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A CLASS OF RIEMANNIAN MANIFOLDS

SATISFYING R(X,Y) R = 0

SHUKICHI TANNO

1. Introduction

Let (M,g) be a Riemannian manifold and let R be its Riemannian

curvature tensor. If (M, g) is a locally symmetric space, we have

(*) R{X,Y)-R = 0 for all tangent vectors X,Y

where the endomorphism R(X,Y) (i.e., the curvature transformation) operates

on R as a derivation of the tensor algebra at each point of M. There is

a question: U n d e r what additional condition does this algebraic condition

(*) on R imply that (M,g) is locally symmetric (i.e., Vi? = 0)? A conjecture

by K. Nomizu [5] is as follows: (*) implies VR = 0 in the case where (M, g)

is complete and irreducible, and d i m M ; > 3 . H e gave an affirmative answer

in the case where (M, g) is a certain complete hypersurface in a Euclidean

space ([5]).

With respect to this problem, K. Sekigawa and H . Takagi [8] proved

that if (M, g) is a complete conformally flat Riemannian manifold with dim

M ^ 3 and satisfies (*), then (M,g) is locally symmetric.

O n the other hand, R.L. Bishop and B.O'Neill [1] constructed a wide

class of Riemannian manifolds of negative curvature by warped product

using convex functions. For two Riemannian manifolds B and F, a warped

product is denoted by B X fF, where / is a positive C°°-function on B.

T h e purpose of this paper is to prove

THEOREM A. Let (F, g) be a Riemannian manifold of constant curvature

K^O. Let En be an n-dimensional Euclidean space and let f be a positive C°°-

function on En. On a warped product En x fF, assume that

(i) the condition (*) is satisfied, and

(ii) the scalar curvature is constant.
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Then En x fF is locally symmetric. The converse is clear.

In theorem A, if n ̂  2, we see that En x fF is not of constant curva-

ture. If n = 1, we have

THEOREM B. Let (F, #) έ# a Riemannian manifold of constant curvature

K^O. Let E1 be a Euclidean 1-space and let f be a non-constant positive C°°-

function on E1. Then E1 x fF satisfies the condition (*) if and only if E1 x fF is

of constant curvature.

Concerning theorem B, it is remarked that, as is stated in [1], p. 28, a

hyperbolic m-space is expressed as Hm = E^XjE7""1 for / = e* or = E 1 x / / / m " 1

for / = cosh t.

The author is grateful to his colleague Dr. J. Kato with whom the

author had serveral conversations on differential equations.

2. The Riemannian curvature tensor of En x fF

Let (F,g) be a Riemannian manifold and let En be a Euclidean w-space.

We consider the product manifold En x F. For vector fields A, B, C, etc.

on En, we denote vector fields (A,0), {B,0), (C,0), etc. on EnxF by also

A, B, C, etc. Likewise, for vector fields X, Y, etc. on F, we denote vector

fields (0,X), (0,F), etc. on En x F by I , Y, etc.

We denote the inner product of A and B on En by <Λ, By. Let /

be a positive C°°-function on En. Then the (Riemannian) inner product < , >

for A + X and B + Y on the warped product En x r F at (a, x) is given by

(cf. [1])

(2.1) <A + X, S + y> ( β t β ) = 04, JB>(β) + f*(a)ga(X,Y).

We extend the function / on En to that on En x fF by f(a, x) = f{a). The

Riemannian connections defined by < , > on En and En x fF are denoted

by V° and V, respectively. The Riemannian connection defined by g on F

is denoted by D. Then we have the identities (cf. Lemma 7.3, [1])

(2.2) VAB

(2.3) VAX=VxA=(Aflf)X,

(2.4) VXY = DXY - (OY, F>//) grad / .

By (2.2) we identify V° with V in the sequel. In (2.4) grad/ on En is

identified with grad / on En x fF and we have



RIEMANNIAN MANIFOLDS SATISFYING R(X,Y) R = 0 69

The Riemannian curvature tensors by V and D are denoted by R and S

respectively. We use both notations R{X,Y) and Rxγ, etc.:

R(X,Y) = Rχγ = VU.YJ ~ [VΛ Vy], etc.

Then, noticing that En is flat, we have (cf. Lemma 7.4, [1])

(2.5) RABC=0,

(2.6) RAXB = - (llf)<VA grad / , B}X,

(2.7) RABX=RXYA=0,

(2.8) RAXY = RAYX = (IIf) (X, F> VΛ grad / ,

(2.9) RxyZ = SxrZ- Kgrad / , grad />//2) «X, Z}Y - <

3. The condition (*)

From now on (§ 3 ~ § 8) we assume that (i% g) is of constatn curvature

Then we have

SχKZ = K (g(X, Z)Y - g(Y, Z)X)

= (KIP)«X,Z>Y-<Y,Z>X).

In this case, (2.9) is written as

(3.1) RXYZ = P«X, ZW - <Y, Z}X),

where we have put

(3.2) P={K- <grad / , grad /»//2 < 0.

Now by definition we have

(R(X, Y) R) (Z, V)W = RxγRzrW - R(RXYZ, V)W - R(Z, RXYV)W - RZVRXYW

which vanishes by (3.1). Likewise, by (2.5) ~ (2.8), (3.1), we have

(R(X,Y)-R)(Z,A)W=0,

(R(X,Y) R)(Z,B)A=0,

(R(X,Y) R)(C,B)A=0,

from which we have

(R(X,Y) R) {A,Z)W = - [R{X, Y) R) [Z, A)W = 0,

(3.3) {R(X, Y) - R) (Z, W)A = - (R(X, Y) R) [A, Z)W - (R(X, Y) - R) (W, A)Z = 0,

(3.4) (R(X, Y) R) (C, B)W= - (R(X, Y) • R) (W, C)B - (R(X, Y) R) (B, W)C = 0.
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Next, by similar calculations we have

(3.5) (R(X,A)-R)(Z,V)W =

(fP VA grad / + Vρ grad /) «F, W> <X, Z> - <Z, W> <

where we have put Q = V̂  grad / .

(3.6) (Λ(-Y,A).Λ)(Zffi)W
r =

K/P V̂  grad /, B> + <VA grad /, V* grad /» (<*, W>Z - <Z,

(3.7) (Λ(X,A).Λ)(Z,β)C =

O , Z> «VB grad /, C> V4 grad / - <yA grad /, C> VB grad /)// 2 ,

(3.8) (/?(X,i4) /?)(C,β)G =

«yA grad /, 5> <VC grad /, G> - <V4 grad /, C> <Vβ grad /,

Finally we have R(A, B) i? = 0, since i?4jB = 0.

LEMMA 3.1. On En x fF, the condition (*) w equivalent to

(3.9) / P V̂  grad / + Vρ grad / = 0, Q=VA grad /,

(3.10) <V£ grad /, C> V̂  grad / = <V̂  grad /, C > VB grad / .

Proof. R{X, Y) R = 0 and R{A, B) R = Q hold always. If (*) holds, then

(3.5) and (3.7) imply (3.9) and (3.10). Conversely, (3.5) and (3.9) imply

{R{X, A) R) (Z, V)W = 0. Since

<yQ grad /, B} = <yB grad /, Q>

= <VB grad /, V̂  grad />,

(3.6) and (3.9) imply (R{X, A) - R) (Z, B)W = 0. (3.7) and (3.10) imply

(R{X,A) R)(Z,B)C=0. Similarly, (3.8) and (3.10), together with the fact

that <V̂  grad /, By = <V* grad /, A>, imply {R(X, A) R) (C, B)G = 0. Finally

we have (R{X, A) R) (Z, V)B = 0 and (i?(X, ̂ ) R) (C, £)W = 0 in the same way

as (3.3) and (3.4).

4. The condition for VR — 0

Using the identity

(VXR) (Y, Z)W = Vx{RγZW) - R(VXY, Z)W - R(Y, VXZ) W- RYZ(VXW)9

together with (2.3), (2.4) and (2.8), we get

(4.1) (VXR)(Y,Z)W =
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, F> <Z, Wy - <X, Z> <F, TF» (/Pgrad / + Vgrad/grad

where we have used VXP = XP = 0. Similarly we get

(4.2) M(ΛW =

((V̂  grad /)/ + fPAf) «F, W> X - <X, W>Y)lf\

(4.3) (VAR)(B,Y)W =

<F, W> (fVAVB grad / - / VΓ grad f-AfVB grad /)// 2, T = V.A

(4.4) (VχΛ)(r,A)S =

<X, F> (5/ V* grad / - <V̂  grad /, By grad /)// 2,

(4.5) (VAR)(B,X)C =

(Λf <Vΰ grad /, C> + / <VΓ grad /, C> - / <V̂ VB grad /, C»X//2.

LEMMA 4.1. O/z £ w x fF, VR = 0 zj /̂zrf ow/y z/

(4.6) / P grad / + Vgrad / grad / = 0,

(4.7) / V̂ V* grad f-fVτ grad f-AfVB grad / - 0, T = V^£,

(4.8) 5 / V̂  grad / - <V̂  grad /, By grad / - 0.

Proof. Necessity comes from (4.1), (4.3) and (4.4). Conversely, assume

that (4.6) ~ (4.8) hold. Then, we have {VXR) (Y,Z)W=0 and {VΛR) (B,Y)W = 0

by (4.1) and (4.3). We take the inner products of A and both sides of (4.6)

to get

0= fPAf+ <Vgrad/grad /, Ay

= fPAf+<VAgr<idf, grad/>

Therefore, we have (VZR)(A,Y)W = 0 by (4.2). Next we take the inner

products of C and both sides of (4.7). Then we have (VΛR)(B,X)C= 0 by

(4.5). By (4.4) and (4.8) we have (VZR) (F, A)B = 0. These, together with

the first and second Bianchi identities, imply {VXR)(Y,W)A= (VAR)(X,Y)W =

(VΛR) (F, W)B = (VYR) (A, B)W = (VXR) (A, B)C = (VΛR) (B, C)X = 0.

Finally, {VAR){B,C)G= 0 follows from (2.5).

5. The scalar curvature

In this section, we obtain the expression of the scalar curvature. Let

{Aa9Xii a = 1, ,n; i = 1, ,r = dimF) be vector fields on some open set
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on En x F such that they make an orthonormal basis at each point of the

open set. We denote by Rλ the Ricci curvature tensor. Then we have

T, x%)z, x,y + na<R(Y, AJZ, ΛO\
which is calculated by (2.8) and (3.1), and we get

R^Y, z) = PΣ>i «Y, z>Xt - <xi9 z>γ, x,y

+ Σ«<- (1//) <Z, Y> VAa grad /, Aa>

= [(r-l)P- (IIf) Σ«<V α̂ grad /, Aa>] <F, Z>,

where we have used

, X> = Σlt<r, Xi> <Xi, Z>

Similarly we have

Ri(B, C) = Σt<R(B, XJC, Xt> + Ha<R(B, Aa)C, Aa>

= -(r//)<Va grad/,C>.

Therefore we get

The scalar curvature = Σ ^ i ( ^ , Xt) + Έ«Ri(Aa, Aa)

(5.1) = r[(r -1)P- (21 f) Σ*<V^ grad /, Aa>].

6. Two l emmas

LEMMA 6.1. On En x fF, (4.6) is equivalent to P - constant.

Proof. By (3.2) and (4.6) we have

(1//) (K - <grad /, grad /» grad / + Vgrad/grad / - 0.

Since this equation is considered as an equation on En, we introduce the

natural coordinate symtem (xa; a = 1, , n) on En. Then the last equation

is nothing but

- τ df df \ df 4- f y d2f

λjΛ dχadχt ~d^-"'

which implies that each partial derivative of

(6.1) P

vanishes. Thus, P is constant. The converse is clear.
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L E M M A 6.2. On En x fF9 if the condition (*) is satisfied and the scalar

curvature is constant, then P is constant.

Proof. If / is constant, Lemma 6.2 is trivial. Therefore we assume

that / is not constant. We put A = d/dx", B = d/dxβ and C = djdxr, which

are parallel on En. Then (3.9) and (3.10) are written as

(a o\ fp d2/ , γι d2f d2f _ 0

r β ^ a2/ a2/ _ a2/ a2/
κ J dxβdxr dxadxδ dxadxr dxβdxδ '

Summing with respect to a and T in (6.3), and substituting the result into

(6.2), we have

Define a subset Θ of En by

Let <90 be a component of (9. If Θo contains an open set, / is of the form

/ = aax
a + b on the interior of <90 fo

r some constant aa, b (if the same letter

appears as a subscript and as a superscript, we abbreviate Σ ) . Since / is

positive and C°°-difΓerentiable, Ψ = En — Θ = En Π Θc can not be empty. Since

Θ is closed, ¥ is a non-empty open set. On Ψ we have

(6 5) ^

On the other hand, the scalar curvature is given by (5.1), which is also

written as

(6.6) the scalar curvature = r Γ(r - Ϊ)P - (2//) Σ α -^t-—Ί .

By (6.5) and (6.6), we get

(6.7) r{r + ΐ)P= the scalar curvature = constant,

which shows that P is constant on Ψ.

On 0o, if aa = 0 for all a = 1, , n, then P is constant on Θo too. So

we assume that at least one of aa is not zero. Then, by (6.1) and K^=0,
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we get

(6.8) P=(K- T^aDHflpX* + bY < 0.

We easily see that the function P on Θo given by (6.8) can not be C°°-

diίferentiably extended to P on Θo U Ψ so that P is constant on Ψ. Therefore

Θ can not contain any open set where / is not constant. Hence, we have

(6.7) on En.

7. Proof of Theorem A

Since En x fF satisfies the condition (*) and the scalar curvature is

constant, P is constant by Lemma 6.2. By Lemma 6.1 we see that (4.6) is

equivalent to (6.1) with P= constant. Now we solve (6.1) and show that

the solution / satisfies (4.7) and (4.8). Then En x fF is locally symmetric

by Lemma 4.1. (6.1) is

(7.1) #_ Σ

We solve the last partial differential equation by Lagrange-Charpit method.

First we put

Then the characteristic differential equations of (7.1) are

, 7 9x dx1 _ dx2 _ _ dxn

{ } ^Wi =2^7 - " "~=2^Γ

df
=

-2fPPί

If / is constant, Theorem A is trivial. Hence, we assume that / is not

constant. Then at least one of pu , pn does not vanish. So we assume

φx ψ 0 (locally, if necessary) and furthermore we can assume that φx is

positive. In this case, the last (n — 1) equatoins of (7.2) give the first

integrals

Pa = sapl9 a = 2, , n,

where sa are constants. Then (7.1) is

= 0.
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If we put Sx = 1, we have

Γ K-Pf2 "11/2

df = padxa = jpiSadx".

Then we get

[ } [κ

By putting [K — Pfψ2 = τ/—Pf + y, we have

'--#=£-•
(7 *) -(K+y*)dyl(2/=Py*) _ d(s,x>)
( ' (K+vWy [Σ«sJF2

Therefore we have

(7.6) y = b exp [-(-P/Σί.2) 1^/.*')].

If we put [-P/Σs«]1/2s,s = <;„, then, by (7.4) and (7.6), we have

(7.7) / = * . [-^- exp {c,x>) - b exp (- c,x')],

which is a solution of (7.1). Consequently, we see that / satisfies (4.7) and

(4.8), which are written as

f d*f _ df a2/ _ 0
J dxadxβdxr dxa 3xβdxr '

df d2f _ dV df _ 0

dχβ dχadχr dχadχ? dχr

8. Proof of Theorem B

Assume that E1 x fF satisfies condition (*). Then (3.9) or (6.2) is writ-

ten as

where x is the natural coordinate system of E1. Similarly as in §6, we

define Θ and Ψ. Then on ψ, by (6.1) and (8.1), we have
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which implies that the derivative of P = [K — {dfldx)2]lf2 is zero so that P

is constant on each component of Ψ. On the other hand, on an open

interval contained in Θ, f is of the form / = ex -f d for some constants c

and d. Since P is C°°-differentiable, Θ can not contain any open interval

where / is not constant. Thus, P is constant on E1. Since / is non-

constant, P is a negative constant. Now we have

whose solution / is

/ = -2rzj> \_-y- expi/-P x-bexp (/-P χ)J

where b < 0 is a constant. Then we have

V^grad/= -fPA,

and hence, (2.6), (2.8) are expressed as

(8.3) RAXB = (- 1//) <-PfA, B>X

= P«A,B>X-<X9B>A),

(8.4) RAXY = (llf)<X,Y> (-PfA)

= P«A,Y>X-<X,Y>A).

Thus, (8.3), (2.7), (8.4) and (3.1) show that Ex x fF is of constant curvature

P < 0 .

9. Remarks

(i) If (F, g) is a complete Riemannian manifold, then En x fF is also

a complete Riemannian manifold (cf. Lemma 7.2, [1]).

(ii) Assume that (F,g) is of constant curvature K<0. If (d2f/dxadxβ)

is non-singular at some point of En and n is sufficiently small with respect

to r — dimF (for example, n = 2), then £ Λ x 7 F is irreducible. In fact, by

a result due to D. Montgomery and H. Samelson [3] we see that there is

no proper subgroup of the orthogonal group 0{n + r) of order greater than

(n + r — 1) (w + r — 2)/2, provided n + r ψ 4. On the other hand, the holo-

nomy algebra is generated by (cf. [4])
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RAX, RXY, , etc.

which are given by (2.5) ~ (2.8), (3.1). And under the circumstance stated

above the restricted homogeneous holonomy group at the point is SO{n + r).

(iii) It is an open question if one can get complete solutions of non-linear

partial differential equations (6.1), (6.2) and (6.3) (i.e., the condition (*) on

En x fF9 n ;> 2). If one can get the complete solutions, then one sees

whether the assumption on the scalar curvature is necessary or not in

Theorem A.

(iv) The condition (*) is expressed in local coordinates as

In [6], K. Nomizu and H. Ozeki showed that if VVR = 0 (more generally,

ΨR = 0 for some k) on a (complete) Riemannian manifold, then VR = 0.

(v) Studies concerning R(X,Y) R were made also by A. Lichnerowich

[2], p. 11, P. J. Ryan [7], K. Sekigawa and S. Tanno [9], J. Simons [10],

S. Tanno and T. Takahashi [11], etc.
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