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A CHARACTERIZATION OF THE

ZASSENHAUS GROUPS
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Introduction

A doubly transitive permutation group © on the set of symbols Ω is

called a Zassenhaus group if % satisfies the following condition: the identity

is the only element leaving three distinct symbols fixed.

The Zassenhaus groups were classified by H. Zassenhaus [14], W. Feit

[3], N. Ito [7], and M. Suzuki [9]. There have been several characteriza-

tions of the Zassenhaus groups. Namely M. Suzuki [10] has proved that if

a non abelian simple group © has a non-trivial partition then @ is iso-

morphic with one of the groups PSL (2, q) or Sz(2Λ). Since each of the

groups PSL (2, q), Sz(2w) has a non-trivial partition, a theorem of Suzuki

characterizes them.

In this paper we shall characterize the Zassenhaus groups as permutation

groups by a property of the centralizer of their involutions.

Let ® be a finite permutation group on a set of n symbols Ω — {I, 2,

• n}. For every i{0^ i ̂ n), we define a subset Ŝ  of ® in the follow-

ing way:

&i={G<E®\G leaves exactly i distinct symbols fixed}.

Clearly each ©̂  is a union of some conjugate classes of ®. In particular

®Λ = iϊ}» A subset &t may be empty for some i. We shall set a follow-

ing condition:

(d) there exists an involution / ( ί ) e (£* such that the centralizer ©®(/(0)

of 7( i) in ® is contained in (£* U {1}.

It is easy to see that every conjugate element / of I(ι) has the same

property as I(i\ As a matter of fact, the linear fractional groups PSL(2, q)

and Suzuki's simple groups Sz(2m) satisfy one of the conditions (c0), (cj or
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(c2). More strongly the above mentioned simple groups satisfy the follow-

ing condition (β€) for i = 0,1 and 2:

(di) for every element A of &i9 the centralizer &&(A) is contained in

<£c U {1}.

Other than PSL(2,#) and Sz(2m), the Mathieu group Tt22 of degree 22

satisfies the condition (ax). If we consider the Mathieu group Wln as a

permutation group of degree 12, then 3Kn satisfies (<z2). It is interesting to

investigate the structure of © satisfying the condition (fl4) for some /. It

seems, however, difficult to treat.

Now we state our result.

THEOREM. Let © be a doubly transitive permutation group on Ω. Let us

assume that © satisfies the condition (cj for some i. Then ® is isomorphic

with one of the groups PSL{2,q) or Sz{2m), or © has a regular normal subgroup.

Remark. There exists a non solvable exactly doubly transitive group

satisfying (d) (see Zassenhaus [15]). Therefore the last statement of the

theorem is necessary even if we assume that G is non solvable.

The proof of the above theorem is divided into two cases;

case (1): i = 0 or 1,

case (2):

In case (1) our aim is to prove that the stabilizer § of a symbol 1 has a

normal subgroup S which is regular on Ω — {1}. After it is proved, the

elementary argument shows that © is a Zassenhaus group. In case (2) we

shall apply an interesting work of N. Iwahori [8] who has investigated the

structure of groups of positive type. In later section we shall recall his

definitions and results. Using a result of N. Iwahori we shall prove that a

Sylow 2-subgroup @ of © is a dihedral group and the centralizer (£©(/) of

a central involution / of @ has an abelian normal 2-complement. By a

theorem of D. Gorenstein-J. Walter [6], we can easily prove our theorem.

Our notation is mostly standard. Denote by (®,Ω) a permutation

group on a set Ω of n symbols {1,2, , ή}. If a subgroup % of ® acts

on a subset Δ of Ω, we denote a permutation group induced by 2t on Δ by

(21J, Δ) or simply by $1Δ. %ά is a homomorphic image of 21. The normalizer

or the centralizer of a subset 1 of © is denoted by 9l©($) or (£©(#) respect-
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ively, or simply by St(X), ®(ϊ) if no confusion seems to occur. The image

of a symbol j by the action of an element G of © is denoted by jG. \Wl\

is the cardinality of a certain set $R. All groups considered are finite.

Proof of Theorem

1. Preliminary Lemmas

First we shall prove two lemmas.

LEMMA 1. Let % be a permutation group satisfying the condition id) for

some i. If all the involutions of % are contained in a single conjugate class, then

involutions are only elements which have transpositions in their cycle decompositions.

Proof. Let A be an element of © whose cycle decomposition contains

a transposition:

= (a,b)

Then A is a 2-singular element. Therefore A is commutative with a cer-

tain involution I which is conjugate to Iω by assumption. If A2 is not the

identity element of ®, then A2 is commutative with / and A2 leaves at

least i + 2 symbols invariant. This is impossible. This follows the lemma.

LEMMA 2. Let % be a doubly transitive permutation group satisfying the con-

dition id) for some i. If all the involutions of % are contained in a single conju-

gate class, then the order of the centralizer ©$(/) of any involution I is equal to

n — /.

Proof Let β{G) denote the number of transpositions in the cycle de-

composition of an element G of ®. Then by a theorem of G. Frobenius

[5] we get a following equality:

Σ β(G)= |®|/2.
Ge ©

By Lemma 1, β{G)>0 if and only if G is an involution of ©. Hence

I®I/I<£(/)| = |®|/2.

On the other hand, since an involution / has n — i/2 transpositions we get

easily

=n~
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2. Case (1): ί = 0 or ί = 1.

Let © be a non-solvable doubly transitive group on Ω satisfying the

condition (d) for / = 0 or i — 1. Assume that % has no regular normal

subgroup. Denote by ξ> the stabilizer of the symbol 1 and by ft the stabi-

lizer of the symbols 1 and 2. Let / be an involution of % which is

conjugate to I{i) where i = 0 or 1. By the double transitivity of © we can

choose / such that a cyclic decomposition of / is (12) . / i s contained

in the normalizer 9Z®(ft) of ft in ©. Therefore / induces an automorphism

of order 2 on ft. By the condition (c0) or (d), / has no fixed element in

ft. Hence ft is an abelian group of odd order. / inverts every element

of ft.

L E M M A 3. If i — 0 or 1, then all the involutions of @ are contained in a

single conjugate class.

Proof. Let ]x and J2 be two involutions of ®. By the double transi-

tivity of &, there exists an element A such that

Ji =

Hence the element B = Jx]\ is contained in a suitable conjugate subgroup

®G of ft. Therefore the order of B is odd. This implies Jx and /£ are

conjugate to each other in ftG. Thus we have proved our lemma.

If i = 1, then by Lemma 3 every involution has the same property as

Iω. Therefore we can choose an involution / which is conjugate to Iω

and leaves the symbol 1 fixed.

LEMMA 4. If i = 1, then φ = (£φ(/)ft. Furthermore, every involution of φ

is written in a form Iκ where K is an element of ft.

Proof. Let Iλ and 72 be two involutions of ξ). Then by Lemma 3

If = 72, G e ®. Therefore i^ha = 1/2 = 1. Hence Λ leaves the symbol

I*'1 fixed. Since It e (£„ I0"1 = 1. Hence G e $. In particular e®(/)c©.

By Lemma 2 and Lemma 3, we have |(£(/)| = w — 1. Since the order of

§ is (w —l) |ft| and ©(/) Π ft = {1} by the condition (d), we conclude

§ = (£(/)• ft. Thus we have proved our lemma.

LEMMA 5. If i = 0 or 1, fΛ«ι [31^(8): ft] = 2.
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Proof. Let Δ be a set of symbols of Ω which are left fixed individually

by every element of St. By a theorem of Witt [13], 3l($t)/$t is considered

as a doubly transitive permutation group on Δ. We can easily prove that

this permutation group is exactly doubly transitive. Therefore we can

conclude that \Δ\ = qs where q is a prime number. Assume q = 2. Then

a Sylow 2-subgroup of 5ft(S) is an elementary abelian 2-group of order 2s.

Since every involution of 9£(S) inverts every element of ffi, we conclude

5 = 1. This implies [9Ϊ(S): S] = 2. Next assume that q is odd. Since

|ξ) Π 9l(Λ)/Λ| = 0* — 1. There exists an involution /j of ξ> which acts on St.

Clearly / = 1 and w = odd in this case. Since $ is an abelian group, all

the involutions of φ act on ® by Lemma 4. Therefore if a Sylow 2-

subgroup of ξ) has at least two involutions, then there exists an involution

/2 which acts trivially on ff, which is impossible by the condition (d).

Thus a Sylow 2-subgroup of § has only one involution. Since n is odd, a

Sylow 2-subgroup of © is isomorphic to that of ξ) and has only one involu-

tion. Hence a Sylow 2-subgroup of % is either cyclic or generalized

quaternion group. Therefore % has a regular normal subgroup (Burnside

[2], Brauer-Suzuki [1], Feit-Thompson [4]). This is impossible. Thus we

have proved our lemma.

LEMMA 6. If i = 0 or 1, then S has a normal complement 2 in ξ>. Namely

$ = S S, S Ω fl = 1.

Proof By Burnside's splitting theorem, it suffices to show that 3l$($tp) =

©<ό(̂ p) = ̂  for every Sylow ^-subgroup ®p of $. For, if so, $ p is a Sylow

39-subgroup of ξ) and it has a normal complement Sp in §. Put Π SP = S.
PII^I

Clearly S is a normal complement of S in ξ). Let i be a set of symbols

of Ω which are left fixed individually by every element of §ip. Let us

assume that | J | ;>3. By a theorem of Witt 5ft©0Sp)
J is a doubly transitive

group on Δ. Since (£®($p) contains S and S leaves just two symbols 1, 2

invariant by Lemma 5, &{®p)
ά is a non-trivial normal subgroup of %l{®p)

ά

of odd order. By the double transitivity of 3t{$tpy9 &{®p)
d is transitive.

Hence |Δ\ is odd. Since ΔJ = Δ, an involution / keeps at least one symbol

unchanged. Hence n — odd and i = 1. The order of the group ξ)Π9l(%)

is divisible by | Δ \ — 1. Therefore ξ) has an involution which acts on $ip.

Hence all the involutions of ξ> act on &p by Lemma 4. This implies that

a Sylow 2-subgroup of ® has only one involution. Hence @ has a regular
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normal subgroup. This is not the case. Hence \J\ — 2. Hence 3l($ip) =

</,ft>. Therefore ^(®p) = ^dSp) = ίϊ. This yields our lemma.

PROPOSITION 1. Let & be a doubly transitive permutation group satisfying

the condition (cj for i = 0 or 1. Then © is isomorphic with one of the groups

PSL (2, q) or Sz(2m), or © has a regular normal subgroup.

Proof. Assume that © has no regular normal subgroup. By Lemma

6, ξ) has a normal subgroup S of order n — 1 which is regular on Ω — {lj .

Therefore © admits a decomposition:

Every element of © — § is uniquely expressed in a form L'KJL where

Z / , L e S , ϋΓeίt. Next we shall show that St is a T.I. set in ©. Since

® is an abelian subgroup, it suffices to show that the centralizer of any

non-identity element of S is equal to ®. Let an element Kx e ® is com-

mutative with an element of © — ξ). Assume KJJKJL — L'KJLKX where

KlfKe Λ, L',L e S. Then Ltκ^KγK]L - L'KKfx]Lκκ By the uniqueness

of expression of an element of © — § we get KλK= KK{~1. This implies

/Γj = 1, since $ is an abelian group of odd order. If Kx is commutative

with an element L of S, then K/ is commutative with LJ e © — ξ>. This

is impossible by the above fact. Therefore $ is a T.I. set in ©. Let us

assume that an element A ψ 1 of $ keeps at least three distinct symbols,

say 1, 2, 3, unchanged. Then 4 e 8 ί l F where 1* = 1,2H = 3. Therefore

$ = $# a n c j $ keeps 1, 2, 3 invariant. By Lemma 3, this is impossible.

Therefore © is a Zassenhaus group. Since © has only one class of involu-

tions and the order of any involution of @ is \Ω\ or \Ω\ — 1, we get

easily our proposition.

3. Case (2):

First we shall recall a result of N. Iwahori [8].

Let © be a permutation group on Wt. We call 3# a ©-space. Define

a subset Wlβ(G e ®) of 501 as follows.

DEFINITION 1. A permutation groups @ on ffll is of type k if the fol-

lowing two conditions are satisfied;

(i) \WIG\ - k, for every non identity element G e ®,
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(ii) Π %Jlβ = φ, where φ denotes the empty set.

N. Iwahori's main result is the following theorem.

THEOREM. If ® admits a %-space Wl of type 2, then © is isomorphic to one

of the following groups:

(i) Λ4: the alternating group of degree 4,

(ii) SA: the symmetric group of degree 4,

(iii) 2Ϊ5: the alternating group of degree 5 or

(iv) a generalized dihedral group with dihedral Sylow 2-subgroups.

Here a generalized dihedral group is defined as follows. Let 21 be an

abelian group and τ be an automorphism of % such that if A e %, then

Aτ = A~\ where Aτ denotes the image of A by τ. Under these conditions,

holomorph of 2ί by τ is called a generalized dihedral group.

In order to prove his theorem, N. Iwahori has proved several lemmas.

We shall quote one of them here.

LEMMA 7 [Lemma 1. 3 in [8]). Let % be a finite group and Wl a %-space

of type k > 0. Let A and B be elements in % — {1} of orders a and b respect-

ively. Assume that

(i) AB = BA, and

(ii) aψb or a-bψprime.

Then TlA = mB.

Now we shall apply his argument to our case. Let ® be a non solv-

able doubly transitive group on Ω satisfying the condition (cj for / :> 2.

As in section 2, let us denote the stabilizer of the symbol 1 by § and the

stabilizer of two symbols 1 and 2 by S. / is an involution of & which

is conjugate to I(ι\ We can choose / such that a cyclic decomposition of

/ is (12) . In the rest of this paper we shall use the notation / instead

of / ( ί ).

LEMMA 8. The centralizer ©(/) of I admits a &{I)-space of positive type.

Proof. We may assume that / leaves i symbols, say 1,2, , i invariant.

If (£(/) does not admit a (£(/)-space of positive type, then by the condition

(Ci) every element A^=l of (£(/) leaves just i symbols 1,2, , i invariant.
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Clearly every conjugate subgroup of ©(/) does not also admit a (£(/)-space

of positive type. Therefore if (£(F) Π &(/) >{1} then every element of $(I°)

leaves just i symbols 1,2, , i, invariant. Let ^ 2 be a Sylow 2-subgroup

of $ which is non-trivial by the condition (ci){i'^2). Since / acts on $,

we may assume §t{ = S2 Put @ = </,^ 2>. Then there exists an involu-

tion Ix of ^ 2 which is conjugate to / and <£(/) Π ©(/j) 3 S(@) >{1}. Thus

every element of ©(/) leaves 1, 2, invariant. In particular / leaves 1,2 in-

variant. This is impossible, since / has a cyclic decomposition (12) .

Thus we have proved our lemma.

LEMMA 9. (£(/) is an elementary abelian 2-group or a generalized dihedral

group.

Proof. Since (£(/) admits a (£(/)-space of positive type, we may apply

Lemma 7. Assume that ©(/) is not an elementary abelian 2-group. Let

31 be a (normal) subgroup of ©(/) which is generated by all non-involutions

of ©(/). By Lemma 7, every element of 3Ϊ leaves 1,2, i fixed. This

implies that 3Ϊ is a proper subgroup of (£(/). If 4̂ is an element of (£(/)—9Ϊ,

then ,42 = 1. Therefore (ΛΛO2 = 1 for N e 31. Hence i " W i = ΛT1. Hence

31 is an abelian subgroup of ©(/). If 5 is another element of ©(/) — 3ί,

then B2 = 1 and the element AJ5 centralizes 31. Hence A Ξ 5 (mod 31).

This implies that [(£(/): 31] = 2. This follows our lemma.

LEMMA 10. If (£(/) w woί an elementary abelian 2-group, then ©(/) admits

a &{I)-space of type 2.

Proof. Let Γ be a subset of {1,2, , i} consisting of elements left

fixed by every element of <£(/). Put Δ = {1,2, , i} — Γ. Since ©(/)

admits a ®(/)-space of positive type, we have \Δ\ = f c ^ l . Let r be the

number of orbits of <£(/) on Ω-Γ = m. Then

(Wielandt [13] p. 8 Ex. 3. 10).

Hence

iff-mi _ \Wl\ -k _ n-(i~k)-k _ n- i ^ _ .
I Vϋ/1 1 J I — = — j — ^ — _̂ =a I/I ί ,

r — fc r — fc r — k~

On the other hand, using a equality of Frobenius 2 β(G) = I® 1/2 we get
G ε ©
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_ 1 J
|©(7)|

Hence | © ( 7 ) | > : n - f . Hence |©(/)| = «-f, r = fc + l and |3K| - |©(7)| + &.

Since ©(7) has a normal subgroup 31 of index 2 which leaves all the

symbols of Δ fixed, J decomposes into k/2 orbits of ©(7). Since by the

condition (d) any element of 9? has no fixed symbols on Wl — Δ each of the

remaining orbits of ©(7) oΐ Wl — Δ has length at least |©(7)|/2 hence exactly

I K(/)|/2. Therefore we have the following equality.

Hence k — 2. Thus we have proved our lemma.

LEMMA 11. All the involutions of @ are contained in a single conjugate class.

Proof. In the proof of Lemma 10, we have proved the equality |©(7)|

= n — i. This relation also holds when ©(7) is an elementary abelian 2-

group, because in proving the equality |©(7)| - n — i we have used only the

fact that ]©(7) I admits a ©(7)-space of positive type. Using a equality

Σβ(G) = — 1@IJ we can easily prove that there exists no involution which

is not conjugate to 7.

PROPOSITION 2. Let % be a doubly transitive permutation group satisfying

the condition (cj for i >2. Then i — 2 and % is isomorphic to one of the groups

PSL (2, q) where q is a power of a certain odd prime, or @ has a regular normal

subgroup.

Proof If ©(7) is an elementary abelian 2-group, then by Lemma 11,

© is a (CIT)-group (Suzuki [11]). If @ has a non trivial solvable normal

subgroup, then @ has a regular normal subgroup dl. Assume that @ has

no regular normal subgroup. By Theorem 5 of Suzuki [11] and the main

theorem of Suzuki [9], ® is isomorphic to one of the following groups: LF(2,2ct),

Sz{2β), PSL (2,g), PSL (3,4) or M> (This is a group of order 9-8-7 = 720,

which is the protective group of one variable over the near-filed of 9 ele-

ments; Zassenhaus [14]). Since @ is a (CIT) group, in the above mentioned

groups only PSL (2,2α) has elementary abelian 2-Sylow subgroups. If PSL (2,4)

= PSL (2,5) is considered as permutation group of degree 6, PSL (2,5)

satisfies the condition (c2). If 2 α >4, the group PSL(2,2α) does not
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satisfy the condition (c<) for i^2. Therefore @ = PSL (2,5). Next let us

assume that ©(/) is not an elementary abelian 2-group. By Lemma 10 and

by a theorem of N. Iwahori, (£(/) is a generalized dihedral group with

dihedral Sylow 2-subgroups. Since / is a central involution of a certain

Sylow 2-subgroup % of @ by Lemma 11, % is a dihedral group. Since ©(/)

has a abelian normal 2-complement by a theorem of D. Gorenstein-J.

Walter \6], © is isomorphic to one of the following groups: PSL(2,q),

PGL(2, q) where q is a power of an odd prime, or $ 7 the alternating group

of degree 7. Here we used the fact that ® has not a solvable normal

subgroup and that a group of odd order is solvable (W. Feit-J. Thompson

[4]). On the other hand the group PGL (2, q) {q is odd) has two conjugate

classes consisting of involutions. The group $t7 does not satisfy (cj, because

$ϊ7 has one class of involutions and a involution (12)(34) is commutative

with (1324)(56). Hence © s PSL (2, q) {q is odd).

Combining Proposition 1 and Proposition 2 we have our main theorem

stated in the introduction.

Remark. Recently M. Suzuki [12] has proved the following result.

THEOREM. Let & be a finite group. Suppose that & contains a subgroup §

which satisfies the following two conditions:

(1) § is a generalized dihedral group, and

(2) § = ©($}(/) for any involution J of the center of § .

Then, if & is not solvable, ® contains a normal subgroup 31 such that the order

of 31 is either odd or twise an odd number, and that ®/5B = PSL (2, q) or PGL (2, q)

for some prime power q>3.

If we use this theorem, our proof in case (ii) become rather short.

REFERENCES

[ 1 ] Brauer, R. and Suzuki, M., On finite groups of even order whose 2-Sylow group is a
quaternion group, Proc. Nat. Acad. Sci., Vol. 45, (1959), pp. 1757-1759.

[2 ] Burnside, W., Theory of groups of finite order, Cambridge Univ. Press, (1911) (Second
edition).

[ 3 ] Feit, W., On a class of doubly transitive permutation groups, 111. J. Math., Vol. 4,
(1960), pp. 170-186.

[ 4 ] Feit, W. and Thompson, J.G., Solvability of groups of odd order, Pac. J. of Math.,
Vol. 13, pp. 775-1028.



ZASSENHAUS GROUPS 127

[ 5 ] Frobenius, G., Uber die Charactere der mehrfach transitiven Gruppen, S.B. Preuss.
Akad. Wiss. 1904.

[ 6 ] Gorenstein, D. and Walter, J., On finite groups with dihedral Sylow 2-subgroups,
111. J. Math., Vol. 6, (1962), pp. 553-593.

[ 7 ] Ito, N., On a class of doubly transitive permutation groups, 111. J. Math., Vol. 6, (1962),
pp. 341-352.

[ 8 ] Iwahori, N., On a property of a finite group, J. of Faculty of Sci., Univ. of Tokyo, Vol.
11, (1964), pp. 47-64.

[ 9 ] Suzuki, M., On a class of doubly transitive groups, Ann. of Math., Vol. 75, (1962),
pp. 105-145.

[10] Suzuki, M., On a finite group with a partition. Arch. Math., Vol. 7, (1961), pp. 241-254.
[11] Suzuki, M., Finite groups with nilpotent centralizers, Trans. Amer. Math. Soc, Vol.

99, (1961), pp. 425-470.
[12] Suzuki, M., A characterization of the simple groups PSL(2, q), Jour, of Math. Soc.

of Japan, Vol. 20, (1968), pp. 342-349.
[13] Wielandt, H., Finite permutation groups, Academic Press, New York, 1964.
[14] Zassenhaus, H., Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen,

Hamb. Abh. Vol. 11, (1936), pp. 17-40.
[15] Zassenhaus, H., Uber endliche Fastkόrper, Hamb. Abh., Vol. 11, (1936), pp. 187-220.

Nagoya University.






