T. Sirao Nagoya Math. J. Vol. 38 (1970), 91-101

A REMARK ON THE MOYAL'S CONSTRUCTION OF MARKOV PROCESSES

TUNEKITI SIRAO

To Professor Katuji Ono on the occasion of his 60th birthday.

§ 1. Result. In the author's previous paper [3], we used Theorem 1 of the present paper to assure the existence of a signed branching Markov process with age satisfying given conditions in [3], The purpose of this paper is to give a proof of Theorem 1.

Let $X = \{X_t, \zeta, \mathcal{B}_t, P_x; x \in E\}$ be a right continuous Markov process on a locally compact Hausdorff space *E* satisfying the second axiom of countability, and Ω be the sample space of X. A non-negative function *σ*(*ω*) (*ω* ∈ *Ω*) is called a \mathscr{B}_t -Markov time if it holds that for each $t ≥ 0$

$$
\{\omega\in\Omega\;\!;\;\!\sigma(\omega)\leq t<\zeta(\omega)\}\in\mathscr{B}_t.
$$

For any Markov time *σ, &^a* is defined as the collection of the sets *A* such that for any $t \ge 0$

$$
A\in \bigvee_{t>0}\mathscr{B}_t \text{ and } A\cap \{\omega\,;\, \sigma(\omega)\leq t<\zeta(\omega)\}\in \mathscr{B}_t,
$$

where $\bigvee_{\alpha} \mathscr{B}_t$ denotes the *σ*-algebra generated by the sets of \mathscr{B}_t , $t \geq 0$. Let $C(E)$ be the space of all bounded continuous functions on E . A right continuous Markov process *X* is said to be strong Markov if it holds that for any Markov time σ , $t \geq 0$, $x \in E$, $f \in C(E)$, and $A \in \mathscr{B}_{\sigma}$,

$$
E_x[f(X_{t+\sigma}); A \cap {\sigma < \zeta}] = E_x[E_{X_{\sigma}}[f(X_t)]; A \cap {\sigma < \zeta}],
$$

where $E_x[\cdot; A]$ expresses the integral over *A* by P_x .

Let $\chi_0(t, x, \cdot)$ and $\psi(x; t, \cdot)$ be substochastic measures on the σ -algebra and suppose that $\chi_{_0}(\,\cdot\,,\,\cdot\,,B)$ and $\varPsi(\,\cdot\;;\cdot\,,B)$ are Borel measurable

Received March 31, 1969

⁾ A Markov process is said to be right continuous if their almost all sample paths are right continuous in $t \ge 0$.

²⁾ $\mathscr{B}(\mathscr{X})$ denotes the class of Borel set on the topological space \mathscr{X} .

92 TUNEKITI SIRAO

functions of $(t, x) \in [0, \infty) \times E$ for any fixed $B \in \mathscr{B}(E)$. A pair of χ_0 and Ψ is said to be satisfied Moyal's $\chi_{0} \Psi$ -condition if they satisfy the following conditions³⁾:

 $\chi_0(t + s, x, B) = \int_{x}^{\infty} \chi_0(t, x, dy) \chi_0(s, y, B), \quad \chi_0(0, x, E) = 1,$ (2) $\lim_{h \to 0} \Psi(x; t, E) = 1 - \lim_{h \to 0} \chi_0(t, x, E)$ (3) $\Psi(x; t + s, B) = \Psi(x; t, B) + \int_{x}^{t} I_0(t, x, dy) \Psi(y; s, B)$ (4) $\Psi(x; t, E)$ is continuous in $t \geq 0$, $x \in E$, $B \in \mathscr{B}(E)$.

Now, suppose that the $\chi_0 \Psi$ -condition is satisfied for a given pair of χ_0 and $\boldsymbol{\varPsi}$. By virtue of (3), *Ψ(x; t,B)* is monotone nondecreasing in *t,* and hence it determines a measure $\Psi(x; dt, dy)$ on $\mathscr{B}([0, \infty) \times E)$. Using this measure, we shall define measures $\Psi_r(x; \cdot, \cdot)$ and $\chi_r(t, x, \cdot)$ as follows:

$$
\Psi_1(x; dt, dy) = \Psi(x; dt, dy),
$$

(5)
$$
\Psi_{r+1}(x; dt, dy) = \int_0^t \int_E \Psi_r(x; ds, dz) \Psi(z; d(t-s), dy),
$$

$$
\chi_r(t, x, dy) = \int_0^t \int_E \Psi_r(x; ds, dz) \chi_0(t-s, z, dy),
$$

$$
r \ge 1, t \ge 0, B \in \mathscr{B}(E).
$$

Further we set

(6)
$$
\Psi_r(x; t, dy) = \int_0^t \Psi_r(x; ds, dy), r \ge 1.
$$

Then we have

THEOREM. (*J.E. Moyal*) If the $\chi_0 \Psi$ -condition is satisfied, then it holds that THEOREM. $(J.E. Hoyay \t f \tanh \kappa_0$ ^p condition is satisfied, then it holds that *for any* $i, \delta = 0, \kappa = 2, \kappa$

$$
(7) \quad \Psi_{r+r}(x; dt, B) = \int_0^t \int_E \Psi_r(x; ds, dy) \Psi_{r}(y; d(t-s), B), \quad r, r' \ge 1,
$$
\n
$$
(8) \quad \chi_{r+r}(t, x, B) = \int_0^t \int_E \Psi_r(x; ds, dy) \chi_{r}(t-s, y, B), \quad r \ge 1, \quad r' \ge 0,
$$
\n
$$
(9) \quad \chi_r(t+s, x, B) = \sum_{r'=0}^r \int_E \chi_{r}(t, x, dy) \chi_{r-r}(s, y, B), \quad r \ge 0,
$$

³⁾ J.E. Moyal [2] defined the χ_0^{ψ} -condition for non-stationary Markov processes. The condition stated here is the one for stationary case with an additional condition (4) .

(10)
$$
\sum_{r=0}^{\infty} \chi_r(t,x,E) = 1 - \lim_{r \to \infty} \Psi_r(x,t,E).
$$

Moreover, if we set

(11)
$$
\chi(t, x, B) = \sum_{r=0}^{\infty} \chi_r(t, x, B), \quad t \geq 0, \quad x \in E, \quad B \in \mathscr{B}(E),
$$

satisfies so-called Chapman-Kolmogorov's equation, i.e.,

(12)
$$
\chi(t+s,x,B)=\int_E \chi(t,x,dy)\chi(s,y,B),
$$

and further x is the minimal non-negative solution of the equation:

(13)
$$
\chi(t,x,B)=\chi_0(t,x,B)+\int_0^t\int_E\Psi(x\,;\,ds,\,dy)\chi(t-s,\,y,\,B).
$$

In addition, x is the unique solution of (13) *if it holds that for each t* ≥ 0

(14) $\lim_{r \to \infty} \Psi_r(x; t, E) = 0.$

According to Kolmogorov's extension theorem, (1) and (12) imply that there exist two Markov process *X* and *X°* whose transition functions are given by *X* and *x⁰* respectively. We shall consider the relation between *X* and X° .

Let $E \cup \{A\}$ be the one-point compactification of E and set

$$
C_0(E) = \{ f; f \in C(E) \text{ and } \lim_{x \to \Delta} f(x) = 0 \},
$$

|| f || = sup { | f(x) | ; x \in E },

$$
T_i^{(r)} f(x) = \int_{E} \chi_r(t, x, dy) f(y), r \ge 0, f \in C_0(E),
$$

and

$$
T_t f(x) = \int_E \chi(t, x, dy) f(y), \qquad f \in C_0(E).
$$

Then (1) and (12) imply $T_{t+s}^{(0)} = T_t^{(0)} T_s^{(0)}$ and $T_{t+s} = T_t T_s$ if they act on $C_0(E)$. Now we can state

THEOREM 1. Let the semi-group $T_t^{\text{(0)}}$, $t \geq 0$, be strongly continuous on $C_0(E)$ *with respect to the norm* $|| \t||$, and assume that for any $r \ge 1$, $T_i^{(r)}$ maps $C_0(E)$ *into itself and it holds that*

94 TUNEKITI SIRAO

(15) $\lim_{t\to 0} ||T_t^{(r)}f|| = 0, \quad r \ge 1, \quad f \in C_0(E).$

Then it holds that (i) *there exists a right and quasi-left continuous⁰ strong Markov process* $X = \{X_t, \zeta, \mathscr{B}_t, P_x; x \in E\}$ corresponding to the semi-group T_t , (ii) there *exists a Markov time* τ *of* X_t *such that the killed process* $X^0 = \{X^0_t, \xi^0, \mathscr{B}^0_t, P^0_x; x \in E\}$ *of X at time* τ 5) *corresponds to the semi-group T\°* (iii) *setting*

$$
\tau_0 = 0, \quad \tau_1 = \tau, \quad \tau_{r+1} = \tau_r + \theta_{r,\tau}^{\sigma}, \quad r \ge 1,
$$

iw *have*

(16)
$$
P_x(X_t \in B, \tau) \leq t < \tau_{r+1} = \chi_r(t, x, B),
$$

\n(17) $P_x(X_{\tau}) \in B, \tau \in dt = \Psi_r(x; dt, B),$
\n $x \in E, B \in \mathcal{B}(E), t \geq 0, r \geq 0.$

§ 2. **Proof.** Let $N = \{0, 1, 2, \dots\}$ and S be the product space $E \times N$ where the topology of S is introduced in a natural way. Then S is a locally compact Hausdorff space satisfying the second axiom of countability. We define a measure $P(t, (x, p), \cdot)^{n}$ on $\mathscr{B}(S)$ by

(18)
$$
P(t,(x,p),(B,q)) = \begin{cases} \n\chi_{q-p}(t,x,B), & \text{if } q \geq p, \\ \n0, & \text{otherwise,} \n\end{cases}
$$
\n
$$
(x,p) \in S, \quad t \geq 0, \quad B \in \mathcal{B}(E), \quad p,q \in N.
$$

Then we have

LEMMA 1. $s \geq 0$, $(x, p) \in S$, $A \in \mathcal{B}(S)$, it holds that

$$
P(t + s, (x, p), A) = \int_{S} P(t, (x, p), d(y, r)) P(s, (y, r), A).
$$

Proof. It suffices to prove the above equality for $A = (B, q)$ where $\geq p$. By the definitions of $P(t,(x,p), \cdot)$ and (9), we have

4) A Markov process $X = \{X_t, \zeta, \mathcal{B}_t, P_x; x \in E\}$ is said to be quasi-left continuous if it holds that for any increasing sequence *τ^r* of Markov times,

 $\label{eq:prob} P_x(\lim_{r\to\infty} X_{\tau_r} = X_{\tau}, \, \tau \!<\! \zeta) \!=\! P_x(\tau \!<\! \zeta),$

where

$$
\tau(\omega) = \lim_{r \to \infty} \tau_r(\omega).
$$

5) The killed process *X°* of *X* at time *τ* means that

$$
X_t^0(\omega) = \begin{cases} X_t(\omega), & \text{if } t < \tau, \\ A, & \text{if } t \geq \tau. \end{cases}
$$

- θ) θ _t denotes the shift operator.
- 7) $P(\cdot, \cdot, (B, q))$ is $\mathscr{B}([0, \infty)\times S)$ -measurable.

$$
P(t + s, (x, p), (B, q)) = \chi_{q-p}(t + s, x, B)
$$

\n
$$
= \sum_{r=0}^{q-p} \int_{E} \chi_{r}(t, x, dy) \chi_{q-p-r}(s, y, B)
$$

\n
$$
= \sum_{r=0}^{q-p} \int_{E} P(t, (x, p); (dy, p + r)) P(s, (y, p + r); (B, q))
$$

\n
$$
= \int_{S} P(t, (x, p), d(y, r)) P(s, (y, r); (B, q)),
$$

as was to be proved. $Q.E.D.$

ä,

According to Lemma 1, there exists a Markov process $Y = \{Y_t = (X_t, N_t)\}$, \mathcal{L}_f , \mathcal{B}_t , $P_{(x,p)}$; $(x, p) \in S$ with transition function $P(t,(x,p), \cdot)$ where \mathcal{B}_t is the *σ*-algebra generated by sets of the form $\{Y_i \in A; s \leq t, A \in \mathcal{B}(S)\}.$ Since it follows from (18), (11), and (13) that for any $t, h \ge 0$

$$
P_{(x,\,p)}(N(t) > N(t+h)) = 0,
$$

and

$$
P_{(x,p)}(N(t) < N(t+h))
$$
\n
$$
= \sum_{r=0, s=1}^{\infty} \int_{E} \chi_r(t, x, dy) \chi_s(h, y, E)
$$
\n
$$
= \sum_{s=1}^{\infty} \int_{E} \chi(t, x, dy) \chi_s(h, y, E)
$$
\n
$$
= \int_{E} \chi(t, x, dy) \{ \chi(h, y, E) - \chi_0(h, y, E) \}
$$
\n
$$
= \int_{E} \chi(t, x, dy) \int_0^h \int_{E} \Psi(y; du, dz) \chi(h - u, z, E)
$$
\n
$$
\longrightarrow 0 \quad \text{as} \quad h \longrightarrow 0,
$$

there exists a version of *Y* in which iVi is right continuous in ί. So we take this version as *Y.*

 $X_0(x) = \frac{X_0}{x_0(x)} = \frac{X_0}{x_0}$, $X_1(x) = \frac{X_0}{x_0}$, $X_2(x) = \frac{X_0}{x_0}$, $X_3(x) = \frac{X_0}{x_0}$, $X_4(x) = \frac{X_0}{x_0}$, $X_5(x) = \frac{X_0}{x_0}$, $X_6(x) = \frac{X_0}{x_0}$, $X_7(x) = \frac{X_0}{x_0}$, $X_8(x) = \frac{X_0}{x_0}$, $X_9(x) = \frac{X_0}{x_0}$ Now let us consider $x_0(t, x, dy)$. As was stated already, x_0 defines a Markov process $X^2 = \{X_t, S_t, X_t\}$, $\forall t, I, x, w \in E$ *f* on *E.* Let us denote its sample space by $\Omega^0 = {\omega^0 = \omega^0(t)}$; $\omega^0(t)$ is a mapping of [0, ξ^0) to E}. Next we consider a function space *Ω^r* which is a kind of copy of shifted *Ω^o* . This means that

$$
\hat{\Omega}_r = \{ \hat{\omega} = (\hat{\omega}_1(t), \hat{\omega}_2(t)); \hat{\omega} \text{ is a mapping of } [\alpha_r, \beta_r)
$$

to $E \times \{r\}$ where $0 \leq \alpha_r(\hat{\omega}) \leq \beta_r(\hat{\omega}) \leq \infty$ and they
may vary with $\hat{\omega} \}$,

and, for each $\phi \in \hat{\Omega}_r$, there corresponds one and only one $\phi^0 \in \Omega^0$, such that the graph $\{(t, \omega^0(t)); 0 \le t < \xi^0(\omega^0)\}$ is identical to $\{(t, \omega(t + \alpha_r))\}$; $0 \leqq t < \beta_r(\hat{\omega}) - \alpha_r(\hat{\omega})\}.$ Let $\hat{\mathscr{F}}_{\tau}$ be the algebra generated by cylinder sets of the following type

$$
\hat{B} = \{ \hat{\omega} \in \hat{\Omega}_r; t_0 \leq \alpha_r(\hat{\omega}) < t_1, \hat{\omega}_1(\alpha_r(\hat{\omega})) \in B_0, \hat{\omega}_1(t_i) \in B_i, \quad i = 1, 2, \dots, n \}
$$
\n
$$
(19) \quad 0 \leq t_0 \leq t_1 \leq t_2 \leq \dots \leq t_n,
$$
\n
$$
B_i \in \mathscr{B}(E), \quad i = 0, 1, 2, \dots, n, \quad n = 0, 1, 2, \dots,
$$

and define a finitely additive measure $\nu_x(\cdot)$ on \mathscr{F}_{τ} by

(20)
$$
\nu_x(\hat{B}) = \int_{t_0}^{t_1} \int_{B_0} \Psi_r(x; dt, dy) P_v^0(X_{t_i-t}^0 \in B_i, i = 1, 2, \cdots, n).
$$

Then we have

LEMMA 2. $\nu_x(\cdot)$ can be extended to a measure on the σ -algebra \mathscr{B}_{τ} generated by $\hat{\mathscr{F}}_r$.

Remark. Consider a Markov time *τ^r* defined by

$$
\tau_r(\omega)=\inf\{t\,;\,N_t(\omega)=N_0(\omega)+r\},\,
$$

where N_t is the right continuous second coordinate of $Y_t = (X_t, N_t)$. If the distribution of the joint variable (τ_r, X_{τ_r}) is given by $\Psi_r(x, dt, dy)$, then $\nu_x(\bm{\cdot})$ is supposed to be the restricted measure of $P_{(x,0)}$ on $E\times\{r\}.$ So intuitively, Lemma 2 is clear.

Proof. The proof is given by the same way as the construction of product measure. It suffices to prove that if a decreasing sequence $\{\tilde{B}_n\}\subset\tilde{\mathscr{F}}_r$, satisfies

$$
\nu_x(\hat{B}_n) \geq c > 0, \qquad n = 1, 2, 3, \cdots,
$$

where *c* is a constant, then we have

$$
\bigcap_{n=1}^{\infty}\hat{B}_n\neq\phi.
$$

Since $\Psi_r(x;\cdot,E)$ is a finite measure on [0, ∞),

$$
\nu_x(\{\omega;\,\alpha_r(\omega)\geq t\})=\int_t^\infty \Psi(x\,;\,dt,E)
$$

tends to zero as *t* tends to infinity. Therefore, without loss of generality, we may assume that there exists $T>0$ such that

$$
\hat{B}_n \subset \{\hat{\omega}; 0 \leq \alpha_r(\hat{\omega}) < T\}, \qquad n = 1, 2, 3, \cdots.
$$

Now let us express \hat{B}_n in a form

(21)
$$
\hat{B}_n = \sum_{j=1}^{k_n} \{ \hat{\omega} \, ; \, t_{j0}^{(n)} \leq \alpha_r(\hat{\omega}) < t_{j1}^{(n)}, \, \hat{\omega}_1(\alpha_r(\hat{\omega})) \in B_{j0}^{(n)}, \, \hat{\omega}_1(t_{ji}^{(n)}) \in B_{ji}^{(n)}, \, i = 1, 2, \cdots, n_j \}^8, \, n = 1, 2, 3, \cdots,
$$

where the following are assumed to be satisfied.

$$
t_{j1}^{(n)} \leq T, \quad j = 1, 2, \cdots, k_n, \quad n \geq 1,
$$

\n
$$
t_{j1}^{(n)} \leq t_{j1+1}^{(n)}, \quad i = 0, 1, 2, \cdots, n_j - 1, \quad n \geq 1,
$$

\n
$$
[t_{j0}^{(n)}, t_{j1}^{(n)}] \times B_{j0}^{(n)} \cap [t_{k0}^{(n)}, t_{k1}^{(n)}] \times B_{k0}^{(n)} = \phi \quad \text{if} \quad j \neq k, n \geq 1,
$$

and for any n and j there exists j_0 such that

$$
[t_{j0}^{(n+1)}, t_{j1}^{(n+1)}] \times B_{j0}^{(n+1)} \subset [t_{j00}^{(n)}, t_{j01}^{(n)}] \times B_{j00}^{(n)}.
$$

Set

$$
C_j^{(n)} = \left\{ (t, y); \ t_{j0}^{(n)} \le t < t_{j1}^{(n)}, y \in B_{j0}^{(n)} \text{ and } \right.
$$

$$
P_y^0(X_{tj_i}^{0m} - t \in B_{j1}^{(n)}, \quad i = 1, 2, \dots, n_j) > \frac{c}{2} \right\}^{9},
$$

$$
D_j^{(n)} = [t_{j0}^{(n)}, t_{j1}^{(n)}) \times B_{j0}^{(n)} - C_j^{(n)}.
$$

Then we can see

$$
\sum_{j=1}^{k_n}\ C_j^{(n)} \downarrow
$$

and

$$
\mathscr{W}_r(x; \sum_{j=1}^{k_n} C_j^{(n)}) > \frac{c}{2} > 0.
$$

Accordingly there exist (t_0, y_0) and j_n such that

$$
(22) (t_0, y_0) \in C_{j_n}^{(n)}, \ \ n = 1, 2, 3, \cdots,
$$

which means

⁸⁾ For the set $\{\hat{\omega}; \beta_r(\hat{\omega}) \leq t\}$, we used the notation $\{\hat{\omega}; 0 \leq \alpha_r(\hat{\omega}) < t, \ \hat{\omega}_1(\alpha_r(\hat{\omega})) \in E, \ \hat{\omega}_1(t) \in \phi\}$. The last funny expression $\hat{\omega}_1(t) \in \phi$ means $\hat{\omega}_1(t)$ is not defined at t.

⁹⁾ If $B=\phi$, $P_x^0(X_t \in B)$ is regarded as $1-P_x^0(X_t \in E)$.

98 TUNEKITI SIRAO

$$
P_{y_0}^{(0)}(X_{t_{j_n}i}^0-t_0\in B_{j_n}^{(n)},\quad i=1,2,\cdots,n_{j_n})>\frac{c}{2}>0.
$$

By the monotonicity of \hat{B}_n , the events in the above parentheses are mono tone non-increasing. So we can take ω^0 such that for all $n \ge 1$

 $(X_1^0, X_2^0, \ldots, X_{i_{n_i}-t_0}^0, \omega^0) \in B_{j_n}^{(n)}$, $i = 1,2,3, \ldots, n_{j_n}$.

If we put

$$
\alpha_r(\hat{\omega}) = t_0, \ \ \beta_r(\hat{\omega}) = t_0 + \zeta^0(\omega^0), \ \ \hat{\omega}_1(t_0) = y_0
$$

and

$$
\hat{\omega}(t+t_0)=(\omega^0(t),r), \ \ 0\leq t<\zeta^0(\omega^0),
$$

then (21), (22) and (23) show

$$
\bigcap_{n=1}^{\infty}\hat{B}_n \ni \hat{\omega},
$$

as was to be proved. $Q.E.D.$

Now we return to the process $Y = \{Y_t = (X_t, N_t), \xi, \mathcal{B}_t, P_{(x,p)}; (x,p) \in S\}.$ Since N_t is right continuous, τ_r defined by

$$
\tau_r(\omega)=\inf\{t\,;\,N_t(\omega)=N_0(\omega)+r\},\,
$$

are \mathscr{B}_t -Markov times. Then we have

LEMMA 3. *Let X° be a Markov process on E corresponding to the transition function* $\chi_0(t, x, \cdot)$. *(t, x,*). *If X° is right continuous, Y has a right continuous version and, for this version, we have*

(24)
$$
P_{(x,p)}(Y_t \in (B, p + r)) = \chi_r(t, x, B),
$$

(25)
$$
P_{(x,p)}(Y_{\tau+1} \in (B, p+r+1), \tau_{r+1} \in dt) = \Psi_{r+1}(x; dt, B)
$$

 $B \in \mathscr{B}(E), r \ge 0.$

Proof. By (5), (18) and (20), we can see that for $r \ge 1$,

(26)
$$
P_{(x,p)}(Y_{t_i} \in (B_i, p+r), i = 1, 2, \cdots, n) = \nu_x(\{\hat{\omega}; 0 \leq \alpha_r(\hat{\omega}) < t_1, \hat{\omega}_1(t_i) \in B_i, i = 1, 2, \cdots, n)\}.
$$

Hence $P_{(x,p)}$ defines a measure on the space of sub-trajectories of Y_t in the time interval $[\tau_r, \tau_{r+1}]$ which is equivalent to ν_x . On the other hand,

 $\nu_x(\cdot)$ is a measure on $\hat{\mathscr{B}}_r$ which is obtained from the sample space of X^c by shift of starting time point. So we may consider that on the time interval $[\tau_r, \tau_{r+1}]$, Y_t has the same continuity property with X^0 . Since $r \ge 1$ is arbitrary, we may regard that the right continuity of X^q implies the right continuity of Y_t on $[\tau_1, \zeta]$. on $[\tau_1, \zeta]$. Evidently Y_t restricted on $[0, \tau_1]$ is equivalent to X^0 , and hence we can have a right continuous version of *Yt .* Furthermore, the event in parentheses of left hand side of (25) is measurable if Y_t is right continuous. Then the definition of ν_x and (26) implies

$$
P_{(x,p)}(\tau_r(\omega) \in dt, X_{\tau_r}(\omega) \in (B, p+r)) = \nu_x(\{\omega; \alpha_r(\omega) \in dt, \omega(\alpha_r) \in B\})
$$

= $\Psi_r(z; dt, B),$

which proves (25). Since (24) is obtained from (18) we have proved the ${\rm lemma.} \hspace{2cm} {\rm Q.E.D.}$

Now Theorem 1 is proved easily as follows.

Proof of Theorem 1. Since $T_t^{(0)}$ is strongly continuous on $C_0(E)$, by the general theory of Markov processes¹⁰, a Markov process $X^0 = \{X_t^0, \zeta^0, \mathscr{B}_t^0, P_x^0;$ $x \in E$ corresponding to $T_t^{(0)}$ can be considered to be right continuous. Accordingly, by Lemma 3, we may regard Y_t is right continuous.

Now let V_t be the semi-group on $C_0(S)$ induced by Y_t and $g \in C_0(S)^{11}$. Then we have

(27)
\n
$$
V_t g(x, p) - g(x, p) = \sum_{r=0}^{\infty} \int_E P(t, (x, p), (dy, p + r)) g(y, p + r) - g(x, p)
$$
\n
$$
= \int_E \chi_0(t, x, dy) g(y, p) - g(x, p)
$$
\n
$$
+ \sum_{r=1}^{\infty} \int_E \chi_r(t, x, dy) g(y, p + r).
$$

Since $g(x, p)$ belongs to $C_0(S)$, $g(x, p)$ tends to zero uniformly in x as p tends to infinity. Furthermore the assumption on $T^{(r)}_t$ implies

$$
\|\sum_{r=1}^{\infty}\int_{E}\chi_{r}(t,x,dy)g(y,p+r)\|\longrightarrow 0 \text{ as } t\longrightarrow 0.
$$

Then we can see from (27) and the assumption on $T^{(0)}_t$ that V_t is strongly

i°) cf. [1] Theorem 3.14, p. 104.

¹¹⁾ $g(x, n)$ belongs to $C_0(S)$ if it holds that $g(\cdot, n) \in C_0(E)$ for any fixed $n \in N$ and $g(x, n)$ tends to zero, uniformly in *%,* when *n* tends to infinity.

continuous on $C_0(S)$. Therefore we may consider that Y is a right con tinuous and quasi-left continuous¹²⁾ strong Markov process.

Now let Ω^0 be a sample space of the process X^0_t , and Ω^i ($i = 1, 2, 3, \cdots$) be infinitely many copies of *Ω°.* Let us set

$$
\widetilde{\varOmega} = \prod_{i=0}^{\infty} \varOmega^{i},
$$

 $\text{and, for any } \tilde{\omega} = \langle \omega^0, \omega^1, \cdots, \omega^i, \cdots \rangle \in \tilde{\Omega}, \text{ set}$

$$
\sigma_0(\tilde{\omega}) = 0, \quad \sigma_r(\tilde{\omega}) = \sum_{i=0}^{r-1} \zeta^0(\omega^i), \qquad r \ge 1,
$$

$$
\tilde{X}_t(\tilde{\omega}) = \tilde{\omega}(t) = \omega^r(t - \sum_{i=0}^{r-1} \zeta^0(\omega^i)) \quad \text{if} \quad \sigma_r(\tilde{\omega}) \le t < \sigma_{r+1}(\tilde{\omega})^{13},
$$

$$
\tilde{\zeta}(\tilde{\omega}) = \lim_{r \to \infty} \sigma_r(\tilde{\omega}).
$$

Further set

$$
\theta_t \tilde{\omega} = (\theta_{t-\sigma_r(\tilde{\omega})}\omega^r, \omega^{r+1}, \cdots) \text{ if } \sigma_r(\tilde{\omega}) \leq t < \sigma_{r+1}(\tilde{\omega}).
$$

Then we consider the $\sigma\text{-algebra} \ \ \widetilde{\mathscr{B}}_t$ generated by the cylinder sets of the form of

$$
\{\tilde{\omega} \in \tilde{\varOmega}\, ; \, \tilde{\omega}(t) \in B, \sigma_r(\tilde{\omega}) \leqq t\}, \quad \! B \in \mathscr{B}(E), \ \ r \geqq 0,
$$

and set

$$
\widetilde{\mathscr{B}} = \bigvee_{t \geq 0} \widetilde{\mathscr{B}}_t.
$$

If we consider the correspondence of

$$
\{\tilde{\omega} \in \tilde{\Omega}\,;\,\tilde{\omega}(t) \in B, \sigma_r(\tilde{\omega}) \leq t < \sigma_{r+1}(\tilde{\omega})\}
$$

and

$$
\{\omega \in \Omega\,;\, Y_t(\omega) = (\omega_1(t), \omega_2(t)) \in (B, r), \omega_2(0) = 0\},\
$$

then it induces the correspondence between \mathscr{B}_{t} and \mathscr{F}_{t} defined by

$$
\mathscr{F}_t = \mathscr{B}_t \cap \{ \omega \in \Omega; N_0(\omega) = 0 \}.
$$

So, $\tilde{P}_x(\cdot)$ defined by

$$
\widetilde{P}_x(\widetilde{A})=P_{(x,0)}(A),
$$

¹²⁾ cf. [1] Theorem 3.14, p. 104.

^{1 3}) To define *θ^t* completely, we have to consider an extra point *Δ* as a grave of *X* and an $\tilde{\omega}$ such that $\tilde{\omega}(t) = \Delta, t \geq 0$.

where $A \in \mathscr{F}_t$ corresponds to $\tilde{A} \in \tilde{\mathscr{B}}_t$, defines a measure on $\tilde{\mathscr{B}}$. Further, setting $f(x, p) = \tilde{f}(x)$ for any bounded continuous function \tilde{f} on E, we can see that

$$
\tilde{E}_{x}[\tilde{f}(\tilde{X}_{t}); t < \tilde{\zeta}] = \int_{\Omega} \tilde{f}(\tilde{X}_{t}(\tilde{\omega})) d\tilde{P}_{x}
$$
\n
$$
= E_{(x,0)}[f(Y_{t}); t < \zeta]
$$
\n
$$
= E_{(x,y)}[f(Y_{t}); t < \zeta].
$$

Since, for fixed $B \in \mathscr{B}(E)$, $r \ge 0$, $P_{(x,p)}((X_t, N_t) \in (B, p + r))$ is independent of *p,* we can see from the above equalities that

$$
\tilde{P}_x(\{\tilde{\omega} \in \tilde{\Omega}\,;\,\tilde{\omega}(t_i) \in B_i \text{ and } \sigma_{r_i}(\tilde{\omega}) \le t_i < \sigma_{r_i+1}(\tilde{\omega})\,;\, i = 1, 2\})
$$
\n
$$
= P_{(x,0)}(\{\omega \in \Omega\,;\,\omega(t_i) \in (B_i, r_i), i = 1, 2\})
$$
\n
$$
= E_{(x,0)}[P_{(X_{t_1}, N_{t_1})}((X_{t_2 - t_1}, N_{t_2 - t_1}) \in (B_2, r_2))\,;\,(X_{t_1}, N_{t_1}) \in (B_1, r_1)]
$$
\n
$$
= E_{(x,0)}[P_{(X_{t_1}, N_{t_1})}((X_{t_2 - t_1}, N_{t_2 - t_1}) \in (B_2, r_2 - r_1 + N_{t_1}))\,;\,(X_{t_1}, N_{t_1}) \in (B_1, r_1)]
$$
\n
$$
= \tilde{E}_x[P_{\tilde{X}_{t_1}}(\tilde{X}_{t_2 - t_1} \in B_2, \sigma_{r_2 - r_1}(\tilde{\omega}) \le t_2 - t_1 < \sigma_{r_2 - r_1 + 1}(\tilde{\omega})\,;\,\tilde{X}_{t_1} \in B_1, \sigma_{r_1}(\tilde{\omega}) \le t_1 < \sigma_{r_1 + 1}(\tilde{\omega})],
$$

which proves the Markov property of \tilde{P}_x . So we have a right continuous Markov Process $\tilde{X} = \{\tilde{X}_t, \tilde{\zeta}, \tilde{\mathscr{B}}_t, \tilde{P}_x; x \in E\}$ on E . Similarly, for a $\tilde{\mathscr{B}}_t$ -Markov time ρ , if we consider a \mathscr{B}_t -Markov time σ of *Y* defined by

$$
\sigma(\omega) = \begin{cases} t, & \text{if } \omega \in A \text{ where } \tilde{A} = \{ \tilde{\omega} \in \tilde{\Omega} \, ; \, \rho(\tilde{\omega}) = t \}, & t \ge 0 \\ \infty, & \text{if } \omega \in \{ \omega \in \Omega \, ; \, N_0(\omega) = 0 \}, \end{cases}
$$

then we can see that \tilde{X} is strong Markov and quasi-left continuous since *Y* is. Furthermore, by the definition of $\widetilde{\mathscr{B}}_t, \sigma_r$ is a $\widetilde{\mathscr{B}}_t$ -Markov time of \tilde{X} and (16), (17) are obtained from Lemma 3 and the definition of \tilde{P}_x . Thus taking \tilde{X} as X , we complete the proof. $Q.E.D.$

REFERENCES

- [1] E.B. Dynkin: *Markov processes,* vol. 1. Springer, 1965.
- [2] J.E. Moyal: Discontinuous Markov processes. Acta. Math., vol. 98 (1957), pp. 221-264.
- [3] T. Sirao: On signed branching Markov processes with age. Nagoya Math. Jour., vol. 32 (1968), pp. 155-225.

Nagoya University