D.G. Higman Nagoya Math. J. Vol. 41 (1971), 89–96

SOLVABILITY OF A CLASS OF RANK 3 PERMUTATION GROUPS¹)

D.G. HIGMAN

1. Introduction. Let G be a rank 3 permutation group of even order on a finite set X, |X| = n, and let Δ and Γ be the two nontrivial orbits of G in $X \times X$ under componentwise action. As pointed out by Sims [6], results in [2] can be interpreted as implying that the graph $\mathscr{S} = (X, \Delta)$ is a strongly regular graph, the graph theoretical interpretation of the parameters k, l, λ and μ of [2] being as follows: k is the degree of \mathscr{S} , λ is the number of triangles containing a given edge, and μ is the number of paths of length 2 joining a given vertex P to each of the l vertices $\neq P$ which are not adjacent to P. The group G acts as an automorphism group on \mathscr{S} and on its complement $\overline{\mathscr{S}} = (X, \Gamma)$.

A family of solutions of the conditions in [2] for the parameters n, k, l, λ , μ is given by

(1) n = 4t + 1, k = l = 2t, $\mu = \lambda + 1 = t$.

This family includes the only case in which the adjacency matrix A of \mathcal{S} has irrational eigenvalues [2].

Assuming that (1) holds for G, we have by [2] that

(2) G is primitive,

(3) $\overline{\mathscr{G}}$ is a strongly regular graph whose parameters satisfy (1), and

(4) $A^2 + A - tI = tF$, where F has all entries 1.

Here we consider the case in which t is a prime, proving

THEOREM 1. If G is a rank 3 permutation group with parameters given by (1) with t a prime, then G is solvable.

Received November 20, 1969.

¹⁾ Research supported in part by the National Science Foundation.

D.G. HIGMAN

As explained in §2, the groups G of Theorem 1 are actually determined (Theorem 2). Our result implies that for admissable prime values of t the graph \mathcal{S} is unique up to isomorphism. We do not know if strongly regular graphs satisfying (1) but not admitting rank 3 automorphism groups can exist, nor do we have an example of a nonsolvable group of rank 3 whose parameters satisfy (1).

For the most part we follow the notation and terminology of Wielandt's book [7]. But if G is a permutation group on X and $\Phi \subseteq X$ we write G_{ϕ} and $G_{[\phi]}$ respectively for the setwise and pointwise stabilizers of Φ , and if $H \leq G_{\phi}$, we denote by $H | \Phi$ the image under restriction of H in the symmetric group on Φ . We use the notation and terminology of [2] and [3] for rank 3 permutation groups. For the connection between permutation groups and graphs see the papers [5] and [6] of Sims.

2. Examples of Singer type. Let p be a prime and ρ an integer >0 such that $p^{\rho} = 4t + 1$. Let M be the additive group of the field $\mathbf{F}_{p\rho}$. Identify a primitive element ξ of $\mathbf{F}_{p\rho}$ with the automorphism $x \to x\xi$ of M and let τ be an automorphism of $\mathbf{F}_{p\rho}$ regarded as an automorphism of M. Then $G = M\langle \xi^2, \tau \rangle$ acts as a rank 3 group of permutations M satisfying (1).² A permutation group isomorphic with one of these groups G will be called a rank 3 group of Singer type. The graph \mathcal{S} (for suitable choice of Δ) is isomorphic with the graph whose vertices are the elements of $\mathbf{F}_{p\rho}$, two being adjacent if and only if their difference is a nonzero square. Of course if t is a prime >2 then either $\rho = 1$ or p = s and ρ is an odd prime.

In proving Theorem 1 we actually prove

THEOREM 2. Under the hypotheses of Theorem 1, G must be of Singer type. The remainder of this paper is devoted to the proof of this result.

3. The case in which t is a prime. From now on G will be a rank 3 group satisfying (1) and the additional condition that is a prime. If G has degree 9 then it is of Singer type, so we assume that t > 2. If n = 4t + 1 is a prime then G is of Singer type by a theorem of Burnside [7; Th. 11.7]. Hence we assume that

90

²⁾ The values for λ and μ follow at once from the existence of an isomorphism of \mathscr{S} onto $\widetilde{\mathscr{S}}$, namely $x \to nx$, $x \in F_q$, n a fixed nonsquare.

(5) t is an odd prime and 4t + 1 is not a prime.

Choose $P \in X$ and put $H = G_p$. The *H*-orbits $\neq \{P\}$ are

 $\Delta(P)$ = the set of all points of X adjacent to P and

 $\Gamma(P)$ = the set of all points $\neq \{P\}$ of X not adjacent to P in the graph \mathcal{S} .

Let $S(t) \leq H$ be a *t*-Sylow subgroup of *G*. By [7; Th. 3.4'] S(t) has two orbits Δ_1 and Δ_2 of length *t* in $\Delta(P)$ and two orbits Δ_3 and Δ_4 of length *t* in $\Gamma(P)$. The corresponding matrix \hat{A} (cf. [4; Appendix]) has the form

$$\hat{A} = \left(egin{array}{ccccc} 0 & t & t & 0 & 0 \ 1 & x & y & z & w \ 1 & y & & & \ 0 & z & * & \ 0 & w & & \end{array}
ight)$$

where x + y = t - 1 and z + w = t. The rows and columns of \hat{A} are indexed by the S(t)-orbits $\mathcal{A}_0 = \{P\}$, \mathcal{A}_1 , \mathcal{A}_2 , \mathcal{A}_3 , \mathcal{A}_4 . The entry in the \mathcal{A}_i -th row and \mathcal{A}_j -th column is the number of edges from any given vertex in \mathcal{A}_i to \mathcal{A}_j . By [4] and (4),

(6) $\hat{A}^2 + \hat{A} - tI = t\hat{F}$ where \hat{F} is the matrix of degree 5 having 1 in every entry in the first column and all other entries t.

An essential part of our argument is that the following possibilities for \hat{A} can be ruled out at once by consideration of the (2,2)-entry of (6).

(7) The cases (i) z = t, w = 0, (ii) x = t - 1, y = 0, (iii) x = 0, y = t - 1and (iv) x = y = (t - 1)/2 are impossible.

The first application is

(8) $\Delta(P)$ and $\Gamma(P)$ are faithful H-orbits.

Proof. Write $T = H_{[\mathcal{A}(P)]}$. If $T \neq 1$ then $T | \Gamma(P) \neq 1$ and T is either transitive, has t orbits of length 2 or 2 orbits of length t. Take $Q \in \mathcal{A}(P)$, then $T \leq H_Q$ and the set of $k - \lambda - 1 = t$ vertices in $\Gamma(P)$ adjacent to Q is a union of T-orbits. Hence T has 2 orbits Γ_1 and Γ_2 of length t in $\Gamma(P)$, Q is joined to all t points of one of these, say Γ_1 , and none of the other. But Γ_1 and Γ_2 are orbits for a t-Sylow subgroup $S(t) \leq H$ and the corres-

ponding matrix \hat{A} has the form

$$\hat{A} = \left(\begin{array}{ccccc} 0 & t & t & 0 & 0 \\ 1 & x & y & t & 0 \\ 1 & y & & & \\ 0 & t & * & \\ 0 & 0 & & & \end{array} \right)$$

contrary to (7).

(9) If the minimal normal subgroup M of G is regular and if $H = N_G(S(t))$ for some t-Sylow subgroup S(t) of G then G is of Singer type.

Proof. As a primitive rank 3 group G has a unique minimal normal subgroup M which is elementary abelian if it is regular [3]. Hence, assuming M is regular, we must have $4t + 1 = 5^{\rho}$, ρ an odd prime, under our assumption (5).

We may identify M with the additive group of $F_{5\rho}$ and regard H as a group of automorphisms of M. Let ξ be a primitive element of $F_{5\rho}$, identified with the automorphism $x \to x\xi$ of M. Then $S(t) = \langle \xi^4 \rangle$ is t-Sylow subgroup of Aut M so we may assume that $S(t) \leq H$. Since $N_{\operatorname{Aut} M}(S(t)) = N_{\operatorname{Aut} M}(\langle \xi \rangle) = \langle \xi, \tau \rangle$ where τ is the automorphism $x \to x^5$ of M, and since $\langle \xi \rangle$ is transitive on $M - \{0\}$, we may assume that $H = \langle \xi^2, \tau \rangle$ if $H \neq \langle \xi^2 \rangle$, proving (9).

(10) $H| \Delta(P)$ and $H| \Gamma(P)$ are imprimitive.

Proof. By Wielandt's theorem [7; Th. 31.2], if $H|\Delta(P)$ is primitive then either it is doubly transitive or has rank 3 with subdegrees 1, s(2s + 1), (s + 1)(2s + 1). The first case is ruled out because $\lambda \neq 0$, 2t - 1. In the second case the subdegrees of $H|\Delta(P)$ must be 1, $\lambda = t - 1$, t, giving t = 1, contrary to hypothesis.

The rest of our proof of Theorem 2 breaks up into two cases according as $H|\mathcal{A}(P)$ has imprimitive blocks of length t or not.

4. Case A. Let $\Delta(P) = \Delta_1 + \Delta_2$ be a decomposition of $\Delta(P)$ into imprimitive blocks of length t and let $H_0 = H_{d_1} = H_{d_2}$, so that $H: H_0 = 2$.

(11) $H_{[a_1]} = H_{[a_2]} = 1.$

92

Proof. If $H_{[d_1]} \neq 1$ then by (8), its restriction to Δ_2 is $\neq 1$ and hence transitive. Hence $Q \in \Delta_1$ is adjacent to 0 points of Δ_2 and all t-1 points of $\Delta_1 - \{Q\}$. Δ_1 and Δ_2 are orbits for a t-Sylow subgroup $S(t) \leq H$ of G and the corresponding matrix \hat{A} has the form

$$\hat{A} = \left(\begin{array}{ccccc} 0 & t & t & 0 & 0 \\ 1 & t - 1 & 0 & z & w \\ 1 & 0 & & & \\ 0 & z & * & & \\ 0 & w & & & \end{array}\right)$$

contrary to (7).

(12) $H_0|_{\mathcal{A}_1}$ is not doubly transitive.

Proof. Suppose that $H_0|\Delta_1$ is doubly transitive and take $Q \in \Delta_1$. If Q is adjacent to one point of Δ_1 it is adjacent to all t-1 points of $\Delta_1 - \{Q\}$ and none of Δ_2 , which is impossible as in the proof of (11). Hence Q is adjacent to 0 points of Δ_1 and t-1 points of Δ_2 giving an \hat{A} of the form

$$\hat{A} = \left(\begin{array}{ccccc} 0 & t & t & 0 & 0 \\ 1 & 0 & t - 1 & z & w \\ 1 & t - 1 & & & \\ 0 & z & & * & \\ 0 & w & & & \end{array} \right)$$

contrary to (7).

We complete the proof of Theorem 2 in case A by proving

(13) G is of Singer type.

Proof. By a Theorem of Burnside [7; Th. 11.7], (12) implies that $H_0|_{d_1}$ is either regular of Frobenius, and hence $H = N_G(S(t))$ where S(t) is a t-Sylow subgroup of G. Let M be a minimal normal subgroup of G. If M is regular then G is of Singer type by (9). Otherwise $M_P \neq 1$, so that either $|M_P| = 2$ and $2 \parallel |M|$, or $t \parallel |M|$. In either case M is simple. The first case is impossible since there are no such simple groups. In the second case $M: N_M(S(t)) = 1 + 4t$ and we may apply the theorem of Brauer and Rey-

nolds [1]. The single possibility t=5 survives the conditions of this theorem, but in this case |M| = 420 or 840 which is impossible.

5. Case B. We now assume that neither $H|\Delta(P)$ nor $H|\Gamma(P)$ has imprimitive blocks of length t. Then for each $Q \in \Delta(P)$ there is a unique point $Q^P \neq Q$ in $\Delta(P)$ such that $H_Q = H_Q P$, and for each point $R \in \Gamma(P)$ there is a unique point $R^P \neq R$ in $\Gamma(P)$ such that $H_R = H_R P$. Let Ω be the set of imprimitive blocks $\{Q, Q^P\}$ for $H|\Delta(P)$. We begin the elimination of this situation by proving.

 $(14) \quad |H_{[\mathcal{Q}]}| \leq 2.$

Proof. Put $V = H_{[\mathfrak{Q}]}$, let $S(t) \leq H$ be a *t*-Sylow subgroup of *G* and let \mathcal{A}_1 and \mathcal{A}_2 be the S(t)-orbits in $\mathcal{A}(P)$. For $S \in \mathcal{A}(P)$, $|\mathcal{A}_i \cap \{S, S^P\}| = 1$ (i=1,2). Take $Q \in \mathcal{A}_1$ and suppose $V_Q = V_{Q,S}$ for some $S \in \mathcal{A}_1 - \{Q\}$. Then $V_Q = V_S$ and hence $V_Q = V_T$ for all $T \in \mathcal{A}_1$ since S(t) acts transitively on the set $\{V_Q | Q \in \mathcal{A}_1\}$. Hence $V_Q = 1$ and $|V| \leq 2$.

If $V_q \neq V_{q,s}$ for all $S \in \mathcal{A}_1 - \{Q\}$ then Q adjacent to S implies Q adjacent to S^P , and the matrix \hat{A} determined by S(t) has the form

ſ	0	t	t.	0	0)
	1	$\frac{t-1}{2}$	$\frac{t-1}{2}$	z	w
	1	$\frac{t-1}{2}$			
	0	Z		*	
l	0	w)

contrary to (7).

(15) $H|\Omega$ is doubly transitive.

Proof. If $H|\Omega$ is not doubly transitive then $S(t) \supseteq H$ by Burnside's Theorem [7; Th. 11.7] and (14). Hence the S(t)-orbits are imprimitive blocks for $H|\Delta(P)$, contrary to assumption.

(16) The fixed-point set of H_Q for $Q \in \Delta(P)$ is a 5-element set, and $H_Q = G_{R,S}$ for any two distinct points R and S in it.³)

94

³⁾ The proof of (16), considerably simplifying the author's original elimination of case B, was provided by Robert Liebler.

Proof. Suppose that $Q^{p} \in \mathcal{A}(Q)$. Then H_{Q} has no orbits of length 1 in $\mathcal{A}(P) \cap \Gamma(Q)$, and since the nontrivial orbits of H_{Q} in $\mathcal{A}(P)$ have length divisible by $\frac{t-1}{2}$ by (15) and since $|\mathcal{A}(P) \cap \Gamma(Q)| = t$, we find that t = 3, contrary to (5). Hence $Q^{p} \in \Gamma(Q)$.

Certainly $H_Q = G_{P,Q}$ fixes every point of the set $B = \{P, Q, Q^P, P^Q, P^{QP}\}$, and for R, S distinct points of this set, $G_{P,Q} \leq G_{R,S}$. But for any two distinct points U, V in X, $G: G_{U,V} = (4t + 1)2t$. Hence $G_{P,Q} = G_{R,S}$ and we see that B is the full set of fixed points of $G_{P,Q}$ and |B| = 5.

(17) For
$$Q \in \Delta(P)$$
 and $R = P^{Q}$, $H_{\{Q,Q^{P}\}} = H_{\{R,R^{P}\}}$.

Proof. The number of 5-element subsets $B = \{P, Q, Q^P, R, R^P\}$, $R = P^q$, is $\frac{(4t+1)t}{5}$, since any two distinct points lie on exactly one so that each point lies on exactly t. Hence $H_B: H_Q = 2$. But $H_{\{Q,Q^P\}} \leq H_B$ so $H_{\{Q,Q^P\}} = H_B$. Similarly $H_{\{R,R^P\}} = H_B$.

We now complete the proof of Theorem 2 by proving

(18) Case B is impossible.

Proof. We assume first that $H_{\{Q,Q^P\}}$ is transitive on $\Delta(P) - \{Q,Q^P\}$. Since $H_{\{Q,Q^P\}}$ fixes the union of $\Delta(Q) \cap \Delta(P)$ and $\Delta(Q^P) \cap \Delta(P)$, these two sets must be disjoint. Put $R = P^q$, then $H_{\{Q,Q^P\}} = H_{\{R,R^P\}}$ is transitive on $\Gamma(P) - \{R, R^P\}$ and fixes the union of $\Delta(Q) \cap \Gamma(P)$ and $\Delta(Q^P) \cap \Gamma(P)$ so that these two sets must be disjoint. Hence $\Delta(Q) \cap \Delta(Q^P) = \{P\}$, giving t = 1, a contradiction.

We are left with the case in which $H_{\{Q,Q^P\}}$ has two orbits of length t-1 in $\mathcal{L}(P)-\{Q,Q^P\}$. In this case we conclude from the fact that $H_{\{Q,Q^P\}}$ fixes the union of $\mathcal{L}(Q) \cap \mathcal{L}(P)$ and $\mathcal{L}(Q^P) \cap \mathcal{L}(P)$ that

$$(*) \quad \varDelta(Q)\cap \varDelta(P)=\, \varDelta(Q^P)\cap \varDelta(P).$$

Let Δ_1 and Δ_2 be the S(t)-orbits in $\Delta(P)$, where S(t) is a t-Sylow subgroup of G, $S(t) \leq H$, with $Q \in \Delta_1$ so that $Q^P \in \Delta_2$. From (*) we see that the number of edges from Q to Δ_i is equal to the number from Q^P to Δ_i (i = 1, 2). Hence \hat{A} determined by S(t) has the form

But then $x = y = \frac{t-1}{2}$, contrary to (7).

References

- R. Brauer and W.F. Reynolds: On a problem of E. Artin. Ann. Math. 68 (1958), 713– 720.
- [2] D.G. Higman: Finite permutation groups of rank 3. Math. Z. 86 (1964), 145-156.
- [4] _____: Intersection matrices for finite permutation groups. J. Alg. 6 (1967), 22-42.
- [5] C.C. Sims Graphs and finite permutation groups. Math. Z. 95 (1967), 76-86.
- [6] -----: Graphs with rank 3 automorphism groups. J. Comb. Theory (to appear).
- [7] H. Wielandt: Finite permutation groups. New York: Academic Press 1964.

Department of Mathematics University of Michigan Ann Arbor, Michigan