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ON A PROPOSITIONAL CALCULUS

WHOSE DECISION PROBLEM IS RECURSIVELY

UNSOLVABLE1)
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§0. Introduction

The purpose of this paper is to present a propositional calculus whose

decision problem is recursively unsolvable. The paper is based on the follow-

ing ideas:

(1) Using Lδwenheim-Skolem's Theorem and Suranyi's Reduction Theorem,

we will construct an infinitely many-valued propositional calculus corres-

ponding to the first-order predicate calculus.

(2) It is well known that the decision problem of the first-order predicate

calculus is recursively unsolvable.

(3) Thus it will be shown that the decision problem of the infinitely many-

valued propositional calculus is recursively unsolvable.

In this paper, we consider semantically the problem. That is, we define

a validity of wff in our logical system and we will discuss on the problem

to decide whether or not an arbitrary wff in our system is valid.2)

§1. Logical system L

We consider a logical system L:

(1) Propositional variables: F19F29 , G19 G2, ', Pίf P2, .

(2) Truth-values: Let N be the set of natural numbers and Ω = {0,1}.

We define functions /,g as follows:

Received March 1, 1969
χ) This research was done while the author stayed at Dept. of Information Science, Univ.

of North Carolina at Chapel Hill.
2) In the first-order predicate calculus, the semantical decision problem is equivalent to

the syntactical one by the completeness theorem.
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/ : N-+Ω, f^2N,

g: NxNxN-+2N, g e {2N)NXN*N .

A truth-value is defined as a member of (2N)NXNXN^ i.e. it is such a function

g. Let us say here (x9y,z) in NxNxN as a coordinate, and #, y, z as in-

coordinate, ^/-coordinate, ^-coordinate, respectively.

(3) Logical operations1):

Monadic operations: X, Y, Z, 3Λ, 3y, 3Z, O, Ί ,

Duadic operation: V.

(4) Truth-value functions:

Let us denote as follows:

f{λ) = •„ , e JV, »a e ft

2/, 2) = v w , α, y, z e iV, t / w e 2*.

X: If a truth-value of wff 91 has ι;<<4 at (i, i, i) in NxNxN, the truth-

value of X̂ C has the same vUi at every (i, y, z) where y, z = 1, 2, 3, .

Y,Z\ Those are defined by the similar way to X.

V, Ί : Those are defined by the usual way.

3Λ: We consider all elements (x, j , k) in Nx Nx N where j , k are constants.

If there exists a such that a *A at (a, j , k) of truth-value of wff §1 is 1, then

the truth-value of 3̂ 91 has 1 at *̂  of every (x, j , k).

If a truth-value of % has 0 at *λ of (a?, i, k) for every #, then the truth-

value of ix% has 0 at *λ in every (x, j , k).

32,,3Z: Those are defined by the similar way to 3Λ.

O: For every g(x, y, z),

every *λ(λ = 1,2,3, ) is 1, if *λ = 1 for some λ.
Og{χ, y, z) = ,

every *λ(^ = 1,2,3, ) is 0 otherwise.

The logical system L is considered as a kind of infinitely many-valued

propositional logic. In this paper, a truth-value whose *̂  (A = 1, 2, 3, )

at every (x,y9z) are all 1 is called the designated value. And further a wίf

% is called valid if and only if the % takes always the designated value

independently of truth-values of propositional variables Pί9 P2, , Pn in SI.

Using those logical operations, we define PxI\P2 = 1 (IPiViΛ), Λ ^ Λ = ΊΛVP2
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§2. Relations between the first-order predicate calculus K and the
system L

We shall give some relations between the first-order predicate calculus

K and the logical system L.

According to the Suranyi Reduction Theorem, we have the following

one:

THEOREM. For every wff Ĉ in K, we can construct a wff 23 of the following

form:

(I) (as) (32/) (32) M1 V (ix) (32/) (z)M2

where Mλ and M2 are quantifier-free and contain non but monadic and duadic

predicates. And, in this case, Ĉ is equivalent to 23 in regard to the universal

validity.

From now on, we shall denote Suranyi Reduction Form (I) of an

arbitrary wίf % in K as $ϊt

Now, for wff $C* and each subformula @ of $C* in Kf let /z(@) be a

wff in L obtained by using inductively the following (i)-(iii).

(i) If @ is a monadic predicate F{x)9 then

h(F(x)) -)- O XF.v

where ->- means "correspondence".

(ii) If @ is a duadic predicate G(x, y), then

A(G(», y)) -+ OiXG1 Λ FG2)J).

Here, it needs not to consider such a case as h(H(x,y,z)) because the form

(I) contains only monadic and duadic predicates as shown above.

(iii) If @ contains logical operations or quantifier, then

For example:

(32/) (F(α?) &

Of course, h(*{y)) -> O ^ ^ M^^)) ~> O^^1, A(G(y, «))
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We shall write A(«*) as $*.

Then, we shall prove, in §3, the following theorems:

THEOREM 1. If 5Ϊ* is valid in L, then 21* is universally valid in K.

THEOREM 2. If 21* is universally valid in K, then SC* is valid in L.

Now, assume that the decision problem of validity in L is recursively

solvable. Then, we have an effective procedure to decide whether or not

an arbitrary wίf Si* in L is valid. Thus, from Theorem 1 and 2 we have

also an effective procedure to decide whether or not 21* in K is universally

valid. But, 2Ϊ* is Suranyi's reduction form of 21. Therefore it follows that

the decision problem of predicate calculus is recursively solvable. This is

contradict with (2) in §0. Thus, we know that the decision problem in L

is recursively unsolvable.

§3. Proofs of Theorem 1 and 2
Now, we shall give proofs of Theorem 1 and 2.

Theorem 1:
We prove the following Theorem 1' which is equivalent to Theorem 1.

THEOREM 1'. If 21* is not universally valid in K, than S* is not valid in

L.

Proof. To prove this theorem we use Lowenheim-Skolem's Theorem

which is expressed as follows: a wff 3? in K is universally valid if $ is

valid in an enumerable infinite domain ω.

Using this theorem and our assumption of Theorem 1', we are able to

let a truth-value of 2ί* be F (falsity) in ω by some suitable truth-value as-

signment. Here let us denote elements in ω as e19 e2, eS9 , and assume

that the following predicates occur in 21*.

(II) F^x), F2(x), , FΛ(x); • F^z), F2(z), , FΛ(z)f

Giix,*), , G ^ a O GΛίCy), ; G i f e 4 , Gβ{z,z).

Here, it is possible to assume that those predicates actually occur in 21*.

For if F^x) occurs neither in (ga) (32/) (as)Mi nor in (aas) (32/) (z)M29 then it is

sufficient to consider a formula (aas) (32/) (3z) (M1&F1{x) V ΊF^x)) which is

equivalent to (a&) (32/) (as)Λfi

Now, according to our assumption a truth-value of 21* is F in ω by a

truth-value assignment for predicates (II). Say that the truth-value assign-

ment is as follows:
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FM: T, FM: F, , FJ,eύ'. T

(III) FM:T, F2(e2): Γ, , Fa(e2): F
•

Gae^eJiT, dieitβj: F,

•
G1{e19e2):T9 Gλ{e29e2):T9

veJ'.T, G&(e29ex): F,

Gβ{e19e2);F, Gβ(e2,e2);T,

•
From this truth-value assignment, we construct a truth-value assignment in

L as follows:

First of all, we make a correspondence of T and F in K to (1, 1,1,1, 1,

• ) and (0, 0, 0, 0, 0, ) in L respectively. Here, the above-mentioned (1,

1, 1, 1, 1, ) ((0, 0, 0, 0, 0, )) stands for f{λ) = 1 [f(λ) = 0) for all λ.

Next, we make a correspondence of e19 e29 ez, to (1,1, 1), (2, 2, 2), (3, 3, 3)

• in NxNxN in our definitions.

Now, we consider the following truth-value assignment of F19 F2, ,

FΛ in t * . If Ft(ej) is T (or F) in (III), then we give (1,1,1,1,1, ) (or

(0,0,0,0,0, •)) to Ft at (/, j , j) in NxNxN.

For example:

If F2{e2) is T in (III), then we give (1,1,1,1,1, •) to F2 at (2, 2, 2) in

NxNxN. If F1{eι) is F in (III), then we give (0,0,0,0,0, ) to F2 at

(1,1,1) in NxNxN. In this case, υxyz of Fί9 F29 , F α are arbitrary

except vnl9 υ2229 vUZ9 . This is always possible.

Next, we consider the following assignment of G\9 G\9 , G\\ G\9G\9

• , Gβ in 8ί* corresponding to G19 G29 , Gβ in $1*.

If Gi(elf ei) is T in (III), we give (n, τ2, τ3, •) to G\ at (1, 1, 1) and

W, τ5, τί, •) to G\ at (1,1,1) by whose value O(G}ΛG?) takes (1,1,1,1,

1, ), where τί9 τ[ is in Ω,

If Gi (e19 e2) is T in (III), we give the above (τ19 τ29 τ3, •) to G\ at

(1,1,1) and (//, τ"29 τ
fl9 •••) to G? at (2,2,2) by whose value O {G\ Λ G\)

takes (1,1,1,1,1, )

In the above explanation, (1,1,1), (2,2,2), correspond to eί9e29 and

G\9 G\ to the first argument, the second argument of G*.

Those (τ(f, τ(f, •) at {k9k9k) and (τ(f, τ%\ ) at (/,/,/) must be given
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such that O(GίΛGt) obtained from Gi(ek9eι) whose value is F in (III) does

not take the value (1,1,1,1,1, ).

By repeated applications of this process, we give values to G\, G\9 ,

G\; Gί, Gl, , G\ at (1,1,1), (2,2,2), (3,3,3), in NxNxN and in this

case values at (v19 v2, v3) where at least two of vl9 v2 and v3 are different

are arbitrary.

This process is always possible too. Because since our (*u *2, *3, ) is an

infinite sequence of 0,1, it is possible by the definition of truth-value func-

tion of O

That is, for example: let us assume that

® GiieueJiT, ® Gi(e2,eί): F9 ® G^eJ: F9

/ / /
1) ® Gi(e19e2):T, (5) Gί(e2,e2):T9 ® G,(e8, e2): Γ, •

/ /
® Gi(eu ez): F, (9) G<(β2, ez): T, Gi(eZ9 ez): F,

Then, first we enumerate those predicates as the above-mentioned ®, φ, φ,

• and we give an assignment as follows:

G\{e,): {I, 0, 1, *4, *5, ) Gffo): (1, 0, 0, . )

2) Gl(e2): (0, 0, 0, 0, 1, ) GJfo): (0, 0, 1, 0, 1, 0, 0, 1, )

G}(««): (0, 0, 0, 0, 0, 0, 0, 1, •) G?(«,): (0, 0,0, 0, 0, 0, 0, 0, 1, •)

•
where G{{eύ {j = 1,2) means a value of G{ at (1,1,1) in NxNxN and G{{et)

means a value of G{ at (2,2,2) in iVx Nx N9 etc..

2) is constructed such that the first 1, the third 1 from the left in (1, 0, 1,

*4> *5, •) of Giiβi) correspond to T of the enumeration ®, (3) in 1).

Now, notice that in an enumerable infinite domain N the operation

(3a?) ((32/), (32)) can be interpreted as an infinite disjunction on aj-coordinate

(^/-coordinate, 2-coordinate). For example: (3a;) %{x9 y9 z) is interpreted as

And also we notice that

(1) if F{e19e2) is a truth-value of F{x9y), it is considered by the definition

of X9 Y, Z as a value at (1,2,2) in NxNxN where 2 = 1,2,3,

(2) if F{e19 e2) is a truth-value of F(y9 x), it is considered as a value at

(2,1,2) in NxNxN where z = 1,2,3, .
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(3) if P{e2, e2) is a truth-value of F(x, x), it is considered as a value

at {2,y,z) in NxNxN where y, z = 1,2,3, •••,

(4) and so on.

Thus, from the above-mentioned truth-value assignment, the construction of

S* and the interpretation of existential quantifier in the domain N, we are

able to let S* be not valid in L. Therefore, we get Theorem 1'.

Throem 2:

We shall prove the following Theorem 2' which is equivalent to Theo-

rem 2.

THEOREM 2'. If δί* is not valid in L, then 91* is not universally valid in

K.

Proof Let us notice that §Γ* is of a form *xiy 3Z iίϊ?V3*3y Ί 3 ε Ί M%

where M* and M* correspond to M1 and M2 respectively. From this matter

and the assumption of this theorem, we can give truth-values for propositions

F19F2, , F α ; G\, Gl, , Gy. G\, Gl, , G| in 2t* by which t * takes

(0,0,0,0,0, •) at every (x,y,z) in NxNxN.

Here we make a correspondence of (0, 0, 0, 0, 0, ), (1,1,1,1, 1, )

to F, T as mentioned above. Then, we consider only values at (i,i,i) in

iVx Nx N in the assignment where / = 1,2,3, .

Now, let us say that the truth-value assignment is as follows:

F 1(

l l ^ l Λ l"l l l> ΐΊl2> ) ^ l l ^ l J l ^ l l U ^112> * * *

G\{e2): (τί21, τί22, •) G?(β2): (τ^, τ2

122, •

where F^^j),Fλ{e2), mean values of Ft at (1,1,1), (2,2,2), in NxNxN

as before.

Then, we take (1,1,1), (2,2,2), as an infinite domain ω. Further

we take a value of O XFi obtained from F^βi) as a truth-value of predicate

Fi(x) for x = (/,/,/) and also a value of O (XG\ f\YG\) obtained from G}{ek),
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G\{et) as a t r u t h - v a l u e of p r e d i c a t e Gi{x,y) for x = {k,k,k), y = (l,l,l) a n d

so on. From the definitions of X,Y,Z and the h: h(Fi(x)) -> O XFί9

h{Gi{x9y))^O(XGiAYGl)9 , we know that «* takes F in the enumer-

able infinite domain ω.

Thus, we get Theorem 2'.
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