positiveness and linearity of = follow immediately from
Theorem 12 and No. 9. ‘

§9. Integral representation

19. For a fixed point 2&R consider the functional L, on B,(4p) defined
by L,(f) = =(f)(x). Clearly L, belongs to the class B,(4;)* of bounded linear
functionals on B,(4). By the Hahn-Banach theorem we may extend L, to
an element of B(4p)*. Thus the restriction mapping ¢: B(dp)* — By(dp)* is
a surjective homomorphism with kernel

¢™0) = {LeB(4p)*|L(f) = 0 for all feB,(45)}.
Hence we have a canonical isomorphism
B(4p)*|971(0) = By(dp)*.
We are ready to state:

Tueorem. To each xR there corresponds a regular Borel measure p, on dp
such that

w(f) (@) = , fD)dpp)

Sor all feB(4;p). The measure p, is umique up to a Dirac measure &, with
0 ;,;(A p— S) = 0.
The measure p, is called the P-harmonic measure with cenfer x.

Proof. We have seen that
L,=L + L,

for some L, L,eB(4p)* with Ly(f) = 0 for all feB,(ds). By the Riesz repre-
sentation theorem there exist regular (signed) Borel measures g, 6, on 4p
such that

Lin =, fdea Lin)=T, 5 ds.
for all fEB(4P), Thus we have
Lin={, fde.+{, f as.=, 5 ap

for all feB,(4;). Since L, is a positive functional, g, is a measure on 4p,
unique up to a Dirac measure §, with §,(4, — s) = 0.
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20. Let g#= p, be the P-harmonic measure centered at a fixed point
onR.

THEOREM. There exists a function K,(x,p) on R X 4p with the following
properties :

(i) Kp(x, ) ts a Borel measurable function on dp for each xR, nonnegative
p-a.e. on dp, and Kp(%o, ) =1 on dp,

(ii) for any feB,d4p) and zER,

|, s =, fOKe(w, D)dr(p),

(iii) Kp(z, p) is essentially bounded on dp, uniformly on every compact subset
of R,
(iv) Kp(x, p) is uniquely determined p-a.e. on dp.

The. proof .of the theorem is essentially the same as in the case P=0
(cf. Kwon-Sario [6]).

CoroLLARY 1. A function u belongs to the vector space PBE(R) if and only
Y

u(@) = {, F(®)Kz(z, Pdu(p)
on R for some feMp(R). In this case u= f on 4».

COROLLARY 2. Let u,vePBE(R). Then the least P-harmonic majorant u\ v
and the greatest P-harmonic minorant w A v exist and have the expressions

(Vo) @)=, wUo) (PK(e, p)dx(p),

( Ao) (@) = |, @no) (DK, (s, p)du(p)

P

on R.
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