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ON A UNIQUENESS THEOREM

V. I. GAVRILOV*

1. Let D be the open unit disk and Γ be the unit circle in the

complex plane, and denote by Ω the extended complex plane or the Rie-

mann sphere.

Suppose that f e Γ . By h{ζ,φ) we denote the chord at ζ that makes

the angle φ, — - | - < φ < - | - , with the radius h{ζ9θ) and by Δ{ζ,φl9φ2) the

angle at ζ between the chords h{ζ, φx) and h{ζ, φ2).

If zx and z2 are points in D, the non-Euclidean distance between zx

and z2 will be denoted by σ(zX9z2). For any £0 e D and any ε > 0 we de-

n o t e by D{z09e): [z e D; σ(z,z0) < e}.

Let f{z) be meromorphic in D and p(f{z)) be its spherical derivative,

\f'(z)\Pifiz)) =

For any set S in D we put

3Ji(/,S) = s u p [ ( l - | z | 2 M / U ) ) ] .

A sequence of points {zn}, zn e' D, n — 1, 2, , is said to be a P-

sequence for f(z) if for each ε > 0 and for each subsequence {znv}, the

function f{z) assumes every value on Ω, with at most two exceptions, infi-

nitely often in the union of the disks D{znv,ε)9 v = 1, 2, « (see [6]).

A necessary and sufficient condition for a sequence {zn} to be a P-

sequence for /(a) is the existance of a sequence {εn}, εn>0, n = 1,2, ,

lim εΛ = 0, such that

SJt(/, U f l b w β . ) ) = oo. (1)
n=l

[7].
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For a function f(z) meromorphic in D, a point ζ e Γ, a chord h{ζ, ψ)

at ζ, an angle Δ(ζ,φ1,φ2) at ζ, and a sequence of points {zn}, zn^D, n = l,

2, , with a point of accummulation at ζ, the cluster sets (see [8]) of

f{z) at ζ on h{ζ,φ), Δ{ζ,φl9φ2), {zn} will be denoted respectively, by C(f9ζ9

h(ζ,9)), C(f,ζ,Δ(ζ,9l9φ2)) and C(f9ζ9{zn}); C(f,ζ,D) will stand for the global

cluster set of f(z) at ζ.

A point f G f is said to be a Fatou point of f(z) if the set UC(/,ξ*,J

(£\ 9i> ̂ 2)) consists of a single value β e Ω, where the union is taken over

all angles Δ(ζ, φu φ2) at ζ. The value a is called the angular limit of f(z)

at ζ. If the intersection of cluster sets C{f, ζ, Δ{ζ9 φl9 φ2)) over all angles

Δ{ζ, ψu Ψι) at ζ coincides with Ω, the point ζ is called a Plessner point of

f(z). The point f e Γ is a Meier point of /(z) if for each chord h{ζ,φ)

at Γ we have C(f,ζ,h(ζ,φ)) = C(f,ζ,D) c a

2. Collingwood [3] proved the following generalisation of Lusin-Priva-

lov's theorem.

THEOREM A. Let f(z) be meromorphic in D. If for a fixed φ0, — -~-
Δ

< Ψo < ~w~ 9 there exists a set M of the second category on an arc 7 aΓ such that

C{f,ζ,h{ζ,φo))ψΩ at every f e M and if further, there exists a value a e Ω and

a set N metrically dense on ϊ such that <z e C{f,ζ,h(ζ,φ)) on at least one h(ζ,φ)

at every ξ'GJV, then f{z) = a.

The success in this theorem is achieved because of the ''regular distri-

bution", of the family of chords h(ζ, φ0) at the points f e M . This fact,

that at all points ζ e M the chords h(ζ, φ0) makes a fixed angle with

the radii, leads to the conclusion of existance of a point ζ0 e 7 at which

C(/, ζ0, D) ψ Ω. It in turn means that Fatou's theorem holds on a subarc

70 of 7. The second condition of theorem A implies the existance of a set

iVo, mes No > 0, such that at every ζ e iV0 the function f{z) has the angular

limit a.

A considerably wide extention of Collingwood's theorem has been ob-

tained by E.P. Dolzhenko [5] who considered families of Jordan arcs {Lς}

instead of the family of chords {h(ζ,φ0)}. The characteristic of "regular

distribution" of a family {Lς} is given in [5] in terms of the new notion of

"uniform continuity", so that the family of chords {h(ζ,φ0)} in theorem A

is a particular case of a uniform continuous family.

Moreover, Dolzhenko [5] has constructed an example which shows that
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his theorem is the best in the sense that from its conditions the term

"uniform" cannot be omited. We cite Dolzhenko's example in part and

in a form suitable for us.

THEOREM B. There exists a function fo{z) & 0, holomorphic in D, that pos-

sesses at every point f ε Γ the following properties (i) C(f,ζ, h(ζ,φς)) = {0} on a

some chord h{ζ,φς), (ii) every chord h(ζ,φ), — - 5 - < Ψ <-ττ> contains a sequence

of points {zn}, lim zn = ζ, such that lira σ(zn, zn+1) = 0 and C(f,ζ, {zn}) = {0}.
n->oo n-->co

It follows from theorem B that the conclusion of theorem A is not

valid if the condition C(/, ζ, h(ζ, <p0)) ψ Ω is replaced by the condition

C(f9 ζ, {zn}) ψ Ω even if the sequences {zn} are "thick" enough; for instance

if lim σ{zn, zn+1) = 0.

In a recent paper [1] Bagemihl has constructed a holomorphic function

fo(z) ςέ 0 in D which possesses the property (i) in theorem B and, in addi-

tion, each point f e Γ is a Plessner point of fo(z). It is not known whe-

ther it is possible to choose functions fo(z) and fo(z) so that they tend to oo

arbitrarily slow.

3. In this paper we prove a theorem similar to Collingwood's, which

shows that uniqueness may be achieved not only by the condition of "re-

gular distribution" of a family of chords but also by a definite restriction

on the growth of a function.

We need the following-

LEMMA. Let f(z) be meromorphic in D and suppose f e Γ . If there exists a

chord h(ζ,φ) which contains a sequence of points {zn}, lim zn = ζ9 with the properties

(i) lim σ{zn, zn+ί) = 0, (ii) C(f9ζ, {zn}) ¥= Ω and in an angle J(ζ,φl9φz) such that
W->oo

Ψ\ < Ψ < Ψz we have 9Jί(/, J(ζ, φ19 <p2)) < + °°> then the point ζ is not a Plessner

point of f(z).

Proof Suppose that contrary to hypothesis the point ζ is a Plessner

point of f{z). It follows that for any a e Ω there exists a sequence of

points {scα)}, lim z(

v

α) = ζ on which lim f{z™) = a, and a corresponding se-

quence of points {zv} on h(ζ,φ) such that lim σ(z^\ zv) = 0. In particular it

holds for a value fl$C(/,f,{i5n]). By the condition (i) of lemma, the

sequence {zn} contains a subsequence {znv} for which lim σ{znv, zv) = 0. Hence

we have two sequences {Znu} and {z^} such that lim σ{znu, z^) = 0 and

lim /(zc

v

α)) = « while {/(2ni;)} does not converge to a. By theorem 1 in [6],
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the sequence {zn} is a P-sequence for f{z). This implies (1) which contra-

dicts Tt{f9J(ζ9φlfφt))< + co.

THEOREM 1. Let f{z) be meromorphic in D. If at every point ζ of a set

M of the second category on an arc T c Γ there exists a chord h{ζ, φς) such that it

contains a sequence of points {zn}, Urn zn = ζ, for which (i) lira σ{zn9zn+ί) = 0 (ii)

C(f,ζ,[*n})¥*Ωand (iii) in an angle Δ{ζ, φ\, φ2

ς), - - | - < φ\ < φς < φ\ < -ψ, we

have Ttify d(ζ, φ\, φ2

ς)) < + oo, and if further, there exists a value a e Ω and a set

N metrically dense on T such that <z e C(f,ζ,h(ζ,φ)) on at least one h(ζ,φ) at every

ζ e N, then f(z) = a.

Proof According to Lemma, the set M does not contain Plessner points

of f{z). It follows from Meier's theorem (see, for instance, [4], pp. 153-5)

that M must contain at least one Meier point of f(z), so that the arc 7

contains a subarc ϊQ almost all points of which are Fatou points of f(z).

Hence, the set N contains a subset No, mes No > 0, which consists of Fatou

points of /(z), and the corresponding angular limits of f(z) are equal to a.

Now theorem 1 follows from Lusin-Privalov's theorem.

As an immediate consequence of Plessner's theorem and of our lemma

we obtain

T H E O R E M 2. Let f{z) be meromorphic in D. If at every point ζ of a set

M on Γ, mes M>0, the conditions (i), (ii) and (iii) of theorem 1 are valid and

if in addition, there exists a value a^Ω such that α e C(f,ζ,h(ζ,φ)) on at least

one h(ζ,φ) at every ζ (E M, then f{z) = a.

4. In addition to theorems 1 and 2 we prove

T H E O R E M 3. Let μ(r) be a positive, strictly increasing function on

Urn μ{r) = + oo. There exists a function F{z) meromorphic in D with the proper-

ties: (i) for almost all radii h(ζ,O) we have C(F,ζ,h(ζ,0)) = {0}; (ii) every chord

h{ζ,φ) contains a sequence of points {zn}, limzn = ζ, such that Urn σ{zn, zn+1) = 0

and C{F,ζ, {zn}) = {0} (iii) the inequality (1 - \z\2) p(F(z)) < μ(\z\) holds at

all z e D with \z\ >rQ, 0 < r0 < 1.

Proof We start with the infinite product
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the boundary behaviour of which has been studied by Bagemihl, Erdos and

Seidel [2].

For any sequence of natural numbers {nk} satisfying the condition

lim Hk =00, m> 1, (3)

the product (2) converges absolutely and uniformly on every disk \z\ ^ p,

0 < 9 < 1, and represents, therefore, a holomorphic function in D. If every

zero Zj of g(z) on the circumference \z\ = 1 — — is surrounded by a circle

ΐj of radius —^—, there exists an j 0 > 0 such that the interiors Γj of Tj do

not have common points for all j ^> j 0 . So that the part of D remaining

after removing of Γj9 j^j0, is a domain Δ.

The following properties of g(z) are proved in [2]: (i) for any sequence

of {nk} satisfying (3), the modulus \g{z)\ tends to 00, as | z | - > l , uniformly

in J([2], p. 137); (ii) g{z) possesses the radial limits at almost all points

f = e " e Γ([2], p. 139); (iii) if

then lim \gk{Zk)\ — °°> where zk are zeros of g{z) on | z | = l — — , ft = l,2,

([2], p . 142); (iv) for any μ(r) satisfying the conditions of theorem 3 one can

find a sequence of odd numbers {nk} with nk^k nk-ί9 k = 1, 2, , such

that M{r,g) = max \g(z)\ < μ{r) for all r > r0, 0 < r 0 < l , ([2], p. 141).
\z\ = r

Consider the derivative

g-(z) = -

we have, by the property (iii), that

l i m ( l - \zk\
2)p(g(zk)) = 00.

We want to show that for any μ(r) in the conditions of theorem 3 one

can choose a sequence of odd numbers nk satisfying

( Σ % ) 2 < ^ , nx>l, (4)

such that for the corresponding function g{z) defined by (2)
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(1-W)p(g(z))<μ(\z\) (5)

holds for all z e D, \z\ > r0, 0 < r0 < 1.

For this end, let k be chosen in such a way that

Λ ± (6)l L \ z \ < l

It is obvious that

( 1 - \z\ηP(g(z))^(l- \z\η\g'(z)\^

w | g | * v ~ 1 Π Γl

/iL1
VΊΊ Λ _

The inequality (7) will lead to (5) if we prove that for all z e D, \z\ >r0,

and any sequence {nk} satisfying (4) the estimate

^^ψ<C (8)

is valid with a universal constant C < + oo.

Using (4) and (6) and the obvious inequalities ίl — —— j Hv<4, n1>l9

v= 1, 2, log a: < — (1 — *) for 0 < x < 1; and xe~x < 1 for x > 0, we have

< i β ( i - IsDHfc

< 16 + 8^(1

< 16 + 8c1 + 8c2 Σ ^ r ^ / % i ) < c2 + 8̂ ! fj n e~^< C,
v=k+2 v=k+2

where d = — < + oo and k is sufficiently large, that proves (8).
1__L_

The disks Γj in the definition of the domain Δ may be regarded as

non-Euclidean disks of radii 0 (I/;2) (cf., [7], p. 396). Thus, the parts of a
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chord h{ζ,a) that lie in Δ have the non-Euclidean distances tending to zero

as z approaches the boundary along h(ζ,a).

Taking into account this fact and also the relation p{f{z)) = p{llf{z))

which* is valid for a function f(z) meromorphic in D, we obtain the conclu-

sion of theorem 3 for the function F(z) = llg{z).
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