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§1. Introduction and motivation. In this paper we shall study

relations among the class B of the Bayes solutions in the strict sense, the

class W of the Bayes solutions in the wide sense and the closure c(B), in a

certain sense, of the class B. For abbreviation, we shall use the word "Bayes

class" for the class B and "Wald class" for the class W .

The concepts of Bayes class and Wald class are introduced in connection

with the concept of complete class of statistical decision functions, and play

important roles in the theory of statistical decision functions. According to

Wald-LeCam theorem ([6], [4]), the closure c(B) of the Bayes class, the Wald

class W and the intersection of c(B) and W are complete classes of decision

functions under certain conditions. Many results have been published on the

problem of constructing complete classes. As far as the author knows, these

results are proved on the basis of the completeness of the class c(B), but

neither of W nor W Π c(B). From this fact, we may expect a possibility

that in most regular cases t(B) will be contained in W . Theorems we

shall give in this paper show that our expectation is quite reasonable (see

Thms. 4,6,9,11,12, and 15). Of course, this is not always the case. Re-

cently T. Kusama [3] gave an example in which c(B) coincides with the

whole space of decision functions.

Another question arises along this line. Wald proved in his book [6],

under his Assumption 3.7, that both of c(B) and W coincide with the Bayes

class B itself (Theorem 3.15 and 3.16 in [6]). Assumption 3.7 in [6] is es-

sentially that the parameter space T is compact in some sense and the

loss function is equicontinuous as a family of functions on T. These

facts suggest us another possibility that the assumptions of the compactness

of the parameter space and the equicontinuity of the loss function will imply

important conclusions (e.g., see Thms. 14 and 15).
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The above two possibilities motivated the present research. The third

motivation occurs from the results in [2] and [5]. The author proved in

[2] that in certain problems of testing hypotheses t{B) is contained in the

class of decision functions which minimize the value of a distribution (in the

sense of L. Schwarz: Theorie des distributions) on the space of risk func-

tions. On the other hand, J. Sacks [5] showed that in estimation problems

t{B) is contained in the class of decision functions which minimize, in a cer-

tain sense, the value of the integral of risk function with respect to a (/-finite

measure though the integral is not finite. These results suggest us that,

under regular conditions, the closure c(B) of the Bayes class will be contained

in the class of "generalized Bayes solutions" relative to a linear functional

which is a limit, in a certain sense, of prior probability measures. If this is

the case, it becomes reasonably handy to construct a nontrivial complete

class of decision functions, because the complet class will be given as the class

of all the generalized Bayes solutions obtained by the method of minimum

posterior loss.

In Section 2 we shall discuss the Bayes class and the Wald class in an

abstract set X relative to a family F of functions on X for the purpose of

clarifying the point of arguments, and topological discussions of function

spaces are the main tool. In Section 3 we shall consider X and F as a

class of functions and a class of measures, respectively, on a topological

space. We shall not specify the form of elements in the class X, but the

reader may regard X as the class {r{ ,δ): δ e D} of the risk functions with

the space D of decision functions δ. Each one of the theorems in these

sections contains a relation or relations between the Bayes class and the Wald

class under the respective condition. Particularly, Theorems 5, 6, 9, 14 and

15 give the relation expected in the first two motivations. In Section 4 we

shall sketch how to approach the third problem, but no precise discription

will be given for this approach.

§2. Bayes class and Wald class relative to a class of functions.
Let X be an arbitrary set and F a class of real-valued non-negative func-

tions of x e X.

DEFINITION 1. An element x in X is called a Bαyes point relative to a

function / in F, if x satisfies

f{x) = mm f(y).
ΞX
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If x is a Bayes point relative to an element of i^, we shall simply call it

a Bayes point. The set B[F] of all Bayes points is called the Bayes class

relative to F , or simply the Bayes class.

DEFINITION 2. The set W[F] of all points x e X which satisfy

inf {/(aO-inf/(y)} = 0
/ei? yeX

is called the Wold class relative to F. An element x of W[F] is called a

Wald point.

In the following discussions we shall treat of relations among the Bayes

class, the Wald class and their closures in the sense of a certain topology in

X which will be introduced afterward. Though we shall regard, in Section

3, X as a class of functions on a certain space T and F as a class of mea-

sures on T, we do not confine them in any aspect in the present section.

Let @ be a non-void family of subsets of X, and denote by ^ 1 the

topology induced on the space of real-valued nonnegative functions on X by

the system of neighborhoods of a real-valued function / :

V&(f: S, ε) = {g: sup \f(x) - g(x)\< ε},

with an element S of @ and a positive number e . By (F, @) we mean the

space F equipped with the relative topology induced by JίΓ^ , and we use the

notation " j^L -" for the phrase " i n the sense of ^ L " . The ^^-closure

of F will be denoted by @(F). The family consisting only of the single

element X is denoted by u, and the family of all finite subsets of X by to

In this paper we shall use these notations u and to in the place of @; for

instance u(F) will stand for the closure of F in the uniform convergence

topology j ^ j , and " ^ ^ -compact" means "compact in the pointwise con-

vergence topology J?^ in the function space".

THEOREM 1. (i) B[F] c W[F],

(ii) B[u(F)] <

(iii) B[n(F)] c W[F].

Proof, The statements (i) and (ii) are evident. To prove the statement

(iii), let x be in B[u{F)]. Then there is a function / in u(F) such that

f(x) = minf{y).
yet X
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Since / e u ( F ) , for a n y ε > 0 t h e r e is a function g^F such t h a t \f(y) —

Q{y)\<ε for every y <B X. L e t 2 b e a p o i n t of X for w h i c h

g{z) < inf 0(0) 4- ε . T h e n we h a v e g(χ) — inf 0(2/) < g{x) — g(z) + ε = {g{x)
yt= X ye X

-fix)) + if{x) - f{z)) + if(z) - g{z)) + ε < 3ε , which means that

inf {g(x)~ ίnΐ g{y)}<3ε.
y(= X

Since ε is arbitrary, we have x e TF[F].

T H E O R E M 2. Suppose that for any pair {x, y} of points of X there is an

element S of @ such that x and y belong to S. If F is relatively Jί^l -compact,

then we have

(1) W[F] c B[<3(F)] = W[<5(F)].

Proof Let x e W[F]. Then there is a sequence {/TO} of functions in

F such that

lim {/n(χ)~ inϊfn(y)} = 0,
w->oo y& X

that is to say, for any ε > 0 there is a positive integer nQ such that for any

n larger than nQ

fn(x) - inf fn(y) < ε .
2/e X

Since @{F) is ,^^-compact, there is a ,^^-cluster points / 0 in @(F) of the

sequence {/w}. Take a point 2 in I for which fQ(z) < inf fQ{y) + ε .
ye X

By the assumption there exists an element S of @ such that # and « belong

to S, and by the definition of / 0 there exists a positive integer n>n0 such

that \fn(y) — fo{y)\ < ε for every 2/ in S. For such an n we have

fo(x) - inf /0(2/) < fo(χ) - fo(z) + ε < fn(x) - fn(z) + 3ε
y<ΞX

<fn(x)- inf Λ(2/) + 3ε<4ε.
ye X

Since ε is arbitrary, we have fQ(x) = min fo(y), or a; e JB[@(F)]. Thus we
V€ΞX

have PΓ[F] c JB[@(F)]. Replacing F by @(F) in the formula just shown,
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we have W[<5(F)] c B[<&(F)]. Combining with the statement (i) of Thoerem

1, we get the desired result.

Remark. The assumption on @ in Theorem 2 holds true for @ = u

and ίυ, so that the relation (1) holds in both cases. Particularly, if n{F) is

^j-compact, then

B[VL(F)] = W[F] = W[VL(F)] .

THEOREM 3. If u(F) is jT^-compact, then

(2) W[F] = B[n(F)] = B[to(F)] = W[VL(F)] = W[to(F)].

/V00/*. Since (~oo , -f oo)x is a HausdorfT space in ^ ^ -sense and u(F)

is ^ ^ -compact, it is ^ ^ -closed, and so u(F) = tυ(F). From this it follows

directly that #[u(F)] = B[xυ(F)] and TF[u(F)] = W[to(F)]. Since it is easy to

verify that to{F) is ^ - c o m p a c t , we have W[F] a B[w{F)] = W[ΪΌ(F)] by

Theorem 2 and Remark. On the other hand, it follows from (iii) of

Theorem 1 that B[n{F)] c W[F]. Thus, combining these relations, we have

our desired formula (2).

In the sequel of this section, we shall assume that X is a topological

space, and denote the closure of a subset Y of X by c(F). Let ! be the

collection of all compact subsets of X. When we take this I instead of @,

the topology ^ c a n be defined in F in the same way as ^^ be done,

and ϊ(F) will be used for the ^J-closure of F. The assumption on @

in Theorem 2 is obviously satisfied by <B = ϊ. From Theorems 1, 2 and 3

we have:

1) B[n(F)] c B[Ϊ(F)] c B[\o(F)],

2) If F is relatively ^t-compact, then

W[F] c U[ί(F)] = W[Ϊ(F)].

3) i f u(F) ύ . ^ -compact, then

W[F] = B[I(F)] = TF[f(F)] = B[tt>(F)] = TF[tυ(F)] = B[u(F)j = TF[u(F)].

THEOREM 4. Suppose that X be a topological space and F a family of lower

semi-continuous functions on X. If n(F) is j7~^-compact, then

(3) c(B[F]) c #[u(F)] = c(B[u(F)]) = W[F] = W[n(F)].

Proof Let x e c(i?[F]). Then for any neighborhood U oΐ x there
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exists a point y e B[F] Π U. For such a y there corresponds a function

fy in F such that fy(y) = inf /^(z). Since u{F) is .^-compact, there is

a function / 0 in n(F) which belongs commonly to the .^-closure of

ify: y & B[F] Π U} for every neighborhood U of x. Since the uniform

limit function /„ of lower semi-continuous functions is also lower semi-

continuous, for any ε > 0 there is a neighborhood Uo of x such that

fo(y) > A(x) — e holds for every y e ί/β. Take a point 2/ G J70 Π B[F]

for which 1/0(2:) — /j,(z)| < ε holds for every z e X. Let 21 be a generic

element in X. Then /0(») - /0(z) = (Ux) - /β(y)) + (fQ(y) - /,(t/))

+ (Λ(y) ~ fy(z)) + (/y(iδ) - Mz)) < 3ε . Since ε is arbitrary, it holds that

/o(s) ^ /o(«) for all 2 e X and that x e B[u(F)], which means c(JB[F]) c JB[u(F)].

Replacing F by U(JP) in the last formula, we have c[B[n[F)]) c J?[u(F)].

Since the other direction of inclusion is trivial, we get B[n{F)] = C{B[VL(F)]) .

The remainders of (3) are due to Remark preceding to Theorem 3.

THEOREM 5. Suppose that X be a locally compact Hausdorff space and F

be a family of lower semi-continuous functions on X. Ifϊ[F) is j^-compact, then

(i) c(B[F]) c B[Ϊ(F)] = c(B[ί(F)]),

(ii) W[F] c B[ί(F)] = W[t(F)].

Proof Let x e t(B[F]). For any neighborhood U of x there is a point

y e Γ/ Π J5[F], which corresponds to a function fy^F such that /y(y) =

min fy{z). From the ^^-compactness of ϊ(F), there exists a common

function /„ in ϊ(F) which belongs to every sets ϊ{{fy: y e ί/ Π J3[F]}). Since

every ^^-limit functions of lower semi-continuous functions are also lower

semi-continuous, for any ε > 0 there is a compact neighborhood UQ of # such

that fo(y) >fo{x) — ε for every y e ί/0. Let 2 be a generic point of X,

and then put E = UQ U {z}. Then there is a function / y in F f (/„: E, ε) for

some 2/ e ί/0 Π JB[F]. Therefore we have fQ{x) - fo{z) = {fQ{x) - fo(y)) +

(fQ(y)-fv(y)) + (fy(y)-fy(z)) + (fy(z)-fQ(z))<3ε. Since ε is arbitrary,

we have fQ{x) = min fQ(z), or aj e J5[ϊ(F)]. Thus we have c(B[F]) c J5[I(F)].
are JK

The other part of (i) is a direct implication of the fact just proved. The

statement (ii) is nothing but the result of Theorem 2 in a special case @ = ϊ .

THEOREM 6. Suppose that X be a locally compact Hausdorff space and F bt
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an equicontinuous family of functions on X. If sup /(«)< °° for every x e X9

fe.F

then

c(B[F]) c W[F] c B[Ϊ(F)] =

It is sufficient to show that c{B[F]) cz W[F] f because the other

relations are direct implications of Theorem 5 and Ascoli theorem [1, Ch.

X]. Let # e c(B[F]) and ε be a given positive number. From the equi-

continuity of F and consequently of ί{F), there is a compact neighborhood

UQ of x such that \f(χ) — f(y) \< ε for every y e t/0 and every / e ϊ(F).

Since ace c(B[F]) ,for any neighborhood £7 of # there is a point y e [7 Π 2?[F].

Let / y be a function in F such that fy(y) — inf / v(2). Since by
z<= X

Ascoli theorem 'ί(F) is ^^-compact , there is a function / 0 in ϊ(F) which is

a cluster point f0 of the net {fy} in the ̂ ^-sense. Take a function # from

the intersection of F , ( / e : ί/0 > e) and {/y; | / e f / 0 Π β[F]} Then g has to be

Λ for some 2 e £70 Π i?[F], and so g{x) - flr(2) = (0(3) - /,,(&)) + (/0(a?) - /o(«)) +

(/o(2) - 0(*O) < 3ε . Hence inf {f{x) - inf /(y)> < g{x) - flf(s ) < 3ε . Since

ε is arbitrary, x is an element of W[F],

THEOREM 7. Suppose that X be a compact Hausdorff space, and F a class

of lower semi-continuous functions on X. If for every function f in n{F) there is

one and only one Bayes point relative to / , then we have

B[n(F)] c c(B[F]).

Proof I t is sufficient to show that for every / e χχ(F) there is at least

one point x e c{B[F]) such that f(χ) = min f(y). Since / e u{F), for any

positive integer n there exists a function gn<Ξ F such that | gn{x) — f(x) \<l/n

for every x^X. Of course, gn(χ) is a lower semi-continuous function and

attains its minimum value at a point xn: gn(xn) = min flrn(y). Let cc0 be

a cluster point of the sequence {xn}, and ε a given positive number. Then

there is a neighborhood UQ of cc0 such that f(xQ) — ε < f(y) for every y e E70.

Let m be a positive integer for which 1 / m < e and αjm e ί7 0 . Then for

any y t=X, we have /(a?0) - f(y) = (f(xQ) - f(xj) + (f(xm) - gwkxj) + {gm[xm) -

T̂O(3/)) + (9m(y) - f(y)) < 3ε , which means that f(x0) = min
X

§3. Bayes class and Wald class relative to a class of measures.

In this section we shall consider X as a class of bounded continuous non-
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negative functions on a locally compact Hausdorff space 7\ and F as a class

of positive and finite Radon measures on T, and hence a Bayes point may

be called a Bayes function. Denote by C and Co the family of bounded con-

tinuous functions on T and the family of continuous functions with compact

support on T, respectively. Denote by Σ the family of all finite positive

Radon measures. Since for any / in Σ the integral f(x) = \ x(t)df of x e C

with respect to / can be regarded as a real-valued function defined on C,

we can introduce, on Σ, topologies J^,c° > - ^ , c a n d etc. Here J^,c°

stands for the topology of Σ induced by the system of neighborhoods

V^ (/: S,e) with the collection to of finite subsets S1 of Co, and ^ o

c is a

similar notation to the above for the topology of Σ in which Co is replaced

by C. Besides these topologies we shall consider the so-called norm

topology i n d u c e d by t h e n o r m \\ f — g\\ = (total variation of f — g) of

f — g. As is mentioned at the beginning of this paragraph, we shall

define X as a non-void subfamily of C consisting of non-negative func-

tions and F as a non-void subfamily of Σ consisting of measures for

which there is an A>0 such that if / e F then || / || < A. In this

section we consider several kinds of weak topologies of a function space.

To distinguish these topologies, we need to improve our notations by

indicating the relevant space, for instance we shall denote by to(F; Co) the

^^c°-closure of F, and by t ^ r t J ( X ) the topology of Σ induced by the

system of neighborhoods Vt(f: S, ε) with the collection ϊ of ^^-compact

subsets S of the weak closure tv(X) of X. Therefore the notation ί(H;to(X))

stands for the ^ ^ ^ -closure of a subset H of Σ. Though \υ(X) might

have to be written as toCX"; T), we shall drop this T from the notation,

because no confusion will occur.

Before proceeding to our main concerns, we have to give several lemmas.

L E M M A 1. // is a necessary and sufficient condition for \\f\\ being

continuous on to(F: Co) that for any ε > 0 there is a function X<ΞCQ such that

0 < x(t) < 1 for every t e T and

1/11 -^x(t)df<ε for every

In this case ^ ^ coincides with ^^,c° on to(F; C o ) , and hence we have xo(F\ C) —

; C o ) .
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The proof is quite similar to that in the case of relatively weakly compact

subsets of the set of probability measures, and so it will be omitted here.

LEMMA 2. Suppose that the class X of functions is equicontinuous on T, and

that all the functions in X are bounded by a finite number B. If \\ f \\ is a J ^ c ° -

continuous function of f on \υ{F; CQ), then \υ{F; Co) is also an equicontinuous family

of functions on {\υ(X), ^Γ

m), the space \υ(X) equipped with the topology

Proof It follows from Ascoli theorem that \v(X) is ϊ(X). Therefore

for any compact subset E of T the ,^-neighbohood Vt{x: E, ε) of x in \v(X)

has a common point with X. Let £ ε be a compact subset of T such that

|| / || — f(Ee) < ε for every / e \υ (F: Co), the existence of which is guaranteed

by the <_^Co-continuity of || / 1 | on tυ(F; Co) and Lemma 1. Then

\x{t)df-\y{t)df\< {A + 2B)e for every y e Vf(x: £ e, e) Π \Ό{X) , which

means that tυ{F; Co) is an equicontinuous family of functions on (\υ(X),

^ ^ ) . Since j?^ coincides with J^Γ^ on \υ{X) again by Ascoli theorem,

the proof is complete.

LEMMA 3. Under the same conditions as in Lemma 2, ^7JD

C° is a stronger

topology than ^"^x^, the uniform topology with respect to \Ό{X), on the space \υ(F; C o).

Proof From the uniform boundedness of X and Tychonoff theorem it

follows that \Ό{X) is J^-compact. Since \v{F; Co) is equicontinuous on

(tυ(X),^,) by Lemma 2, it follows from Ascoli theorem that ^ K X ) coin-

cides with ^~^χϊ on \v(F;CQ). Therefore ^^x^ is weaker than ^ ^ c .

By the last statement of Lemma 1, we see that ^7^ t t 3 ( χ) is weaker than

The above two lemmas (Lemma 2 and Lemma 3) are generalized as

follows:

LEMMA 4. Suppose that for any x in X there corresponds a j ^ -neighborhood

V of x such that V Π X is an equicontinuous family of functions on T and

sup sup # ( / ) < o o # If\\f\\ is a ^^-continuous function on tυ(F, Co),

then \Ό(F,CQ) is an equicontinuous family of functions on (\Ό{X),J^)9 and ^^,c°

is stronger than ^^x^ .

The proof is quite similar to the proofs of Lemmas 2 and 3.

THEOREM 8. Suppose that for any x in X there corresponds a ^^ -neigh-
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borhood V of x such that V Π X is equicontinuous on T and sup sup y(t) < oo .

^ II / II is J^lfo-continuous on tt)(F, Co), then we have

(4) to(B[F]) c B[to(F;Cβ)] = xo(B[to(F; Co)]),

(5) W[F] c B[tυ(F; Co)] = W[\v(F; Co)].

/V00/I Let a; be a function in tt)(2?[F]). Then for any ^ ^ -neighbor-

hood V of a? there is a function y e V Π B[F]. Let / y be a measure in F

such that I y{t)dfy = inf [z[t)dfy. Since the collection of sets {/„:

y e 7 Π 2?[/*T} of measures for every ^Ίv -neighborhoods V of x has the finite

intersection property and rt>(F; Co) is ^7^)

co-compact5 there is a measure ^ in

tt)(F; Co) which belongs to every \v{{fy:y^VΠB[F]};C0)9 and so to

Mify' V e V Π ̂ B[F]}; to(-Y)). Since tυ(F; Co) is equicontinuous on (to(Z),^w)

by Lemma 4, it follows from Ascoli theorem that t ^ )

l Ό ( X ) is equivalent to

^ K X ) on tυ(F Co). Therefore g belongs to the ^ ^ ^ - c l o s u r e of

{fyl V ̂  VΠB[F]}. Let z be an arbitrary function in X and e an arbitrary

positive number. Since g(x) is a continuous function on {X9^to)9 there is

a ^^-neighborhood VQ of OJ such that \y{t)dg>\x{t)dg—ε for every

1/ e 7 0 ίl I . Take a ^^-compact set £ = tt)(F0) Π -&0-, and consider a

^ ^ mcχ)-neighborhood F Ϊ (gr :E9e) oΐ g. Then by a similar calculations to

that in the proof of Theorem 5, we have \ χ(t)dg — \z{t)dg<3ε. Since ε

is arbitrary, we have x e B[to[F; CQ)].

The first half of (5) can be proved in a similar way to Theorem 2

by using .^^-compactness of tv{F; Co) instead of the .^^-compactness of

to(F; X). The rests of our theorem are obvious.

THEOREM 9. Suppose that X be an equicontinuous family of functions on T

and s u p ί G Γ s u p ^ x x{t)<co. If \\ f \\ is a ^^-continuous function of f on

iυ(jP;C0), then we have

χo{B[F}) c B[xo(F; Co)] = xo(B[to(F; Co)]) = W[F] = W[to(F; C o)].

Proof First we get the relations (4) and (5) as a special case of Theo-

rem 8. Since \v{X) is ^ ϋ -compact by Tychonoff theorem, the equicontinuous

family F of functions on XΌ(X) has a ^^ r t ) ( X )-closure tυ(F; tt)(X)) which is

and coincides with VL(F;\D(X)). Therefore, from Remark
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preceding to Theorem 3, it follows that W[F] = W[\υ{F; tv{X))]. Combining

with a trivial relation F c \υ(F; C) c \υ(F; ϊυ(X)) and Lemma 1, we have our

desired result.

T H E O R E M 10. Let X satisfy the same conditions as in Theorem 9, and G be

a j^f*-dense subset of F. Suppose that for any measure f in F there corresponds

a subset Kf of G such that f e tυ(Kf; Co) c F. If \\f\\ is a ^ c »-continuous

function of f on F9 then we have

B[F]cW[G].

Proof Let / e F. Since || / 1 | is .^^-continuous on \v(Kf;CQ), it

follows from Theorem 9 that B[\υ{Kf; Co)] = W[Kf] c W[G], and hence any

Bayes function in X relative to / belongs to W[G]. Thus we have our

desired result.

THEOREM 11. Suppose that X, F and G satisfy the same conditions as in

Theorem 10. If for every measure f in F the Bayes function relative to f is uni-

quely determined and if X is J^-closed in C, then we have

B[F]cztΌ(B[G])czW[G].

Proof We shall use the same notation Kf as in Theorem 10, i.e., Kf

is a set of measures such that / e \o{Kf\ Co) c F and Kf c G . By the

assumption, Lemmas 1,2 and 3 and by Ascoli theorem, i) X is ^^-compact,

ii) for any / in F, u(Kf; tυ(X)) = \υ(Kf; &>(*)) D tv(Kf; C) = ίυ(Kf; Co), and

iii) ^m

x

9 or equivalently J7~n

x, is weaker than ^,c° on \υ(Kf;C0). Let

fi i Λ> 9 be a sequence of measures in Kf such that fQ(χ) = limn_+mfn(x)

exists uniformly in x e l . Since \υ(Kf; Co) is ^^co-compact there is a ^ ^ C o -

cluster point ^ in \v{Kf;CQ) of {/„}, which is also a ^j x -cluster point.

Therefore g(x) — fύ(x) for every x^X, and so we have n(Kf; X) =

tυίiΓy ; Co) c F . Hence from the assumption that every element of u(Kf; X)

admits a unique Bayes function, it follows from Theorem 7 and Lemma 1

that B[ω(Kf;C0)]c:\Ό{B[Kf]). Thus we observe that the Bayes function

relative to / belongs to to{B[Kf]), and consequently to \υ(B[G]). Combining

with Theorem 9, we complete the proof.

In the remainder of this section we shall denote by P the set of all

probability measures (positive Radon measures / with || /1 | = 1) and by Px

the set of all probability measures concentrating to finite sets of points in T.
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THEOREM 12. Suppose that X is relatively ^ ϊ -compact in C and s u p ί e Γ

0 0 * Then we have

Proof. Since ι#£// — Uύf/ ^ s u p ί e T | x{t) — y(t) |, Px is equicontinuous

on (u(X), ^ u ) . From Ascoli theorem it follows that Px is relatively ^J" u W-

compact, or equivalently, relatively ^ u

 u(χ)-compact. On the other hand,

the equivalence of J?Ίι and ̂ ϋ on X is implied from the ^^-compactness of

u(Z) and Ascoli theorem. Therefore by Theorem 4 we have

toiBlP,]) c BMP, u(X))] - W[PX].

LEMMA 5. For any measure f in P, there is a relatively J7~£*-compact subset

K of P1 such that

Proof If T is compact, our Lemma is trivial. So we shall begin with

considering the case where T is tr-compact. Since T is locally compact,

there is an ascending sequence {Cn~} of compact subsets of T such that

[j Cn = T and Cn is contained in the interior of Cn+1. Let / be an arbitrary

measure in P . For any neighborhood V of f:V = Vto(f:x19x29 . . . >#r> e)

with χi e C o , / = 1,2, . . . , r9 and with e > 0, there corresponds the smallest

Cm9 in the sequence {Cn}, containing all the supports of xλ, x2, . . . , and

xr. Since T is regular ([1, Ch. 1]), for each ί e T w e can choose a neigh-

borhood U(t) of ί so that it satisfies: (i) for every s in U(t), \Xi(t) — Xi(s)\

< ε 12, f = 1,2, . . . , r, and (ii) if t e Cn — Cn_j, then £7(0 is disjoint with

X— Cn+ί. Since Cm is compact, there is a finite covering U{tι)9 . . . , J7(ίp)

of C m . Write Ex = U{tx) n C w and ^ = /7(^) Π Cm - % \} E5, i = 2, . . . , p ,
y = i

and take p + 1 points st <E Eif i = 1, 2, . . . , p , and ŝ +j e Cw + 1 — Cw .

Let fv be a measure in Px, defined by /F(sJ = / ( ^ J , i — 1, 2, . . . , p,
and fv(sp+ί) = 1 — /( U £,) . It is clear that / F e 7 . Let # be the set of

i = i

all fv corresponding to neighborhoods V of / . Thus we have / e U)(/ί; Co).

Since / ( C J ^ / F ( C J for every V and n, lim^^^ /F(CJ ^ l i m . ^ /(Cn) = 1

uniformly in V, which shows that K is relatively .^^-compact in P, and
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We shall proceed to the case where / is not ^-compact. Since / is a

finite measure, there is a (/-compact and locally compact subset Tf of T with

f{Tf) = 1. Let CO, C and K! be the classes of functions and measures

defined on Ύ' correspondingly to the classes Co, C and K on T in the previous

case, respectively. We shall construct, correspondingly to a J^Ό-neighbor-

hood F of/, a measure / p o n T , of finite support in Tr in a similar way

to the <7-compact case. We shall define a measure fv in Pλ as fv(E) =

fy{E Π TO, and denote by K the set of all fv for V = VίΌ{f: x\, x2,. . . , xp, e),

where α^,^, . . . , xp are in C'o and e > 0 . We can see directly that if is

relatively ^^,c°-compact as a set of measures on T. To see / being in

XΌ{K; CO) , we take a finite set {yλ, y2, - - > yq} of elements of Co and a

positive ε . Since the restrictions of these yh to T ; are elements of C on

T', K f)Vtv(f: y19 y29 . . . , yq,ε) can be regarded as the intersection of K

and a c^,0'-neighborhood of / . Since Kr is relatively t^ )

cό-compact in

Pi -^c'<> a n d ^r^' coincide with each other on Kf. Therefore every

K Π V^if: yx, . . . , yq, ε) contains a measure, whose restriction to T' is in

K'. Thus we have / e \v(K9 Co).

THEOREM 13. Suppose that X is equicontinuous and s u p ί e rsuP*€= x#( i0"< °° .

Proof. Clear from Theorem 10 and Lemma 5.

THEOREM 14. Suppose that T is compact. If for any % e X there is a

ϋ -neighborhood V of x such that V is equicontinuous and s u p ί G r s u p x e

CZB[P] = \υ(B[P]) and TF[PJ cB[P] = W[P].

Proof. The compactness of T implies that ϊ υ ^ Co) = P. Therefore our

theorem is shown directly by Theorem 8.

THEOREM 15. If T is compact, and if X is equicontinuous and

x%{t) < °° > then we have

xo{β[Pι\) c B[P] = to(B[P]) = W[PΛ = W[P].
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§4. Comments on Bayes class and Wald class relative to a class

of additive functionals. Suppose that F be a family of real functions on

an arbitrary space X, and that af and βf are constant real numbers such that

af > 0 and they do not depend o n a G l but may depend on / e F. We

shall write F* = {aff + βf: f e F}. As is easily seen, we have B[F*] = B[F],

but not always TF[F*] = W[F]. There are many important cases where

\Ό(F) contains a constant function. In such a case B[\υ(F)] coincides with

the whole space X, and so most relations we got in the previous two sections

become useless. To avoid this unfavorableness, we should find af and βf

so that XΌ(F*) is at least ^Ho-compact (the ^^-compactness is the weakest

condition among those of our theorems) and any constant function is not

contained in Jfϊί. -closure of F*. This is a general principle of reducing

the limit points of the Bayes class to the generalized Bayes points.

Suppose, for instance, that F is a class of real additive functionals defined

on a linear space L containing X as its subset. Let x0 be a point of L and

φ an additive mapping of a linear space M into L such that every element

x of X is decomposed into the sum of φ{y), y e M, and xQ e L: x = x0 + φ{y).

If / is a real additive functional on L, then we have f(x) = fφ(y) + fM

and fφ is an additive functional on M. Suppose that for any / in F

there corresponds a positve number af such that 0 < inf}e F sup^e γ af fφ(y)

^ s u p / e j P s u p 2 / e F α / /^(2/)<oo, where Y = φ~x{X—xQ). Let G = {af fφ:

f*=F} and F*={aff + f{xQ): f e F}. Since G is relatively ^ ^ - c o m p a c t

by Tychonoff theorem, it follows from Theorem 2 that W[G] c β[tt)(G)], that

is, W[F*] c ^(B[lυ(G)]) + a?0 If L is a topological linear space and fφ is

a real continuous knd additive functional on M for every f & F 9 and if

u(G F) is ^ F - c o m p a c t , then by Theorem 4 c(JB[G]) c J5 [u(G; F)] holds

and hence c(iB[F]) c φ{B[u{G, Y)]) + α?0. Since affφ[y) is an additive func-

tional, we can easily verfy that n{G;Y) is a class of additive functionals.

In [2] u(G F) is a class of distributions, while in [5] it is a class of a-

finite measures.
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