D.G. Higman Nagoya Math. J. Vol. 41 (1971), 89-96

SOLVABILITY OF A CLASS OF RANK 3 PERMUTATION GROUPS^

D.G. HIGMAN

1. Introduction. Let *G* be a rank 3 permutation group of even order on a finite set X , $|X| = n$, and let Δ and Γ be the two nontrivial orbits of *G* in *XxX* under componentwise action. As pointed out by Sims [6], results in [2] can be interpreted as implying that the graph $\mathcal{S} = (X, \Delta)$ is a strongly regular graph, the graph theoretical interpretation of the parameters *k, l, λ* and μ of [2] being as follows: *k* is the degree of \mathscr{S} , *λ* is the number of triangles containing a given edge, and μ is the number of paths of length 2 joining a given vertex *P* to each of the *l* vertices $\neq P$ which are not adjacent to P. The group G acts as an automorphism group on $\mathscr S$ and on its complement $\overline{\mathscr{S}} = (X,\Gamma)$.

A family of solutions of the conditions in [2] for the parameters *n, k, I*, $λ$, $μ$ is given by

(1) $n = 4t + 1$, $k = l = 2t$, $\mu = \lambda + 1 = t$.

This family includes the only case in which the adjacency matrix *A* of *&* has irrational eigenvalues [2].

Assuming that (1) holds for G , we have by $[2]$ that

(2) *G* is primitive,

(3) $\overline{\mathscr{S}}$ is a strongly regular graph whose parameters satisfy (1), and

(4) $A^2 + A - tI = tF$, where *F* has all entries 1.

Here we consider the case in which t is a prime, proving

THEOREM 1. *If G is a rank* 3 *permutation group with parameters given by* (1) *with t a prime, then G is solvable.*

Received November 20, 1969.

⁾ Research supported in part by the National Science Foundation.

90 D.G. HIGMAN

As explained in §2, the groups *G* of Theorem 1 are actually deter mined (Theorem 2). Our result implies that for admissable prime values of *t* the graph $\mathscr S$ is unique up to isomorphism. We do not know if strongly regular graphs satisfying (1) but not admitting rank 3 automorphism groups can exist, nor do we have an example of a nonsolvable group of rank 3 whose parameters satisfy (1).

For the most part we follow the notation and terminology of Wielandt's book [7]. But if *G* is a permutation group on *X* and $\Phi \subseteq X$ we write G_{Φ} and $G_{[\![\varrho]\!]}$ respectively for the setwise and pointwise stabilizers of $\varPhi,$ and if $H \leq G_{\varphi}$, we denote by $H|\varPhi$ the image under restriction of *H* in the symmetric group on *Φ.* We use the notation and terminology of [2] and [3] for rank 3 permutation groups. For the connection between permutation groups and graphs see the papers [5] and [6] of Sims.

2. Examples of Singer type. Let p be a prime and ρ an integer >0 such that $p^{\rho} = 4t + 1$. Let *M* be the additive group of the field $\mathbf{F}_{p^{\rho}}$. Identify a primitive element ξ of $\mathbf{F}_{p\ell}$ with the automorphism $x \to x\xi$ of M and let τ be an automorphism of $\mathbf{F}_{p\rho}$ regarded as an automorphism of *M*. Then $G = M \langle \xi^2, \tau \rangle$ acts as a rank 3 group of permutations M satisfying (1).²) A permutation group isomorphic with one of these groups *G* will be called a rank 3 group of Singer type. The graph *£f* (for suitable choice of *Δ)* is isomorphic with the graph whose vertices are the elements of $\mathbf{F}_{p\rho}$, two being adjacent if and only if their difference is a nonzero square. Of course if t is a prime > 2 then either $\rho = 1$ or $p = s$ and ρ is an odd prime.

In proving Theorem 1 we actually prove

THEOREM 2. *Under the hypotheses of Theorem* 1, *G must be of Singer type.* The remainder of this paper is devoted to the proof of this result.

3. The case in which *t* **is a prime.** From now on *G* will be a rank 3 group satisfying (1) and the additional condition that is a prime. If *G* has degree 9 then it is of Singer type, so we assume that $t > 2$. If $n = 4t + 1$ is a prime then *G* is of Singer type by a theorem of Burnside [7; Th. 11.7]. Hence we assume that

²) The values for *λ* and *μ* follow at once from the existence of an isomorphism of onto \mathscr{F} , namely $x \to nx$, $x \in F_q$, n a fixed nonsquare.

(5) t is an odd prime and $4t + 1$ is not a prime.

Choose $P \in X$ and put $H = G_p$. The *H*-orbits $\neq \{P\}$ are

Δ(P) = the set of all points of *X* adjacent to P and

 $\Gamma(P)$ = the set of all points $\neq \{P\}$ of *X* not adjacent to *P* in the graph \mathscr{S} .

Let $S(t) \leq H$ be a *t*-Sylow subgroup of *G*. By [7; Th. 3.4'] $S(t)$ has two orbits \varDelta_1 and \varDelta_2 of length t in $\varDelta(P)$ and two orbits \varDelta_3 and \varDelta_4 of length *t* in Γ(P). The corresponding martix *A* (cf. [4; Appendix]) has the form

$$
\hat{A} = \left(\begin{array}{cccc} 0 & t & t & 0 & 0 \\ 1 & x & y & z & w \\ 1 & y & & & \\ 0 & z & * & & \\ 0 & w & & & \end{array} \right)
$$

where $x + y = t - 1$ and $z + w = t$. The rows and columns of \hat{A} are indexed by the $S(t)$ -orbits $\Delta_0 = \{P\}$, Δ_1 , Δ_2 , Δ_3 , Δ_4 . The entry in the Δ_i -th row and Δ_j -th column is the number of edges from any given vertex in Δ_i to Δ_j . By [4] and (4),

(6) $\hat{A}^2 + \hat{A} - tI = t\hat{F}$ where \hat{F} is the matrix of degree 5 having 1 in every entry *in the first column and all other entries t.*

An essential part of our argument is that the following possibilities for *A* can be ruled out at once by consideration of the $(2,2)$ -entry of (6) .

(7) The cases (i) $z = t$, $w = 0$, (ii) $x = t - 1$, $y = 0$, (iii) $x = 0$, $y = t - 1$ *and* (iv) $x = y = (t - 1)/2$ are *impossible.*

The first application is

(8) $\Delta(P)$ and $\Gamma(P)$ are faithful H-orbits.

Proof. Write $T = H_{[A(P)]}$. If $T \neq 1$ then $T| \Gamma(P) \neq 1$ and T is either transitive, has *t* orbits of length 2 or 2 orbits of length *t*. Take $Q \in \Delta(P)$, then $T \leq H_q$ and the set of $k - \lambda - 1 = t$ vertices in $\Gamma(P)$ adjacent to *Q* is a union of T-orbits. Hence T has 2 orbits Γ_1 and Γ_2 of length t in $\Gamma(P)$, Q is joined to all *t* points of one of these, say *Γ^u* and none of the other. But Γ_1 and Γ_2 are orbits for a *t*-Sylow subgroup $S(t) \leq H$ and the corres

ponding matrix *A* has the form

$$
\hat{A} = \left(\begin{array}{cccc} 0 & t & t & 0 & 0 \\ 1 & x & y & t & 0 \\ 1 & y & & & \\ 0 & t & * & & \\ 0 & 0 & & & \end{array} \right)
$$

contrary to (7).

(9) *If the minimal normal subgroup M of G is regular and if H= N^G (S(t)) for some t-Sylow subgroup S(t) of G then G is of Singer type.*

Proof As a primitive rank 3 group *G* has a unique minimal normal subgroup *M* which is elementary abelian if it is regular [3]. Hence, assuming *M* is regular, we must have $4t + 1 = 5$ ^{*e*}, *p* an odd prime, under our assumption (5).

We may identify *M* with the additive group of *F5p* and regard *H* as a group of automorphisms of M. Let ξ be a primitive element of $\mathbf{F}_{5\rho}$, identified with the automorphism $x \to x\xi$ of M. Then $S(t) = \langle \xi^4 \rangle$ is *t*-Sylow subgroup of Aut *M* so we may assume that $S(t) \leq H$. Since $N_{\text{Aut }M}(S(t)) =$ $N_{\text{Aut }M}(\langle \xi \rangle) = \langle \xi, \tau \rangle$ where τ is the automorphism $x \to x^5$ of M, and since $\langle \xi \rangle$ is transitive on $M - \{0\}$, we may assume that $H = \langle \xi^2, \tau \rangle$ if $H \neq \langle \xi^2 \rangle$, proving (9).

(10) $H\vert A(P)$ and $H\vert \Gamma(P)$ are imprimitive.

Proof. By Wielandt's theorem [7; Th. 31.2], if $H|\Delta(P)$ is primitive then either it is doubly transitive or has rank 3 with subdegrees 1, $s(2s + 1)$, $(s + 1)(2s + 1)$. The first case is ruled out because $\lambda \neq 0$, $2t - 1$. In the second case the subdegrees of $H|\Delta(P)$ must be 1, $\lambda = t - 1$, *t*, giving $t = 1$, contrary to hypothesis.

The rest of our proof of Theorem 2 breaks up into two cases according as *H\Δ(P)* has imprimitive blocks of length *t* or not.

4. Case A. Let $\Delta(P) = \Delta_1 + \Delta_2$ be a decomposition of $\Delta(P)$ into imprimitive blocks of length t and let $H_0 = H_{d_1} = H_{d_2}$, so that $H: H_0 = 2$.

(11) $H_{[4_1]} = H_{[4_2]} = 1.$

Proof. If $H_{[d_1]} \neq 1$ then by (8), its restriction to d_2 is $\neq 1$ and hence transitive. Hence $Q \in \mathcal{A}_1$ is adjacent to 0 points of \mathcal{A}_2 and all $t - 1$ points of $\Delta_1 - \{Q\}$. Δ_1 and Δ_2 are orbits for a *t*-Sylow subgroup $S(t) \leq H$ of G and the corresponding matrix *A* has the form

$$
\hat{A} = \left(\begin{array}{cccc} 0 & t & t & 0 & 0 \\ 1 & t - 1 & 0 & z & w \\ 1 & 0 & & & \\ 0 & z & * & \\ 0 & w & & \end{array} \right)
$$

contrary to (7).

 (12) $H_0 \, \vert \, A_1$ *is not doubly transitive.*

Proof. Suppose that $H_0|A_1$ is doubly transitive and take $Q \in A_1$. If Q is adjacent to one point of Δ_1 it is adjacent to all $t-1$ points of $\Delta_1 - \{Q\}$ and none of *Δ² ,* which is impossible as in the proof of (11). Hence *Q* is adjacent to 0 points of Δ_1 and $t-1$ points of Δ_2 giving an \hat{A} of the form

$$
\hat{A} = \left(\begin{array}{cccc} 0 & t & t & 0 & 0 \\ 1 & 0 & t-1 & z & w \\ 1 & t-1 & & & \\ 0 & z & & * & \\ 0 & w & & & \end{array} \right)
$$

contrary to (7).

We complete the proof of Theorem 2 in case *A* by proving

(13) *G is of Singer type.*

Proof. By a Theorem of Burnside [7; Th. 11.7], (12) implies that $H_0 | \Lambda_1$ is either regular of Frobenius, and hence $H = N_G(S(t))$ where $S(t)$ is a *t*-Sylow subgroup of *G.* Let *M* be a minimal normal subgroup of G. If *M* is regular then *G* is of Singer type by (9). Otherwise $M_P \neq 1$, so that either $|M_P| = 2$ and $2 \parallel |M|$, or $t \parallel |M|$. In either case M is simple. The first case is impossible since there are no such simple groups. In the second case $M : N_M(S(t)) = 1 + 4t$ and we may apply the theorem of Brauer and Reynolds $[1]$. The single possibility $t = 5$ survives the conditions of this theorem, but in this case $|M| = 420$ or 840 which is impossible.

5. Case B. We now assume that neither *H\Δ{P)* nor *H\Γ(P)* has impri mitive blocks of length *t*. Then for each $Q \in \Delta(P)$ there is a unique point $Q^P \neq Q$ in $\Delta(P)$ such that $H_Q = H_Q P$, and for each point $R \in \Gamma(P)$ there is a unique point $R^p \neq R$ in $\Gamma(P)$ such that $H_R = H_R P$. Let Ω be the set of imprimitive blocks ${Q,Q^P}$ for $H|\Delta(P)$. We begin the elimination of this situation by proving.

 $(H_1) \quad |H_2| \leq 2.$

Proof. Put $V = H_{\lceil \rho \rceil}$, let $S(t) \leq H$ be a *t*-Sylow subgroup of *G* and let *1* and Δ_2 be the S(t)-orbits in $\Delta(P)$. For $S \in \Delta(P)$, $|\Delta_i \cap \{S, S^P\}| = 1$ ($i = 1, 2$). Take $Q \in \Lambda_1$ and suppose $V_Q = V_{Q,S}$ for some $S \in \Lambda_1 - \{Q\}$. Then $V_Q = V_S$ and hence $V_Q = V_T$ for all $T \in \Delta_1$ since $S(t)$ acts transitively on the set ${V_Q \mid Q \in \Lambda_1}.$ Hence $V_Q = 1$ and $|V| \leq 2.$

If $V_{\varrho} \neq V_{\varrho, s}$ for all $S \in A_1 - \{Q\}$ then Q adjacent to S implies Q adjacent to S^P , and the matrix \widehat{A} determined by $S(t)$ has the form

contrary to (7).

(15) *H\Ω is doubly transitive.*

Proof. If $H\vert\Omega$ is not doubly transitive then $S(t)\mathcal{I}H$ by Burnside's Theorem [7; Th. 11.7] and (14). Hence the $S(t)$ -orbits are imprimitive blocks for $H\vert \Delta_{P}$, contrary to assumption.

(16) The fixed-point set of H_q for $Q \in \Delta(P)$ is a 5-element set, and $H_q = G_{R,S}$ for any two distinct points R and S in it.³⁾

³) The proof of (16), considerably simplifying the author's original elimination of case *B,* was provided by Robert Liebler.

Proof. Suppose that $Q^P \in \mathcal{A}(Q)$. Then H_q has no orbits of length 1 in *J(P)ΠΓ(Q),* and since the nontrivial orbits of *H^Q* in *Δ{P)* have length divisilbe by $\frac{t-1}{2}$ by (15) and since $\vert \Delta(P) \cap \Gamma(Q) \vert = t$, we find that $t = 3$, contrary to (5). Hence $Q^P \in \Gamma(Q)$.

Certainly $H_Q = G_{P,Q}$ fixes every point of the set $B = \{P, Q, Q^P, P^Q, P^{QP}\},$ and for *R*, *S* distinct points of this set, $G_{P,Q} \leq G_{R,S}$. But for any two distinct points U, V in X, $G: G_{U,V} = (4t + 1)2t$. Hence $G_{P,Q} = G_{R,S}$ and we see that *B* is the full set of fixed points of $G_{P,Q}$ and $|B| = 5$.

(17) For
$$
Q \in \Delta(P)
$$
 and $R = P^Q$, $H_{\{Q,Q^P\}} = H_{\{R,R^P\}}$.

Proof. The number of 5-element subsets $B = \{P, Q, Q^P, R, R^P\}, R^P = P^Q$, is $\frac{(4t+1)t}{5}$, since any two distinct points lie on exactly one so that each point lies on exactly t. Hence $H_B: H_Q = 2$. But $H_{\{Q,Q^P\}} \le H_B$ so $H_{\{Q,Q^P\}} = H_B$. Similarly $H_{\{R,R^P\}} = H_B$.

We now complete the proof of Theorem 2 by proving

(18) *Case B is impossible.*

Proof. We assume first that $H_{\{Q,Q^P\}}$ is transitive on $\Delta(P) - \{Q,Q^P\}.$ Since $H_{\{Q,Q^P\}}$ fixes the union of $\Delta(Q) \cap \Delta(P)$ and $\Delta(Q^P) \cap \Delta(P)$, these two sets must be disjoint. Put $R = P^Q$, then $H_{\{Q,Q^P\}} = H_{\{R,R^P\}}$ is transitive on $\Gamma(P)$ — ${R, R^P}$ and fixes the union of $\Delta(Q) \cap \Gamma(P)$ and $\Delta(Q^P) \cap \Gamma(P)$ so that these two sets must be disjoint. Hence $\Delta(Q) \cap \Delta(Q^P) = \{P\}$, giving $t = 1$, a contradiction.

We are left with the case in which $H_{\{Q,Q^P\}}$ has two orbits of length *t* – 1 in $\Delta(P)$ –{ Q, Q^P }. In this case we conclude from the fact that H_{Q,Q^P} fixes the union of $\Delta(Q) \cap \Delta(P)$ and $\Delta(Q^P) \cap \Delta(P)$ that

$$
(*)\quad \ \ \mathit{A}(Q)\cap \mathit{A}(P)\,=\, \mathit{A}(Q^P)\cap \mathit{A}(P).
$$

Let Δ_1 and Δ_2 be the $S(t)$ -orbits in $\Delta(P)$, where $S(t)$ is a t -Sylow subgroup of G, $S(t) \leq H$, with $Q \in \Lambda_1$ so that $Q^P \in \Lambda_2$. From (*) we see that the number of edges from Q to Δ_i is equal to the number from Q^p to Δ_i (i = 1,2). Hence *Λ* determined by *S{t)* has the form

$$
\left(\begin{array}{cccccc} 0 & t & t & 0 & 0 \\ 1 & x & y & z & w \\ 1 & x & y & & \\ 0 & & & & \\ 0 & & &
$$

But then $x = y = \frac{t-1}{2}$, contrary to (7).

REFERENCES

- [1] R. Brauer and W.F. Reynolds: On a problem of E. Artin. Ann. Math. 68 (1958), 713— 720.
- [2] D.G. Higman: Finite permutation groups of rank 3. Math. Z. 86 (1964), 145-156.
- [3] -------------- : Primitive rank 3 groups with a prime subdegree. Math. Z. 91 (1966), $[4] \frac{70-86.}{...}$
- ----: Intersection matrices for finite permutation groups. J. Alg. 6 (1967), 22-42.
- [5] C.C. Sims Graphs and finite permutation groups. Math. Z. 95 (1967), 76-86.
- [6] Graphs with rank 3 automorphism groups. J. Comb. Theory (to appear).
- [7] H. Wielandt: Finite permutation groups. New York: Academic Press 1964.

Department of Mathematics University of Michigan Ann Arbor, Michigan