A REMARK ON THE MOYAL'S CONSTRUCTION OF MARKOV PROCESSES

TUNEKITI SIRAO

To Professor Katuji Ono on the occasion of his 60th birthday.

§ 1. Result. In the author's previous paper [3], we used Theorem 1 of the present paper to assure the existence of a signed branching Markov process with age satisfying given conditions in [3]. The purpose of this paper is to give a proof of Theorem 1.

Let $X = \{X_t, \zeta, \mathcal{B}_t, P_X; x \in E\}$ be a right continuous Markov process¹⁾ on a locally compact Hausdorff space E satisfying the second axiom of countability, and Ω be the sample space of X. A non-negative function $\sigma(\omega)$ ($\omega \in \Omega$) is called a \mathcal{B}_t -Markov time if it holds that for each $t \ge 0$

$$\{\omega \in \Omega; \sigma(\omega) \leq t < \zeta(\omega)\} \in \mathscr{B}_t$$

For any Markov time σ , \mathcal{B}_{σ} is defined as the collection of the sets A such that for any $t \ge 0$

$$A \in \bigvee_{t \geq 0} \mathscr{B}_t$$
 and $A \cap \{\omega; \sigma(\omega) \leq t < \zeta(\omega)\} \in \mathscr{B}_t$,

where $\bigvee_{t\geq 0} \mathscr{B}_t$ denotes the σ -algebra generated by the sets of \mathscr{B}_t , $t\geq 0$. Let C(E) be the space of all bounded continuous functions on E. A right continuous Markov process X is said to be strong Markov if it holds that for any Markov time σ , $t\geq 0$, $x\in E$, $f\in C(E)$, and $A\in \mathscr{B}_{\sigma}$,

$$E_{\tau}[f(X_{t+\sigma}); A \cap \{\sigma < \zeta\}] = E_{\tau}[E_{X,\sigma}[f(X_t)]; A \cap \{\sigma < \zeta\}],$$

where $E_x[\cdot; A]$ expresses the integral over A by P_x .

Let $\chi_0(t,x,\cdot)$ and $\Psi(x;t,\cdot)$ be substochastic measures on the σ -algebra $\mathcal{B}(E)^2$, and suppose that $\chi_0(\cdot,\cdot,B)$ and $\Psi(\cdot;\cdot,B)$ are Borel measurable

Received March 31, 1969

¹⁾ A Markov process is said to be right continuous if their almost all sample paths are right continuous in $t \ge 0$.

²⁾ $\mathscr{B}(\mathscr{X})$ denotes the class of Borel set on the topological space \mathscr{X} .

92 tunekiti sirao

functions of $(t, x) \in [0, \infty) \times E$ for any fixed $B \in \mathcal{B}(E)$. A pair of χ_0 and Ψ is said to be satisfied Moyal's $\chi_0 \Psi$ -condition if they satisfy the following conditions³⁾:

(1)
$$\chi_0(t+s,x,B) = \int_F \chi_0(t,x,dy) \chi_0(s,y,B), \quad \chi_0(0,x,E) = 1,$$

$$(2) \quad \lim_{t\to\infty} \Psi(x; t, E) = 1 - \lim_{t\to\infty} \chi_0(t, x, E)$$

(3)
$$\Psi(x; t + s, B) = \Psi(x; t, B) + \int_{\mathbb{R}} \chi_0(t, x, dy) \Psi(y; s, B)$$

(4) $\Psi(x; t, E)$ is continuous in $t \notin \mathbb{Z}$ $0, x \in E, B \in \mathcal{B}(E)$.

Now, suppose that the $\chi_0 \Psi$ -condition is satisfied for a given pair of χ_0 and Ψ_0 . By virtue of (3), $\Psi(x; t, B)$ is monotone nondecreasing in t, and hence it determines a measure $\Psi(x; dt, dy)$ on $\mathscr{B}([0, \infty) \times E)$. Using this measure, we shall define measures $\Psi_r(x; \cdot, \cdot)$ and $\chi_r(t, x, \cdot)$ as follows:

$$\begin{split} &\varPsi_1(x\,;\,dt,dy)=\varPsi(x\,;\,dt,dy),\\ &(5\,)\quad \varPsi_{r+1}(x\,;\,dt,dy)=\int_0^t\!\!\int_E\!\!\varPsi_r(x\,;\,ds,dz)\varPsi(z\,;\,d(t-s),dy),\\ &\chi_r(t,x,dy)=\!\int_0^t\!\!\int_E\!\!\varPsi_r(x\,;\,ds,dz)\chi_0(t-s,z,dy),\\ &r\!\geq\!1,\;t\!\geq\!0,\;\;B\in\mathscr{B}(E). \end{split}$$

Further we set

(6)
$$\Psi_r(x; t, dy) = \int_0^t \Psi_r(x; ds, dy), r \ge 1.$$

Then we have

THEOREM. (J.E. Moyal) If the $\chi_0 \Psi$ -condition is satisfied, then it holds that for any $t, s \ge 0$, $x \in E$, and $B \in \mathcal{B}(E)$,

$$(7) \quad \Psi_{r+r}(x; dt, B) = \int_{0}^{t} \int_{E} \Psi_{r}(x; ds, dy) \Psi_{r}(y; d(t-s), B), \quad r, r' \ge 1,$$

(8)
$$\chi_{r+r}(t,x,B) = \int_0^t \int_E \Psi_r(x;ds,dy) \chi_r(t-s,y,B), \quad r \geq 1, \quad r' \geq 0,$$

(9)
$$\chi_r(t+s,x,B) = \sum_{r'=0}^r \int_E \chi_{r'}(t,x,dy) \chi_{r-r'}(s,y,B), r \ge 0,$$

³⁾ J.E. Moyal [2] defined the $\chi_0 \Psi$ -condition for non-stationary Markov processes. The condition stated here is the one for stationary case with an additional condition (4).

(10)
$$\sum_{r=0}^{\infty} \chi_r(t, x, E) = 1 - \lim_{r \to \infty} \Psi_r(x, t, E).$$

Moreover, if we set

(11)
$$\chi(t,x,B) = \sum_{r=0}^{\infty} \chi_r(t,x,B), \quad t \geq 0, \quad x \in E, \quad B \in \mathscr{B}(E),$$

then X satisfies so-called Chapman-Kolmogorov's equation, i.e.,

(12)
$$\chi(t+s,x,B) = \int_{E} \chi(t,x,dy) \chi(s,y,B),$$

and further χ is the minimal non-negative solution of the equation:

(13)
$$\chi(t,x,B) = \chi_0(t,x,B) + \int_0^t \int_E \Psi(x;ds,dy) \chi(t-s,y,B).$$

In addition, χ is the unique solution of (13) if it holds that for each $t \ge 0$

(14)
$$\lim_{r\to\infty} \Psi_r(x\,;\,t\,,E) = 0.$$

According to Kolmogorov's extension theorem, (1) and (12) imply that there exist two Markov process X and X^0 whose transition functions are given by χ and χ_0 respectively. We shall consider the relation between X and X^0 .

Let $E \cup \{\Delta\}$ be the one-point compactification of E and set

$$\begin{split} &C_0(E) = \{f; \, f \in C(E) \ \text{ and } \ \lim_{x \to \Delta} f(x) = 0\}, \\ &\parallel f \parallel = \sup \{ \, |f(x)| \, ; \, x \in E \}, \\ &T_t^{(r)} f(x) = \int_E \chi_r(t,x,dy) f(y), \quad r \geq 0, \quad f \in C_0(E), \end{split}$$

and

$$T_t f(x) = \int_E \chi(t, x, dy) f(y), \qquad f \in C_0(E).$$

Then (1) and (12) imply $T_{t+s}^{(0)} = T_t^{(0)} T_s^{(0)}$ and $T_{t+s} = T_t T_s$ if they act on $C_0(E)$. Now we can state

THEOREM 1. Let the semi-group $T_t^{(0)}$, $t \ge 0$, be strongly continuous on $C_0(E)$ with respect to the norm $\| \ \|$, and assume that for any $r \ge 1$, $T_t^{(r)}$ maps $C_0(E)$ into itself and it holds that

94 tunekiti sirao

(15)
$$\lim_{t\to 0} ||T_t^{(r)}f|| = 0, \quad r \ge 1, \quad f \in C_0(E).$$

Then it holds that (i) there exists a right and quasi-left continuous⁴⁾ strong Markov process $X = \{X_t, \zeta, \mathcal{B}_t, P_x; x \in E\}$ corresponding to the semi-group T_t , (ii) there exists a Markov time τ of X_t such that the killed process $X^0 = \{X_t^0, \zeta^0, \mathcal{B}_t^0, P_x^0; x \in E\}$ of X at time $\tau^{5)}$ corresponds to the semi-group $T_t^{(0)}$, (iii) setting

$$\tau_0 = 0$$
, $\tau_1 = \tau$, $\tau_{r+1} = \tau_r + \theta_{\tau_r} \tau^{6}$, $r \ge 1$,

we have

- (16) $P_x(X_t \in B, \tau_r \leq t < \tau_{r+1}) = \chi_r(t, x, B),$
- (17) $P_x(X_{\tau_r} \in B, \tau_r \in dt) = \Psi_r(x; dt, B),$

$$x \in E$$
, $B \in \mathcal{B}(E)$, $t \ge 0$, $r \ge 0$.

§ 2. **Proof.** Let $N = \{0, 1, 2, \dots\}$ and S be the product space $E \times N$ where the topology of S is introduced in a natural way. Then S is a locally compact Hausdorff space satisfying the second axiom of countability. We define a measure $P(t, (x, p), \cdot)^{7}$ on $\mathcal{B}(S)$ by

(18)
$$P(t,(x,p),(B,q)) = \begin{cases} \chi_{q-p}(t,x,B), & \text{if } q \ge p, \\ 0, & \text{otherwise,} \end{cases}$$

 $(x,p) \in S, \ t \ge 0, \ B \in \mathcal{B}(E), \ p,q \in N.$

Then we have

LEMMA 1. For $t, s \ge 0$, $(x, p) \in S$, $A \in \mathcal{B}(S)$, it holds that

$$P(t+s,(x,p),A) = \int_{s} P(t,(x,p),d(y,r))P(s,(y,r),A).$$

Proof. It suffices to prove the above equality for A = (B, q) where $q \ge p$. By the definitions of $P(t, (x, p), \cdot)$ and (9), we have

$$P_x(\lim_{r\to\infty}X_{\tau_r}=X_{\tau},\,\tau<\zeta)=P_x(\tau<\zeta),$$

where

$$\tau(\omega) = \lim_{r \to \infty} \tau_r(\omega).$$

5) The killed process X^0 of X at time τ means that

$$X_t^0(\omega) = \begin{cases} X_t(\omega), & \text{if} \quad t < \tau, \\ \Delta, & \text{if} \quad t \ge \tau. \end{cases}$$

- 6) θ_t denotes the shift operator.
- 7) $P(\cdot, \cdot, (B, q))$ is $\mathcal{B}([0, \infty) \times S)$ -measurable.

⁴⁾ A Markov process $X = \{X_t, \zeta, \mathcal{B}_t, P_x; x \in E\}$ is said to be quasi-left continuous if it holds that for any increasing sequence τ_τ of Markov times,

$$\begin{split} P(t+s,(x,p),(B,q)) &= \chi_{q-p}(t+s,x,B) \\ &= \sum_{r=0}^{q-p} \int_{E} \chi_{r}(t,x,dy) \chi_{q-p-r}(s,y,B) \\ &= \sum_{r=0}^{q-p} \int_{E} P(t,(x,p);(dy,p+r)) P(s,(y,p+r);(B,q)) \\ &= \int_{s} P(t,(x,p),d(y,r)) P(s,(y,r);(B,q)), \end{split}$$

as was to be proved.

Q.E.D.

According to Lemma 1, there exists a Markov process $Y = \{Y_t = (X_t, N_t), \zeta, \mathcal{B}_t, P_{(x,p)}; (x,p) \in S\}$ with transition function $P(t,(x,p),\cdot)$ where \mathcal{B}_t is the σ -algebra generated by sets of the form $\{Y_s \in A; s \leq t, A \in \mathcal{B}(S)\}$. Since it follows from (18), (11), and (13) that for any $t, h \geq 0$

$$P_{(x,p)}(N(t) > N(t+h)) = 0,$$

and

$$\begin{split} &P_{(x,p)}(N(t) < N(t+h)) \\ &= \sum_{r=0,\,s=1}^{\infty} \int_{E} \chi_{r}(t,x,dy) \chi_{s}(h,y,E) \\ &= \sum_{s=1}^{\infty} \int_{E} \chi(t,x,dy) \chi_{s}(h,y,E) \\ &= \int_{E} \chi(t,x,dy) \{ \chi(h,y,E) - \chi_{0}(h,y,E) \} \\ &= \int_{E} \chi(t,x,dy) \int_{0}^{h} \int_{E} \Psi(y;du,dz) \chi(h-u,z,E) \\ &\longrightarrow 0 \quad \text{as} \quad h \longrightarrow 0, \end{split}$$

there exists a version of Y in which N_t is right continuous in t. So we take this version as Y.

Now let us consider $\chi_0(t,x,dy)$. As was stated already, χ_0 defines a Markov process $X^0 = \{X_t^0, \zeta^0, \mathcal{B}_t^0, P_x^0; x \in E\}$ on E. Let us denote its sample space by $\Omega^0 = \{\omega^0 = \omega^0(t); \omega^0(t) \text{ is a mapping of } [0,\zeta^0) \text{ to } E\}$. Next we consider a function space $\hat{\Omega}_r$ which is a kind of copy of shifted Ω_0 . This means that

$$\begin{split} \widehat{\mathcal{Q}}_{\tau} &= \{ \widehat{\omega} = (\widehat{\omega}_{1}(t), \widehat{\omega}_{2}(t)); \ \widehat{\omega} \ \text{is a mapping of } [\alpha_{\tau}, \beta_{\tau}) \\ \text{to } E \times \{r\} \ \text{where } 0 \leq \alpha_{\tau}(\widehat{\omega}) \leq \beta_{\tau}(\widehat{\omega}) \leq \infty \ \text{and they} \\ \text{may vary with } \widehat{\omega} \}, \end{split}$$

96 Tunekiti sirao

and, for each $\hat{\omega} \in \hat{\Omega}_r$, there corresponds one and only one $\omega^0 \in \Omega^0$, such that the graph $\{(t,\omega^0(t)); 0 \le t < \zeta^0(\omega^0)\}$ is identical to $\{(t,\hat{\omega}(t+\alpha_r)); 0 \le t < \beta_r(\hat{\omega}) - \alpha_r(\hat{\omega})\}$. Let $\hat{\mathscr{F}}_r$ be the algebra generated by cylinder sets of the following type

$$\hat{B} = \{ \hat{\omega} \in \hat{\Omega}_r ; t_0 \leq \alpha_r(\hat{\omega}) < t_1, \hat{\omega}_1(\alpha_r(\hat{\omega})) \in B_0, \hat{\omega}_1(t_i) \in B_i, \quad i = 1, 2, \cdots, n \}$$

$$0 \leq t_0 \leq t_1 \leq t_2 \leq \cdots \leq t_n,$$

$$B_i \in \mathcal{B}(E), \quad i = 0, 1, 2, \cdots, n, \quad n = 0, 1, 2, \cdots,$$

and define a finitely additive measure $\nu_x(\cdot)$ on $\hat{\mathscr{F}}_r$ by

$$(20) \quad \nu_x(\hat{B}) = \int_{t_0}^{t_1} \int_{B_0} \Psi_r(x; dt, dy) P_y^0(X_{t_i-t}^0 \in B_i, \quad i = 1, 2, \cdots, n).$$

Then we have

Lemma 2. $\nu_x(\cdot)$ can be extended to a measure on the σ -algebra \mathcal{B}_{τ} generated by $\hat{\mathcal{F}}_{\tau}$.

Remark. Consider a Markov time τ_r defined by

$$\tau_r(\omega) = \inf\{t; N_t(\omega) = N_0(\omega) + r\},\$$

where N_t is the right continuous second coordinate of $Y_t = (X_t, N_t)$. If the distribution of the joint variable (τ_r, X_{τ_r}) is given by $\Psi_r(x, dt, dy)$, then $\nu_x(\cdot)$ is supposed to be the restricted measure of $P_{(x,0)}$ on $E \times \{r\}$. So intuitively, Lemma 2 is clear.

Proof. The proof is given by the same way as the construction of product measure. It suffices to prove that if a decreasing sequence $\{\hat{B}_n\} \subset \hat{\mathcal{F}}_r$, satisfies

$$\nu_x(\hat{B}_n) \geq c > 0, \qquad n = 1, 2, 3, \cdots,$$

where c is a constant, then we have

$$\bigcap_{n=1}^{\infty} \hat{B}_n \neq \phi$$
.

Since $\Psi_{\tau}(x;\cdot,E)$ is a finite measure on $[0,\infty)$,

$$\nu_x(\{\hat{\omega}; \alpha_r(\hat{\omega}) \geq t\}) = \int_{-\infty}^{\infty} \Psi(x; dt, E)$$

tends to zero as t tends to infinity. Therefore, without loss of generality, we may assume that there exists T > 0 such that

$$\hat{B}_n \subset \{\hat{\omega}; 0 \leq \alpha_r(\hat{\omega}) < T\}, \qquad n = 1, 2, 3, \cdots$$

Now let us express \hat{B}_n in a form

(21)
$$\hat{B}_{n} = \sum_{j=1}^{k_{n}} \{ \hat{\omega}; t_{j0}^{(n)} \leq \alpha_{r}(\hat{\omega}) < t_{j1}^{(n)}, \ \hat{\omega}_{1}(\alpha_{r}(\hat{\omega})) \in B_{j0}^{(n)},$$

$$\hat{\omega}_{1}(t_{ii}^{(n)}) \in B_{ii}^{(n)}, \quad i = 1, 2, \cdots, n_{i} \}^{8}, \quad n = 1, 2, 3, \cdots,$$

where the following are assumed to be satisfied.

$$t_{j1}^{(n)} \leq T, \quad j = 1, 2, \cdots, k_n, \quad n \geq 1,$$

$$t_{ji}^{(n)} \leq t_{ji+1}^{(n)}, \quad i = 0, 1, 2, \cdots, n_j - 1, \quad n \geq 1,$$

$$[t_{j0}^{(n)}, t_{j1}^{(n)}] \times B_{j0}^{(n)} \cap [t_{k0}^{(n)}, t_{k1}^{(n)}] \times B_{k0}^{(n)} = \phi \quad \text{if} \quad j \neq k, n \geq 1,$$

and for any n and j there exists j_0 such that

$$[t_{j0}^{(n+1)}, t_{j1}^{(n+1)}) \times B_{j0}^{(n+1)} \subset [t_{j_0}^{(n)}, t_{j_0}^{(n)}) \times B_{j_0}^{(n)}.$$

Set

$$\begin{split} C_j^{(n)} &= \left\{ (t,y) \, ; \, t_{j0}^{(n)} \leq t < t_{j1}^{(n)}, y \in B_{j0}^{(n)} \, \text{ and } \right. \\ &\left. P_y^0(X_{tji}^{0(n)} - t \in B_{ji}^{(n)}, \ i = 1, 2, \cdots, n_j) > \frac{c}{2} \right\}^{9)}, \\ D_i^{(n)} &= \left[t_{j0}^{(n)}, t_{i1}^{(n)} \right) \times B_{j0}^{(n)} - C_i^{(n)}. \end{split}$$

Then we can see

$$\sum_{j=1}^{k_n} C_j^{(n)} \downarrow$$

and

$$\Psi_r(x; \sum_{j=1}^{k_n} C_j^{(n)}) > \frac{c}{2} > 0.$$

Accordingly there exist (t_0, y_0) and j_n such that

(22)
$$(t_0, y_0) \in C_{j_n}^{(n)}, n = 1, 2, 3, \cdots,$$

which means

⁸⁾ For the set $\{\hat{\omega}; \beta_{\tau}(\hat{\omega}) \leq t\}$, we used the notation $\{\hat{\omega}; 0 \leq \alpha_{\tau}(\hat{\omega}) < t, \hat{\omega}_{1}(\alpha_{\tau}(\hat{\omega})) \in E, \hat{\omega}_{1}(t) \in \phi\}$. The last funny expression $\hat{\omega}_{1}(t) \in \phi$ means $\hat{\omega}_{1}(t)$ is not defined at t.

⁹⁾ If $B = \phi$, $P_x^0(X_t \in B)$ is regarded as $1 - P_x^0(X_t \in E)$.

$$P_{y_0}^{(0)}(X_{t_{j_nt}-t_0}^0 \in B_{j_ni}^{(n)}, i = 1, 2, \cdots, n_{j_n}) > \frac{c}{2} > 0.$$

By the monotonicity of \hat{B}_n , the events in the above parentheses are monotone non-increasing. So we can take ω^0 such that for all $n \ge 1$

(23)
$$X_{t_{j_{-}i}-t_{0}}^{0}(\omega^{0}) \in B_{j_{n}i}^{(n)}, i = 1, 2, 3, \cdots, n_{j_{n}}.$$

If we put

$$\alpha_r(\hat{\omega}) = t_0, \quad \beta_r(\hat{\omega}) = t_0 + \zeta^0(\omega^0), \quad \hat{\omega}_1(t_0) = y_0$$

and

$$\hat{\omega}(t+t_0) = (\omega^0(t), r), \quad 0 \le t < \zeta^0(\omega^0),$$

then (21), (22) and (23) show

$$\bigcap_{n=1}^{\infty} \hat{B}_n \ni \hat{\omega},$$

as was to be proved.

Q.E.D.

Now we return to the process $Y = \{Y_t = (X_t, N_t), \zeta, \mathcal{B}_t, P_{(x,p)}; (x,p) \in S\}$. Since N_t is right continuous, τ_r defined by

$$\tau_r(\omega) = \inf \{t : N_t(\omega) = N_0(\omega) + r\},$$

are \mathcal{B}_t -Markov times. Then we have

LEMMA 3. Let X^0 be a Markov process on E corresponding to the transition function $\chi_0(t,x,\cdot)$. If X^0 is right continuous, Y has a right continuous version and, for this version, we have

(24)
$$P_{(x,p)}(Y_t \in (B, p+r)) = \chi_r(t, x, B),$$

(25)
$$P_{(x,p)}(Y_{\tau_{r+1}} \in (B, p+r+1), \tau_{r+1} \in dt) = \Psi_{r+1}(x; dt, B)$$

 $B \in \mathscr{B}(E), r \ge 0.$

Proof. By (5), (18) and (20), we can see that for $r \ge 1$,

(26)
$$P_{(x,p)}(Y_{t_i} \in (B_i, p+r), i = 1, 2, \dots, n) = \nu_x(\{\hat{\omega}; 0 \leq \alpha_r(\hat{\omega}) < t_1, \hat{\omega}_1(t_i) \in B_i, i = 1, 2, \dots, n\}).$$

Hence $P_{(x,p)}$ defines a measure on the space of sub-trajectories of Y_t in the time interval $[\tau_r, \tau_{r+1}]$ which is equivalent to ν_x . On the other hand,

 $\nu_x(\cdot)$ is a measure on $\widehat{\mathscr{B}}_r$ which is obtained from the sample space of X^0 by shift of starting time point. So we may consider that on the time interval $[\tau_r, \tau_{r+1})$, Y_t has the same continuity property with X^0 . Since $r \ge 1$ is arbitrary, we may regard that the right continuity of X^0 implies the right continuity of Y_t on $[\tau_1, \zeta)$. Evidently Y_t restricted on $[0, \tau_1)$ is equivalent to X^0 , and hence we can have a right continuous version of Y_t . Furthermore, the event in parentheses of left hand side of (25) is measurable if Y_t is right continuous. Then the definition of ν_x and (26) implies

$$\begin{split} P_{(x,p)}(\tau_r(\omega) \in dt, X_{\tau_r}(\omega) \in (B,p+r)) &= \nu_x(\{\omega\,;\,\alpha_r(\omega) \in dt, \omega(\alpha_r) \in B\}) \\ &= \Psi_r(z\,;\,dt,B), \end{split}$$

which proves (25). Since (24) is obtained from (18) we have proved the lemma. Q.E.D.

Now Theorem 1 is proved easily as follows.

Proof of Theorem 1. Since $T_t^{(0)}$ is strongly continuous on $C_0(E)$, by the general theory of Markov processes $X^0 = \{X_t^0, \zeta^0, \mathcal{G}_t^0, P_x^0, \mathcal{G}_t^0, P_x^0, \mathcal{G}_t^0, P_x^0\}$; $x \in E\}$ corresponding to $T_t^{(0)}$ can be considered to be right continuous. Accordingly, by Lemma 3, we may regard Y_t is right continuous.

Now let V_t be the semi-group on $C_0(S)$ induced by Y_t and $g \in C_0(S)^{(1)}$. Then we have

$$V_{t}g(x,p) - g(x,p) = \sum_{r=0}^{\infty} \int_{E} P(t,(x,p),(dy,p+r))g(y,p+r) - g(x,p)$$

$$= \int_{E} \chi_{0}(t,x,dy)g(y,p) - g(x,p)$$

$$+ \sum_{r=1}^{\infty} \int_{E} \chi_{r}(t,x,dy)g(y,p+r).$$

Since g(x,p) belongs to $C_0(S)$, g(x,p) tends to zero uniformly in x as p tends to infinity. Furthermore the assumption on $T_t^{(r)}$ implies

$$\|\sum_{r=1}^{\infty}\int_{E}\chi_{r}(t,x,dy)g(y,p+r)\|\longrightarrow 0 \text{ as } t\longrightarrow 0.$$

Then we can see from (27) and the assumption on $T_t^{(0)}$ that V_t is strongly

¹⁰⁾ cf. [1] Theorem 3.14, p. 104.

¹¹⁾ g(x, n) belongs to $C_0(S)$ if it holds that $g(\cdot, n) \in C_0(E)$ for any fixed $n \in N$ and g(x, n) tends to zero, uniformly in x, when n tends to infinity.

continuous on $C_0(S)$. Therefore we may consider that Y is a right continuous and quasi-left continuous¹²⁾ strong Markov process.

Now let Ω^0 be a sample space of the process X_t^0 , and Ω^i $(i = 1, 2, 3, \cdots)$ be infinitely many copies of Ω^0 . Let us set

$$\widetilde{\Omega} = \prod_{i=0}^{\infty} \Omega^i$$
,

and, for any $\tilde{\omega} = (\omega^0, \omega^1, \cdots, \omega^i, \cdots) \in \tilde{\Omega}$, set

$$\sigma_0(\tilde{\omega}) = 0$$
, $\sigma_r(\tilde{\omega}) = \sum_{i=0}^{r-1} \zeta^0(\omega^i)$, $r \ge 1$,

$$\tilde{X}_t(\tilde{\omega}) = \tilde{\omega}(t) = \omega^r(t - \sum_{i=0}^{r-1} \zeta^0(\omega^i)) \text{ if } \sigma_r(\tilde{\omega}) \leq t < \sigma_{r+1}(\tilde{\omega})^{13},$$

$$\tilde{\zeta}(\tilde{\omega}) = \lim_{r \to \infty} \sigma_r(\tilde{\omega}).$$

Further set

$$\theta_t \tilde{\omega} = (\theta_{t-\sigma_r(\tilde{\omega})} \omega^r, \omega^{r+1}, \cdots) \text{ if } \sigma_r(\tilde{\omega}) \leq t < \sigma_{r+1}(\tilde{\omega}).$$

Then we consider the σ -algebra $\widetilde{\mathscr{B}}_t$ generated by the cylinder sets of the form of

$$\{\tilde{\omega} \in \tilde{\Omega}; \, \tilde{\omega}(t) \in B, \, \sigma_r(\tilde{\omega}) \leq t\}, \, B \in \mathcal{B}(E), \, r \geq 0,$$

and set

$$\widetilde{\mathscr{B}} = \bigvee_{t \geq 0} \widetilde{\mathscr{B}}_t$$
.

If we consider the correspondence of

$$\{\tilde{\omega} \in \tilde{\Omega} : \tilde{\omega}(t) \in B, \sigma_r(\tilde{\omega}) \leq t < \sigma_{r+1}(\tilde{\omega})\}$$

and

$$\{\omega \in \Omega; Y_t(\omega) = (\omega_1(t), \omega_2(t)) \in (B, r), \omega_2(0) = 0\},$$

then it induces the correspondence between $\widetilde{\mathscr{B}}_t$ and \mathscr{F}_t defined by

$$\mathcal{F}_t = \mathcal{B}_t \cap \{\omega \in \Omega; N_0(\omega) = 0\}.$$

So, $\tilde{P}_x(\cdot)$ defined by

$$\tilde{P}_x(\tilde{A}) = P_{(x,0)}(A),$$

¹²⁾ cf. [1] Theorem 3.14, p. 104.

¹³⁾ To define θ_t completely, we have to consider an extra point Δ as a grave of \widetilde{X} and an $\widetilde{\omega}$ such that $\widetilde{\omega}(t) = \Delta$, $t \ge 0$.

where $A \in \mathcal{F}_t$ corresponds to $\tilde{A} \in \tilde{\mathcal{B}}_t$, defines a measure on $\tilde{\mathcal{B}}$. Further, setting $f(x,p) = \tilde{f}(x)$ for any bounded continuous function \tilde{f} on E, we can see that

$$\begin{split} \tilde{E}_x[\tilde{f}(\tilde{X}_t);\,t<\tilde{\zeta}] &= \int_{\mathcal{Q}} \tilde{f}(\tilde{X}_t(\tilde{\omega})) d\tilde{P}_x \\ &= E_{(x,0)}[f(Y_t);\,t<\zeta] \\ &= E_{(x,p)}[f(Y_t);\,t<\zeta]. \end{split}$$

Since, for fixed $B \in \mathcal{B}(E)$, $r \ge 0$, $P_{(x,p)}((X_t, N_t) \in (B, p + r))$ is independent of p, we can see from the above equalities that

$$\begin{split} &\tilde{P}_{x}(\{\tilde{\omega}\in\tilde{\mathcal{Q}}\,;\,\tilde{\omega}(t_{i})\in B_{i}\ \text{ and }\ \sigma_{r_{i}}(\tilde{\omega})\leqq t_{i}<\sigma_{r_{i}+1}(\tilde{\omega})\,;\,i=1,2\})\\ &=P_{(x,0)}(\{\omega\in\mathcal{Q}\,;\,\omega(t_{i})\in(B_{i},r_{i}),\,i=1,2\})\\ &=E_{(x,0)}[P_{(X_{t_{1}},N_{t_{1}})}((X_{t_{2}-t_{1}},N_{t_{2}-t_{1}})\in(B_{2},r_{2}))\,;\,(X_{t_{1}},N_{t_{1}})\in(B_{1},r_{1})]\\ &=E_{(x,0)}[P_{(X_{t_{1}},N_{t_{1}})}((X_{t_{2}-t_{1}},N_{t_{2}-t_{1}})\in(B_{2},r_{2}-r_{1}+N_{t_{1}}))\,;\,(X_{t_{1}},N_{t_{1}})\in(B_{1},r_{1})]\\ &=\tilde{E}_{x}[P_{\tilde{X}_{t_{1}}}(\tilde{X}_{t_{2}-t_{1}}\in B_{2},\sigma_{r_{2}-r_{1}}(\tilde{\omega})\leqq t_{2}-t_{1}<\sigma_{r_{2}-r_{1}+1}(\tilde{\omega}))\,;\\ &\tilde{X}_{t_{1}}\in B_{1},\sigma_{r_{1}}(\tilde{\omega})\leqq t_{1}<\sigma_{r_{1}+1}(\tilde{\omega})], \end{split}$$

which proves the Markov property of \tilde{P}_x . So we have a right continuous Markov Process $\tilde{X} = \{\tilde{X}_t, \tilde{\zeta}, \tilde{\mathscr{B}}_t, \tilde{P}_x; x \in E\}$ on E. Similarly, for a $\tilde{\mathscr{B}}_t$ -Markov time ρ , if we consider a \mathscr{B}_t -Markov time σ of Y defined by

$$\sigma(\omega) = \begin{cases} t, & \text{if } \omega \in A \text{ where } \tilde{A} = \{\tilde{\omega} \in \tilde{\Omega} ; \, \rho(\tilde{\omega}) = t\}, \ t \geq 0 \\ \infty, & \text{if } \omega \in \{\omega \in \Omega; \, N_0(\omega) = 0\}, \end{cases}$$

then we can see that \tilde{X} is strong Markov and quasi-left continuous since Y is. Furthermore, by the definition of $\tilde{\mathcal{B}}_t$, σ_r is a $\tilde{\mathcal{B}}_t$ -Markov time of \tilde{X} and (16), (17) are obtained from Lemma 3 and the definition of \tilde{P}_x . Thus taking \tilde{X} as X, we complete the proof. Q.E.D.

REFERENCES

- [1] E.B. Dynkin: Markov processes, vol. 1. Springer, 1965.
- [2] J.E. Moyal: Discontinuous Markov processes. Acta. Math., vol. 98 (1957), pp. 221-264.
- [3] T. Sirao: On signed branching Markov processes with age. Nagoya Math. Jour., vol. 32 (1968), pp. 155-225.