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A REMARK ON THE MOYAL'S CONSTRUCTION

OF MARKOV PROCESSES

TUNEKITI SIRAO

To Professor Katuji Ono on the occasion of his 60th birthday.

§ 1. Result. In the author's previous paper [3], we used Theorem

1 of the present paper to assure the existence of a signed branching Markov

process with age satisfying given conditions in [3], The purpose of this

paper is to give a proof of Theorem 1.

Let X— {Xt,ζ,&t>Pχ\ % e E] be a right continuous Markov processυ

on a locally compact Hausdorff space E satisfying the second axiom of

countability, and Ω be the sample space of X A non-negative function

σ(ω) {ω e Ω) is called a ^ - M a r k o v time if it holds that for each t ^ 0

{ω e Ω; σ{ω) ̂  t < ζ(ω)} e &t.

For any Markov time σ, &a is defined as the collection of the sets A such

that for any t ^ 0

A e= V &t and A Π {ω; σ[ω) ̂  * < ζ{ω)} e M,

where V &t denotes the σ-algebra generated by the sets of &t, t^O.

Let C(E) be the space of all bounded continuous functions on E. A right

continuous Markov process X is said to be strong Markov if it holds that

for any Markov time σ, t > 0, x e E, f e C{E), and A e &a,

Ex[f(Xt+σ);A n {σ<f}] = ^ [ ^ , [ / ( X t ) ] ; ii n

where £ J 4̂] expresses the integral over A by Px.

Let X0{t,x, •) and F(cc; ί, •) be substochastic measures on the σ-algebra

and suppose that χo( , , 5) and ?F( , 5) are Borel measurable
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χ) A Markov process is said to be right continuous if their almost all sample paths are

right continuous in t^O.
denotes the class of Borel set on the topological space g?.
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functions of (t, x) e [0, oo) x E for any fixed B e &{E). A pair of Xo and ¥

is said to be satisfied MoyaFs %0^-condition if they satisfy the following

conditions35:

(1) X0{t + s,x,B)=[ X0(t9 x,dy)X0(s9 y,B), X0(0, x9E) = 1,

( 2 ) lim Ψ{x t9 E) = 1 — lim X0{t, x, E)

( 3 ) Ψ(x;t + s,B) = Ψ(x; t,B) +\x*{t, *, dy)Ψ(y; s,B)

(4) Ψ(x;t,E) is continuous in ί ί^O, a? e £, B e &(E).

Now, suppose that the ZoF-condition is satisfied for a given pair of Xo and

f0. By virtue of (3), Ψ(x; t,B) is monotone nondecreasing in t, and hence

it determines a measure Ψ(x; dt,dy) on ^ ( [ 0 , oo)χ2J). Using this measure,

we shall define measures Ψr(x; , •) and xr{t,x9 •) as follows:

Ψ1(x;dt9dy) = Ψ(x;dt,dy),

( 5 ) Ψr+1(x Λ , dy) = Π y r (α rfs, Λ)y(2 rftf - 5), rfy),

JoJs

xΛt, x, dy)=[\ Ψr(x ds, dz)X0{t - s,«, dy),

r ^ 1, ί ^ 0, 5 e ^ ( E ) .

Further we set

(6) ΨΛx;t,dy)=\tψr(x;ds,dy), r ^ l .

Jo

Then we have

THEOREM. {J E. Moyaΐ) If the x0ψ-condition is satisfied, then it holds that

for any t9s^O9 x e E, and B

( 7 ) r r + r , (α; Λ , B) = Γ( Ψr(x rfs, rfy)yr/(y «/(/ - 5), 5), rf r' ^ 1,
JoJ-^

(8) χ r + r ,(ί,*,β)=Π Ψr(x;ds,dy)Xr,(t-s,y,B), r ^ l , r ' ^0 ,

( 9 ) χr(/ + 5, a?, 5) = i] ί χr/(ί, a?, dy)Xr-r,{s, y, B), r^O,

3) J.E. Moyal [2] defined the ̂ o^-condition for non-stationary Markov processes. The
condition stated here is the one for stationary case with an additional condition (4).
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(10) fj Xr(t, x,E) = l - lim Ψr{x, t, E).

Moreover, if we set

(11) Z(ί,»,B) = Σ
r = 0

satisfies so-called Chapman-Kolmogorov's equation, i.e.,

(12) χ(ί + s,a?,β)

nύ? further X is the minimal non-negative solution of the equation:

(13) x(t9x,B) = X0(t,x,B)+\\ Ψ(x;ds,dy)X(t-s,y,B).

In addition, X is the unique solution of (13) if it holds that for each t^O

(14) l imy r (a; t,E) = 0.
r—>oo

According to Kolmogorov's extension theorem, (1) and (12) imply that

there exist two Markov process X and X° whose transition functions are

given by X and x0 respectively. We shall consider the relation between X

and X\

Let E ϋ {Δ} be the one-point compactification of E and set

C0(E) = {/; / e C(E) and lim f(x) = 0},

II /11= sup {|/(*)| ; * e £ } f

=( Ut,x,dy)f(y), r^O, /eC,(£),

and

Tt/(») =\x(t, x, dy)f(y), f e Co(£).

Then (1) and (12) imply T$, = yjwyco) a n d T f + s = T f T s i f t h e y a c t o n C o ( ^ ) #

Now we can state

T H E O R E M 1. Let the semi-group Tf\ t^tύ, be strongly continuous on C0{E)

with respect to the norm || ||, and assume that for any r ^ l , T(p maps C0{E)

into itself and it holds that
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(15) lim||77>/||=0, r ^ l , /sC,(£).
t->0

Then it holds that (i) there exists a right and quasi-left continuous0 strong Markov

process X—{Xt9ζ9^t9Px\ x ^ E\ corresponding to the semi-group Tt9 (ii) there

exists a Markov time τ ofXt such that the killed process X° = {X°t9 ζ°9 J&°t9 P%; x "e E]

of X at time τ 5 ) corresponds to the semi-group T\°\ (iii) setting

τ 0 = 0, Tj = τ, τ r + 1 = τ r + 0τ rτ
6 ), r ^ 1,

iw have

(16) P,CXi e £,r r ^t<τr+1) = xr(t,x,B),

(17) P^(Xrr e ^ , τ r e rf/) = ?rr(α;; dί, J8),

a? e £, B e ^ ( £ ) , / ̂  0, r ^ 0.

§ 2. Proof. Let iV= {0,1,2, } and S be the product space Ex N

where the topology of S is introduced in a natural way. Then S is a locally

compact HausdorίF space satisfying the second axiom of countability. We

define a measure P(t,(x9p), )7) on J&(S) by

\Xq-p(t9x,B), if q^p,
(18) P(t,(x,P),(B,q)) = \ % .

•0, otherwise,

Then we have

LEMMA 1. For t9s>09 (x9p)<=S9 A(=&{S)9 it holds that

P(t + 5, (x, p)9 A) = J β P ( ί , (a, p), rf(y, r))P(5, (2/, r), i4).

. It suffices to prove the above equality for A = (5, #) where

*tp. By the definitions of P{t9{x9p)9 •) and (9), we have

4) A Markov process X=[Xt,ζ,&t, Px; x^E] is said to be quasi-left continuous if it
holds that for any increasing sequence τr of Markov times,

where
τ(ω)=limτr(ω).

r—>co

5) The killed process X° of X at time τ means that

fXt(ω), if t<τ,
X ? M = U if fer.

6) ^ί denotes the shift operator.
7) P(-,-,(B,q)) is ^([0,oo)χS)-measurable.
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P(t + s, (x, p), (B, q)) = χ M ( ί + s, x, B)

q-p r

xΛt,x,dy)Xq.p.r(s,y,B)
E

= Σ*( P ( ^ (*,?>) (<fy, P + r))P(s, (2/,

U, (a, p), d(y,r))P(s, (y, r) (5, g)),

as was to be proved. Q.E.D.

According to Lemma 1, there exists a Markov process Y — [Yt = (Xt9Nt),

ζ, Jί,P(,,p); (α,p) e S} with transition function P{t,{x9p), •) where ^ is

the σ-algebra generated by sets of the form {Yg& A; s <t,A

Since it follows from (18), (11), and (13) that for any t,h^O

and

P(*,p)(N{t) < N{t + A))

= Σ ( Xr(t,x,dy)Xs(h,y,E)
r=O,s=l JE

EX{t,x,dy)Xs{h,y,E)

= ί X{t, x,dy){X(h,y,E) - X0{h,y,E)}
JE

= \ X{t,x,dy)[ \ Ψ{y;du,dz)x(h — u,z,E)

— > 0 as A — > 0,

there exists a version of Y in which iVi is right continuous in ί. So we

take this version as Y.

Now let us consider X0{t,x,dy). As was stated already, x0 defines a

Markov process X° = {X\,ζ*>&\,Pl\ x<=E} on E. Let us denote its sample

space by Ω° = {ω° = ω°(/); ω°(f) is a mapping of [0,f°) to E}. Next we

consider a function space Ωr which is a kind of copy of shifted Ωo. This

means that

Ωr = [ώ = (ώ1(0>ώ2(0)j ώ is a mapping of [αr,/3r)

to E X {r} where 0 ^ ar(ώ) ^ βr(ώ) ̂  oo and they

may vary with ώ}9
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and, for each ώ eί2 r, there corresponds one and only one ω° e Ω\ such

that the graph {{t,ω°{t)); 0 < t < ξ*°(ω0)} is identical to {{t,ώ{t + ar));

0 ^ t < βr(ώ) — ar(ώ)). Let ^"^ be the algebra generated by cylinder sets

of the following type

B - {ώ^ Ωr; to^ccr{ώ)< tuώάariώ)) e B^ώ^ti) <= Bi9 i = 1,2, ,n}

(19) 0 ^ ί0 ^ ίi ^ t2 < ^ ίn ,

), i =0,1,2, ,n, n =0,1,2, •• ,

and define a finitely additive measure ŷ ( ) on J?~r by

(20) Vχ{β) - f J( ΨΛx Λ, dy)P°y(Xl-t eBi9 z - 1,2, , n).

Then we have

LEMMA 2. y j ) can be extended to a measure on the σ-algebra &r generated

by

Remark. Consider a Markov time τr defined by

τr(ω) - inf [t Nt(ω) = N0(ω) + r],

where JVi is the right continuous second coordinate of Yt = {Xt, Nt). If the

distribution of the joint variable (τr,Xvr) is given by Ψr(x,dt,dy), then

vx( ) is supposed to be the restricted measure of P(a.,<» on E x {r}. So

intuitively, Lemma 2 is clear.

/. The proof is given by the same way as the construction of

product measure. It suffices to prove that if a decreasing sequence

{Bn} c ,_#;, satisfies

β n =1,2,3,

where c is a constant, then we have

n Bn =¥ ψ.
n=ί

Since ?Γr(a?; ,£) is a finite measure on [0,oo),

vx({ώ; ar(ώ)^ t}) =\y(x; dt,E)

tends to zero as t tends to infinity. Therefore, without loss of generality,

we may assume that there exists T > 0 such that
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Bna {ώ;0<ar{ώ)<T}9 n = 1,2,3,

Now let us express Bn in a form

(21) Bn = Σ {ώ; t%>^ ar(ώ) < t%\ ώfcriώ)) e j?>y,

ώjφ?) e £«>, i = 1,2, , «y}8), M = 1,2,3, ,

where the following are assumed to be satisfied.

tfί^T, i = l,2, ,k«, n ^ l ,

ί ^ ^ ί 5 ? + 1 , i =0,1,2, , * , - l , n ^ l ,

[ίj?, <5a X 5 ^ Π [ίg', tm X £g> = ^ if =v k, n ^ 1,

and for any n and j there exists j 0 such that

Lt%+1\ t?ι+Ό) x BS5+» c [ φ , ίjjl) x 5 ^ .

Set

C?1' = {(t, y) ί^ ^ t < t%\ y e BfJS and

Pί(jrϊ}j«-t e 5 * , i = 1,2, ,»,) >

Df = [f55>, ί̂ >) x B%> - Cf.

Then we can see

and

Accordingly there exist {to,yo) and j n such that

(22) (to,yo)t=C?n\ n = 1,2,3, . . . ,

which means

8 ) For the set {ώ; βr(ώ)<t], we used the notation {ώ; 0^ar{ώ)<t, ώ^a^ώ^EiE, ώx{t)<Ξφ}.

T h e last funny expression ώι(t)e.φ means ώ\{t) is not defined at /.

9) If B = φ, P°x(XteB) is regarded as \-P%{Xt<=E).
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,_,, BfX ί = 1,2, , nk) > - |- > 0.

By the mono toni city of Bn, the events in the above parentheses are mono-

tone non-increasing. So we can take ω° such that for all n ^ 1

(23) Xt^u (ωD) e £ $ , / = 1,2,3, , njn.

If we put

and

then (21), (22) and (23) show

as was to be proved. Q.E.D.

Now we return to the process Y = {Yt = (Xί? ATt),f, ̂ , P ( a . i P ) ; (α,p) e S}.

Since iVj is right continuous, τ r defined by

τr(ω) = inf {/; Nt(ω) = Λi(ω) + r},

are ^^-Markov times. Then we have

LEMMA 3. Let X° be a Markov process on E corresponding to the transition

function X0(t, x, ). If X° is right continuous, Y has a right continuous version

and, for this version, we have

(24) PiXtP)(Yt e (B, p + r)) = Xr(t, x, B),

(25) PiX)P)(Yrr+1 <Ξ(B,p + r + 1), τr+1 e dt) = Ψr+1(x dt, B)

/1 By (5), (18) and (20), we can see that for r ^ l ,

(26) P^.p^Ytt^iBt.p + r^i =1,2, ,w) = ^ ( ! ώ ; 0 ^ α r (

i =1,2, •,»}).

Hence P(XtP) defines a measure on the space of sub-trajectories of Yt in

the time interval [τ r,τ r + 1) which is equivalent to vx. On the other hand,
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Vxi ) is a measure on &r which is obtained from the sample space of X°

by shift of starting time point. So we may consider that on the time

interval [τ r,τ r + 1), Yt has the same continuity property with X°. Since

r ^ 1 is arbitrary, we may regard that the right continuity of XQ implies

the right continuity of Yt on [τl9ζ). Evidently Yt restricted on [0,^) is

equivalent to X\ and hence we can have a right continuous version of

Yt. Furthermore, the event in parentheses of left hand side of (25) is

measurable if Yt is right continuous. Then the definition of vx and (26)

implies

Pix,P)(τr(ω) <= dt,Xτr(ω) e (B,p + r)) = vx{{ώ; ar(ώ) e dt,ώ(ar) e B})

= Ψr(z;dt,B),

which proves (25). Since (24) is obtained from (18) we have proved the

lemma. Q.E.D.

Now Theorem 1 is proved easily as follows.

Proof of Theorem 1. Since T\°^ is strongly continuous on C0{E), by the

general theory of Markov processes10), a Markov process X° = {-X"?,f0, J^t°,P£;

x &E} corresponding to Tί0) can be considered to be right continuous.

Accordingly, by Lemma 3, we may regard Yt is right continuous.

Now let Vt be the semi-group on C0(S) induced by Yt and g e C0(S)n\

Then we have

OO Λ

Vtg(x, P) - g{x, V) = j 2 \EP(t, (x, V), {dy, p + r))g{y, p + r) - g{x, p)

(27) =\xo(t,x,dy)g(y,p)-g(x,p)
J E

r=lJE

Since g{x,φ) belongs to C0(S),g{xfφ) tends to zero uniformly in x as φ tends

to infinity. Furthermore the assumption on T^P implies

Xr(t,x,dy)g(y,<p + r)\\ >0 as t >0.
E

Then we can see from (27) and the assumption on T^ that Vt is strongly

i°) cf. [1] Theorem 3.14, p. 104.
n> g(x,n) belongs to C0(S> if it holds that ί( ,«)εC0(£) for any fixed n^N and g(x,n)

tends to zero, uniformly in %, when n tends to infinity.
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continuous on C0(S). Therefore we may consider that Y is a right con

tinuous and quasi-left continuous12) strong Markov process.

Now let Ω° be a sample space of the process X°t, and Ωi (i = 1,2,3, •)

be infinitely many copies of Ω°. Let us set

Ω = Π Ω\
i = 0

and, for any ώ = (αΛω1, ,ω\ •) e Ω, set

σo(ώ) = 0, σr(w) = Σ f V ) , r ^ 1,
z = 0

Xt(ώ) = ώ(t) = ωr(ί - Σ K V ) ) if ^r(ω) ̂  / < σr+1(ώ)13\
i = 0

ζ(ώ) = lim<7r(ώ).
r-»oo

Further set

(?ίCD = {Θt-σr{ω)ωr

9ω
r+1

9 •) i f (Tr(ώ) ^ ί < < τ r + 1 ( ώ ) .

Then we consider the <;-algebra &t generated by the cylinder sets of the

form of

and set

= V Jfc.
t>0

If we consider the correspondence of

{ώ <=Ω; ώ(t) e B,σr(ώ)< t <σr+1(ώ)}

and

{ω e Ω; Yt(ω) = (ω^O,^^)) e (B,r),ω2(0) = 0},

then it induces the correspondence between ?$t and ^ 7 defined by

^ = J ί n l f l ) e f l ; AΓ0(ω) = 0}.

So, JPΛ(.) defined by

PΛΛ) = P(βiO)(i4),

12) cf. [1] Theorem 3.14, p . 104.
1 3 ) T o define θt completely, we have to consider a n extra point Δ as a grave of X a n d

an ώ such that ώ{t)=Δ, t^0.
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where A e ^ 7 corresponds to A e ^ ^ defines a measure on &. Further,

setting f{x, p) = f(x) for any bounded continuous function / on E, we can

see that

Ex[f(Xt); t < ζ] = \Ωf(Xt(ω))dPa

= Eix.p)[f(Yt);t<ζ}.

Since, for fixed B e ^ ( £ ) , r ^ O , P .̂p/CX îVi) e (B,p + r)) is independent

of p, we can see from the above equalities that

Px{{ώ e if; ώ(tt) e B€ and ^ ( ω ) ̂  ^ < <Fr<+1(ώ); f = 1,2})

= P(*.o)(U e β; ω(ίj e {B^r^i = 1,2})

-u e B2,σrt_rι(ώ) <t2-tx <σr2_ri+1{ώ));

Xtl e β l f (;n(ώ) ^ ίj < <jri+1(0)],

which proves the Markov property of P .̂. So we have a right continuous

Markov Process X = {Xt, ζ, J&t, Px; x e £"} on .E1. Similarly, for a Jl^-Markov

time /o, if we consider a ^ r M a r k o v time σ of Y defined by

[t, if ω<= A where Ά = {ώ<= Ω; ρ(ώ) = t], t^O
σ{ω) =

loo, if ω φ {ω e Ω; N0{ω) = 0},

then we can see that J? is strong Markov and quasi-left continuous since

Y is. Furthermore, by the definition of &fty σr is a jl^-Markov time of X

and (16), (17) are obtained from Lemma 3 and the definition of Pχm Thus

taking X as X, we complete the proof. Q.E.D.
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