
D.G. Higman
Nagoya Math. J.
Vol. 41 (1971), 89-96

SOLVABILITY OF A CLASS OF RANK 3

PERMUTATION GROUPS^

D.G. HIGMAN

1. Introduction. Let G be a rank 3 permutation group of even order

on a finite set X, \X\ = n, and let Δ and Γ be the two nontrivial orbits

of G in XxX under componentwise action. As pointed out by Sims [6],

results in [2] can be interpreted as implying that the graph £S = {X, Δ) is a

strongly regular graph, the graph theoretical interpretation of the parameters

k, /, λ and μ of [2] being as follows: k is the degree of £f, λ is the number

of triangles containing a given edge, and μ is the number of paths of length

2 joining a given vertex P to each of the / vertices ψ P which are not

adjacent to P. The group G acts as an automorphism group on &* and

on its complement &* — (X,Γ).

A family of solutions of the conditions in [2] for the parameters n, k,

I, λ, μ is given by

(1) n = At + 1, k = I = 2t, μ = λ + 1 = t.

This family includes the only case in which the adjacency matrix A of &

has irrational eigenvalues [2].

Assuming that (1) holds for G, we have by [2] that

(2) G is primitive,

(3) ~<p is a strongly regular graph whose parameters satisfy (1), and

(4) A2 + A-tI= tF, where F has all entries 1.

Here we consider the case in which ί is a prime, proving

THEOREM 1. If G is a rank 3 permutation group with parameters given by

(1) with t a prime, then G is solvable.
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As explained in §2, the groups G of Theorem 1 are actually deter-

mined (Theorem 2). Our result implies that for admissable prime values

of t the graph & is unique up to isomorphism. We do not know if

strongly regular graphs satisfying (1) but not admitting rank 3 automorphism

gίoups can exist, nor do we have an example of a nonsolvable group of

rank 3 whose parameters satisfy (1).

For the most part we follow the notation and terminology of Wielandt's

book [7]. But if G is a permutation group on X and ΦQX we write Gφ

and Gw respectively for the setwise and pointwise stabilizers of Φ, and if

H^LGφ, we denote by H\Φ the image under restriction of H in the sym-

metric group on Φ. We use the notation and terminology of [2] and [3]

for rank 3 permutation groups. For the connection between permutation

groups and graphs see the papers [5] and [6] of Sims.

2. Examples of Singer type Let p be a prime and p an integer > 0

such that pp = 4t + 1. Let M be the additive group of the field FpP. Identify

a primitive element ξ of FpP with the automorphism x -> xξ of M and let

τ be an automorphism of FpP regarded as an automorphism of M. Then

G = M<f2, τ> acts as a rank 3 group of permutations M satisfying (I).2) A

permutation group isomorphic with one of these groups G will be called a

rank 3 group of Singer type. The graph £f (for suitable choice of Δ) is

isomorphic with the graph whose vertices are the elements of FpP, two

being adjacent if and only if their difference is a nonzero square. Of course

if t is a prime > 2 then either p = 1 or p = s and p is an odd prime.

In proving Theorem 1 we actually prove

THEOREM 2. Under the hypotheses of Theorem 1, G must be of Singer type.

The remainder of this paper is devoted to the proof of this result.

3. The case in which t is a prime. From now on G will be a rank

3 group satisfying (1) and the additional condition that is a prime. If G

has degree 9 then it is of Singer type, so we assume that t > 2 . If n — At + l

is a prime then G is of Singer type by a theorem of Burnside [7; Th. 11.7].

Hence we assume that

2) The values for λ and μ follow at once from the existence of an isomorphism of
onto <f, namely x-±nx, x&Fq, n a fixed nonsquare.
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(5) t is an odd prime and At -f 1 is not a prime.

Choose PGΞX and put H= Gp. The F-orbits ψ {P} are

Δ(P) = the set of all points of X adjacent to P and

Γ(P) = the set of all points ^ {P} of X not adjacent to P in the graph ^ .

Let S(t)^H be a ί-Sylow subgroup of G. By [7; Th. 3.4'] S(t) has

two orbits Δλ and J 2 of length t in J(P) and two orbits Δ3 and z/4 of length

t in Γ(P). The corresponding martix A (cf. [4; Appendix]) has the form

Γ 0 t t 0 0

1 # t/ 2 w

A= 1 2/

0 z *

0 «/

where x + y-t—l and z + w=t. The rows and columns of 4̂ are indexed

by the S(ί)-orbits Δo = {P}, J l 5 z/2, J 3 , J 4 . The entry in the J^-th row and

J^-th column is the number of edges from any given vertex in Δt to Δj.

By [4] and (4),

(6) A2 Λ- A — tl— tF where F is the matrix of degree 5 having 1 in every entry

in the first column and all other entries t.

An essential part of our argument is that the following possibilities for A

can be ruled out at once by consideration of the (2,2)-entry of (6).

(7) The cases (i) z = /, w = 0, (ii) x = t — 1, y = 0, (iii) a = 0, y = t — I

and (iv) x = y = (t — l)/2 #r£ impossible.

The first application is

(8)

Proof. Write T = HίΛ(P)]. If Tφl then T | Γ ( P ) ^ 1 and T is either

transitive, has t orbits of length 2 or 2 orbits of length t. Take QeJ(P), then

T^HQ and the set of fc — ̂  — 1 = / vertices in Γ(P) adjacent to Q is a

union of T-orbits. Hence T has 2 orbits Γx and Γ2 of length t in Γ(P), ζ)

is joined to all t points of one of these, say Γu and none of the other.

But Γi and Γ2 are orbits for a ί-Sylow subgroup S(t)^H and the corres-
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ponding matrix A has the form

r o t t o o ^

1 x y t 0

Λ= 1 2/

0 t *

0 0

contrary to (7).

(9) If the minimal normal subgroup M of G is regular and if H= NG(S(t)) for

some t-Sylow subgroup S(t) of G then G is of Singer type.

Proof As a primitive rank 3 group G has a unique minimal normal

subgroup M which is elementary abelian if it is regular [3]. Hence, assum-

ing M is regular, we must have At + 1 = 5P, p an odd prime, under our

assumption (5).

We may identify M with the additive group of F5p and regard H as a

group of automorphisms of M. Let f be a primitive element of F5p9 iden-

tified with the automorphism x-^xξ of M. Then S(t) = <£4> is /-Sylow

subgroup of Aut M so we may assume that S(t)^H. Since NAntM{S(t)) =

NAutM{<%» = <?»τ> where τ is the automorphism x-+x5 of M, and since

<?> is transitive on M — {0}, we may assume that H= <?2,τ> if Hψζζ2},

proving (9).

(10) H\Δ{P) and H\Γ{P) are imprimitive.

Proof By Wielandt's theorem [7; Th. 31.2], if H\Δ{P) is primitive then

either it is doubly transitive or has rank 3 with subdegrees 1, s(2s + 1),

{s + 1) (2s + 1). The first case is ruled out because λ ψ 0, 2/ — 1. In the

second case the subdegrees of H\Δ{P) must be 1, λ = t — 1, /, giving t = 1,

contrary to hypothesis.

The rest of our proof of Theorem 2 breaks up into two cases according

as H\Δ(P) has imprimitive blocks of length t or not.

4. Case A. Let Δ(P) = Δ^ + Δ2 be a decomposition of Δ(P) into imprimitive

blocks of length t and let Ho = Hh = Hj2, so that H: Ho = 2.

(11) ίξjj]
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Proof. If Hίhi ψ 1 then by (8), its restriction to J 2 is ψ\ and hence

transitive. Hence Q^Δ1 is adjacent to 0 points of Δ2 and all t — 1 points

of Δx — {Q}. Δι and Δ2 are orbits for a ί-Sylow subgroup S(t)^LH of G

and the corresponding matrix A has the form

contrary to (7).

(12) H0\Δ1 is not doubly

A =

< 0

1

1

0

s, 0

transitive

t

f - 1

0

z

w

t

0

0

z

*

0 N

w

Proof. Suppose that iJoMi is doubly transitive and take QeJi . If Q

is adjacent to one point of Δx it is adjacent to all t — 1 points of Δλ — {Q}

and none of Δ2, which is impossible as in the proof of (11). Hence Q is

adjacent to 0 points of Δ1 and t — 1 points of Δ2 giving an Λ of the form

0 t t O O

1 0 t—1 z w

A= l t-i

0 z *

0 w

contrary to (7).

We complete the proof of Theorem 2 in case A by proving

(13) G is of Singer type.

Proof By a Theorem of Burnside [7; Th. 11.7], (12) implies that H0\Δ1

is either regular of Frobenius, and hence H—NG(S{t)) where S{t) is a ί-Sylow

subgroup of G. Let M be a minimal normal subgroup of G. If M is regular

then G is of Singer type by (9). Otherwise MPψ\9 so that either \MP\ — 2

and 21| \M\% or f|| \M\. In either case M is simple. The first case is

impossible since there are no such simple groups. In the second case

M : NM(S{t)) = 1 + 4£ and we may apply the theorem of Brauer and Rey-
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nolds [1], The single possibility t = 5 survives the conditions of this theorem,

but in this case \M\ = 420 or 840 which is impossible.

5. Case B. We now assume that neither H\Δ{P) nor H\Γ(P) has impri-

mitive blocks of length t. Then for each Q e J ( P ) there is a unique point

Qp φQ in Δ{P) such that HQ = HQP, and for each point R<=Γ(P) there is a

unique point Rp ψ R in Γ{P) such that HR = HRP. Let Ω be the set of

imprimitive blocks {Q,QP} for H\Δ(P). We begin the elimination of this

situation by proving.

(14) \H[Ω}\^2.

Proof. Put V = Hw% let S{t)^H be a ί-Sylow subgroup of G and let

Δ1 and Δ2 be the S(f)-orbits in Δ{P). For S^Δ{P), | J , n { S , S p } | = 1 ($ = 1,2).

Take Qez/i and suppose VQ = VQ,S for some S e J i — { 0 } . Then F Q = F s

and hence VQ = VT for all T e J i since S(0 acts transitively on the set

{VQ\Q^Δ1}. Hence VQ=1 and \V\*£2.

If F Q T ^ F Q . ^ for all S e J j — {©} then Q adjacent to S implies Q adjacent

to S p , and the matrix A determined by S(t) has the form

0 0 0

2

0 z *

0 w

contrary to (7).

(15) H\Ω is doubly transitive.

Proof. If H\Ω is not doubly transitive then S(t)^_H by Burnside's

Theorem [7; Th. 11.7] and (14). Hence the S(ί)-orbits are imprimitive blocks

for H\Δ{P), contrary to assumption.

(16) The fixed-point set of HQ for Q<=Δ(P) is a 5-element set, and HQ — GRtS for

any two distinct points R and S in it.V

3) The proof of (16), considerably simplifying the author's original elimination of case
B, was provided by Robert Liebler.
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Proof. Suppose that QpeJ(Q). Then HQ has no orbits of length 1 in

J(P)ΠΓ(Q), and since the nontrivial orbits of HQ in Δ{P) have length divisilbe

by t ~ 1 by (15) and since \Δ(P)ΠΓ(Q)\ = t, we find that t = 3, contrary

to (5). Hence QPZΞΓ(Q).

Certainly HQ = GP,Q fixes every point of the set B = {J\ Q, QP

9P^,P^P],

and for R, S distinct points of this set, GFtQ^GRtS. But for any two dis-

tinct points U, V in X, G : GUtV = (At + 1)2/. Hence GP,Q = GΛ,S and we see

that B is the full set of fixed points of GP,Q and \B\ = 5.

(17) For Q<=Δ(P) and R=P% H{Q,Qp} =

Pr^/. The number of 5-element subsets B = {P,Q, Qp, R,RP}, R= PQ,

is ^ ~ζ ι^ , since any two distinct points lie on exactly one so that each
o

point lies on exactly t. Hence HB :HQ=2. But H{QίQp^HB so H{QtQP} = HB.

Similarly H{RtRp} = HB.

We now complete the proof of Theorem 2 by proving

(18) Case B is impossible.

Proof. We assume first that H{QtQP} is transitive on J(P) — {Q,QP}.

Since H{QtQp} fixes the union of Δ{Q)ΠΔ(P) and Δ(QP)ΠΔ(P), these two sets

must be disjoint. Put R= PQ, then H{QtQP}= H{RtRpy is transitive on Γ{P) —

{R,RP} and fixes the union of Δ(Q)ΠΓ{P) and Δ{Qp)r\Γ(P) so that these two

sets must be disjoint. Hence Δ{Q)f]Δ{Qp)={P]t giving t = l, a contradiction.

We are left with the case in which H{QtQP} has two orbits of length

t — 1 in Δ(P) — {Q,QP}. In this case we conclude from the fact that H{QIQP}

fixes the union of Δ(Q) Π Δ(P) and Δ(QP) Π Δ(P) that

(•) Δ{Q)ΓίΔ(P)= Δ(QP)ΠΔ(P).

Let Δx and Δ2 be the S(/)-orbits in Δ{P), where S{t) is a ^-Sylow subgroup

of G, S{t)^H, with Q(=Δλ so that QP<=Δ2. From (*) we see that the number

of edges from Q to Δt is equal to the number from Qp to Δt (i = 1,2).

Hence Λ determined by S{t) has the form
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( 0 t t 0 0

1 x y z w

1 x y

0
*

I o
But then x - y = t 1 , contrary to (7).
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