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Summary. QF-3 algebras R are classified according to their second

commutator algebras Rf with respect to the minimal faithful module, which

satisfy dom.dim. Rf^2. The class C{S) of all QF-3 algebras whose second

commutator is S, contains besides S only algebras R with dom.dim. R = 1.

C(S) contains a unique (up to isomorphism) minimal algebra which can be

represented as a subalgebra SQ of S describable in terms of the structure of

S, and C(S) consists just of the algebras So c R c S (up to isomorphism). A

criterion for SQ ψ S and various examples are given. Finally it is shown that

the injective hull of S (as left-, right- or bimodule) is at the same time the

injective hull for every R e C{S). This result sheds some light on the fact

that dom.dim. S ^ 2 while dom. dim. R = 1 for all R e C(S), R=^S : We

prove that no composition-factor of the i?-module R' / R is isomorphic to an

ideal.

The classes C{R). We consider finite-dimensional algebras R with unit

over a field K and unitary finitely generated i?-modules. QF-3 algebras are

characterized by the existence of a minimal faithful right-module X which

is (unique up to isomorphism and) a direct summand in every faithful

module. X is projective-injective and the sum of the isomorphism-types of

dominant1) right-ideals, hence itself a right-ideal generated by an idempotent:

XR = eRR. The X-dual X* of X is the minimal faithful left-module:

RX*^RRf. With every QF-3 algebra R one associates the second com-

mutator R' of the minimal faithful (right-)module X, which is again a

QF-3 algebra and contains J? as a subalgebra, with the same unit, in a

natural way: 1 e R c R'. The second commutator of the minimal faithful

left-module RX* is isomorphic to Rf, over R. Minimal faithful /^'-modules

are R'f^Rf, eR' = eR. (cf. Thrall [6], Morita [3], Tachikawa [5])

The following dominant dimension is introduced for every algebra R :
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χ) A dominant right-ideal is an ideal exR generated by a primitive idempotent el9 which

is injective.
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dom.dim. R^n if there exists an exact sequence 0 -> R -» Xx -> -> Xn of

projective-injective modules Xt. It was shown in [4] that the three such

dimensions obtained by using left-modules, right-modules or bimodules coin-

cide. QF-3 algebras are characterized by dom.dim. R ^ 1. The following

are equivalent for any QF-3 algebra R: R == R' dom.dim. R^ 2; R is the

endomorphism-ring of a finitely generated fully faithful module2). Hence the

inclusion R c Rf embedds every QF-3 algebra R into an algebra Rf with

dom.dim. Rr ^ 2, and the embedding is proper if and only if dom.dim. R = l.

This observation suggests the following classification:

DEFINITION. For any algebra R with dom.dim. R^2, let C(R) denote the

class of all QF-3 algebras S such that Sf = R.

THEOREM 1. An algebra R belongs to C{R) if and only if it is isomorphic

to a subalgebra Rx of R that contains the unit 1 and suitable minimal faithful ideals

eR, Rf of R.

Proof. Morita ([3], Theorem 17.3) has shown that any Rx satisfying

those conditions is QF-3 and that eR = eRx, Rf = RJ are its minimal faithful

modules. Hence

Endo (eR1Rl) = eRte = eRe = Endo (eRB)

and

R= R' = Endo (eReeR) = Endo {eR^eRJ = R[, proving R, e C{R). (We remark

for later application (proof of theorem 8) that this identification of R and

R[ is compatible with the embeddings of R1 into R and R[. For R1 c R[ =

Endo (eRteβRi) by i?j a rλ -> (x -> xrx) e Endo {eR^eR^ and R = Endo {eReeR) by

i?9r->(ιr->a;r)E Endo {eReeR), thus Rt a R = Endo {eReeR) again by i?j B ^

^(tf-^ccrj) e Endo {eReeR).) Conversely, another result by Morita (Theorem

17.5) says that any QF-3 algebra S, as subalgebra of S', contains suitable

minimal faithful ideals eS', Sff of S'.

DEFINITION. For any algebra R with dom.dim. R>,2, let CQ{R) denote the

set of all subalgebras R1 of R containing the unit 1 and suitable minimal faithful

ideals eR, Rf of R.

2) A module ^X is fully faithful if it contains every indecomposable injective or projective
module as a direct summand (X is a generator-cogenerator).
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COROLLARY 2. C(R) and CQ{R) contain the same isomorphism-types of algebras.

R, e CQ{R), i?i c R2cz R implies R2 e CQ(R).

Because of these facts it is of particular interest to characterize the minimal

algebras in CQ{R).

DEFINITION. For any QF-3 algebra R, a pair of idempotents e, f will be

called properly chosen if

(1) eR, Rf are minimal faithful modules,

(2) ef = fe (this implies that ef is again an idempotent),

(3) the number k in a decomposition ef = ei + + ek into indecomposable ortho-

gonal idempotents βi is minimal [compared to all other pairs e', fr satisfying (1) and

(2). For fixed ef, k is obviously the same for each such decomposition).

The set of primitive idempotents of any algebra R falls into finitely

many isomorphism-classes Eλ, . . . , En where two primitive idempotents eiy

βj are called isomorphic if they generate isomorphic right- (equivalent left-)

ideals. Every decomposition of the unit 1 into primitive orthogonal idempo-

tents can be written as 1 = Σ Σ eijt where e£y. <Ξ Ei and the numbers nt
i = 1 ji == 1

are the same for any such decomposition. Given two decompositions

— V

there exists an inner automorphism of R, generated by an invertible element

x G R, that maps βij. onto efj. : xe^ x~ι = e*jx.

LEMMA 3. A pair of idempotents e, f is properly chosen if and only if it is
n Ήι

of the form e — 2 en > / = Σ ^int > where 1 = Σ Σ βijt ^ a decomposition
i (= I i e / i = 1 ji = 1

into primitive orthogonal idempotents and the sets I, J c {1, . . . , n} characterize those

classes Et that generate dominant right-, left-ideals.

Proof. Suppose that e, f are properly chosen. ef = fe implies that

e — ef, f — ef, ef, 1 — e — / + ef constitute a decomposition of 1 into

orthogonal idempotents which can be refined to a decomposition into primi-
n Yii

tive orthogonal idempotents 1 = Σ Σ βijt A suitable adjustment of the
* l j 1* = l ji - 1

second index u gives e — Σ en and / = Σ £**• > hence ef = Σ 0»i The
i e / i e / i e l n j

minimality-requirement (3) implies kiφl whenever possible, that is for w* > 1 .
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Therefore the minimal k in (3) is the number of elements i e / c / with

Πi = 1, and a further adjustment of the second index leads to / =

Conversely any pair e, f of this type satisfies (l)and(2): ef — Σ en=fe,
ϊ e / n /

and this decomposition has the minimal number of summands, so (3) holds

and e, f are properly chosen.

THEOREM 4. Any two minimal sub algebras in C0(R) are isomorphic under an

inner automorphism of R. A sub algebra RQ of R is minimal in C0{R) if and only

if it is of the form RQ = K + eR + Rf + RfeR where e, f are properly chosen

idempoίents of R.

Proof Let Ro be a minimal algebra in C0{R). By definition of CQ{R)

there exist minimal faithful ideals eR, Rf of R, contained in RQ; further

the unit 1 of R lies in RQ. Hence RQ z> K + eR + Rf + RfeR, and as this

is an algebra in C0(R) too, Ro — K + eR + Rf + RfeR because of the mini-

mality of Ro.

We shall show that e,f can be replaced by a properly chosen pair.

Refine 1 = e + (1 — e) and 1 = / + (1 — /) to decompositions into primitive

orthogonal idempotents l = e1 + + eΪΛ = / 1 + + /TO of RQ. We get

an inner automorphism of RQ: xfiX"1 = e*; x, x"1 e RQ. Set fr = xfx"1 e Ro,

then ef=fe. Observe that

Rf a rf-ϊrfx-1 = rx~ιf e i?/7

is a /^-isomorphism, thus i?/7 is a minimal faithful module for R. Further

Ro =) # 0 / ' = Rtχfχ-ι = ieo/α;-1 = tf/αr1 = Z?/7 hence K+eR + Rf + RfeR c Z?o

and consequently K + eR + Rf + RfeR = Ro.

e9 f may still not satisfy (3). But as before, the orthogonal idempotents

e - ef, f -ef, ef, l-e-f-ef can be refined in R to 1 = Σ Σ eiJt

with β = Σ 0£i > / 7 = Σ eilc. . The second index can be adjusted such that

Aΐ = 1 or = Wi, and fc£ T^ W« for ί e / c / at most. There exists an inner

automorphism of R interchanging eix and ein. for ί e / c / , hiΨ ni and

leaving all other 0,7, fixed: $ίn< = zβnz'1. Replacing / 7 by / " = Σ îni =

zfz~ι we get i2i?//; = RRf and / ' ^ = ef" so that e, / / 7 are properly chosen.

Finally Reint = Rzeixz'1 = ^a^"" 1 c RfeR for fe ̂  n< hence K + eR + Rf" +
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RfeR c J?o and therefore K + eR + Rf" + Z?/'^/? = Rΰ, proving that every

minimal algebra in C0(i?) is of the form stated in the theorem.

From Lemma 3 it is obvious that whenever e, f and e*, f* are two

properly chosen pairs of idempotents of R, then there exists an inner auto-

morphism of R mapping e onto e* and / onto /*. That completes the

proof of the theorem.

DEFINITION. For any QF-3 algebra R with dom.dim. R>,2 and any particular

minimal subalgebra RQ in CQ(R), let C{R; RQ) denote the set of all algebras Rλ with

RQd R1c R.

COROLLARY 5. C{R; RQ) and C{R) contain the same isomorphism-types of

algebras.

Proof Any 5 e C(R) is isomorphic to some Rλ e CQ{R) which contains

a^minimal subalgebra R1Q. R1Q is isomorphic to RQ by an inner auto-

morphism of R which carries Rx into an algebra R2 in C(R\ i?0)

REMARKS. We collect a few additional (obvious) facts about C{R).

(i) The (up to isomorphism unique) minimal algebra RQ in C{R) is

characterized by the fact that its vector-space-dimension over K is minimal

among the algebras in C{R).

(ii) R is characterized in C{R) by having maximal if-dimension.

(iii) While dom.dim. R>2, we have dom.dim. S = 1 for all S e C{R)

that are not isomorphic to R.

(iv) If a QF-3 algebra is a ring-direct sum R = Rx® R2, then so is

Rf = R\ © R'2. On the other hand if Rf = St ® S2, then R need not de-

compose accordingly.

(v) For any QF-3 algebra R a minimal algebra RQ in C(R') can be

constructed directly as RQ = K + eR + Rf + RfeR where e, f is any properly

chosen pair of idempotents in R.

This may not be quite obvious: Since there exists a minimal subalgebra

Rΰ - K + eR' + Rff + Rf feRf c R with suitable properly chosen idempotents

e, / o f Rf, we get RQ - K + eR + Rf + RfeR and e, f e R . R'f=Rf,

eRr — eR are minimal faithful ideals for R as well as for Rr. A decompo-

sition ef=eί-\-' + ek into primitive orthogonal idempotents in Rf always

lies in R, hence constitutes such a decomposition with respect to R; and
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vice versa. Suppose k be not minimal for R; then the isomorphism-type of

at least one eiy say el9 appears more than once in a decomposition of 1 in

R, and we have exRR^ e[RR, exe\ = 0. We get an inner automorphism of

R that interchanges ex and e\ and leads to a Rr-isomorphism e1 R
f = e[R',

contrary to the assumption that e, f be properly chosen in Rr. Thus e, f

automatically are properly chosen with respect to R. —Any other properly

chosen pair e*, /* in R can be mapped onto e, f by an inner automorphism

of R and leads to an algebra K + e*R + Rf* + Rf*e*R isomorphic to RQ.

We want to derive a criterion for R = RQ. For properly chosen idem-

potents e> f in R we set ef = d, e — ef = e', f — ef=f, 1 — e — f + ef = ε.

Then evaluation of (d + e' + fr + ε) R {d + ef + f + e) = R = Ro = K + e'R +

Rf + RdR yields the necessary and sufficient condition f'Ref + f'Rε + εRef

+ εRε = f'RdRe' + f'RdRε + εRdRef + εRdRε + Kε, which may be split into

the four conditions f'Re' = f'RdRe', f'Rε = f'RdRε , εRe' = εRdRe', εRε =

εRdRε + Kε. By construction of d — ef, the isomorphism-types of the

idempotents in d are different from those in e',f and © hence there doesn't

exist any epimorphism of dRR onto a direct summand of e'R, f'R or εi?;

consequently the image of every homomorphism of dR into these modules

lies in e'N, f'N, εN (N being the radical of R) and we get e'Rd = e'Nd,

f'Rd = f'Nd, e/?ί/ = εNd. Correspondingly dRef = îV^7, rfi?/' = dNf ,

ί/i?ε = rfiVε hold; and the above four conditions imply f'Re' = f'NdNe' =

f'N2e', f'Rε = f'NdNε = f'N2ε , εRe' = εNdNe' = εN2e', εRε = εNdNε + Kε =

εN2ε + Kε. Then e'R, f'R cannot contain isomorphic direct summands

since that would lead to a map e'R -> f'R the image of which wouldn't

even be contained in f'N, hence to an element in f'Re', not in f'Ne'.

Similarly εR, f'R and e'R, εR cannot have isomorphic direct summands.

Finally εR cannot decompose directly, since ε = εt + ε2 (orthogonal idempo-

tents) and εRε = εiV2ε + Kε yields εx = x + kε , x ^ N2; hence either k = 0,

ε1 ^ N2, ελ = 0 or k ψ 0 , 0 = tfε2 + &ε2, ε2 <Ξ TV2, ε2 = 0 .

Summarizing: We have shown that R — RQ implies that R is self basic

and that ε is either primitive or zero. Therefore εRε is local and has

radical εiVε; and the condition εRε — εNdNε + Kε gives εNdNε = εiVε and

εRε I εNε ~ K if ε ψ 0 .

Thus we have proved one direction of the following

THEOREM 6. A QF-3 algebra R is minimal in C(R') if and only if
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(1) R is selfbasic,

(2) there exists at most one type of idempotents ε such that Rε> εR both are

not dominant,

(3) f'Re' = f'NdNe' f'Re = f'NdNε , εRer = εNdNe', εNε = εΛfaWe ,

εRε I εNε^K {if ε exists); where d (e',f) is the sum of those idempotents et of a

decomposition into primitive orthogonal idempotents 1 = e1 + + en for which Reiy

βiR are both dominant (eiR but not Ret is dominant; Re{ but not e{R is dominant).

Conversely these conditions (1) to (3) immediately lead back to the for-

mer conditions for R = RQ. This completes the proof.

REMARKS, (i) We are particularly interested in the case dom.dim. i?ϊ>2.

Here the conditions of the theorem characterize those R for which C{R) is

trivial (to say it contains the isomorphism-type of R only).

(ii) Applied to RQ itself the theorem describes properties of the minimal

algebras in the classes C(R).

(iii) The conditions can be simplified in certain cases, e.g.: If NdN=0

(in particular if d = 0, which for dom.dim. R^2, hence R = Endo {AX)

means that A doesn't have any dominant ideals; or if N2 = 0) they reduce

to f'Re' = f'Re = εRe' = 0, εRε = Kε . If e' = f = 0 (for dom.dim. R ^ 2

this means that A is Frobenius) they reduce to εNε — εN{l — ε)Nε,

εRe

EXAMPLES. The following remarks are obtained by specializing results

of Harada [1] for semi-primary rings to our case of algebras; but easy direct

proofs could be given as well. R denotes a QF-3 algebra, A its endomorphism-

ring and R' its second commutator, both with respect to the minimal faith-

ful module.

(i) These three statements are equivalent: R' is semi-simple; A is semi-

simple; the socle of R is projective. Then, if exR, . . . , ekR represent the

different types of dominant ideals, the ZX*) = βiRβi are division-rings and we
k k

have A = © ZX*), R' = © ZX*) (ring-direct sum of n^ X rii-matrix-rings over

the ZX*)) where ni = ZXf)-dim etR.

(ii) Equivalent: R' is simple; A = D is a division-ring; there exists

only one dominant type eR and the unique minimal subideal of eR is pro-

jective. Then D = eRe and R' — Dn where n = D-dim eR . The minimal
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n n n — 1

subalgebra Rϋ in C(Dn) is RQ — Σ D clk -f Σ D cin -f i^ί 2 Oi) ? observe
A = l / = 2 7 = 2

R*ψ Dn for n > 1.

(iii) i?' is simple for every indecomposable hereditary QF-3 algebra R

(Mochizuki [2]). Actually R e C{Dn) is hereditary if and only if (up to

isomorphism) Tncz R c Dn where Tn denotes the algebra of (upper) triangular

matrices. Any such R is of the form

JΛ. — ( Un\ Dnχtn^ ±Jnink

0 Dn2 * * ' Dnznk

0 0 Dnk

Injective hulls. LEMMA 7. Let S be a QF-3 algebra, M a S'-{leβ-)

module hence a S-module, and M a S-submodule of M such that SfM = M.

Suppose that all simple Sf-submodules of M are isomorphic to ideals. Then the

Sf-injective hull H' of M {considered as S-module) is the S-injective hull of M.

Proof Consider any simple S'-submodule Γ of M. Γ being isomorphic

to a S'-ideal and Sf being QF-3, we get a S'-monomorphism of Γ into a

minimal faithful ideal S'f = Sf which yields an epimorphism eS = eSr

- S'f* -> /'* . Hence I'*e ψ 0 and eV Φ 0. But eM = eS'M = eSM c M, con-

sequently O ^ ^ c / ' ί l M and Γ n M ^ 0. Furthermore the 5;-injective hull

/^(/O of 77 is isomorphic to some S'fx = Sflt f = Λ + hence #'(/')

has a unique minimal submodule I when considered as S-module. We get

/ c Γ Π M c M and SΊ = Γ since S7/ is a Sx-submodule of the simple S'-

module 77. The S-injective hull of /, being isomorphic to Sfu is isomorphic

to H'(P) as S-module.
n

Let © Γk be the S'-socle of M. As we have seen, each Γk contains
k « 1

a unique simple S-submodule 7fc and the S'-injective hull H' of M', being

the direct sum of the S-injective hulls Hf(Γk) of the Γk, is isomorphic to

the S-injective hull of © Ik as S-module. Since © Ik is semi-simple and is

contained in M, it is in the socle of M: socle (M) = © lk ® J. Thus the

S-injective hull of M is isomorphic to the direct sum of W and the S-injective

hull H(J) of /, as S-module. On the other hand M c M c Hf and the fact

that H! is S-injective imply that the S-injective hull of M is contained in

Ή! hence a K-vector-space-dimension argument yields H(J) — 0 and the

assertion of the lemma.
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THEOREM 8. Let R be a QF-3 algebra. Then the Rf-injective hull Hf of

Rf is the R-injective hull of R when considered as R-module, where all modules are

either left-, right- or bimodules.

Proof Applying Lemma 7 to S = R, M- R, M = Rr we get the result

for left-modules. A similar argument holds for right-modules.

Considering bimodules, to say modules over the enveloping algebra

Re = R®κR\ we show that {Re)f can be identified with {R'Y by an iso-

morphism which carries Re as (natural) subalgebra of (ReY into Re as sub-

algebra of (R'Y determined by R as (natural) subalgebra of R'. Observe

dom.dim. (R'Y = dom.dim. R' |Ξ> 2 (Mueller [4], Lemma 6). We have

l(x)l0 <Ξ Re a (R'Y; and the (R'Y-Mt- resp. right-modules R'f(g)(eR')\

eR' (x) (R'f)0 where R'f = Rf, eR' = eR are minimal faithful i?'- and i?-ideals5

are projective-injective-faithful. We have R'f (x) (eR')° = i?/ (x) (g7?)°,

έ?Λ' (x) (#'/)° = eR® (Rf)° c i?e; hence Theorem 1 yields Re e C((i?')e), to say

(j?')e ^ (/?e)' 3 and this isomorphism carries Re as subalgebra of (R'Y into Re

as subalgebra of (i?e)', as indicated above (cf. the proof of Theorem 1).

Now choose S = R\ S' = (RJ = (R'Y; M=R, M = R'. We get S'M^

(J?0e^ = R/RRf==: Rr = Mr and a simple (i?Oe-submodule of i?r — a simple two-

sided iv^-ideal — is isomorphic to a (Z^-ideal since the QF-3 algebra R'

can be embedded as (i?/)e"inodule into a projective module. Thus Lemma 7

yields the desired result in this case too.

Mochizuki [2] observed that for hereditary QF-3 algebras R (where R'

is semi-simple), R' itself is the injective hull of RR and RR. We see that

this phenomenon is rather exceptional:

COROLLARY 9. R' is the injective hull of R as left- and j or right-R-module

if and only if R' is quasi-Frobenius. R' is the injective hull of R as R-R-bimodule

if and only if R' is separable.

Theorem 8 allows the construction of the following diagram of left-, right-

or bimodules:

0 0

0 > R — > H'

I
o
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where all rows and columns are exact, the bottom row contains Rf-

homomorphisms while all other maps are ivMiomomorphisms where Ή!, Xr

2,

. . . , X'n are i^-injective-projective and therefore also i?-injective-projective;

where 2 ̂  n — dom.dim. R' ^ oo and where the top row cannot be extended

further by i?-injective-projective modules if Rψ Rr. Hence the socle of the

i?-module H' / R must contain a simple module non-isomorphic to an ideal

while the socle of Hf / Rf as R'~ or i?-module contains only simple modules

isomorphic to ideals (cf. [4], proof of Lemma 7). Consequently since Hr \ R!

= H'\R I R'\R as i?-modules, socle {R1 \ R) has to contain a simple UN-module

non-isomorphic to an ideal. We show the following stronger fact:

THEOREM 10. Let R be a QF-3 algebra. Then all composition-factors of

Rr IR as R-left-, right- or bimodule, are not isomorphic to ideals.

Proof. We apply Lemma 7 choosing S either = R or = Re (then identify-

ing S' = (RJ with (R'Y as before) and M = R!, R c M e Rf any S-submodule

of R'. Then the S'-injective hull Hr of Rr is the S-injective hull of M when

considered as S-module, and we get the exact sequence of S-modules

0 —> M ~̂ -> Ή!. Suppose it can be extended to 0 —> M -^-> H' —> X

where X is S-injective-protective. Then we get a diagram

M

I
S'<g

R'

)SM •

j

l.rδd a.

Ψ
5

> H'

1
' ! >

X

{
S'

where F is the epimorphism s' (x) m -> 5;m and <̂  is the homomorphism

i?/ -> H7 -> S7 (x) £ # ' . The maps H'-+S'<g> 8H', X^S'(g) SX are S-isomorphisms

since ^Z/7, SX are injective-projective. All squares are commutative — the one

in the lower left corner because of sf ® hf ^ V ® srhf ^ Sf ® sH
r (use the

isomorphism between Sf ® sH
f and Hf). The bottom row is a complex (=0)

since the middle row obviously is and ψ is epimorphic. Finally φ is Sr-

monomorphic, for a simple S'-submodule Γ of Ker φ gives V Π Mψ 0 and

P Π M e Kerα since M->Sf ® SM-+Rf turns out to be the injection M-+R';

but α is monomorphic. Now diagram-chasing shows that M-±R' is epi-

morphic which is a contradiction whenever MψRr\ hence in this case an

extension 0 -> M -> i/; -> X cannot exist, meaning that socle (5/Γ / M) will
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contain a simple module / non-isomorphic to an ideal. Since / cannot lie

in H' I Rr, it has to be contained in the socle of R' / M.

Now suppose R c M e Rr and that all factors of Mj R are non-isomorphic

to ideals. Then there exists M c Mγ c Rf such that / = Mx / M and all factors

of Mγ\ R are non-isomorphic to ideals. Thus the theorem is proved by

induction.
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