Kiyoshi Shiga Nagoya Math. J. Vol. 42 (1971), 57-66

ON HOLOMORPHIC EXTENSION FROM THE BOUNDARY

KIYOSHI SHIGA

0. Introduction

Let D be a bounded domain of the complex *n*-space $C^n(n \ge 2)$, or more generally a pair (M, D) a finite manifold (c.f. Definition 2.1), and we assume the boundary ∂D is a smooth and connected submanifold. It is well known by Hartogs-Osgood's theorem that every holomorphic function on a neighbourhood of ∂D can be continued holomorphically to D. Generalizing the above theorem we shall prove that if a differentiable function on ∂D satisfies certain conditions which are satisfied for the trace of a holomorphic function on a neighbourhood of ∂D , then it can be continued holomorphically to D (Theorem 2-5). The above conditions will be called the tangential Cauchy Riemann equations.

Using the above result, we shall determine the condition for a diffeomorphism of ∂D to be continued to a holomorphic automorphism of D (Theorem 3-3). Finally as its corollary the analogy to functions holds for crosssections of a holomorphic vector bundle. (Theorem 3-5)

In preparing this paper, I have received many advices from Professor M. Ise and Professor T. Nagano. I would like to express my cordial thanks to them.

1. Tangential Cauchy-Riemann equations

Let N be an n-dimensional complex manifold. From now on we always assume $n \ge 2$. Let M be a real smooth submanifold of N. We denote by $T_p(M)$ the real tangent space of M at p. Let J be the complex structure of N.

$$C_p = T_p(M) \cap JT_p(M)$$

is the maximum complex subspace of $T_p(M)$, and we denote its complex dimension by m(p) and we assume m(p) is constant on M.

Received March 13, 1970.

Then $T_p(M) \otimes C$ is decomposed to

 $T_p(M) \otimes C = H_p + \overline{H}_p + L_p$ (direct sum)

where

$$H_p = \{X \in T_p(M) \otimes C; X \text{ is a } \sqrt{-1} \text{ eigen vector of } J\}$$

$$\bar{H}_p = \{X \in T_p(M) \otimes C; X \text{ is a } -\sqrt{-1} \text{ eigen vector of } J\},\$$

and L_p is a complemental subspace of $H_p + \bar{H}_p$. We call an element of H_p , \bar{H}_p , holomorphic and anti-holomorphic tangent vector respectively. It is evident that $(\overline{H_p}) = \bar{H}_p$, where the upper bar means complex conjugate with respect to $T_p(M)$, and that $\dim_{\mathbf{C}} H_p = \dim_{\mathbf{C}} \bar{H}_p = m(p)$. Now we define

DEFINITION 1-1. Let f be a complex valued differentiable function defined on a neighbourhood of $p \in M$. If Xf = 0 for every $X \in \overline{H}_p$, we call that f satisfies the tangential Cauchy-Riemann equations at p.

If f satisfies the tangential Cauchy-Riemann equations at every point of the domain of f, we call f satisfies the tangential Cauchy-Riemann equations (in short, T - C - R equations).

In the following we consider only the case when M is a real hypersurface of N. In this case we define

DEFINITION 1-2. Let M be a real hypersurface of N. We call a real valued differentiable function φ a *defining function of* M if it satisfies the following conditions.

- 1). $M = \{z \in N; \varphi(z) = 0\}$
- 2). grad φ does not vanish on *M*.

Let φ be a defining function of M and p_0 a point of M. Let (z_1, \dots, z_n) be a local coordinate system at p_0 . Since grad φ does not vanish on M, then we can assume $\varphi_{\overline{z}_n} := \frac{\partial \varphi}{\partial \overline{z}_n}$ does not vanish on some neighbourhood U of p_0 . We can choose a base of H_p , \overline{H}_p , and L_p at $p \in U$ as following

$$H_p: \begin{cases} (X_1)_p = (\varphi_{z_n})_p \left(\frac{\partial}{\partial z_1}\right)_p - (\varphi_{z_1})_p \left(\frac{\partial}{\partial z_n}\right)_p \\ \dots \\ (X_{n-1})_p = (\varphi_{z_n})_p \left(\frac{\partial}{\partial z_{n-1}}\right)_p - (\varphi_{z_{n-1}})_p \left(\frac{\partial}{\partial z_n}\right)_p \end{cases}$$

58

$$\bar{H}_{p}: \begin{cases} (\bar{X}_{1})_{p} = (\varphi_{\bar{z}_{n}})_{p} \left(\frac{\partial}{\partial \bar{z}_{1}}\right)_{p} - (\varphi_{\bar{z}_{1}})_{p} \left(\frac{\partial}{\partial \bar{z}_{n}}\right)_{p} \\ & \ddots & \ddots \\ (\bar{X}_{n-1})_{p} = (\varphi_{\bar{z}_{n}})_{p} \left(\frac{\partial}{\partial \bar{z}_{n-1}}\right)_{p} - (\varphi_{\bar{z}_{n-1}})_{p} \left(\frac{\partial}{\partial \bar{z}_{n}}\right)_{p} \\ L_{p}: \qquad Y_{p} = (\varphi_{\bar{z}_{n}})_{p} \left(\frac{\partial}{\partial z_{n}}\right)_{p} - (\varphi_{z_{n}})_{p} \left(\frac{\partial}{\partial \bar{z}_{n}}\right)_{p} \end{cases}$$

It means $H = \bigcup_{p \in M} H_p$, $\overline{H} = \bigcup_{p \in M} \overline{H}_p$ are subbundles of $T(M) \otimes C$.

2. Holomorphic extension of functions.

Let M be a Stein manifold and D be a domain of M. Now we introduce the following definition.

DEFINITION 2-1. A pair (M, D) is called a *finite manifold*, if the following conditions are satisfied.

- 0). *M* is a Stein manifold and dim $M \ge 2$
- 1). D is a connected relatively compact domain of M.
- 2). the boundary of D, denoted by ∂D , is a connected smooth real hypersurface of M.

Let (M, D) be a finite manifold. We use the following notations.

 $C^{\infty}(\overline{D}) = \{a \text{ differentiable function on } \overline{D}\}$

 $H(\overline{D}) = \{f \in C^{\infty}(\overline{D}); f|_{D} \text{ is a holomorphic function}\}$

where $f|_D$ is the restriction of f to D.

We choose a defining function φ of ∂D such that

$$D = \{z; \varphi(z) < 0\}$$
 and $M - D = \{z; \varphi(z) \ge 0\}$

Since φ is a defining function, grad φ does not vanish on ∂D .

It is convenient to express the T-C-R equations in another way. Let f be a differentiable function on ∂D . There exists $F \in C^{\infty}(\overline{D})$ so that $F|\partial D = f$.

LEMMA 2-2. A differentiable function f on ∂D satisfies T - C - R equations if and only if $\partial F \wedge \partial \varphi = 0$ on ∂D , where F is a differentiable function on \overline{D} as above and ∂ is the Cauchy-Riemann operator.

Proof is clear from Definition 1-1.

LEMMA 2-3. (Hörmander [1] p. 137) Let M be a Stein manifold and α a (0,1) type 1-form of class C^k . If $\bar{\partial}\alpha = 0$, there exists a k - n time differentiable function u such that $\bar{\partial}u = \alpha$.

We shall prove the following corollary, using the above lemma.

COROLLARY 2-4. Let α be a (0,1) type 1-form of class C^k on a Stein manifold M. If $\overline{\partial}\alpha = 0$ and $K = supp \alpha$ is compact and M - K is connected, there exists k - n time differentiable function u so that $\overline{\partial}u = \alpha$ and supp $u \subset K$.

Proof. There exists a k - n time differentiable function v such that $\bar{\partial}v = \alpha$ by lemma 2-3. Since $\bar{\partial}v = 0$ on M - K, v is holomorphic on M - K. By Hartogs-Osgood's theorem (Kasahara [2]) $v|_{M-K}$ can be continued to a holomorphic function w on M. We put u = v - w, it follows that $\bar{\partial}u = \bar{\partial}v - \bar{\partial}w = \bar{\partial}v = \alpha$, and supp $u \subset K$. Q.E.D.

We shall prove the following theorem by the method of Hörmander [1].

THEOREM 2-5. Let (M, D) be a finite manifold, and f a differentiable function on ∂D . If f satisfies T-C-R equations, there exists $\tilde{f} \in H(\tilde{D})$ such that $\tilde{f}|\partial D = f$.

Proof. (1-st step) We construct by induction a differentiable function $U_k \in C^{\infty}(\vec{D})$ for every positive integer k which satisfies the following conditions; (2-1) $U_k|_{\partial D} = f$ and $\bar{\partial}U_k = 0(\varphi^k)$.

We extend f to a function on \overline{D} as an element of $C^{\infty}(\overline{D})$, and we denote it by f also. By lemma 2-2 $\overline{\partial}f \wedge \overline{\partial}\varphi = 0$ on ∂D . Then we can decompose $\overline{\partial}f$ as

$$\bar{\partial}f = h_1\bar{\partial}\varphi + \varphi h_2$$

where $h_1 \in C^{\infty}(\bar{D})$ and h_2 is a differentiable (0,1) type 1-form. We write it by $h_2 \in C^{\infty}_{(0,1)}(\bar{D})$ in the following.

By simple calculation we have

$$\bar{\partial}(f - h_1 \varphi) = \bar{\partial}f - (\bar{\partial}h_1)\varphi - h_1 \bar{\partial}\varphi$$
$$= \varphi h_2 - (\bar{\partial}h_1)\varphi$$
$$= \varphi (h_2 - \bar{\partial}h_1).$$

Put $U_1 := f - \varphi h_1$, then $U_1|_{\partial D} = f$ and $\bar{\partial} U_1 = 0(\varphi)$. We have thus constructed U_1 .

Now we assume that U_{k-1} is constructed, i.e.

$$U_{k-1}|_{\partial D} = f, \ \bar{\partial} U_{k-1} = 0(\varphi^{k-1}).$$

Then we can write $\bar{\partial}U_{k-1} = \varphi^{k-1}h$, $h \in C^{\infty}_{(0,1)}(\bar{D})$. Then

$$\begin{split} \bar{\partial}\bar{\partial}U_{k-1} &= 0 \\ &= (k-1)\varphi^{k-2}\bar{\partial}\varphi \,\wedge\, h + \varphi^{k-1}\bar{\partial}h \\ &= \varphi^{k-2}((k-1)\bar{\partial}\varphi \,\wedge\, h + \varphi\cdot\bar{\partial}h) \end{split}$$

Hence $(k-1)\overline{\partial}\varphi \wedge h + \varphi\overline{\partial}h = 0$. However $\varphi\overline{\partial}h$ vanishes on ∂D , so that h must satisfies $\overline{\partial}\varphi \wedge h = 0$ on ∂D .

This imples that $h = \bar{\partial}\varphi \wedge h_{2k-1} + \varphi h_{2k}$, where $h_{2k-1} \in C^{\infty}(\bar{D})$, $h_{2k} \in C^{\infty}_{(0,1)}(\bar{D})$. Put $U_k := U_{k-1} - \left(\frac{1}{k} \cdot \varphi^k\right) h_{2k-1}$. We see that the function U_k satisfies the condition (2-1), because

$$\begin{split} \bar{\partial}U_k &= \bar{\partial}U_{k-1} - (\varphi^{k-1}\bar{\partial}\varphi)h_{2k-1} - \left(\frac{1}{k}\cdot\varphi^k\right)\bar{\partial}h_{2k-1} \\ &= \varphi^k\cdot h_{2k} - \left(\frac{1}{k}\cdot\varphi^k\right)\bar{\partial}h_{2k-1} \\ &= \varphi^k\!\left(h_{2k} - \frac{1}{k}\;\bar{\partial}h_{2k-1}\right). \end{split}$$

(2-nd step) Let $k \ge n + 2$. We define $v_k \in C_{(0,0)}^k(M)$ with

$$v_k|_{\overline{D}} = \overline{\partial} U_k$$
 and $v_k|_{M-\overline{D}} = 0.$

Note that supp. $v_k \subset \overline{D}$. By corollary 2-4 there exists $w_k \in C^{k-1-n}(M)$ which satisfies $\overline{\partial}w_k = v_k$ and supp. $w_k \subset \overline{D}$. Put $f_k = U_k - w_k$. Then we have $f_k \in C^{(k-1-n)}(\overline{D})$, $f_k|_{\partial D} = f$ and $\overline{\partial}f_k = \overline{\partial}U_k - \overline{\partial}U_k - \overline{\partial}w_k = 0$. Thus f_k is holomorphic on D and its boundary value is f. Then by the uniqueness of continuation

$$f_k = f_{k+1} = f_{k+2} = \cdots$$

We put $\tilde{f} = f_k = f_{k+1} = f_{k+2} = \cdots$, it is the desired one. Q.E.D.

3. Holomorphic extension of mappings

Let *M* be a complex manifold and *S* a real hypersurface of *M*. As we saw in §1, $T_p(S) \otimes C$ is decomposed at $p \in S$ as follows:

$$T_p(S) \otimes C = H_p + \bar{H}_p + L_p \quad (\text{direct sum})$$

where H_p , \bar{H}_p , are holomorphic and anti-holomorphic tangent space at p,

respectively. Here we define the tangential Cauchy-Riemann equations for mapping.

DEFINITION 3-1. Let M, M', be complex manifolds and S, S' real hypersurfaces of M, M', respectively. Let μ be a differentiable mapping from S to S'. The following conditions 1), 1'), 2), 3) are equivalent. If μ satisfies one of the conditions, we say that μ satisfies the tangential Cauchy-Riemann equations (in short, T - C - R equations).

- 1). $\mu_*(H_p(S)) \subset H_{\mu(p)}(S')$ for every point $p \in S$
- 1)'. $\mu_*(\overline{H}_p(S)) \subset \overline{H}_{\mu(p)}(S')$ for every point $p \in S$

2). a differentiable function f on an open set of S' satisfies T - C - R equations, then $\mu^* f$ satisfies T - C - R equations on its domain.

3). Let (z'_1, \dots, z'_m) be a local coordinate system at $q = \mu(p)$ of M. Then $f_i := \mu^* z'_i$: $(i = 1, \dots, m)$ satisfies T - C - R equations.

We shall prove that four conditions of definition are equivalent. 1) \Longrightarrow 1'). We choose a local coordinate system (z_1, \dots, z_n) of M at p as follows.

$$H_p = \left\{ \left\{ \left(\frac{\partial}{\partial z_1}\right)_p, \cdots, \left(\frac{\partial}{\partial z_{n-1}}\right) \right\} \right\}, \quad \bar{H}_p = \left\{ \left\{ \left(\frac{\partial}{\partial \bar{z}_1}\right)_p, \cdots, \left(\frac{\partial}{\partial \bar{z}_{n-1}}\right)_p \right\} \right\}$$

Take some local coordinate system (z'_1, \dots, z'_m) of M' at $q = \mu(p)$ and put $f_i = \mu^* z'_i$, then

$$\mu_*\left(\frac{\partial}{\partial z_i}\right)_p = \sum_j \left(\frac{\partial f_j}{\partial z_i}\right)_p \left(\frac{\partial}{\partial z'_j}\right)_{\mu(p)} + \sum_j \left(\frac{\partial \bar{f}_j}{\partial z_i}\right)_p \left(\frac{\partial}{\partial \bar{z}'_j}\right)_{\mu(p)} \qquad i = 1, \cdots, n$$

But from the condition 1) $\mu_*\left(\frac{\partial}{\partial z_i}\right) \in H(S')$, so that

$$\left(\frac{\partial \bar{f}_j}{\partial z_i}\right)_p = \left(\frac{\overline{\partial f_j}}{\partial \bar{z}_i}\right)_p = 0 \qquad j = 1, \cdots, m$$

Hence it follows that

$$\mu_* \left(\frac{\partial}{\partial \bar{z}_i}\right)_p = \sum_{j=1}^m \left(\frac{\partial f_j}{\partial \bar{z}_i}\right)_p \left(\frac{\partial}{\partial z'_j}\right)_{\mu(p)} + \sum_{j=1}^m \left(\frac{\partial \bar{f}_j}{\partial \bar{z}_i}\right)_p \left(\frac{\partial}{\partial \bar{z}'_j}\right)_{\mu(p)}$$
$$= \sum_{j=1}^m \left(\frac{\partial \bar{f}_j}{\partial \bar{z}_i}\right)_p \left(\frac{\partial}{\partial \bar{z}'_j}\right)_{\mu(p)} \in \bar{H}_{\mu(p)}(S')$$

 $1' \Longrightarrow 1$) is now obvious.

2) \Longrightarrow 3). Since (z'_1, \dots, z'_m) is a local coordinate of M' at $\mu(p) = q$, it is trivial that z'_i satisfies T - C - R equations. By condition 2), $f_i = \mu_*(z'_i)$ satisfies T - C - R equations.

1) \Longrightarrow 2). Let g be a differentiable function defined on a neighbourhood (in S') of $q = \mu(p)$ which satisfies T - C - R equations. Let X be any element of $\overline{H}_p(S)$. By 1') $\mu_* X \in \overline{H}_{\mu(p)}(S')$, and $X(\mu^* g) = (\mu_* X)g = 0$. Thus g satisfies T - C - R equations.

3) \Longrightarrow 1). We choose a local coordinate system at p as above. We also have $\mu_*\left(\frac{\partial}{\partial z_i}\right)_p = \sum_{j=1}^m \left(\frac{\partial f_j}{\partial z_i}\right)_p \left(\frac{\partial}{\partial z'_i}\right)_{\mu(p)} + \left(\frac{\partial \bar{f_j}}{\partial z_i}\right)_p \left(\frac{\partial}{\partial \bar{z_j}}\right)_{\mu(p)} \quad (1 \le i \le n-1)$

Since f satisfies T - C - R equations, we have $\left(\frac{\partial f_j}{\partial \bar{z}_i}\right)_p = \overline{\left(\frac{\partial \bar{f}_j}{\partial z_i}\right)} = 0$. Then $\mu_*\left(\frac{\partial}{\partial z_i}\right)_p \in H_{\mu(p)}(S')$. This means $\mu_*(H_p(S)) \subset H_{\mu(p)}(S')$.

LEMMA 3-2. Let M be a complex manifold and S be a real hypersurface of M. The set of all diffeomorphisms of S which satisfies T - C - R equations is a group.

Proof is clear by the condition 1) of Definition 3-1. But I don't know the group of lemma 3-2 is a Lie group or not.

Let (M, D) be a finite manifold. We introduce the following notations. Let $\text{Diff}(\overline{D})$ be the group of all C^{∞} -diffeomorphisms of \overline{D} , and

Aut $(\overline{D}) = \{\mu \in \text{Diff}(\overline{D}); \mu|_{D} \text{ is a holomorphic automorphism of } D\}$ Now we shall prove the following

THEOREM 3-3. If a diffeomorphism $\mu: \partial D \to \partial D$ satisfies T - C - R equations, there exists $\tilde{\mu} \in \operatorname{Aut}(\bar{D})$ such that $\tilde{\mu}|_{\partial D} = \mu$.

Proof. Let p be any point of ∂D . Since M is a Stein manifold, there is a local coordinate system (f_1, \dots, f_n) of M at $q = \mu(p)$, where f_1, \dots, f_n are holomorphic functions on M. By definition 3-1 $\mu^* f_i$ satisfies T - C - Requations. Then by theorem 2-5 there exist $\tilde{f}_i \in H(\bar{D})$ such that $\tilde{f}_i|_{\partial D} = \mu^* f_i$. We take a sufficiently small neighbourhood U_p of p, and define the mapping μ_{Up} : $U_p \cap \bar{D} \to M$, using the above local coordinate system (f_1, \dots, f_n) at q, by

$$\mu_{U_n}(p') = (\tilde{f}_1(p'), \cdots, \tilde{f}_n(p)), \quad p' \in U_p \cap \bar{D}$$

By the uniqueness of the holomorphic continuation of functions, there exist

a small neighbourhood U of ∂D , so that $U \cap \overline{D}$ is connected, and there exists a holomorphic mapping

$$\mu_U \colon \overline{D} \cap U \to M \text{ with } \mu_U|_{\overline{U}_v} \cap_{\overline{D}} = \mu_{\overline{U}_v}$$

Since $D-D\cap U$ is compact, there exists a holomorphic mapping $\mu: D \to M$ so that $\tilde{\mu}|_{D\cap U} = \tilde{\mu}_U$ by Hartogs-Osgood's theorem (K. Kasahara [2]). We shall prove that the mapping $\tilde{\mu}$ is the desired one.

By the construction of $\tilde{\mu}$, $\tilde{\mu}$ is holomorphic on D and $\tilde{\mu}|_{\partial D} = \mu$. First we shall prove the rank of $\tilde{\mu}$ is 2n at each point of a neighbourhood of ∂D in \overline{D} . Here we may assume that there exist real vector fields X_1, \dots, X_n , JX_1, \dots, JX_{n-1} on a small neighbourhood V_{p_0} of p_0 in ∂D , such that they form a base of $T_p(\partial D)$ at every point p of V_{p_0} . We can construct them taking real parts of the base of H and a real vector contained in L given in §1.

We extend X_1, \dots, X_n to a neighbourhood W_{p_0} of V_{p_0} and we denote them $\tilde{X}_1, \dots, \tilde{X}_n$ and we can assume $\tilde{X}_1, \dots, \tilde{X}_n, J\tilde{X}_1, \dots, J\tilde{X}_{n-1}$ are linearly independent at each point of W_{p_0} , taking W_{p_0} sufficiently small. Since μ is a diffeomorphisms, $\mu_*(X_1)$, $\mu_*(X_2), \dots, \mu_*(X_n)$, $\mu_*(JX_1), \dots, \mu_*(JX_{n-1})$ are linearly independent at each point of $\mu(V_p)$, and hence $\tilde{\mu}_*(\tilde{X}_1), \dots, \tilde{\mu}_*(\tilde{X}_n)$, $\tilde{\mu}_*(J\tilde{X}_1), \dots, \tilde{\mu}_*(J\tilde{X}_{n-1})$ are independent at every point of $\tilde{\mu}(W_p \cap D)$, changing W_{p_0} smaller if necessary. Since $\tilde{\mu}$ is holomorphic on D,

$$\tilde{\mu}_*(J\tilde{X}_i) = J\tilde{\mu}_*(\tilde{X}_i), \qquad 1 \le i \le n$$

Then $\tilde{\mu}_*(\tilde{X}_1)$, $\tilde{\mu}_*(\tilde{X}_2)$, \cdots , $\tilde{\mu}_*(\tilde{X}_n)$, $\tilde{\mu}_*(J\tilde{X}_1)$, \cdots , $\tilde{\mu}_*(J\tilde{X}_n)$ are independent at $\tilde{\mu}(W_p \cap D)$. It means the rank of $\tilde{\mu}$ is 2n on $W_{p_0} \cap D$. Since p_0 is an arbitrary point of ∂D , there exists a neighbourhood W of ∂D such that rank of $\tilde{\mu}$ is 2n on $W \cap D$. Hence the set of all points of D where rank of $\tilde{\mu}$ is smaller than 2n is a compact analytic set of dimension $n-1\geq 1$ of M. Since M is a Stein manifold, there is no compact analytic set of dimension $n-1\geq 1$ of M. Then rank $\tilde{\mu}$ is 2n at each point of D. Hence $\tilde{\mu}$ is a local diffeomorphism on D.

Next we see that $\tilde{\mu}(\bar{D}) \subset \bar{D}$. In fact, if $\tilde{\mu}(\bar{D}) \not\subset \bar{D}$, there is a boundary point q of $\tilde{\mu}(\bar{D})$ such that $q = \tilde{\mu}(p) \notin \bar{D}$. Since $\tilde{\mu}(\partial D) = \partial D$, we have $p \in D$. This contradicts to the fact $\tilde{\mu}$ is a local diffeomorphism at p.

Since μ^{-1} also satisfies T - C - R equations by Lemma 3-2, there is (μ^{-1}) such that $(\mu^{-1})|_{D}$ is holomorphic and $(\mu^{-1})|_{D} = \mu^{-1}$. Since $\tilde{\mu}(\bar{D}) \subset \bar{D}$ and

 $(\widetilde{\mu^{-1}})(\widetilde{D})\subset \overline{D}$, we have $(\widetilde{\mu})(\widetilde{\mu^{-1}}) = id = \widetilde{id}$, and $(\widetilde{\mu^{-1}})(\widetilde{\mu}) = id = \widetilde{id}$. This means that $\widetilde{\mu}$ is a holomorphic automorphism of D. Q.E.D.

By the proof of the above theorem, we conclude the following theorem.

THEOREM 3-4. Let (M, D) be a finite manifold, N a Stein manifold and S a real hypersurface of N. If a mapping $\mu: \partial D \to S$ satisfies T-C-R equations, there exists a differentiable mapping $\tilde{\mu}: \tilde{D} \to N$ such that $\tilde{\mu}|_{\partial D} = \mu$ and $\tilde{\mu}|_D$ is holomorphic.

In the above theorem the condition that S is a real hypersurface can be changed to that $\mu: \partial D \to N$ satisfies the condition 1) of Definition 3-1.

By using the above theorem, we consider the holomorphic extension of a differentiable cross-section of a holomorphic fibre bundle.

Let (M, D) be a finite manifold and E a holomorphic fibre bundle over M. If a differentiable cross-section s over ∂D satisfies T - C - R equations as a mapping $s: \partial D \to E$, we call s satisfies the tangential Cauchy-Reimann equations, (in short, T - C - R equations).

THEOREM 3-5. If a differentiable cross-section s over ∂D of a holomorphic fibre bundle whose fibre is a Stein manifold, satisfies T - C - R equations, there exists a differentiable cross-section \tilde{s} over \tilde{D} such that $\tilde{s}|_{\partial D} = s$ and $\tilde{s}|_{D}$ is a holomorphic crosssection.

Proof. Since M and the fibre of E are Stein manifolds, E is also a Stein manifold by the theorem of Matsushima-Morimoto [3]. Since cross-section s satisfies T - C - R equations, there exists a mapping $\tilde{s}: D \to E$ such that $\tilde{s}|_{\partial D} = s$ and $\tilde{s}|_{D}$ is holomprohic by Theorem 3-4.

Then it sufficies to prove \tilde{s} is a cross-section i.e. $\pi \tilde{s} = id$ where π is the projection from E to M.

 $\tilde{f} = (\pi \tilde{s})^* f$ is a holomorphic function for every $f \in H(\bar{D})$. It is clear that $\tilde{f}|_{\partial D} = f$ implies $\tilde{f} = (\pi \tilde{s})^* f = f$ on D. By considering coordinate functions, it means $\pi \tilde{s} = id$.

Remark 3.6. If E is a holomorphic vector bundle, E is a Stien manifold since vector space over C is a Stein manifold. In this case if a differentiable cross-section s over ∂D satisfies T - C - R equations, by the local expression, then it satisfies T - C - R equations as cross-section. Then s can be holomorphically extended to the cross-section over \overline{D} by the above theorem.

KIYOSHI SHIGA

Bibliography

- [1] Hörmander, L. An introduction to complex analysis in several variables. Van Norstrand 1966.
- [2] Kasahara, K. On Hartogs-Osgood's theorem for Stein Spaces., J. Math. Soci. Japan 17 (1965) pp. 297–314.
- [3] Matsushima, Y. and Morimoto, A. Sur certains espaces fibrés holomorphes sur une variété de Stein., Bull. Soci. Math. France 88, 1960 pp. 137–155.

Nagoya University