H. Matsumura Nagoya Math. J. Vol. 68 (1977), 123-130

QUASI-COEFFICIENT RINGS OF A LOCAL RING

HIDEYUKI MATSUMURA

In this note we will make a few observations on the structure of fields and local rings. The main point is to show that a weaker version of Cohen structure theorem for complete local rings holds for any (not necessarily complete) local ring. The consideration of non-complete case makes the meaning of Cohen's theorem itself clearer. Moreover, quasicoefficient fields (or rings) are handy when we consider derivations of a local ring.

1. All rings considered here are commutative rings with unit element. By a local ring (A, \mathfrak{m}) we mean a (not necessarily noetherian) ring A with unique maximal ideal \mathfrak{m} . The completion of (A, \mathfrak{m}) is $\lim_{\leftarrow} A/\mathfrak{m}^n$ and is denoted by A^* . We say that A is separated if $\bigcap_n \mathfrak{m}^n \mathfrak{m}^n = (0)$, and that A is complete if $A = A^*$.

Let (A, \mathfrak{m}) and (B, \mathfrak{n}) be noetherian local rings and $\phi: A \to B$ be a local homomorphism. Then B is said to be *formally smooth* (resp. *formally unramified*, resp. *formally etale*) over A if, for every commutative diagram

$$\begin{array}{c} B \xrightarrow{u} C/N \\ \downarrow^{\phi} & \uparrow \\ A \xrightarrow{v} C \end{array}$$

where C is a ring, N is an ideal of C with $N^2 = (0)$ and $u(\mathfrak{m}^r) = (0)$ for sufficiently large r, there exists at least one (resp. at most one, resp. exactly one) homomorphism $B \to C$ which makes the diagram

Received February 16, 1977.

commutative (cf. $[3, \S 19]$).

If B is formally unramified over A, then $\text{Der}_A(B, M) = 0$ for any B-module M such that $\bigcap_{n} \mathfrak{n}^* M = 0$. In particular, if we put $k = A/\mathfrak{m}$ and $K = B/\mathfrak{n}$, then $\text{Der}_k(K) = 0$ (or what is the same, $\Omega_{K/k} = 0$). On the other hand, it is not difficult to show that if $\Omega_{K/k} = 0$ and $\mathfrak{n} = \mathfrak{m}B$ then B is formally unramified over A.

A necessary and sufficient condition for B to be formally smooth over A is that (1) B is flat over A and (2) $B/\mathfrak{m}B$ is formally smooth over A/\mathfrak{m} [3, (19.7.1)]. If A and B are fields, then to say B is formally smooth over A is tantamount to saying that B is separable over A.

Let K be a field and k be a subfield. Then the following conditions are equivalent:

(a) K is formally etale over k;

(b) every derivation of k into a K-module M can be uniquely extended to a derivation of K into M;

(c) $\Omega_{\kappa} = \Omega_k \otimes_k K$, where Ω_k denotes the module of differentials of k over the prime field;

(d) K is separable over k and $\Omega_{K/k} = 0$;

(e) char (k) = 0 and K is algebraic over k; or char (k) = p > 0 and a *p*-basis of k (over the prime field) is also a *p*-basis of K;

In the case of characteristic p, the above are also equivalent to (f) $K = k \bigotimes_{k^p} K^p$.

THEOREM 1. Let k be a field of characteristic p, and K be a separable extension of k; let $B = \{b_i\}_{i \in I}$ be a p-independent subset of K over k. Then B is algebraically independent over k.

Proof. Assume the contrary and suppose $b_1, \dots, b_n \in B$ are algebraically dependent over k. Take an algebraic relation

 $f(b_1, \cdots, b_n) = 0$, $f \in k[X_1, \cdots, X_n]$

of lowest possible degree. Put deg f = d. We can write

$$f(X_1,\cdots,X_n)=\sum_{0\leqslant\nu_1,\cdots,\nu_n\leqslant p}g_{\nu_1,\cdots,\nu_n}(X_1^p,\cdots,X_n^p)X_1^{\nu_1}\cdots X_n^{\nu_n},$$

where g_{ν_1,\ldots,ν_n} are polynomials with coefficients in k. Since b_1, \cdots, b_n are p-independent over k, we must have

$$g_{\nu_1,\ldots,\nu_n}(b_1^p,\cdots,b_n^p)=0$$

124

LOCAL RING

for all ν_1, \dots, ν_n . By the choice of f this is possible only if

$$f(X_1, \cdots, X_n) = g_{0, \cdots, 0}(X_1^p, \cdots, X_n^p) .$$

But then we would have

$$f(X_1, \cdots, X_n) = \phi(X_1, \cdots, X_n)^p \quad \text{with} \quad \phi \in k^{p^{-1}}[X_1, \cdots, X_n] \; .$$

Hence $\phi(b_1, \dots, b_n) = 0$. By MacLane's criterion of separability, however, K and k^{p-1} are linearly disjoint over k; since the monomials of degree $\langle d \text{ in } b_1, \dots, b_n$ are linearly independent over k, they are also linearly independent over k^{p-1} . Therefore such a relation as $\phi(b_1, \dots, b_n)$ = 0 cannot exist, and we get a contradiction.

Remark 1. A *p*-basis of a separable extension K/k need not be a transcendence basis. For example, if k is a perfect field and x is an indeterminate over k, then the field $k(x, x^{p-1}, x^{p-2}, \dots)$ is perfect, so that the empty set is a *p*-basis of this extension.

Remark 2. Recall that a differential basis $\{b_i\}_{i \in I}$ of a field extension K/k is a subset of K such that $\{db_i\}_{i \in I}$ is a linear basis of $\mathcal{Q}_{K/k}$ over K. The notion of differential basis coincides with that of transcendence basis if char (k) = 0, and with that of p-basis if char (k) = p.

THEOREM 2. Let K/k be a separable extension of fields. Then there is a subextension K' such that K'/k is purely transcendental and K/K'is formally etale.

Proof. It suffices to take a differential basis B of K/k and put K' = k(B).

2. DEFINITION. Let (A, \mathfrak{m}) be a local ring containing a field. A subfield k of A is called a *quasi-coefficient field* (q.c.f.) of A if the residue field A/\mathfrak{m} is formally etale over k.

THEOREM 3. (i) Let k be a q.c.f. of a local ring (A, \mathfrak{m}) . Then there exists a unique coefficient field k' of the completion A^* of A such that $k \subset k'$.

(ii) If a local ring (A, \mathfrak{m}) includes a field k_0 and if A/\mathfrak{m} is separable over k_0 , then A has a q.c.f. k which includes k_0 .

Proof. (i) This is clear from the definitions and from the following diagram.

(ii) Let *B* be a differential basis of A/m over k_0 , and choose a preimage x_{λ} for each element b_{λ} of *B*. If $f(X_1, \dots, X_n)$ is a non-zero polynomial with coefficients in k_0 and if b_1, \dots, b_n are mutually distinct elements of *B*, then $f(b_1, \dots, b_n) \neq 0$ by Theorem 1, hence $f(x_1, \dots, x_n)$ is invertible in *A*. Therefore *A* includes the quotient field *k* of $k_0[\{x_{\lambda}\}]$, and *k* is obviously a q.c.f. of *A*.

Remark 3. In the notation of (i), every derivation D of A (into itself) over k is uniquely extended to a derivation of A^* over k'. Therefore we can identify $\text{Der}_k(A)$ with an A-submodule of $\text{Der}_{k'}(A^*)$.

THEOREM 4. Let (A, \mathfrak{m}) and (B, \mathfrak{n}) be local rings such that $A \subset B$, $\mathfrak{m} = A \cap \mathfrak{n}$. Suppose that A includes a field.

(i) If B/n is separable over A/m, then every q.c.f. of A can be extended to a q.c.f. of B.

(ii) If A is of characteristic p and $B^p \subset A$, then there exists a q.c.f. of A which can be extended to a q.c.f. of B.

Proof. (i) Immediate from (ii) of Theorem 3.

(ii) Put $K = A/\mathfrak{m}$ and $L = B/\mathfrak{n}$. Then $L^p \subset K \subset L$. Let $B = \{\beta_i\}_{i \in I}$ be a *p*-basis of L/K and $C = \{\gamma_j\}_{j \in J}$ be a *p*-basis of K/L^p . Then it is easy to see that $\{\gamma_j\} \cup \{\beta_i^p\}$ is a *p*-basis of *K* and $\{\beta_i\} \cup \{\gamma_j\}$ is a *p*-basis of *L*. Therefore, if $\{y_i\}$ (resp. $\{z_j\}$) is a set of representatives of $\{\beta_i\}$ in *L* (resp. of $\{\gamma_j\}$ in *K*), then $F_p(\{y_i, \{z_j\})$ is a q.c.f. of *L* and $F_p(\{z_j\}, \{y_i^p\})$ is a q.c.f. of *K*. (cf. Nagata [6]).

THEOREM 5. Let A be a noetherian local integral domain of characteristic p, and let K be the quotient field of A. Suppose A is pseudogeometric (i.e. Nagata ring in the terminology of [4]). Let A^* be the completion of A, \mathfrak{p} be a minimal prime ideal of A^* and L be the quotient field of A^*/\mathfrak{p} . Let k be a q.c.f. of A and k' be the coefficient field of A^* including k. Then K is separable over k if and only if L is

LOCAL RING

separable over k'.

Proof. Since A is pseudo-geometric, L is separable over K [4, (31. F)]. Suppose K is separable over k. Then L is separable over k. Let d be a derivation of k' into L, and let d_0 denote the restriction of d to k. Then d_0 can be extended to a derivation $D: L \to L$. The restriction D|k' must coincide with d, since k' is formally etale over k. Therefore D is an extension of d to L. This proves that L is separable over k'. The converse is easy, since a subextension of a separable extension is separable.

Remark 4. Chevalley [8] gave the following definitions. Let \circ be a noetherian complete local ring which includes a field k, and u_1, u_2, \cdots be a sequence of elements of \circ which converges to 0 in \circ . If the conditions $\sum a_i u_i = 0$, $a_i \in k$, imply $a_i = 0$ for all i, then the elements u_i are said to be strongly linearly independent over k. The elements of a finite sequence are said to be strongly linearly independent over k when they are linearly independent. When char $(\circ) = p$, we will say that \circ is strongly separable¹⁾ over k if, for every finite or infinite sequence (u_i) of elements of \circ which are strongly linearly independent over k, the elements u_i^p are strongly linearly independent over k. Suppose \circ is an integral domain and let L denote its quotient field. Then clearly

o is strongly separable over $k \Rightarrow L$ is separable over k. It is easy to see that the converse is also true if $[k:k^p] < \infty$, but in general the two conditions are not equivalent. Under the assumption that the residue field of o is a finite algebraic extension of k, a noetherian complete local domain o is strongly separable over k if and only if there exists a system of parameters x_1, \dots, x_n of o such that L is separable over the quotient field $k((x_1, \dots, x_n))$ of $k[[x_1, \dots, x_n]]$ (Nagata [7]). It is desirable to study quasi-coefficient fields further in the direction of Theorem 5 taking these definitions and facts into consideration.

3. In the unequal characteristic case we must define quasi-coefficient ring. Let us recall that, when (A, m) is a complete local ring with char(A/m) = p > 0, a subring I of A is called a coefficient ring of A if (i) I is a noetherian complete local ring with maximal ideal pI (whence $pI = m \cap I$) and (ii) A and I have the same residue field, i.e. A = I + m.

¹⁾ In Chevalley's terminology v is said to be separably generated over k.

DEFINITION. Let (A, \mathfrak{m}) be a (not necessarily complete) local ring with char $(A/\mathfrak{m}) = p > 0$. A subring I of A is called a quasi-coefficient ring of A if

- (i') I is a noetherian local ring with maximal ideal pI, and
- (ii') the residue field A/\mathfrak{m} of A is formally etale over I/pI.

In both cases, all ideals of I have the form $p^m I \ (m \ge 0)$. Therefore, if char (A) = 0 (i.e. the unique homomorphism $Z \to A$ is injective) then $p^m I \ne 0$ for all $m \ge 0$ and I is a discrete valuation ring. If char (A) $= p^n, n > 0$, then we have $p^{n-1}I \ne 0, p^n I = 0$ and I is artinian.

Remark 5. In the case char $(A) = p^n$, there exists a complete discrete valuation ring W with maximal ideal pW such that $I \cong W/p^n W$, and such W is uniquely determined. In fact, for each field k of characteristic p there exists a complete discrete valuation ring W of characteristic zero such that $W/pW \cong k$, and such W is necessarily flat over Z_{pZ} , hence is unique up to isomorphism [3, (19.7.2)]. Moreover, W is formally smooth over Z_{pZ} by [3, (19.7.1)], hence for any complete local ring (B, \mathfrak{m}_B) with residue field k there exists at least one homomorphism $W \to B$ which lifts the isomorphism $W/pW \cong B/\mathfrak{m}_B$. The ring I considered above with maximal ideal pI such that $p^{n-1}I \neq 0$, $p^nI = 0$, is artinian, hence complete, and if we take I for B then the homomorphism $W \to I$ is surjective with kernel p^nW .

THEOREM 6. Let (A, \mathfrak{m}) be a noetherian local ring and A^* be its completion. Let I be a quasi-coefficient ring of A. Then there exists a unique coefficient ring J of A^* including I, and J is formally unramified over I. If A is flat over I, then A^* is flat over J and J is formally etale over I.

Proof. Since A is separated, we may view A and I as subrings of A^* . By [3, (19.7.2)] there exists a complete noetherian local ring J' and a flat local homomorphism $I \to J'$ such that $J'/pJ' \cong A/\mathfrak{m}$ over I/pI. Since rad $(J') = pJ' = \operatorname{rad}(I)J'$ and since J'/pJ' is formally etale over I/pI, it is easy to see that J' is formally etale over I. Therefore there is a unique homomorphism $\phi: J' \to A^*$ which makes the following diagram commutative:

Put $J = \phi(J')$. Then J is a coefficient ring of A^* . Since J' is formally unramified over I, so is J. If A is flat over I then A^* is also flat over I, hence we have

$$pJ' \otimes_{J'} A^* = (pI \otimes_I J') \otimes_{J'} A^* = pI \otimes_I A^* = pA^*$$

Therefore (by [1, Ch. 3, § 5, no. 2, Theorem 1 (iii)], [4, (20.C)]) the map ϕ makes A^* a flat J'-module, and consequently ϕ is injective (since it is local). Thus $J' \cong J$.

It remains to prove the uniqueness of J. If J'' is a coefficient ring of A^* including I, then we can use the same argument to prove the existence of a homomorphism $\psi: J' \to J''$ such that

commutes. Let $i: J'' \to A^*$ denote the inclusion map. Then $\phi = i \circ \psi$ by the uniqueness of ϕ , hence J'' = J. QED.

COROLLARY. Let (A, \mathfrak{m}) and I be as in the theorem, and let $\{y_{\lambda}\}$ be a system of generators of \mathfrak{m} . If $D \in \text{Der}_{I}(A)$ and $D(y_{\lambda}) = 0$ for all λ , then D = 0.

Proof. Extend D to A^* by continuity. Then D = 0 on J, hence on A^* .

Quasi-coefficient rings exist in any local ring of unequal characteristic. In fact, our next theorem gives a little stronger existence statement.

THEOREM 7. Let (A, \mathfrak{m}) be a local ring, and (C, \mathfrak{p}) be a noetherian local ring such that $C \subset A$, $\mathfrak{p} = \mathfrak{m} \cap C$. Suppose A/\mathfrak{m} is separable over C/\mathfrak{p} . Then there is a noetherian local ring (B, \mathfrak{n}) such that $C \subset B \subset A$,

HIDEYUKI MATSUMURA

 $\mathfrak{n} = \mathfrak{p}B = \mathfrak{m} \cap C$ and such that A/\mathfrak{m} is formally etale over B/\mathfrak{n} . If A is flat over C, then A is also flat over B.

Proof. Let $\{\bar{x}_i\}_{i\in I}$ be a differential basis of A/\mathfrak{m} over C/\mathfrak{p} , and let $x_i \in A$ be a pre-image of \bar{x}_i for each $i \in I$. Let $\{X_i\}_{i\in I}$ be independent variables and put $R = C[\{X_i\}], B' = R_{\mathfrak{p}R}$. Then B' is noetherian. In fact, it is a local ring with finitely generated maximal ideal, and $\bigcap_{\mathfrak{p}} \mathfrak{p}^{\mathfrak{p}}B' = (0)$ because $(\cap \mathfrak{p}^{\mathfrak{p}}B') \cap R = \cap \mathfrak{p}^{\mathfrak{p}}R = (0)$. Moreover, if $\mathfrak{a} = (f_1, \dots, f_r)$ is a finitely generated ideal of B' then B'/\mathfrak{a} is also a localization of a polynomial ring over a noetherian local ring, hence B'/\mathfrak{a} is also separated. In other words, every finitely generated ideal of B' is closed. It follows that B' is noetherian [5, (31.8)].

Consider the *C*-homomorphism $R \to A$ which maps X_i to x_i . Since $\{\bar{x}_i\}_{i \in I}$ is algebraically independent over C/\mathfrak{p} , the homomorphism $R \to A$ factors as $R \to B' \to A$. Denote the image of B' in A by B. Then B is a noetherian local ring with maximal ideal $\mathfrak{p}B$. Since $\mathfrak{p} \subset \mathfrak{m}$ we have $\mathfrak{p}B = \mathfrak{m} \cap B$. The last assertion of the theorem is proved as in Theorem 6.

If (A, \mathfrak{m}) is a local ring with char $(A/\mathfrak{m}) = p > 0$, then we can find a local subring *C* with maximal ideal *pC* satisfying the condition of Theorem 7. It suffices to take $C = \mathbb{Z}_{pZ}$ when char (A) = 0, and $C = \mathbb{Z}/p^n$ when char $(A) = p^n$. Then the local ring *B* of the theorem is a quasicoefficient ring of *A*.

REFERENCES

- [1] N. Bourbaki, Algèbre Commutative, Ch. 3,4. Hermann, Paris, 1961.
- [2] I. S. Cohen, On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc. 59 (1946), 54-106.
- [3] A. Grothendieck and J. Dieudonné, Éléments de Géométrie Algébrique, Ch. IV, Première Partie, Publ. IHES, No. 20, 1964.
- [4] H. Matsumura, Commutative Algebra, Benjamin, New York 1970.
- [5] M. Nagata, Local Rings, Interscience, New York 1962.
- [6] ——, Note on coefficient fields of complete local rings. Mem. Coll. Sci., Univ. Kyoto 32 (1959), 91–92.
- [7] —, Note on complete local integrity domains. Mem. Coll. Sci., Univ. Kyoto 28 (1954), 271–278.
- [8] C. Chevalley, Some properties of ideals in rings of power series. Trans. Amer. Math. Soc. 55 (1944), 68-84.

Department of Mathematics Nagoya University