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ANALYTIC STRUCTURE OF SCHLAFLI FUNCTION
KAZUHIKO AOMOTO

§1. Introduction

In this note it is shown that Schldfli function can be simply ex-
pressed in terms of hyperlogarithmic functions, namely iterated integrals
of forms with logarithmic poles in the sense of K. T. Chen (Theorem
1). It is also discussed the relation between Schlifli function and hyper-
geometric ones of Mellin-Sato type (Theorem 2). From a combinatorial
point of view the structure of hyperlogarithmic functions seem very

interesting just as the dilog r log 1 — z)/xdx (so-called Abel-Rogers
0

function) has played a crucial part in Gelfand-Gabriev-Losik’s formula
of 1st Pontrjagin classes. See also [3].

The author would like to express his sincere gratitude to Prof. S.
S. Chern who has pointed out to the author his interest in this subject
and has communicated some references, and to the author’s colleagues
too for their stimulating discussions.

§2. Gauss-Bonnet theorem

Let S® be a n dimensional unit sphere in R"*' with the standard
metric and S,,S,,--:,S,,; be (n + 1) hyperplanes in R**' through the
origin which are in general position. Let

(2'1) Sj . fj = 0

where f; = %uﬁx, with %u@, = 1. The set of all points of S* satisfy-
y=1 v=1

ing the inequalities

(2.2) f}go”"vfnﬂgo

form a n dimensional spherical simplex denoted by 4. We denote by
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{1, 7) the dihedral angle between S; and S; subtended by 4. Then 4 is
uniquely determined up to the motion of congruences by the n(n + 1)/2
quantities —cos {7, 7> = a,;; so that the volume V of 4 can be regarded
as an analytic function of the variables a;; of the n(n + 1)/2 dimensional
complex affine space X, which is defined by Schlifli’s integral on 4:

n+1
23 V= J (=D hxdey N\ s Ndxgo N degg N e N ATy
45=1
and which can also be expressed as

@.3) V= 1

_ e et s iadde A vee A dR,,,
201 '(nf2 + 1) ‘[h;o ----- Snt120 ' "

Let A(eit, extay - -5 6p%) OF Vigdy, - +,60,) A =p=n+1,¢; = £1) denote
the chains in S™ defined by the inequalities

2.4 afi,z0,: 60, 20

or the volumes of them respectively. Clearly we have

Viedy, - -, 5p7:p) = V(—ety, -+, _spip) s
V(El’l:“ tty 5pip) + V(eliv Tty 6p—l’i_p—l’ _5p1:p)
2.5) . .
= V(Eﬂq, ) Ep—l"’p—l) and

Vied)=1/218"|

where |S*| denotes the volume of S" equal to 2z"?/I'(n/2).
The following Gauss-Bonnet theorem is well-known ([8], [11]).

PROPOSITION 1. For odd n

2.6) {n—D2sm =5

y=2 §1<eee<i

(=D VG iy -+, 5)
and for even n
@D {2 =3 3 (Vi) —2V0,2, - n D).

This Proposition simply follows from the following combinatorial
lemma.

LEMMA 1. Let p be a finitely additive measure on a space X and
U,U, - --,U, be a finite number of measurable subsets of X. Then we
have
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@.89) AN & = U)) =40 + 3 (D N -2 N T

if p(X) < co.

According to this Proposition all the volumes V(eg,, - -+, ¢,i,) are
expressed as linear combinations of |S*|, V(i, 1), V (i, Ty sy 1)y «++, V(iyy + - -,
1,) where 2v — 1 =n or n — 1 according as n is odd or even.

§3. Application of Schlifli’s formula

We denote by D(ili2 "'i") the subdeterminant of the symmetric

Jifz v Ip
matrix A
1 [LIPIR a’l,n-!—!
a, 1 ... A2, m 41 ]
3.1) A=| : :
1 a’n,n-ﬂ}
Apy1,1 cte Upy1,n 1

consisting of ¢, ---,7¢,th. lines and 7, ---,7, th. columns. In particular

we shall abreviate D(%2 T 21’) by D(,, ---,%,). The matrix A defines
g e O

a spherical simplex 4 if and only if A is positive definite. In such a
case Hadamard’s inequality implies

(32) D(?:ly""ip)zD(jl:""jq)

if @y --,%) C @y -,7). We denote by E the identity matrix where
{i,7) are all equal to =/2.

NoOTATION. We denote by I a subset of indices {¢,%, ---,%,} of
1,2, ---,n + 1} different from each other and by I its length p.

Let 4*(@, ---,%,) be a (»n — p) dimensional subsimplex of 4 contained
in the intersection S,,...;, of S* and the hyperplanes f;, =0, ---,f;, = 0.
We denote by V*(i,, - - -,1,) the (n — p) dimensional volume of 4*(,, - - -,1,).
Then Schléfli’s fundamental equality can be stated as follows:

SCHLAFLI’S FORMULA.

3.3) aV = 33 V*G, )d<i, i
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Proof. [15] or [10] p. 337-p. 340.
This also implies the following:

.0 AV = S VR G j2>)d<jf y.2>

J1<ie,IN(j1,52) =4

where <]- I F denotes the dihedral angle between S; and S;, subtended
1 J2

by 4*(I) in the (n — p) dimensional sphere S;.
From now on we shall assume n equal to odd 2v — 1. Let T be a
lower triangular matrix:

1 0
t t
(3-5) T = .21 .zz
tn+1,1 tn+1,2 tt tn+1,n+l

such that ¢,>0, -+, ¢,,1ns: > 0and T-'T = A. T is uniquely determined
by A and we have

(3.6) 1,25 = 1/2ilog (iﬂL> .

_t21 - itZZ

The lower triangular matrix T, corresponding to 4*(1,2) is equal to

1 0
At At
(3'7) 4. 43 444
2n+ltn+1,3 2n+1tn+1,4 vt zn+1tn+1,n+1

where 1, denotes 11+ 8+ - + 8, for 4 <j<n + 1. Therefore by
induction we have

3.8) <§Z> = 1/2ilog (_ii'_“_>

U3 — itu

or more generally

12..-24—3 2 — 2 . —tau 201 T+ It
(3-9) ’a ﬂ — 1 2@ log ( 2p,2p1—1 - 2;1,2/4)
< 2[“ - 1’ 2[“ / —bop,2p-1 T 1’t2y,2p

for 0 < pg=<v—1. On the other hand a simple calculation shows that
t;:-1/t:: is equal to
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D<12---'£—-2,i—1

DA,2, i —2,i= DD, 2 i = 2,i— 1,1
12000 — 2,6 )/ 4P P B DI tm Bt LY

so that (8.9) is equal to

(3.10)

D(12...2#—2 2‘“—1) + YDA, 2, -, 2a—2)DA.2, .20
p— . _ z gy v 0y #— ,’...’#

1/2i log 12 2p— 2 2y

12, 2,—22,—1\ . .
—D( 1 1 )— D2, -.24—2)DA, 2, -2
120 2 — 2 2 i/ D( p—2)D( £2)

NoTATION. If I and J are two subsets of indices I = (3, ---,%,) and

J = (@0 5 Tp Tps1 Ipe2), then we denote by m(g) the 1-form defined by

=D(j7 22" + iV DOD)
(3.11) 1/2i{ d log 1 PptE .
[ﬂpfﬁ'“?éwﬁ—w¢bﬁm0)
’lez A 'I«p’l/p+2

When A is equal to E, namely <%, 7> are all equal to /2, V is reduced to
@@/2)»+'.|S*|. We denote by X,,...,, the divisor defined by the equation
D(iyy %y -+ +5%,) =0 in X. Let F be a 2¢"-V_covering of & ramified over
X (1 £ ¢ <), uniformizing all the functions vD(,, 4, - - -, %,), and

i1dgeeizp
= be the natural projection from 4 onto X. If p is even, the form w(})

of (3.11) is well-defined 1-form on ¥ which has logarithmic poles along
T X igenipipen) OF T (Eiyigeniyipss) N view of Jacobi’s identity:

D('Ll cet ,l'p)D(/Ll te ipip+17:p+2)
8-12) = DG, gy DDGy - yiyy) — D(3 7 i)
A lp/"p+2
DEFINITION. Let Q2(M; p,q) be the space of continuous paths from
a point p to a point ¢ in a differentiable manifold M, and w,, w,, - - -, @,
a finite number of differential 1-forms on M. Let y be a path of 2(M;
P, Q) namely a differentiable function ¢: [0,1] — M such that ¢(0) = p and
o(1) = q. Let f;t)dt be the pull-back of each w; by ¢. According to
K. T. Chen (see [4]) we consider the following integral

(3.13) j : Futdt, ﬂ FutDdt, - -- j :’” Fult)dtn,
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which will be called “iterated integral of order m” and denoted by
3.149) leowzo-~-owm.
7

Now by (3.8),(3.4),(3.10) and (8.11) we can conclude the following:

THEOREM 1. For odd n,V is expressed in terms of iterated integrals

of forms of logarithmic poles w(eI]) on &:

_ S Io)o (11)0 s (I.,_l). e
(.15) V= (Io>1§-,lu) aZ=:0J‘E w(Il ¢ I, ¢ 1,/ 2n+i-te

where we put |S7 =1 and (Iy,1,---,1,) run through all families of
subsets of indices such that (i) |I,|=0,|;|=2,---,|I,] =2v and (i) I,
=@cl,cl,c.--cl, The above iterated integrals are done on each
path from E to A in &

Remark. The right hand side of (3.15) depends only on homotopy
classes of paths provided A is fixed. In fact Chen’s formula of the
exterior differentiation of iterated integrals show (see Proposition 4.1.2

0yL1y°*ylg 1) ( ) < )
(€47 I )I (1 12 I

o

_ S —1) Io>o...o (I,_l) (I) (I.,_l)
o (Io,l;Z,-:..,z,,) zzs;t( l)w(I1 @ I /\(DI,+1 @ I,

T

(3.16)

where ([, I, ---,1,_,) run through all the subsets of indices such that
| =0,|I}| =2,--+,1I,=20 and I, cIl,Cc..-CI,_,CI,I, being fixed.
This vanishes in view of the following identities:

5 o) o) <o

|E|=1I]+2

for any subsets of indices I and J such that |I| + 4 =|J|, which can be
proved by a direct calculation.

COROLLARY OF THEOREM 1. The monodromy of the many valued
function V on & is contained in o unipotent subgroup of upper triangular
matrices.

Proof. This follows from a general theory of iterated integrals
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(see [4] p. 222). In our situation the variation of V along an arbitrary
loop on 4 — U 7 '%,...,,) can be written as a linear combination
1< <lap
1<p<sy

of the iterated integrals

Io) o (Ix) 0+ero0 (I”_l)
(3'18) 11,-;:10—1(0(11 ¢ I2 v Ia

which is closed on £ because of (3.16). This fact can also be proved in
a direct way by using a generalized Picard-Lefschetz formula due to F.
Pham.

According to H. Poincaré and Lappo-Danilevski we shall call “hyper-
logarithmic functions of order m” functions of iterated integrals of mth
order of forms with logarithmic poles, so that V is a hyperlogarithmic
function of order v on %

The volume of a double-rectangular tetrahedron was investigated by
H.S. M. Coxeter [6]. By his notations we have <1,3> = <1,4> = {2,4)> = 0,
4,2y =7n/2 —a,{2,3> =8 and <{8,4> =z/2 —y. Then V is written as
follows:

V —18%/16 = — Jda-l/Zilog(”“s%nTCOSa + ’M/Q)
—sinycosa — WD

(38.19) + fdﬂ'l/% log ( —sin e cos Bsiny + ¢sin ,Bx/é)
—sin a cos g siny — ¢ sin gv/'D

- jdr-l/Zi log( —sinacosy + D )
—sina cos 7 — /D

which gives the same formula as (4.11) in [6], where D means D(,2, 3, 4)
= cos® a-cos’ y — cos? B.
§4. Power series expansion of V
The integral (1.3) can also be expressed as follows:
@y V:(n+1)f Az, A v A gy, .

J120,%,fn+120
2 2
122+ +2d g

By change of variables the right hand side is transformed into

4.2) (n+ 1)/D Ay, N\ +++ N dYpi
12Q(y14eee,y Yn+1)
Y120,¢++,Yn+120
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where Q denotes the quadratic polynomial zly‘j + 22 biyey; with by; = by,
and D denotes D(1,2,---,n + 1). by are]—determzi;;ed by the relation:
4.3) B=K*'"A"'“K",

where B denotes the matrix

1 bxz e bl,n+1]

(4.4) bu 1 bun

bn-x—l,l bn+1,2 e 1 }

and K denotes the diagonal matrix with positive elements Diag[p;, - - -, pn4il,
0: equal to

DA,--,i—1,i4+1,--,n+1)
D(@A,2, cvcevenrenenn. ,n_|_]_)

It is easily seen that the correspondence (4.3) is birational on %, leaving
fized the divisors | U 77'E o) O U U T (X sigeeing 1)

1<y 11<ia< e <day 1ISusy i1t <lgp—1
Now we are going to prove the following theorem:

THEOREM 2. As a function of the variables b;;, V has a convergent
power series expansion ot the origin:

[T (=2b;)"
2DV + D)= 3, 22
az0 ] o4y!

<j

2
(5=

4.5) ’ﬁl Z-,(al.k + ot ke t O g+ 01c,n+1)

Jk=1

which 1s a so-called generalized hypergeometric series. For this kind of
functions see Appendix.

To prove Theorem 2 we want to prove a slightly more general theo-
rem by making use of a technic introduced in [1].

THEOREM 2. The integral

@6 o= LQ A — Qroyl-yie -+ yingdyy A -+ A iy

Y120,°++,Yn+120
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for 2,=0,4, =0, -

Ane1 = 0 has a convergent power series expansion
near the origin:

[1 (—2b;p)v

on+ly — <4
¢ [T a:5!
i<y
@ ;i—_i F(o!k + 0+ O O'k,k; F it Ok T A 1)11(20 +1)
pht o thadntly g i)

To prove (4.7) we need

LEMMA 2. If 2,2y, + -, Ay, are all sufficiently large,

j gyl g — QR Y A - A Y
%}%ZQO """ Yn+120
4.8 =M+1+2%+ 24+ - + 2,0)/24
iw»9~ YL — @Y, A - A QY -

Proof. We have by exterior differentiation

A — Q- Yy 1y
d( o 3=y dy, A

NAy; N\ dy; o N\ - A d?/nn)

n+l
= {(1 1 ) — %(Z 2 + 220 + n + 1)}(1 — Q)Z"yf‘ e y::::*il
- 0
cdyy N e N AYyyy

Integrating both sides we get Lemma 2.

Proof of Theorem 2. For sufficiently large A, 4, - -+, 4,,, We have

(=1 g ¢ ab =24 —1) - Gy — o + 1)

@.9) = I A — @0 - YA Y Y,
12Q

Y120,0+,Yn +120

: yiaa—l'yiaadyl VANERERVAN dynﬂ .

According to Lemma 2 the right hand side is equal to
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ﬁ('fz,+220+n+1+2a—2(k—1))

k=1 1

(4.10)
) I — QY - YR Y Yy Yigoo Yige QY1 N\ -+ N QYyy

209,
Y120,00, Yn+120

When b;; are all zero, then ¢ is reduced to
n+1

(3 Hra+
k=1 2

znp<21+---+;n+l+n+1 +20+1)

4.11)

.

Theorem 2’ follows from (4.8) ~ (4.11), because the convergence of the

power series (4.7) is obvious. The proof is complete.
Now we want to express V as power series expansion of the vari-
ables t;; similar to (3.5) so that

f1=901,

(4.12) Jo=1u% + @,

Snor = by @i+ o0 4 Cpin®n + Tpyo
We consider the integral V(4,4 -+, 2,,1):

(4-13) .7[‘111'.](‘212 tre frfﬂldxl AN dxz A e A dxn+1 .

jleOy"',fn+120

Then for large A, 4, - -+, A,,; We have

V(A Az -+ s Ansr)
(atZl)azl e (atij)”” e (atn“’n),nﬂm

—_ I Zl,flz—vu .. 2n+1—0n+1,1-—“-~0n+1.n.xv21+'“+ﬂn+1,1
- 1 2 n+1 1

F120,000, fa+120

cggertrtontne Lo ponttingy A\ o A dBy

n+1

1 4 — 1)+ s Ay — 0 — 00— 0400

=1

For all ¢;; = 0, the above is reduced to

nﬁl F<xk — Op1 — "' — O,p—1 + Opqre + *°° + Oppr + 1)
i1 2
2n+1p(21 + A4t At 0+ 1)
2
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n+1
1——[1 24— - A —04— - — 05+ 1)

so that (4.13) is equal to

il F<Zk — Op1 — " — Ogp—1F Opare + 00+ Onurx + 1)
2
2.
2n+1]-,(,21 +Ah+ o+ A+ + 1)]-[ P
2 Y
f [Go+ 1) .
I'Qg—o4,— - —0300+ 1)
In particular if 2, = .-+ = 4,,; = 0 we have the volume V:
THEOREM 2’.
V= l-:;l-rf)l- V(Zl’ ) 1n+1)
g
nﬁl F(_Gk,l_ cr—0gk-1F Orare 0 Oy 1)
@14 =3 = 2
04520 on+1p n+1 ’n+1
o Moy (=00~ -+ —0as+ 1)
>7 =2
Tl @)™
>J
where the quotients
F(—O'kl — = Opgp—r F Ok t 00 Onge + 1)
2

I'(=0p— +++ — g1 + 1)

have definite values and the right hand side is well-defined. This is also
a hypergeometric function.

§5. Hyperbolic case
Let H be the hyperbolic space form defined by

5.1 { 1 + T

Ty > 0

with the standard metric. In view of (2.3) the analytic continuation
V, of V along the path {¢,} (see (2.1))

V=16

Ujnsr = Wins1 = g1 €
5.2) 05t {

Use = Wjp = Uy
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from 6 =0 to § = % Aj=sn+1,1<k<n) can be written as follows:

1

Vep/ W=D" = 2n/2—1p<_g_ N 1)

(5.3)

f e‘i(-”%"‘""”?ﬁﬁwﬁdwl A e A dxn A dxn+1 .
SF120,00, fn+120

The second hand side is equal to the volume V’ of the simplex 4’ in H
defined by f, =0, - - -, .. = 0 and with the faces H,;:f; = 0. The dihedral
angle between H, and H; subtended by 4’ is equal to (see (2.1))

3
Z.; U, Ugy — Uin 1 Ugn i
& 2 2 2 2 2
JZ Ui, — uin+1JZ Ujy — WUjnaa
v=1 v=1
so that Schliafli formula has the form:

5.5) AV’ = =3 V'G, 1)d<i, 7Y

6.4 —cos (4,7 =

where V’(i,7) means the volume of the (n — 2) dimensional subsimplex
4*@, 7Y defined by f; = f;, = 0.
We denote by A’ the matrix corresponding to <{¢,7):

1 —cos <12y ... —cos{1,n 4+ 1)
—cos (21 1 :

5.6 A = 1

: 1 —cos{n,n + 1)
—cos<{n + 1,1 p —ecos{n + 1,ny 1

Then Theorem 1 implies the following:

THEOREM 1. For odd n we have

671D WSDV= > Y f"'m(fo)w(h)o...oa,(la-l)ISﬂ-zw

(LoyI1seesIy) 6=0 J E I I, I, ) 2n+i-e

where the integrals are done on each path from E to A’ in Z.

COROLLARY. Let V' be the volume of a hyperbolic simplex 4’ cor-
responding to o fized point A'e¢ . Then V' — V' is equal to o linear
combination of the iterated integrals along a path from A’ to A’:
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col)ee()eroally)  0sos
/w(Il wIZ 1) 3 (= )|

where Iy, 1, ---,1, run through all the subsets of indices such that (i)
| =0,|I,|=2,--+,|I,|=2v and (i) ,=0cI,c..-.-ClI,.

(5.8) j

B

Proof. This easily follows from Proposition 1.5.1 in [4].

Appendix. Hypergeometric functions of Mellin-Sato type

We reproduce here briefly Sato’s result in [14].

Let G be the group of m-product of C* = C — (0) and X be its dual,
Hom (G, C*) which is isomorphic to Z™. We denote by X, its complexi-
fication. Let {y, ---,xn} be a basis of X so that any o of X, can be

written as w = > s;x; with (s, -+, 8,) € C™
7=1

NOTATION. For a rational function f(v) on Z we denote by e]j: O

the product:

7 ex1

(6.1) 1 ﬁf@ e <0

1 e=20

Under this situation Sato’s fundamental theorem says

THEOREM A,1. FEach class in the cohomology HYX, C(x)) can be
represented by a so-called “b-function”

k

©6.2) b = 1 {"T €@ + a +»}

k=1

where o, denotes a constant and e, a suitable Q-valued linear function
on Z™.

Let X% be the dual of X, so that X% is isomorphic to the Lie
algebra corresponding to G. For any point r of X} we put e = ¢, where
t=(@, ,t,)eG. We denote by t* the pairing e,

DEFINITION. Arbitrary function v on X% satisfied by the following
system of (pseudo) differential equations
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) ) }
6.3 b(t___,...’tm__>u=t L))
©.3) "\ "at, ot,,

for any yeX, is called “hypergeometric function of Mellin-Sato type”.
This system is maximally overdetermined on X%.

LEMMA A,1. The Mellin transform of a generalized I'-function i(w)

k
Ww) = [] I'ew) + a,)
(6.4) =t
u(t) = ja(w)t“dwl e doy,
is a hypergeometric function of M-S type if it ewxists.

Proof. Easy.

THEOREM 2 D-V is a Mellin transform of V

V= nﬁll"(slk + o+ Seenk t Serer 00 FSknar 1)
(6.5) k=1 2

. H.F(—Su)
i<j

namely we have the following integral representation :

wrf®+ 1
6.6) 2F( 2" 1)DV =(§%>n("“m L 7@ [ (~2ap T ds,

n+1 15i<jdn+1

where ¢ denotes a chain of n(n + 1)/2 dimension which is the product
of paths y,; defined on each s;;-plane as in the figure:

s;;-plane
f_,___ﬁf_
0 1 >

Proof. The integral on each 7;; is equal to the sum of all residues
on s; =0,1,2,8, ... which gives the power series expansion (4.5).

It is easy to see that D-V is a hypergeometric function of M-S
type in the variables a};.
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Finally some problems unknown to the author are raised here.

PROBLEM 1. To determine all meromorphic 1-forms on % with

logarithmic poles along | J U 77Xy, and the infinity. It is
1<p<y (Gadgeerigp—1)

seen by residue calculus that 27-%.n(n 4 1) such 1-forms of the type (3.11)

are linearly independent over C. For the further properties of logarithmic

poles see [7] and [9].

PROBLEM 2. What kind of functions are the inverse of hyperloga-
rithmic functions? They could be a generalization of exponential func-
tions which satisfy some kind of addition formula and are related to
A. N. Parsin’s generalized Jacobian variety (see [12] and [13]).

PROBLEM 3. To determine the order of the maximally overdetermined
system of (pseudo-) differential equations (6.3).
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