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A CLASS OF RIEMANNIAN MANIFOLDS
SATISFYING R(X,Y)-R =0

SHUKICHI TANNO

1. Introduction

Let (M, 9) be a Riemannian manifold and let R be its Riemannian
curvature tensor. If (M, g) is a locally symmetric space, we have

(%) RX,Y)-R=0 for all tangent vectors X,Y

where the endomorphism R(X,Y) (i.e., the curvature transformation) operates
on R as a derivation of the tensor algebra at each point of M. There is
a question: Under what additional condition does this algebraic condition
(*) on R imply that (M, g) is locally symmetric (i.e., VR = 0)? A conjecture
by K. Nomizu [5] is as follows: (+) implies VR = 0 in the case where (M, g)
is complete and irreducible, and dim M=3. He gave an affirmative answer
in the case where (M, g) is a certain complete hypersurface in a Euclidean
space ([5]).

With respect to this problem, K. Sekigawa and H. Takagi [8] proved
that if (M, g) is a complete conformally flat Riemannian manifold with dim
M=3 and satisfies (*), then (M,g) is locally symmetric.

On the other hand, R.L. Bishop and B.O’Neill [1] constructed a wide
class of Riemannian manifolds of negative curvature by warped product
using convex functions. For two Riemannian manifolds B and F, a warped
product is denoted by B x,F, where f is a positive C--function on B.
The purpose of this paper is to prove

TurorEM A. Let (F,g) be a Riemannian manifold of constant curvature
K=0. Let E* be an n-dimensional Euclidean space and let f be a positive C™-
Sunction on E*. On a warped product E™ x ,F, assume that

(1) the condition () is satisfied, and
(1)  the scalar curvature is constant.
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Then E™ x F is locally symmetric. The converse is clear.
In theorem A, if n=2, we see that E™ x ,F is not of constant curva-
ture. If =1, we have

Tueorem B. Let (F,9) be a Riemannian manifold of constant curvature
K=0. Let E* be a Euclidean 1-space and let f be a non-constant positive C=-
Sunction on E'. Then E' X ,F satisfies the condition (%) if and only if E' X F 1is
of constant curvature.

Concerning theorem B, it is remarked that, as is stated in [1], p. 28, a
hyperbolic m-space is expressed as H™ = E'x ;E™"! for f=¢' or =E'X H™?
for f = cosh ¢.

The author is grateful to his colleague Dr. J. Kato with whom the
author had serveral conversations on differential equations.

2. The Riemannian curvature tensor of E" x ,F

Let (F,g) be a Riemannian manifold and let E* be a Euclidean n-space.
We consider the product manifold E” x F. For vector fields A4, B, C, etc.
on E®, we denote vector fields (4,0), (B,0), (C,0), etc. on E"XF by also
A, B, C, etc. Likewise, for vector fields X, Y, etc. on F, we denote vector
fields (0, X), (0,Y), etc. on E* X F by X, Y, etc.

We denote the inner product of A and B on E™ by <A4,B). Let f
be a positive C*-function on E". Then the (Riemannian) inner product <, >
for A+ X and B+Y on the warped product E* X ,F at (a,2) is given by
(cf. [1D)

(2.1) A+ X, B+Y)@.0= <4 B + fHa)g,(X,Y).

We extend the function f on E”™ to that on E" X ,F by f(a,x)= f(a). The
Riemannian connections defined by ¢, > on E™ and E" x ,F are denoted
by V® and V, respectively. The Riemannian connection defined by g on F
is denoted by D. Then we have the identities (cf. Lemma 7.3, [1])

(2.2) V.B = VB,
(2.3) ViX=VzA = (AfIN)X,
(2.4) ViY = DyY — (KX, Y)/f) grad f.

By (2.2) we identify V° with V in the sequel. In (2.4) grad f on E" is
identified with grad f on E" x ,F and we have

(grad f, A> = df(A) = Af.
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The Riemannian curvature tensors by V and D are denoted by R and S
respectively. We use both notations R(X,Y) and Ry, etc.:

R(X,Y) = Rxy = Vix,y1 — [Vx, Vy], etc.

Then, noticing that E™ is flat, we have (cf. Lemma 7.4, [1])

(2.5) R4xC = 0,

(2.6) RixB = — (1/fKVagrad f, B)X,

(2.7) RipX = RyyA =0,

(2.8) R.Y = R,y X = (1/1)<X,Y) V4 grad f,

(2.9) RyyZ = SyyZ— (<grad f, grad f5/f?) KX, Z>Y — <Y, Z>X).

3. The condition (%)
From now on (§3~ §8) we assume that (F,g) is of constatn curvature
K=<0. Then we have

SxrZ = K(9(X,2)Y — 9(Y, Z)X)
= (K/f*) KX, 20Y — <Y, Z>X).

In this case, (2.9) is written as
(3.1) RyxyZ = PKX, Z)Y — <Y, Z>X),
where we have put
(3.2) P= (K —(grad f, grad f>)//2<0.
Now by definition we have
(R(X,Y)-R)(Z,VIW = RyyR;yW — R(RxyZ,VIW — R(Z, RxyV)W — RzyRxyW
which vanishes by (3.1). Likewise, by (2.5) ~(2.8), (3.1), we have
(R(X,Y)-R)(Z, AW =
(R(X,Y)-R)(Z, BIA =
(R(X,Y)-R)(C,B)A =0,
from which we have
(RX,Y)-R) (A, Z) W = —(R(X,Y): R) (Z, AW = 0,

3.3) (R(X,Y):R)(Z,W)A=— (R(X,Y)-R) (A, Z2)W — (R(X,Y)-R) (W, A)Z =0,
3.4) (RXY)-R)(C,BW = —(RX,Y):-R)(W,C)B— (R(X,Y)-R)(B,W)C =
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Next, by similar calculations we have
(3.5) (R(X,A)-R)(Z, VW =

(fPV.grad f + Vo grad f) KV, WH <X, Z> — <Z, W) <X, V)| 13,
where we have put @ = V,grad f.

(3.6) (R(X,A)-R)(Z, B)W =
(KfPVigrad f, B> + <V.grad f, Vzgrad /) (X, W>Z — <(Z,W>X)/f*,
(3.7) (R(X, A)- R) (Z, B)C =
(X, 2> (KVpgrad f,C> V. grad f — (V, grad £, C> V; grad f)/f?,
(3.8) (R(X,A)-R)(C,B)G =

(<VA grad f’ B> <VC grad f9 G> - <VA grad f’ C> <VB grad fy G>)X/f2-
Finally we have R(A,B)-R =0, since R,z = 0.

Lemma 3.1. On E™ x ,F, the condition (*) is equivalent to

(3.9) fPV,grad f + V,grad f = 0, Q = V,grad f, and
(3.10) {Vggrad f,C> V, grad f = (V,grad f, C > Vpgrad f.

Proof. R(X,Y)-R=0 and R(A,B)-R=0 hold always. If (*) holds, then
(3.5) and (3.7) imply (3.9) and (3.10). Conversely, (3.5) and (3.9) imply
(R(X,A)-R)(Z,VW = 0. Since

<VQ grad f’ B) = (Vg grad 1€
= (Vpgrad f, V,grad />,
(38.6) and (3.9) imply (R(X,A)-R)(Z, B)W = 0. (3.7) and (3.10) imply
(R(X,A)-R)(Z,B)C = 0. Similarly, (3.8) and (3.10), together with the fact
that <V, grad f, B) = (Vzgrad f, A>, imply (R(X,A4)-R)(C,B)G = 0. Finally
we have (R(X,A):-R)(Z,V)B=0 and (R(X,A)-R)(C,BW = 0 in the same way
as (3.3) and (3.4).

4. The condition for VR= 0

Using the identity

(VxR) (Y, Z)W = Vx{Ry, W) — R(VsY, Z)W — R(Y,VxZ) W — Ry 4(V<W),
together with (2.3), (2.4) and (2.8), we get

4.1) (VxR) (Y, Z)W =
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(X, YOKZ, W) — <X, Z> Y, W)) (fPgrad f + Vgradrgrad f)/f?
where we have used VyP= XP= 0. Similarly we get
(4.2) (VxR) (A, Y)W =
(Vagrad f)f + fPAS) Y, W> X — <KX, WOY)/f3,
(4.3) (V4R) (B, Y)W =
Y, W) (fVaVsgrad f — f Vygrad f — Af Vs grad f)/f% T = V4B,

(4.4) (VxR) (Y, A)B =
KX,V (Bf Vagrad f — <V, grad f, B) grad f)//?,
(4.5) (V4R) (B, X)C =

(Af (Vpgrad f,C> + f<Vygrad f,C> — f(V,Vpgrad f, C>)X/f2

Lemma 4.1. On E™ x ,F, VR=0 if and only if

(4.6) fPgrad f + Vgrad rgrad f = 0,
(4.7) fV.Vpgrad f — fVygrad f — Af Vgpgrad f =0, T = V,B, and
(4.8) BfvVagrad f — <V grad f, B) grad f = 0.

Proof. Necessity comes from (4.1), (4.3) and (4.4). Conversely, assume
that (4.6) ~ (4.8) hold. Then, we have (VxR) (Y, Z)W =0 and (V,R) (B,Y)W=0
by (4.1) and (4.3). We take the inner products of A and both sides of (4.6)
to get

0= fPAf+ <Vgradfgradf,A>

= fPAf+(V,grad f, grad />

= fPAf + (Vagrad f)f.
Therefore, we have (ViR)(A,Y)W =0 by (4.2). Next we take the inner
products of C and both sides of (4.7). Then we have (V,R)(B,X)C =0 by
(4.5). By (4.4) and (4.8) we have (VzR)(Y,A)B=0. These, together with
the first and second Bianchi identities, imply (VxR) (Y, W)A = (V4R)(X,Y)W =
(VaR) (Y, W)B = (VyR) (A, BW = (VxR) (A, B)C = (V4R) (B,C)X = 0.
Finally, (V4R)(B,C)G = 0 follows from (2.5).

5. The scalar curvature

In this section, we obtain the expression of the scalar curvature. Let
(ApXi;a=1,+++,n;i=1,--.,r=dim F) be vector fields on some open set
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on E™ x F such that they make an orthonormal basis at each point of the
open set. We denote by R; the Ricci curvature tensor. Then we have
R(Y,Z) = 2KR(Y, X,)Z, X;> + ZR(Y, A)Z, A,
which is calculated by (2.8) and (3.1), and we get
R(Y,Z)= P, Y, 20X, —<X;, Z)Y, X;»
+ 2= (UN)Z, YD Va, grad £, A0
=[(r — 1) P — (1/f) 2ulV4, grad f, ADIY, 2,
where we have used
20X, DY, Xop = 20KV, X (X, 2D
= 2K, X X, 2> = Y, Z>.
Similarly we have
R(B, C) = 21<KR(B, X;)C, X;> + 21{R(B, A.)C, A
— (r/f)<Vs grad f, C>.

fl

Therefore we get
The scalar curvature = >LR(X;, X;) + SLRi(A., A)
(5.1) =7l(r —1) P — (2/f) 2V, grad 1, A>].
6. Two lemmas
LemmA 6.1. On E™ x ;F, (4.6) is equivalent to P = constant.
Proof. By (3.2) and (4.6) we have
(1/f) (K — <grad f, grad f>) grad f + Vgradargrad f = 0.

Since this equation is considered as an equation on E®, we introduce the
natural coordinate symtem (x*; @ =1, .- +,%#) on E*. Then the last equation

is nothing but
(k-2 TN 45, S Wy,

ox* ox*/ oxf dx“9x? ox°

which implies that each partial derivative of

6 pe [ m (2 )1/

vanishes. Thus, P is constant. The converse is clear.
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LemMmA 6.2. On E™ x ;F, if the condition () is satisfied and the scalar
curvature is constant, then P is constant.

Proof. If f is constant, Lemma 6.2 is trivial. Therefore we assume
that f is not constant. We put A= 3/62% B = 38/0x’ and C = §/9x7, which
are parallel on E*. Then (3.9) and (3.10) are written as

3 f %f *f
(6.2) TP gz T Do gpaaz Suispe = O
6.3 of_f _ of o
: 0xfoxT  oxoux? ox9x’ oxfoxs

Summing with respect to « and 7 in (6.3), and substituting the result into
(6.2), we have

(6.4) (rP+ = o

ax"ax" 0x0x’®

Define a subset © of E® by

0= {xEE” ; 3%7><x) =0 for all «, ’o“.
Let 6, be a component of 6. If ©, contains an open set, f is of the form
f = ax*+ b on the interior of 6, for some constant a,, b (if the same letter
appears as a subscript and as a superscript, we abbreviate 3!). Since f is
positive and C~-differentiable, ¥ = E* — & = E"N6° can not be empty. Since
6 is closed, ¥ is a non-empty open set. On ¥ we have

(6.5) Py, S

oxeox”

On the other hand, the scalar curvature is given by (5.1), which is also

written as

= —1)P— _oif
(6.6) the scalar curvature = r[(r 1P — (2/f) 3 PRCTT
By (6.5) and (6.6), we get
6.7) r(r + 1)P = the scalar curvature = constant,

which shows that P is constant on ¥.
On 6, ifa,=0for all «a=1,...,n, then P is constant on 6, too. So
we assume that at least one of a, is not zero. Then, by (6.1) and K<0,
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we get
(6.8) P= (K — X.ak)/(asx? + b)* < 0.

We easily see that the function P on 6, given by (6.8) can not be C=-
differentiably extended to P on 6,U¥ so that P is constant on ¥. Therefore
O can not contain any open set where f is not constant. Hence, we have
(6.7) on E™.

7. Proof of Theorem A

Since E™ x ,F satisfies the condition () and the scalar curvature is
constant, P is constant by Lemma 6.2. By Lemma 6.1 we see that (4.6) is
equivalent to (6.1) with P = constant. Now we solve (6.1) and show that
the solution f satisfies (4.7) and (4.8). Then E" x ,F is locally symmetric
by Lemma 4.1. (6.1) is

(7.1) K—3, (-8 )Z—Pf2=0.

axe

We solve the last partial differential equation by Lagrange-Charpit method.
First we put

—‘a—f_ = o o
Pa = oz’ a 1, s Mo

Then the characteristic differential equations of (7.1) are

daxt dux? dx"
702 — = e o o =
(7.2 —2p, —2p, —2p,
=2(p1)? — -+ — 2(Pa)?
—dpl — e s = —dp'n
—Zprl —‘2pr” )

If 7 is constant, Theorem A is trivial. Hence, we assume that f is not
constant. Then at least one of py, - - -, p, does not vanish. So we assume
pi#0 (locally, if necessary) and furthermore we can assume that p, is
positive. In this case, the last (# —1) equatoins of (7.2) give the first
integrals

Pa = SaPiy a=2,-~',n,
where s, are constants. Then (7.1) is

K— (021 +st+ -+« +s)—Pfi=o.
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If we put s; =1, we have

_ K—sz 1/2
=S ] ’

df = p.da = pys,dac.

Then we get

df _ d(sgx?)
(7. 3) TI(TP?TZ]W = m%?ﬁ .

By putting [K — P f?]2 = /—P f +y, we have

(7.4) = 7’—% :
Therefore we have
(7.6) y = bexp[—(—P/Xsd)"*(s2%)].

If we put [— P/X1s]"/%s; = ¢; then, by (7.4) and (7.6), we have

(7.7) f= 2]/i_ﬁ [—[g— exp (c;xf) — b exp (— cﬁxﬂ)}

which is a solution of (7.1). Consequently, we see that f satisfies (4.7) and
(4.8), which are written as

f 0% f _af 0%f -0

oxcoxtox’ 0x® oxfox” ’
of 2f 9 of _ 0
oxf  gxvga’ 0x%9xf 97 '

8. Proof of Theorem B

Assume that E! x ,F satisfies condition (). Then (3.9) or (6.2) is writ-
ten as

arfN dif
o (rpe ) 4h=0

where z is the natural coordinate system of E!. Similarly as in §6, we
define © and ¥. Then on ¥, by (6.1) and (8.1), we have
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.2 [k~ (D) 1+ 7 -G =0

which implies that the derivative of P=[K — (df/dx)?]/f* is zero so that P
is constant on each component of #. On the other hand, on an open
interval contained in ©, f is of the form f = cx + d for some constants c
and d. Since P is C~-differentiable, 6 can not contain any open interval
where f is not constant. Thus, P is constant on E!. Since f is non-
constant, P is a negative constant. Now we have

K- (4L) —pr-o
whose solution f is
1 K — _
f= =T [—b— expy/—P x — bexp (/—P x)]

where b< 0 is a constant. Then we have
Vi.grad f= — fPA,
and hence, (2.6), (2.8) are expressed as

(8.3) R,y B=(—1/f)<—PfA B>X
= P(K4, B> X — <X, B)A),

(8.4) RaxY = (UfKXY) (=P fA)
= P(AY>X — (X, Y)A).

Thus, (8.3), (2.7), (8.4) and (3.1) show that E!' x ,F is of constant curvature
P<O.

9. Remarks

(i) If (F,9) is a complete Riemannian manifold, then E" x ,F is also
a complete Riemannian manifold (cf. Lemma 7.2, [1]).

(ii) Assume that (F, ) is of constant curvature K<0. If (3%f/ax<5x?)
is non-singular at some point of E™ and # is sufficiently small with respect
to r=dim F (for example, n = 2), then E" x ,F is irreducible. In fact, by
a result due to D. Montgomery and H. Samelson [3] we see that there is
no proper subgroup of the orthogonal group 0(n + 7) of order greater than
(n+r—1)(n+r—2)2, provided n+ r+4. On the other hand, the holo-
nomy algebra is generated by (cf. [4])
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RAX’ RXY, <+, etc.

which are given by (2.5) ~(2.8), (38.1). And under the circumstance stated
above the restricted homogeneous holonomy group at the point is SO(n + 7).

(iii) Itis an open question if one can get complete solutions of non-linear
partial differential equations (6.1), (6.2) and (6.3) (i.e., the condition (*) on
E® X ,F, n=2). If one can get the complete solutions, then one sees

whether the assumption on the scalar curvature is necessary or not in
Theorem A.

(iv) The condition (%) is expressed in local coordinates as
VTVsRhijk - VSVTRhijk = 0.

In [6], K. Nomizu and H. Ozeki showed that if VVR = 0 (more generally,
V*R = 0 for some k) on a (complete) Riemannian manifold, then VR = 0.

(v) Studies concerning R(X,Y)-R were made also by A. Lichnerowich
[2], p. 11, P. J. Ryan [7], K. Sekigawa and S. Tanno [9], J. Simons [10],
S. Tanno and T. Takahashi [11], etc.
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