ON ALGEBRAS OF DOMINANT DIMENSION ONE

BRUNO J. MUELLER

Summary. QF-3 algebras R are classified according to their second commutator algebras R' with respect to the minimal faithful module, which satisfy dom.dim. $R' \ge 2$. The class C(S) of all QF-3 algebras whose second commutator is S, contains besides S only algebras R with dom.dim. R = 1. C(S) contains a unique (up to isomorphism) minimal algebra which can be represented as a subalgebra S_0 of S describable in terms of the structure of S, and C(S) consists just of the algebras $S_0 \subset R \subset S$ (up to isomorphism). A criterion for $S_0 \neq S$ and various examples are given. Finally it is shown that the injective hull of S (as left-, right- or bimodule) is at the same time the injective hull for every $R \in C(S)$. This result sheds some light on the fact that dom.dim. $S \ge 2$ while dom. dim. R = 1 for all $R \in C(S)$, $R \neq S$: We prove that no composition-factor of the R-module R' / R is isomorphic to an ideal.

The classes C(R). We consider finite-dimensional algebras R with unit over a field K and unitary finitely generated R-modules. QF-3 algebras are characterized by the existence of a minimal faithful right-module X which is (unique up to isomorphism and) a direct summand in every faithful X is projective-injective and the sum of the isomorphism-types of module. dominant¹) right-ideals, hence itself a right-ideal generated by an idempotent: $X_R \cong eR_R$. The K-dual X^* of X is the minimal faithful left-module: $_{R}X^{*} \cong _{R}Rf$. With every QF-3 algebra R one associates the second commutator R' of the minimal faithful (right-)module X, which is again a QF-3 algebra and contains R as a subalgebra, with the same unit, in a natural way: $1 \in R \subset R'$. The second commutator of the minimal faithful left-module $_{R}X^{*}$ is isomorphic to R', over R. Minimal faithful R'-modules are R'f = Rf, eR' = eR. (cf. Thrall [6], Morita [3], Tachikawa [5])

The following dominant dimension is introduced for every algebra R:

Received February 21, 1967.

¹⁾ A dominant right-ideal is an ideal e_1R generated by a primitive idempotent e_1 , which is injective.

dom.dim. $R \ge n$ if there exists an exact sequence $0 \to R \to X_1 \to \cdots \to X_n$ of projective-injective modules X_i . It was shown in [4] that the three such dimensions obtained by using left-modules, right-modules or bimodules coincide. QF-3 algebras are characterized by dom.dim. $R \ge 1$. The following are equivalent for any QF-3 algebra R: R = R'; dom.dim. $R \ge 2$; R is the endomorphism-ring of a finitely generated fully faithful module²). Hence the inclusion $R \subset R'$ embedds every QF-3 algebra R into an algebra R' with dom.dim. $R' \ge 2$, and the embedding is proper if and only if dom.dim. R = 1. This observation suggests the following classification:

DEFINITION. For any algebra R with dom.dim. $R \ge 2$, let C(R) denote the class of all QF-3 algebras S such that $S' \cong R$.

THEOREM 1. An algebra R belongs to C(R) if and only if it is isomorphic to a subalgebra R_1 of R that contains the unit 1 and suitable minimal faithful ideals eR, Rf of R.

Proof. Morita ([3], Theorem 17.3) has shown that any R_1 satisfying those conditions is QF-3 and that $eR = eR_1$, $Rf = R_1f$ are its minimal faithful modules. Hence

Endo
$$(eR_{1R_1}) = eR_1e = eRe =$$
Endo (eR_R)

and

 $R = R' = \text{Endo}(_{eRe}eR) = \text{Endo}(_{eR_1ee}R_1) = R'_1$, proving $R_1 \in C(R)$. (We remark for later application (proof of theorem 8) that this identification of R and R'_1 is compatible with the embeddings of R_1 into R and R'_1 . For $R_1 \subset R'_1 =$ Endo $(_{eR_1ee}R_1)$ by $R_1 \ni r_1 \to (x \to xr_1) \in \text{Endo}(_{eR_1ee}R_1)$ and $R = \text{Endo}(_{eRe}eR)$ by $R \ni r \to (x \to xr) \in \text{Endo}(_{eRe}eR)$, thus $R_1 \subset R = \text{Endo}(_{eRe}eR)$ again by $R_1 \ni r_1$ $\to (x \to xr_1) \in \text{Endo}(_{eRe}eR)$.) Conversely, another result by Morita (Theorem 17.5) says that any QF-3 algebra S, as subalgebra of S', contains suitable minimal faithful ideals eS', S'f of S'.

DEFINITION. For any algebra R with dom.dim. $R \ge 2$, let $C_0(R)$ denote the set of all subalgebras R_1 of R containing the unit 1 and suitable minimal faithful ideals eR, Rf of R.

²⁾ A module $_{A}X$ is *fully faithful* if it contains every indecomposable injective or projective module as a direct summand (X is a generator-cogenerator).

COROLLARY 2. C(R) and $C_0(R)$ contain the same isomorphism-types of algebras. $R_1 \in C_0(R)$, $R_1 \subset R_2 \subset R$ implies $R_2 \in C_0(R)$.

Because of these facts it is of particular interest to characterize the minimal algebras in $C_0(R)$.

DEFINITION. For any QF-3 algebra R, a pair of idempotents e, f will be called properly chosen if

- (1) eR, Rf are minimal faithful modules,
- (2) ef = fe (this implies that ef is again an idempotent),

(3) the number k in a decomposition $ef = e_1 + \cdots + e_k$ into indecomposable orthogonal idempotents e_i is minimal (compared to all other pairs e', f' satisfying (1) and (2). For fixed ef, k is obviously the same for each such decomposition).

The set of primitive idempotents of any algebra R falls into finitely many isomorphism-classes E_1, \ldots, E_n where two primitive idempotents e_i , e_j are called isomorphic if they generate isomorphic right- (equivalent left-) ideals. Every decomposition of the unit 1 into primitive orthogonal idempotents can be written as $1 = \sum_{i=1}^{n} \sum_{j_i=1}^{n} e_{ij_i}$ where $e_{ij_i} \in E_i$ and the numbers n_i are the same for any such decomposition. Given two decompositions

$$1 = \sum_{i=1}^{n} \sum_{j_i=1}^{n_i} e_{ij_i} = \sum_{i=1}^{n} \sum_{j_i=1}^{n_i} e_{ij_i}^*,$$

there exists an inner automorphism of R, generated by an invertible element $x \in R$, that maps e_{ij_i} onto $e_{ij_i}^*$: $xe_{ij_i}x^{-1} = e_{ij_i}^*$.

LEMMA 3. A pair of idempotents e, f is properly chosen if and only if it is of the form $e = \sum_{i \in I} e_{i1}$, $f = \sum_{i \in J} e_{in_i}$, where $1 = \sum_{i=1}^{n} \sum_{j_i=1}^{n_i} e_{ij_i}$ is a decomposition into primitive orthogonal idempotents and the sets $I, J \subset \{1, \ldots, n\}$ characterize those classes E_i that generate dominant right, left-ideals.

Proof. Suppose that e, f are properly chosen. ef = fe implies that e - ef, f - ef, ef, 1 - e - f + ef constitute a decomposition of 1 into orthogonal idempotents which can be refined to a decomposition into primitive orthogonal idempotents $1 = \sum_{i=1}^{n} \sum_{j_i=1}^{n_i} e_{ij_i}$. A suitable adjustment of the second index j_i gives $e = \sum_{i \in I} e_{i1}$ and $f = \sum_{i \in I} e_{ik_i}$, hence $ef = \sum_{\substack{i \in I \cap J \\ k_i = 1}} e_{i1}$. The minimality-requirement (3) implies $k_i \neq 1$ whenever possible, that is for $n_i > 1$.

Therefore the minimal k in (3) is the number of elements $i \in I \subset J$ with $n_i = 1$, and a further adjustment of the second index leads to $f = \sum_{i \in J} e_{in_i}$. Conversely any pair e, f of this type satisfies (1) and (2): $ef = \sum_{i \in I \cap J} e_{i1} = fe$, and this decomposition has the minimal number of summands, so (3) holds and e, f are properly chosen.

THEOREM 4. Any two minimal subalgebras in $C_0(R)$ are isomorphic under an inner automorphism of R. A subalgebra R_0 of R is minimal in $C_0(R)$ if and only if it is of the form $R_0 = K + eR + Rf + RfeR$ where e, f are properly chosen idempotents of R.

Proof. Let R_0 be a minimal algebra in $C_0(R)$. By definition of $C_0(R)$ there exist minimal faithful ideals eR, Rf of R, contained in R_0 ; further the unit 1 of R lies in R_0 . Hence $R_0 \supset K + eR + Rf + RfeR$, and as this is an algebra in $C_0(R)$ too, $R_0 = K + eR + Rf + RfeR$ because of the minimality of R_0 .

We shall show that e, f can be replaced by a properly chosen pair. Refine 1 = e + (1 - e) and 1 = f + (1 - f) to decompositions into primitive orthogonal idempotents $1 = e_1 + \cdots + e_m = f_1 + \cdots + f_m$ of R_0 . We get an inner automorphism of R_0 : $xf_ix^{-1} = e_i$; $x, x^{-1} \in R_0$. Set $f' = xfx^{-1} \in R_0$, then ef' = f'e. Observe that

$$Rf \ni rf \rightarrow rfx^{-1} = rx^{-1}f' \in Rf'$$

is a *R*-isomorphism, thus Rf' is a minimal faithful module for *R*. Further $R_0 \supset R_0 f' = R_0 x f x^{-1} = R_0 f x^{-1} = R f x^{-1} = R f'$; hence $K + eR + Rf' + R f' eR \subset R_0$ and consequently $K + eR + Rf' + Rf' eR = R_0$.

e, f' may still not satisfy (3). But as before, the orthogonal idempotents e - ef', f' - ef', ef', 1 - e - f' - ef' can be refined in R to $1 = \sum_{i=1}^{n} \sum_{j_i=1}^{n_i} e_{ij_i}$ with $e = \sum_{i \in I} e_{i1}, f' = \sum_{i \in J} e_{ik_i}$. The second index can be adjusted such that $k_i = 1$ or $= n_i$, and $k_i \neq n_i$ for $i \in I \subset J$ at most. There exists an inner automorphism of R interchanging e_{i1} and e_{in_i} for $i \in I \subset J$, $k_i \neq n_i$ and leaving all other e_{ij_i} fixed: $e_{in_i} = ze_{i1}z^{-1}$. Replacing f' by $f'' = \sum_{i \in J} e_{in_i} = zf'z^{-1}$ we get ${}_RRf'' \cong {}_RRf'$ and f''e = ef'' so that e, f'' are properly chosen. Finally $Re_{in_i} = Rze_{i1}z^{-1} \subset Rf'eR$ for $k_i \neq n_i$; hence K + eR + Rf'' +

 $Rf''eR \subset R_0$ and therefore $K + eR + Rf'' + Rf''eR = R_0$, proving that every minimal algebra in $C_0(R)$ is of the form stated in the theorem.

From Lemma 3 it is obvious that whenever e, f and e^*, f^* are two properly chosen pairs of idempotents of R, then there exists an inner automorphism of R mapping e onto e^* and f onto f^* . That completes the proof of the theorem.

DEFINITION. For any QF-3 algebra R with dom.dim. $R \ge 2$ and any particular minimal subalgebra R_0 in $C_0(R)$, let $C(R; R_0)$ denote the set of all algebras R_1 with $R_0 \subset R_1 \subset R$.

COROLLARY 5. $C(R; R_0)$ and C(R) contain the same isomorphism-types of algebras.

Proof. Any $S \in C(R)$ is isomorphic to some $R_1 \in C_0(R)$ which contains a minimal subalgebra R_{10} . R_{10} is isomorphic to R_0 by an inner automorphism of R which carries R_1 into an algebra R_2 in $C(R; R_0)$.

Remarks. We collect a few additional (obvious) facts about C(R).

(i) The (up to isomorphism unique) minimal algebra R_0 in C(R) is characterized by the fact that its vector-space-dimension over K is minimal among the algebras in C(R).

(ii) R is characterized in C(R) by having maximal K-dimension.

(iii) While dom.dim. $R \ge 2$, we have dom.dim. S = 1 for all $S \in C(R)$ that are not isomorphic to R.

(iv) If a QF-3 algebra is a ring-direct sum $R = R_1 \oplus R_2$, then so is $R' = R'_1 \oplus R'_2$. On the other hand if $R' = S_1 \oplus S_2$, then R need not decompose accordingly.

(v) For any QF-3 algebra R a minimal algebra R_0 in C(R') can be constructed directly as $R_0 = K + eR + Rf + RfeR$ where e, f is any properly chosen pair of idempotents in R.

This may not be quite obvious: Since there exists a minimal subalgebra $R_0 = K + eR' + R'f + R'feR' \subset R$ with suitable properly chosen idempotents e, f of R', we get $R_0 = K + eR + Rf + RfeR$ and $e, f \in R$. R'f = Rf, eR' = eR are minimal faithful ideals for R as well as for R'. A decomposition $ef = e_1 + \cdots + e_k$ into primitive orthogonal idempotents in R' always lies in R, hence constitutes such a decomposition with respect to R; and

vice versa. Suppose k be not minimal for R; then the isomorphism-type of at least one e_i , say e_1 , appears more than once in a decomposition of 1 in R, and we have $e_1R_R \cong e'_1R_R$, $e_1e'_1 = 0$. We get an inner automorphism of R that interchanges e_1 and e'_1 and leads to a R'-isomorphism $e_1R' \cong e'_1R'$, contrary to the assumption that e, f be properly chosen in R'. Thus e, f automatically are properly chosen with respect to R. — Any other properly chosen pair e^* , f^* in R can be mapped onto e, f by an inner automorphism of R and leads to an algebra $K + e^*R + Rf^* + Rf^*e^*R$ isomorphic to R_0 .

We want to derive a criterion for $R = R_0$. For properly chosen idempotents e, f in R we set ef = d, e - ef = e', f - ef = f', $1 - e - f + ef = \varepsilon$. Then evaluation of $(d + e' + f' + \varepsilon) R (d + e' + f' + \varepsilon) = R = R_0 = K + e'R + e'R$ Rf' + RdR yields the necessary and sufficient condition $f'Re' + f'R\varepsilon + \varepsilon Re'$ $+ \varepsilon R\varepsilon = f'RdRe' + f'RdR\varepsilon + \varepsilon RdRe' + \varepsilon RdR\varepsilon + K\varepsilon$, which may be split into the four conditions f'Re' = f'RdRe', $f'R\varepsilon = f'RdR\varepsilon$, $\varepsilon Re' = \varepsilon RdRe'$, $\varepsilon R\varepsilon =$ By construction of d = ef, the isomorphism-types of the $\varepsilon RdR\varepsilon + K\varepsilon$. idempotents in d are different from those in e', f' and ε ; hence there doesn't exist any epimorphism of dR_R onto a direct summand of e'R, f'R or εR ; consequently the image of every homomorphism of dR into these modules lies in e'N, f'N, ϵN (N being the radical of R) and we get e'Rd = e'Nd, f'Rd = f'Nd, $\varepsilon Rd = \varepsilon Nd$. Correspondingly dRe' = dNe', dRf' = dNf', $dR_{\varepsilon} = dN_{\varepsilon}$ hold; and the above four conditions imply f'Re' = f'NdNe' = $f'N^2e'\,,\ f'R\varepsilon=f'NdN\varepsilon=f'N^2\varepsilon\,,\ \varepsilon Re'=\varepsilon NdNe'=\varepsilon N^2e'\,,\ \varepsilon R\varepsilon=\varepsilon NdN\varepsilon+K\varepsilon=\varepsilon NdN\varepsilon+K\varepsilon=\varepsilon NdN\varepsilon$ Then e'R, f'R cannot contain isomorphic direct summands $\varepsilon N^2 \varepsilon + K \varepsilon$. since that would lead to a map $e'R \rightarrow f'R$ the image of which wouldn't even be contained in f'N, hence to an element in f'Re', not in f'Ne'. Similarly εR , f'R and e'R, εR cannot have isomorphic direct summands. Finally εR cannot decompose directly, since $\varepsilon = \varepsilon_1 + \varepsilon_2$ (orthogonal idempotents) and $\varepsilon R \varepsilon = \varepsilon N^2 \varepsilon + K \varepsilon$ yields $\varepsilon_1 = x + k \varepsilon$, $x \in N^2$; hence either k = 0, $\varepsilon_1 \in N^2, \ \varepsilon_1 = 0 \ {
m or} \ k \neq 0 \ , \ 0 = x \varepsilon_2 + k \varepsilon_2 \ , \ \varepsilon_2 \in N^2 \ , \ \varepsilon_2 = 0 \ .$

Summarizing: We have shown that $R = R_0$ implies that R is selfbasic and that ε is either primitive or zero. Therefore $\varepsilon R\varepsilon$ is local and has radical $\varepsilon N\varepsilon$; and the condition $\varepsilon R\varepsilon = \varepsilon N dN\varepsilon + K\varepsilon$ gives $\varepsilon N dN\varepsilon = \varepsilon N\varepsilon$ and $\varepsilon R\varepsilon / \varepsilon N\varepsilon \cong K$ if $\varepsilon \neq 0$.

Thus we have proved one direction of the following

THEOREM 6. A QF-3 algebra R is minimal in C(R') if and only if

(1) R is selfbasic,

(2) there exists at most one type of idempotents ε such that $R\varepsilon$, εR both are not dominant,

(3) f'Re' = f'NdNe'; $f'R\varepsilon = f'NdN\varepsilon$, $\varepsilon Re' = \varepsilon NdNe'$, $\varepsilon N\varepsilon = \varepsilon NdN\varepsilon$, $\varepsilon R\varepsilon / \varepsilon N\varepsilon \cong K$ (if ε exists); where d (e', f') is the sum of those idempotents e_i of a decomposition into primitive orthogonal idempotents $1 = e_1 + \cdots + e_n$ for which Re_i , e_iR are both dominant (e_iR but not Re_i is dominant; Re_i but not e_iR is dominant).

Conversely these conditions (1) to (3) immediately lead back to the former conditions for $R = R_0$. This completes the proof.

REMARKS. (i) We are particularly interested in the case dom.dim. $R \ge 2$. Here the conditions of the theorem characterize those R for which C(R) is trivial (to say it contains the isomorphism-type of R only).

(ii) Applied to R_0 itself the theorem describes properties of the minimal algebras in the classes C(R).

(iii) The conditions can be simplified in certain cases, e.g.: If NdN = 0(in particular if d = 0, which for dom.dim. $R \ge 2$, hence $R = \text{Endo} (_AX)$ means that A doesn't have any dominant ideals; or if $N^2 = 0$) they reduce to $f'Re' = f'R\varepsilon = \varepsilon Re' = 0$, $\varepsilon R\varepsilon = K\varepsilon$. If e' = f' = 0 (for dom.dim. $R \ge 2$ this means that A is Frobenius) they reduce to $\varepsilon N\varepsilon = \varepsilon N(1 - \varepsilon)N\varepsilon$, $\varepsilon R\varepsilon / \varepsilon N\varepsilon \cong K$.

EXAMPLES. The following remarks are obtained by specializing results of Harada [1] for semi-primary rings to our case of algebras; but easy direct proofs could be given as well. R denotes a QF-3 algebra, A its endomorphism-ring and R' its second commutator, both with respect to the minimal faithful module.

(i) These three statements are equivalent: R' is semi-simple; A is semi-simple; the socle of R is projective. Then, if e_1R, \ldots, e_kR represent the different types of dominant ideals, the $D^{(i)} = e_iRe_i$ are division-rings and we have $A = \bigoplus_{i=1}^{k} D^{(i)}$, $R' = \bigoplus_{i=1}^{k} D^{(i)}_{n_i}$ (ring-direct sum of $n_i \times n_i$ -matrix-rings over the $D^{(i)}$) where $n_i = D^{(i)}$ -dim e_iR .

(ii) Equivalent: R' is simple; A = D is a division-ring; there exists only one dominant type eR and the unique minimal subideal of eR is projective. Then D = eRe and $R' = D_n$ where n = D-dim eR. The minimal subalgebra R_0 in $C(D_n)$ is $R_0 = \sum_{k=1}^n D c_{1k} + \sum_{i=2}^n D c_{in} + K(\sum_{j=2}^{n-1} c_{jj})$; observe $R_0 \neq D_n$ for n > 1.

(iii) R' is simple for every indecomposable hereditary QF-3 algebra R (Mochizuki [2]). Actually $R \in C(D_n)$ is hereditary if and only if (up to isomorphism) $T_n \subset R \subset D_n$ where T_n denotes the algebra of (upper) triangular matrices. Any such R is of the form

R =	D_{n_1}	D_{n_1,n_2}	$\cdots D_{n_1,n_k}$
	0	D_{n_2}	$\cdots D_{n_2,n_k}$
	•		• •
	•		• •
	•		• •
l	0	0	$\cdots D_{n_k}$

Injective hulls. LEMMA 7. Let S be a QF-3 algebra, M' a S'-(left-) module hence a S-module, and M a S-submodule of M' such that S'M = M'. Suppose that all simple S'-submodules of M' are isomorphic to ideals. Then the S'-injective hull H' of M' (considered as S-module) is the S-injective hull of M.

Proof. Consider any simple S'-submodule I' of M'. I' being isomorphic to a S'-ideal and S' being QF-3, we get a S'-monomorphism of I' into a minimal faithful ideal S'f = Sf which yields an epimorphism eS = eS' $\cong S'f^* \to I'^*$. Hence $I'^*e \neq 0$ and $eI' \neq 0$. But $eM' = eS'M = eSM \subset M$, consequently $0 \neq eI' \subset I' \cap M$ and $I' \cap M \neq 0$. Furthermore the S'-injective hull H'(I') of I' is isomorphic to some $S'f_1 = Sf_1$, $f = f_1 + \cdots$; hence H'(I')has a unique minimal submodule I when considered as S-module. We get $I \subset I' \cap M \subset M$ and S'I = I' since S'I is a S'-submodule of the simple S'module I'. The S-injective hull of I, being isomorphic to Sf_1 , is isomorphic to H'(I') as S-module.

Let $\bigoplus_{k=1}^{n} I'_{k}$ be the S'-socle of M'. As we have seen, each I'_{k} contains a unique simple S-submodule I_{k} and the S'-injective hull H' of M', being the direct sum of the S'-injective hulls $H'(I'_{k})$ of the I'_{k} , is isomorphic to the S-injective hull of $\oplus I_{k}$ as S-module. Since $\oplus I_{k}$ is semi-simple and is contained in M, it is in the socle of M: socle $(M) = \oplus I_{k} \oplus J$. Thus the S-injective hull of M is isomorphic to the direct sum of H' and the S-injective hull H(J) of J, as S-module. On the other hand $M \subset M' \subset H'$ and the fact that H' is S-injective imply that the S-injective hull of M is contained in H'; hence a K-vector-space-dimension argument yields H(J) = 0 and the assertion of the lemma. THEOREM 8. Let R be a QF-3 algebra. Then the R'-injective hull H' of R' is the R-injective hull of R when considered as R-module, where all modules are either left-, right- or bimodules.

Proof. Applying Lemma 7 to S = R, M = R, M' = R' we get the result for left-modules. A similar argument holds for right-modules.

Considering bimodules, to say modules over the enveloping algebra $R^e = R \otimes_{\kappa} R^0$, we show that $(R^e)'$ can be identified with $(R')^e$ by an isomorphism which carries R^e as (natural) subalgebra of $(R^e)'$ into R^e as subalgebra of $(R')^e$ determined by R as (natural) subalgebra of R'. Observe dom.dim. $(R')^e = \text{dom.dim. } R' \ge 2$ (Mueller [4], Lemma 6). We have $1 \otimes 1^{\circ} \in R^{e} \subset (R')^{e}$; and the $(R')^{e}$ -left-resp. right-modules $R'f\otimes (eR')^{\circ}$, $eR' \otimes (R'f)^0$ where R'f = Rf, eR' = eR are minimal faithful R'- and R-ideals, are projective-injective-faithful. We have $R'f \otimes (eR')^{\mathfrak{o}} = Rf \otimes (eR)^{\mathfrak{o}},$ $eR' \otimes (R'f)^0 = eR \otimes (Rf)^0 \subset R^e$; hence Theorem 1 yields $R^e \in C((R')^e)$, to say $(R')^e \cong (R^e)'$, and this isomorphism carries R^e as subalgebra of $(R')^e$ into R^e as subalgebra of $(R^{e})'$, as indicated above (cf. the proof of Theorem 1). Now choose $S = R^e$, $S' = (R^e)' = (R')^e$; M = R, M' = R'. We get S'M = $(R')^e R = R' R R' = R' = M'$ and a simple $(R')^e$ -submodule of R' - a simple twosided R'-ideal – is isomorphic to a $(R')^e$ -ideal since the QF-3 algebra R' can be embedded as $(R')^e$ -module into a projective module. Thus Lemma 7 yields the desired result in this case too.

Mochizuki [2] observed that for hereditary QF-3 algebras R (where R' is semi-simple), R' itself is the injective hull of $_{R}R$ and R_{R} . We see that this phenomenon is rather exceptional:

COROLLARY 9. R' is the injective hull of R as left- and | or right-R-module if and only if R' is quasi-Frobenius. R' is the injective hull of R as R-R-bimodule if and only if R' is separable.

Theorem 8 allows the construction of the following diagram of left-, rightor bimodules:

where all rows and columns are exact, the bottom row contains R'-homomorphisms while all other maps are *R*-homomorphisms; where H', X'_2 , ..., X'_n are R'-injective-projective and therefore also *R*-injective-projective; where $2 \leq n = \text{dom.dim. } R' \leq \infty$; and where the top row cannot be extended further by *R*-injective-projective modules if $R \neq R'$. Hence the socle of the *R*-module H' | R must contain a simple module non-isomorphic to an ideal while the socle of H' | R' as R'- or *R*-module contains only simple modules isomorphic to ideals (cf. [4], proof of Lemma 7). Consequently since $H' | R' \approx H' | R' | R' = H' | R / R' | R$ as *R*-modules, socle (R' | R) has to contain a simple *R*-module non-isomorphic to an ideal. We show the following stronger fact:

THEOREM 10. Let R be a QF-3 algebra. Then all composition-factors of R' | R as R-left-, right- or bimodule, are not isomorphic to ideals.

Proof. We apply Lemma 7 choosing S either = R or $= R^e$ (then identifying $S' = (R^e)'$ with $(R')^e$ as before) and M' = R', $R \subset M \subset R'$ any S-submodule of R'. Then the S'-injective hull H' of R' is the S-injective hull of M when considered as S-module, and we get the exact sequence of S-modules $0 \longrightarrow M \xrightarrow{\alpha} H'$. Suppose it can be extended to $0 \longrightarrow M \xrightarrow{\alpha} H' \xrightarrow{\beta} X$ where X is S-injective-projective. Then we get a diagram

where Ψ is the epimorphism $s' \otimes m \to s'm$ and φ is the homomorphism $R' \to H' \to S' \otimes_s H'$. The maps $H' \to S' \otimes_s H'$, $X \to S' \otimes_s X$ are S-isomorphisms since ${}_{s}H'$, ${}_{s}X$ are injective-projective. All squares are commutative — the one in the lower left corner because of $s' \otimes h' = 1' \otimes s'h' \in S' \otimes_s H'$ (use the isomorphism between $S' \otimes_s H'$ and H'). The bottom row is a complex (= 0) since the middle row obviously is and φ is epimorphic. Finally φ is S'-monomorphic, for a simple S'-submodule I' of Ker φ gives $I' \cap M \neq 0$ and $I' \cap M \subset \text{Ker } \alpha$ since $M \to S' \otimes_s M \to R'$ turns out to be the injection $M \to R'$; but α is monomorphic. Now diagram-chasing shows that $M \to R'$ is epimorphic which is a contradiction whenever $M \neq R'$; hence in this case an extension $0 \to M \to H' \to X$ cannot exist, meaning that socle $({}_{s}H'/M)$ will

contain a simple module J non-isomorphic to an ideal. Since J cannot lie in H' | R', it has to be contained in the socle of R' | M.

Now suppose $R \subset M \underset{\pm}{\subset} R'$ and that all factors of M/R are non-isomorphic to ideals. Then there exists $M \subset M_1 \subset R'$ such that $J \cong M_1/M$ and all factors of M_1/R are non-isomorphic to ideals. Thus the theorem is proved by induction.

References

- M. Harada, QF-3 and semi-primary PP-rings I, II. Osaka Math. J. 2, 357-368 (1965); 3, 21-28 (1966).
- [2] H.Y. Mochizuki, On the double commutator algebra of QF-3 algebras. Nagoya Math. J. 25, 221-230 (1965).
- [3] K. Morita, Duality for modules and its application to the theory of rings with minimum condition. Science Reports Tokyo Kyoiku Daigaku 6, 83–142 (1958).
- [4] B.J. Mueller, The classification of algebras by dominant dimension. Can. J. Math., to appear.
- [5] H. Tachikawa, On dominant dimensions of QF-3 algebras. Trans. Amer. Math. Soc. 112, 249–266 (1964).
- [6] R.M. Thrall, Some generalizations of quasi-Frobenius algebras. Trans. Amer. Math. Soc. 64, 173-183 (1948).

McMaster University, Hamilton, Ontario, Canada