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ANALYTIC TORSION OF SPACE FORMS OF CERTAIN

COMPACT SYMMETRIC SPACES

HAJIME URAKAWA

Introduction

Let I be a compact, oriented Riemannian manifold of dimension dr

and let Γ be the fundamental group of M. For a finite dimensional
representation p of Γ on a vector space F, Ray and Singer [10] have
defined the analytic torsion T(M,p) as follows: We denote by E the
vector bundle over M with typical fibre F defined by the representation
p. Let AP(E) be the space of £7-valued p forms on M. Let Δv be the
Laplacian (cf. § 1) on AP(E), and let HP(E) be the space of harmonic
forms in AP(E). Then

ζp(s) = - J L _ Γ *«-i{tr e~UP - dim Hp(E)}dt
Γ(s) Jo

is (cf. [10]) an analytic function of s for large Re (s) and it extends (cf..
[10]) to a meromorphic function in the s-plane which is analytic at s = 0.
The analytic torsion T(M, p) is defined (cf. [10]) as the positive root of

log T(M, p) = ^-Σ ( - i m (O) .

They have showed (cf. [10]) that if H*(E) = (0) (0 < p < d), then the
analytic torsion T{M,p) does not depend on the Riemannian metrics on
M. Ray [9] has calculated the analytic torsion T(M,p) for lens spaces,
and also obtained that T(M, p) coincides the Reidemeister torsion (cf.
[10]) for lens spaces.

The purpose of this paper is to compute the analytic torsion T(M, p)
for space forms of certain compact symmetric spaces.

Let G be a compact simply connected Lie group, and let M = G/K
be a simply connected compact globally symmetric space (cf. [5]). Let
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Γ be a discrete subgroup of G acting fixed point freely on M. Then
the fundamental group of the orbit space M = Γ\M (called a space form
of M [16]) of Γ in M is isomorphic to Γ. Let pΓ be the representation
restricted to Γ of a finite dimensional unitary representation p of G.
Then our main result (cf. Corollary 3.1 in §3) can be stated that

if rank G — rank K ψ 1 , £fcβn T(M, pΓ) = 1 ,

which is proved in §3 using the explicit formula (cf. Theorem 2.2 in
§2) of the fundamental solution of the heat equation. To obtain this
formula we devote in § 1 and a part of § 2 to review the harmonic
theory in [7] for AP{E) in case of a compact symmetric space M.

The author wishes to thank Professor S. Murakami and Professor
H. Ozeki for their encouragements and helpful advices.

§ 1. Preliminary

1.1. Analytic torsion

Let M be a compact orientable Riemannian manifold of dimension
d, and Γ the fundamental group of M. We denote by M the universal
covering manifold of M, and by ® the projection of M onto M. The
fundamental group Γ of M operates on M, and we denote by τr the
operation on M of an element γ e Γ. Let p be a representation of Γ in
a vector space F. Γ operates on M x F by

γ(x, u) = (τrx, p(γ)u) , x e M , t i e F , γ e Γ .

The quotient manifold E = = Γ\(M x F) has a vector bundle structure
over M with typical fibre F. Let AP(E) be the space of all unvalued
p-forms on M. Since the vector bundle E is locally constant i.e. it is
given by a system of locally constant transition functions, a coboundary
operator d of degree 1 on the graded module A(E) — Σt=o AP(E) can be
defined in a natural way. Let E* be the dual vector bundle of E. Then
for θ e AP{E) and ω e Aq(E*)y a differentiate real valued (p + q) form
td Λ ω on I is defined as usual (cf. Part I §2, [7]). We assume that
an inner product is given on each fibre of E which depends differenti-
ably on the base manifold M (cf. [7]). The Riemannian metric of M
and the inner product of the fibre bundle E give (cf. [7]) the linear
isomorphism

#: Ap{E) > Ap(E*) .
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The Riemannian metric of M defines the operator * on real valued forms

on M as usual, and we extend (cf. [7]) this operator * linearly to AP(E),

For 0, ω e AP(E), we can define

,α>) = f ιθ A * # ω .(0

We define the operator 3 of degree 1 on the graded module A(E) = Σ?=o AP(E)

so that #(90) = d(#0) holds for all θeA(E). Put

for all θeAp(E). Then £ is an operator of degree —1 on A(E) and

(δθ, ω) = (0, dω)

holds for all θ,ωeAp(E). We define the Laplacian Δp on AP(E) by

putting

Δp = dδ + δd .

Let I/fCZ?) be the completion of AP(E) with respect to the inner

product ( , ) and let

AP(E) = {0 e Ap(£7)

for λ e R. Put ^(£7) = AJ&E). Then it is known (cf. [1]) that each
AP(E) is finite dimensional (λ e R), AP(E) = 0 except for a discrete set of

non-negative λ'a and this countable sequence of subspaces AP(E) gives

an orthogonal direct sum decomposition of LP(E):

LP(E) -

Moreover the series

(1.1) Zp(t) = Σ e~λt dim (AP(E))

converges (cf. [10]) for every t > 0 and

ζP(s) = - ^ — Jo°° t - 1 ^ © - dim Hp(E))dt

dim

is (cf. [10]) an analytic function of s for large Re (s) and it can be ex-

tended (cf. [10]) to a meromorphic function of s-plane, which is analytic

at s = 0.
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DEFINITION. The analytic torsion T(M,p) of the Riemannian mani-

fold M is defined (cf. [10]) as the positive real root of

(i.2) log 7w, P) = ±-Σ ( - i m (θ).

1.2. The space form of Riemannian symetric space

Let G be a compact simply connected (necessarily semisimple) Lie

group of dimension n. Let θ be a C°° involutive automorphism of G.

Let K be the subgroup of G consisting of all fixed points of θ. Then

K is connected and the coset space M = G/K is a simple connected,

compact, globally symmetric space (cf. [5] Theorem 7.2 Ch. VII). Let

Γ be a discrete subgroup of G acting fixed point freely on M. Then M

is the universal covering manifold of the quotient manifold M = Γ\M

which is called a space form of a symmetric space M (cf. [16]). The

fundamental group of M is isomorphic to Γ. Let p be a finite dimensional

unitary representation of G on a complex vector space F. Let E ~ Ep

be the vector bundle over M with typical fibre F associated to the re-

presentation restricted to Γ of p. The projections of M onto M, of G

onto Γ\G are denoted respectively by m and tΰ0 and the projections of

Γ\G onto ikf, of G onto Λf are denoted respectively by π and ττ0. Then

Γ\G has a principal fibre bundle of a group K with a projection π.

Let pκ be the restriction of p to X. Then the vector bundle E is (cf.

[7] Prop. 3.1) associated to the principal fibre bundle Γ\G by the re-

presentation pκ of the group K. Let ( , ) F be the inner product in the

space F invariant under p(g), g e G. Since ( , )F is invariant under p(K)>

it may define canonically a metric in the fibres of E.

Let g be the Lie algebra of G and let ϊ be the subalgebra of g cor-

responding to K. Let p = {X e g; ΘX = — X}. In this paper we use the

same letter for a differential mapping and its differential. Let B be the

Killing form of g. Then g = ϊ + p (the direct sum) and B(X, Γ) = 0

(Z e ϊ, Yep). We may identify p with the tangent space T0M at the

origin 0 = {K} e l i n a natural way. Then the Killing form B which

is negative definite and invariant under the Ad (K) action on p allows

us to define a Riemannian metric g on M such that gQ = — B on TQM

X TQM. Γ preserves this metric g on M and, so, there is a Riemannian

metric g on M so that ®*g = #.

Let {Zx, ,Xd,Xd+19 ,Zn} be a basis of g such that i) B(XiyXj)
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= —δij ii) {X19 •• ,Zd} spans p and iii) {Xd+19 « ,Zn} spans ϊ. Since

the element X of g can be considered as a left invariant vector field on

G, the vector field X is projectable to a vector field &0(X) on Γ\G.

Since this mapping X •-> ezr0C3O is an injective homomorphism of g into

the Lie algebra of all vector fields on Γ\G, we shall identify X with

Let {ω1, , ωn} be the dual basis of the dual space g* of g with

respect to {X19 •• ,Z n}. Then they can be considered as left invariant

forms on G and so are Γ invariant; then there is a form on Γ\G which

induces ώ1 through w0. We shall denote also this form by ωι. Let h be

a Riemannian metric on Γ\G such that &$h = g. The volume element

dv associated to this metric h is given by dv = ω1 Λ Λ ωn. Since K

is connected, we can define a G invariant orientation on M so that

{-XΊ, , Xd) is positively oriented. Since Γ preserves this orientation,

we can define an orientation of M such that the projection υs is orienta-

tion preserving. Let dm be the volume element on M defined by g.

Moreover we denote by dk* the invariant volume element ωd+1 Λ Λ ωn

on K, where ωd+1, - ,ωn are considered as left invariant 1 forms on K.

Then for every continuous function / on Γ\G, we have (cf. [7] Lemma

5.2)

(1.3) f f(y)dv = f dm(\ f{Rky)dkλ
J Γ\G J M \JK /

where Rk is the action of keK on Γ\G and f(Rky)dk* is regarded as
JK

a function on M. In particular, if / ' is a continuous function on M>

then we have (cf. [7] Lemma 5.3)

(1.4) f f'dm= \ f (fΌπ)dv.
J M Vθl (K) J Γ/G

1.3. The inner product of AP(E)

Let AP(Γ, M, p) be the space of all F valued p forms on M such that

τfη = p(γ)r] , . ^ e Γ .

We denote also by d the exterior differentiation on Ap(Γ,M,p) which

defines a coboundary operator of degree 1 on the graded module A(Γ, M, p)

= Σί-oAp(Γ>M,p). For veAv(Γ,M,p), define ί in A ^ ) by
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for x e M and L19 , Lp e TX(M) where &x is the linear isomorphism of

F onto the fibre Em{x) of E over w(x) defined by wx(u) = &(x9u)9 ueF.

Here w is the natural projection of M x F onto E. Then the mapping

η —> 0 defines (cf. [7] p. 369) an isomorphism of the complex A{Γ, M, p)

onto the complex A(E).

Let Ap(Γ\G,K,p) be the space of all F valued p forms on Γ\G

such that (i) θ{X)τf = -p(X)η°, Xeϊ (ii) ΐ(XV = 0, Z e ϊ where

is the Lie derivation by X and i(X) is the interior product by X.

For 3y € AP(Γ9 M, p), define η by

Then there exists uniquely an element rf eAp(Γ\G,K, p) such that ή

— w£η°. The mapping ^^37° defines (cf. [7] p. 376) a linear isomorphism

of AP(Γ, M, p) onto Ap(Γ\G,K,p). Define a coboundary operator d° on

the graded module A(Γ\G, K9 p) = ^ = 0 A
p(Γ\G9K,p) such a way that

dty> = (d^)0 for ηeAKΓ,M,p).

For an F valued p form 90 on Γ\G9 we define a system of F valued

functions {^...,,51 < h < < ip < d) on Γ\G by

For rf e Ap(Γ\G,K, p),^...^ = 0 if there exists some iv > d.

There corresponds to each form θ e AP(J5) a form η e AP(Γ, iίί, p) and

to each form η e AP(Γ9 M9 p) corresponds a form η° e AP(Γ\G, K, p). More-

over the form η° is determined by the system {^...ij. Then the inner

product ( , ) in AP{E) is given as follows: For θ,ωeAp(E), then

(1.5) (θ, ω) - } Σ f
Γ\G

where {η^...^} (resp. {ζ .̂..̂ }) is the system of F valued functions on Γ\G

corresponding to θ (resp. ω) (cf. [7] Prop. 5.1),

Let the inner product ( , ) in AP(Γ, My p) by (η, ζ) = (θ, ω) where

η (resp. ζ) e AP(Γ, M, p) corresponds to θ (resp. ώ) e AP(E). Let Lξ(Γ, M, p)

be the completion of AP(Γ, M, p) with respect to this inner product.

1.4. The Laplatian on AP(Γ, M, p)

We shall use the following convection for the ranges of indices:

1 ίg λ, μ9 - < n 1 < ί, j , - - < d and d + 1 < α, &, < ^. Let [Z ;, Xμ]

= Σ c ^ ^ Then in case of G compact, we have the following relation:
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k — pb — pk — Λ
ij — vka — uab — v

a — pi — pi —

LEMMA 1.1. For ηeAp(Γ,M,p), we have

For a proof, see [7] Prop. 4.1.

LEMMA 1.2. There exists an operator δ of degree —1 on the com-
plex A(Γ,M,p) such that

(δη9 0 = (q, dζ) , for v,ζe A(Γ, M, p) .

Moreover for Ap(Γ,M,p), we have

Z...^ = - Σ t i (X* + piX^u^i^ (P > 1) ,

Proof. Since the case p — 0 is trivial, we may assume p ^ 1. Let
ζeA*-\Γ,M,p). By (1.5) and Lemma 1.2,

1
0?, dζ) =

vol (K)p!

X Σ f (W v Σ ( - l ) " - 1 ^ + p(XiMi,. iu .Δ dv
i1,...,ip = lJΓ\G\ u = l /F

vol (K)p!

x Σ Σ f (j?w, i,» (χi, +
$!,...,ip = l u = l J Γ\G

vol (K)(p - 1)!
d d

X Σ Σ f (Ϋw,.../,-.. ( ^ +
ji, ,jp-i = l k = lJΓ\β

vol (X)(p - 1)!

X Σ f (-ίiXic + piX,))^...^,^...^) dv
ju ",jp-i = l J Γ\G \ k = l /F

since the last equality follows from that (p(X)u,v)F — — in,p(X)v)F l e g ,

u,veF and that ί (Xf19 f2)Fdv = -[ (A,Xf2)Fdv for Xe g,F valued
J Γ\G J Γ\G

C00 functions flff2 on Γ\G (cf. [7] Lem. 5.1).
Put
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d

βh-ip-x = — Σ (χk + p(χk))hji-jP

and define an F valued (p — 1) form θ° on Γ\G by

0° ΣΣ
— 1 ) ! JW" Jp-i'l

Λ Λ

ΎhenθXXhr -tXj^) = θh...jp_1andθQ e A?-\Γ\G,K,p). Letθ e Ap-ι(Γ,M,p}

which corresponds to θ°, and define the operator δ by δη = 0. Then we

have (^)71...ip_1 - ^ . . . ^ and (^,ζ) - (η,dQ. Q.E.D.

We define the Laplacian operator Δv by Jp = dδ + δd on AP(Γ,M, p).

Then the isomorphism AP(E) 3ϋ *-> ηe AP(Γ, M, p) transforms the operators

δ,Ap in Ap(E) to the operators δ, Δv in Ap(Γ,M,p). For λeR, let

AJ(Γ, My p) = {η 6 Ap(Γ, M, p): zί^ = λτj\. Then this isomorphism induces

the isomorphism of AP(E) onto Ap(Γ,M,p).

PROPOSITION 1.1. For ηeAp(Γ,M,p), we have

Proo/. Let p ̂  1. For ηeAp(Γ,M,p), we have

(1.6)
d r

V V ( —+ 2 J 2_i (—1) ι{ιXk9XiJ + piχXkfXiu\)}ykii...tu-ip

from Lemma 1.2 and Lemma 1.2. Since rf satisfies θ{X)rf — —p(X)η\

X e ϊ and ck

aiu = — cjίtt, we have

(1.7) (xa + (txa)}fii1...i9 = - ΣΣ

where (fc)w denotes that the index iu is replaced by the index k. Then

by (1.7), the second term of (1.6) coincides with

n / d p \

Σ (Xa + p(Xa))[Σ Σ C*ίβ?<i...(*)« ..iJ

^—\ / V i /"V" ΛΛ2~

For p = 0, if ?? e A°(Γ, M, ί))^0 satisfies
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Then ( J V - -ΣU (*„ + /W)V Q.E.D.

§2. Fundamental solution of the heat equation

2.1. Space C~(G, F ® Λ p P*)°

To calculate the series Zp(£) (1.1), we have to estimate the funda-

mental solution (cf. [6]) of the heat equation

dt
= -Δput ( ί > 0 ) , uteA*(E).

But we shall transform this equation to the equation on the space

C°°(G, F(x) f\p p*)° which is isometrically isomorphic to AP(E), and con-

struct (cf. Theorem 2.1) the fundamental solution of this transformed

equation on C°°(G,F(g) f\p p*)° which will be used to calculate the series

Zp(t).

Let p* be the dual space of p. The adjoint action of K on p induces

the action of K on the exterior tensor product f\p p* of p* such that

f or 1 < ix < < ίp < d,

Ad* (k)(ωu Λ Λ ω**) = Ad* (k\ωίι Λ Λ Ad* (k\ω^

where Ad* (k)9ω = *Ad (k'1)^, ω e f , k e K. Here *Ad (k)p is the trans-

posed action of the adjoint action Ad (k)p of K on p. The product group

Γ x K acts on F ® Λ p *>* by

(r, WO* ® ?) = Wr) ® Ad* (fc»(w ® 9 ) = p(r)M ® Ad* (fc)9

for ( r, k) e Γ x Z, u e F and ^ e f\p p*.

DEFINITION 2.1. Let C(G, F ® Λ p *>*) denote the set of all F ® Λ p P*

valued continuous functions on G and let C°°(G,F(g) f\p p*) be the set of

.all F ® Λ^P* valued C°° function on G. Define

, F (x) Λ P P*)° - f e e C(G, F <g> Λ P P*)
for all 7- e Γ,

C-(G, F (x) Λ p P*)° - f e e C~(G, F (x) Λ p P*) φiγ

for all γeΓ, keK} .

Now we define an injective mapping

ε: Ap(Γ, M, p) > C°°(G, F ® A p P*)

by
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= Σ ηtx...iP{9) ® ω ί t Λ Λ *>*, (# e G ) .
<i<d

Here ηίl...ip(g) = η(τgXil9 -,τgXip) and the tangent vector τgZ< of M at

πo(#) is the image of X* e 2 W = P under the differential of the transla-

tion τg at 0.

Then the mapping ε defines an isomorphism of Ap(Γ,M,p) into

C M ( G , F ® Λ P W L e * 4P be an operator of C°°(G,F<g) /\pp*)° defined

by

(2.1) J0M?) = ε(J^)

for 9 6 A*(Γ, M", p). For ^ e /?, let

CΓ(G, F (x) Λ p P*)° - f e e C~(G, F ® Λ p P*)° ^ - M

Then for every Λ 6 i?, the mapping ε induces an isomorphism of Av

λ(Γ, M> p)

onto C?(G,F® Λpί>*)°

Moreover we define the metric ( , ) in C(G,F® f\p p*) by

f (Vil...tp(g)f <p'h...
JG

where dg is the Haar measure on G with total volume 1, the constant

C = vol (G)/vol (X) and

= Σ ψi^iP(g) ® ®i lA...A«ip,

Σ

Let L2(G,FΘ /\p p*) be the completion of C(G,F® f\p p*) with respect

to this inner product and let L2{G,F® f\p p*f be the completion of

C(G,F ® Λpϊ>*)° be the completion of C(G, F ® /\p p*)° in L2(G, F ® A27 ϊ>*)

Notice that for ^ e AP(Γ, M, p),

(2.2) ηtl...ip(g) = pig)Vi^iJS,{g)) , ^ e G

For
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where for each X ep, the image of the tangent vector Xg of G at g

under the projection ττ0 coincides with the image of the tangent vector

Xo of M at 0 under the translation τg.

Then from (1.5), (2.2), the definition of the inner product in

AP(Γ, M, p) and the invariantness of ( , )F under the action p of G, the

mapping ε induces the isometry of LP(Γ,M,p) onto L2(G, F(x) f\p p*)°.

Hence we have the decomposition

L2(G, F ® f\p ϊ>*)° = Σ CT(G, F (g) Λ p ί*)° .

Therefore we have

(2.3) Zp(t) = Σ e"w dim C7(G, F <g> Λ p £*)° .

2.2. The Laplacian in C°°(G,F(x) Λp*>*)°

Now let r be the right regular representation of G on L2(G,F(g) /\p p*)

i.e.

(rgφ)(x) = φ{xg) (x e G)

for any # e G, φeL2(G,F(g) /\pp*). For any l e g , we define r(Z) by

r(X)φ = X<p φ e C°°(G, F ® Λ p ί*)

where Zp(flr) = [(d/dί)p(ff expi-X)]isa0, ^ G . Then X >-> r(X) ( l e g ) is a

representation of g on C°°(G,F(g) /\pp*). Let I/Cg*) be the universal

enveloping algebra of gc. Then this representation extends uniquely to

a representation of Z7(gc) which is denoted again by r. Let 42 = 2]?=i-^ϊ

e C7(gc). Then the operator r(β) on C°°(G,F(g) Λp^*) commutes with

the right and left translations of G on C°°(G, (x) Λ^P*)- Hence we have

G, F (x) Λ p P*)° c C-(G, F ® Λ p

Moreover we have

PROPOSITION 2.1. For ^ e A%Γ, M, p), ^ e have

Proo/. By (2.2), we have for l e g , ηeAp(Γ,M,p),
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(X + p(X))(ήίl...ίpow0)(g) = (X + p(X))(p-ιoτ]il...ίp)(g)

Proposition 2.1 follows from Proposition 1.1. Q.E.D.

= 0}. From Proposition 2.1, for φ = Σ i ^ i < » . « , ^ ^ - ί P ® ωίlΛ...

e C°°(G, F (x) Λ^ ί>*)°> we have
Λ ω ί p

Then

Δlφ = 0 <=> fl^...*, = 0 (1 < ix < . < ip < d)

<=> every φiχ...ip is a constant mapping of G into F .

Hence Hf(G, F ® Λ^P*) = {̂  e F ® Λ p P* (r»W9 = 9 f o r a 1 1 (r» ̂ ) e Γ x X}.

Therefore we have the following theorem.

THEOREM 2.1. Under the assumption in § 1, for 0 < p < d, we have

Here pΓ is the representation of p restricted to Γ, [pΓ: lΓ] (resp. [Ad* : lκ])

is the multiplicity with which the trivial representation lΓ (resp. lκ) of

Γ (resp. K) occurs in pΓ (resp. Ad*).

COROLLARY 2.1. We preserve the notation and the assumption in

§ 1. Then

(2.4) Σ ( - D P P dim H*(E) - ipΓ : hλ f χVc)dk
p = 0 J K

where χ(fe) = ΣP=O (~l)pPχ*(fc),z*(fc) is the trace of Ad* (k) on /\v p* and

dk is the Haar measure on K with total volume 1.

2.3. The fundamental solution of the heat equation on C°°(G,F® /\p p*)°

Now let T be a maximal torus of G and let t be the subalgebra of

β corresponding to T. Let ΓQ = {H e t : exp H = 1} be the kernel of the

homomorphism exp: t -> Γ. Let / be the set of all G-integral forms on

i :

/ = {λ € t : λ(H) e 2πZ for all HeΓQ} .

Let ( , ) be an Ad (G) invariant positive definite inner product on g
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defined by (Z, Γ) = -B(X, Γ), Z J e g . Let Φ be the set of all non-
zero roots of the complexification gc of g with respect to the complexi-
fication t c of t. We choose an arbitrary lexicographic order in t. Let
Φ+ be the positive root of Φ with respect to this order. Let D be the
set of all dominant G-integral forms on t:

D = {λ e I: U, a) ^ 0 for all a e Φ+} .

Since an irreducible representation of G is uniquely determined, up to
equivalence, by its highest weight, there exists a bisection of D onto
the set of equivalence classes of irreducible representations of G. For
λ e D, let χλ (resp. dλ) be the trace (resp. degree) of the irreducible re-
presentation with the highest weight λ.

Define (cf. [14]) an absolutely convergent series Zt(g) by

(2.5)

where δ =

Zt(g) = Σ dλ e- t > 0

PROPOSITION 2.2. For p e C(G, F

equation

/\p p*), solution of the

(2.6)

is given by

(2.7)

no

, 9 t e C-CG, F ® Λ p P*)

(pointwίse convergence)

= f Zt(χ-Ig)φ(x)dx
J G

where Zt(g) is the function (2.5) and dx is the Haar measure on G with
total volume 1. Moreover we denote by Kt the mapping (2.7) φ *-> φt.
Then we have

(2.8) KtC(G, F

P r o o / . S i n c e Ωχλ = - ( λ + 2δ,λ)χλ, λeD (cf. [13]), w e h a v e (d/dt)Zt

= ΩZt. Then for φ e C(G, F (g) /\p p*), we have Ψt e C~(G, F (x) /\*> p*) and

r(Ω)φt(g) = f
J G

- J . 3ί
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By Peter-WeyΓs theorem, for every complex continuous function / on

G, we have

lim f Zt(χ-ιg)f(x)dx = f(g) .
ΠO J G

Then for every F ® /\p p* valued function φ, we have also

lim Zt(x~1g)φ(x)dx = φ(x) .
f 10 J G

The last statement follows from that for φβ C(G,F® /\pp*), and

9i, 92, QzG,

ψtiΰiddz) = I Zt(χ-Ig)φ(g1xg2)dx .
J G

Q.E.D.
Define the operator P on C(G,F® /\p p*) by

rer JΣ ί
rer JK

for φeC(G,F® f\vp*). Then the operator P satisfies the following-

conditions :

( i ) P maps C(G,F ® /\p p*) onto C(G, F (g) /\*> p*)°.

(ii) P2 = P.

Moreover for φeC(G,F® f\pp*), by means of Propositions 2.1 and 2.2,

K P^ (ί > 0) has the following properties:

( i ) KtPφeC-(G,F®f\*p*γ,

(ii) 4τ^κtpψ) = Kfi)(«tP0 = ~Δl(KtPψ) and

(iii) lim K ^ = Pφ.
tiO

On the other hand, for φeC(G,F® /\pp*),

KtPφ(x) = [ Zt(y-1x)Pφ(y)dy
JG

(2.9) = Σ f Zt{y'ιx)p{r) ® Ad* (k)φ(γ-ιyk)dkdy
rer JGXK

= f ί Σ f Zt{ky~Yιx)p(γ) ® Ad* (k)dk)φ{y)dy .

Put
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(2.10) Zf(x, y)=Σf Zt{ky-γιx)p{r) <g> Ad* (k)dk .
rer JK

Therefore we obtain the following theorem.

THEOREM 2.2. For t > 0, let Zf:G x G-> End (F (g) /\p p*) be the

smooth map defined by (2.10). Then Zf is the fundamental solution of

the heat equation dφt/dt = —Δlψt (t > 0), ψtβC^iGyF(x) /\pp*)°, that is,

for φ e C(G, F (x) /\p p*), put

φt(x) = ί Zf(x, y)φ(y)dy , x e G .
J G

Then ψt satisfies the following properties:

( i ) ΨteC-{G,F® f\*p*)\

(ii) JΨL = -ΔΨt and
dt

(iii) lim φt(x) = φ(x) for every x e G.
ί 10

COROLLARY 2.2. Let Zv(t) be the series (1.1). Then we have

(2.11) Z*{t) = Σ *,(r) f Zt{γ^gkg-')χ*(k)dkdg
rer J GXK

where χp(γ) is the trace of ρ(γ).

Proof. By (2.3) and Theorem 2.2, we have

Z*(t) = Σ e-iβ dim Cτ(G, F 0 Λ p P*)°
λ

= trace of the operator e~"?: C°°(G,F(x) Λ^ί1*)0

>C~(G,F(x)

= trace of the operator e~tΔUP; C°°(G,F(x) Λpί^*)

>C~(G,F(g)

= trace of Kt o P

= f tτZξ(g,g)dg
JG

where trZf(g,g) is the trace of the endomorphism Zf(g,g) of F(x) /\pp*.

The last equality follows from (2.10). Q.E.D.

Remark. In case of Γ = {1}, we have due to Corollary 2.2,

(2.12) Z*(t) = f Zt{k)χ*{k)dk .
JK



80 HAJIME URAKAWA

If p — 0, this formula has been obtained in [2].

The following Corollary is obtained immediately from Corollary 2.2.

COROLLARY 2.3. We preserve the above notations. Then ιoe have

(2.13) Σ (-DppZm = Σ XP(ΐ) ί Zt(γ-'gkg-ι)χ{k)dkdg .
P=Q rer j GXK

where χ(k) = ΣU (-l)pPχ*(fc)> χ*(*0 & * f e e * r a ^ <>/ Ad* (&) on A27?*-

§3. Computation of Analytic Torsion

3.1. To calculate analytic torsion, we have to compute χ(k)

= ΣUo(—V)pPχ%(k), keK. For this purpose, we prepare a lemma as

follows.

Let V be a d dimensional real vector space and let A be an endo-

morphism of V. For 1 < p < d, /\p A is a linear operator of /\p F into

itself,

(Λp A)(v, Λ Λ vp) = A ^ Λ Λ Avp , vt e 7 .

We define /\°A to be the identity endomorphism of the field of scalars.

Let tr (/\p A) be the trace of the endomorphism f\v A. Then it is known

that

det (xl - A) = Σ (-1)27 tr (Λp A)x*-*
p=0

where / is the identity endomorphism of V and x is an indeterminate.

So we have

(3.1) ΓAfs* det ( 1 / - A)}] = Σ (~1)PP tr (Λp A) .

Hence we obtain

LEMMA 3.1. We preserve the notation in §1. For ϋ e ί , 2̂ β have

* det ( 1 / , - Ad &-
dx I \x

where Ip is the identity operator on p, Ad (fc)p is ί/iβ adjoint action of

K on p and d — dim G/K = dim g.

Proof. By the definition and (3.1), Lemma 3.1 is obtained imme-

diately.
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Let tt be a Cartan subalgebra of ϊ. Let t be the centralizer of t t

in g. Then t is (cf. [3] Lemma 32) a 0-stable Cartan subalgebra of g

and

(3.2) t = te + t, , t, - t Π p .

So, dim t, = rank G — rank K. Let Tκ be the analytic subgroup of K

corresponding to tr. Then Tκ is a maximal torus of K since K is con-

nected. We choose once for all a lexicographic order in t f. Let Φt be

the root system of (ϊc, t f), i.e. the set of non-zero elements β of the dual

space t* of i, such that {Eeϊc: [H,E] = ^ϊβ(H)E for any ί f e t j is

not zero. Let Φf be the set of all positive roots of Φt with respect to

this order. For every continuous function f on K such that fQcJΰkϊ1}

= f(k) for every k19 keK, it follows (cf. [5] Ch X) that (WeyΓs integral

formula for K)

ί f(k)dk = -L- f Dκ(h)f(h)dh
JK WK- JTK

where wκ is the order of the Weyl group of the compact group K,dh

is the Haar measure on Tκ with total volume 1 and

Dκ(h) =

for h = exp H e Tκ.

By means of this formula, Corollaries 2.1 and 2.3, we have

(3.3) Σ ( - D W = — Σ *,(r) f Dκ(h)Zt(r-hjhy-ι)χ(h)dhdy
P = Q Wκ ϊ£Γ JGXTK

(3.4) Σ ( - « P P dim HKE) - [f>Γ : l A ί Dκ{h)χ{h)dh .
P=O ^ ^ J τκ

So, using Lemma 3.1, to calculate χ(h) for fee Tκ, we have to investigate

the action of adJ ϊ on p for Hett.

3.2. For λ e t*, let i ( (resp. λp) be the restriction of λ to tr (resp. ϊt).

We choose once for all a lexicographic order on i*. We define an order

on t* in such a way that

Λ t * ; i > 0 ( i ) ^ > 0 or

(ii) λp = Q and ί t > 0 .
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Let Φ be the root system of (gc, t), i.e. the set of non-zero elements a

of the dual space t* of t such that Qa = {EGQC: [H,E] = V^Ίa(H)E for

any H e t} is not zero. Let Φ+ be the set of positive roots of Φ with

respect to this order. For aeΦ, define aθ eΦ by aθ(H) — a(ΘH), H e t.

Let gα be a root subspace of gc for aeΦ. Then we have that

(3.5) aeΦ <=> α ' e Φ and % α ) = gα0 .

The root a vanishes identically on tp (resp. tt) if and only if a — a9

(resp. a = —aθ). Let ΦΣ = {aeΦ: aθ = a} and let Φc = {a e Φ: a9 Φ a

and a Φ —aθ). Then Φ = ΦΣ U Φc (β> disjoint union) since there is no

aeΦ which vanishes identically on t£ (cf. Lemma 33 [3]). Let ΦIΛ

= {aeΦj: gα c lc] and let Φ7iί) = {a e Φτ: gα c )DC}. We denote the inter-

section of Φτ (resp. Φi,t,Φi,P,Φc) with Φ+, by Φ; (resp. Φi,i9Φί,p9Φc)- Let

T be the conjugation of cf with respect to g. For every a e Φ, we choose

a root vector £/« such that τEa = —E_a. By (3.5), we can take a non-

zero complex number c^αeΦc) such that ΘEa = caEaθ. Then each ca

(a 6 Φc) satisfies

(3.6) cacaθ = 1 , c β = c ^ .

For aeΦ£, we have

_a - θ(θE_a))

C_aθE_aθ) - \{β_aE_a9 - C_aθE_aθ)

+ θE_aθθ) - ^-{E_aθ - ΘE_aβ) .
Δ

By the choice of the order of t*,

(3.7) aeΦϊd} -a

θ eΦ+

c .

Hence we have

Qc = ic + Σ CEa+ Σ C(Ea + ΘEJ + Σ C(Ea - ΘEa) ,
a£Φl a£φ£ aβΦ£

that is

(ϊc = tf + Σ CEa + Σ C(Ea + θEa) ,

hc = tf + Σ cs. + Σ c(Ea - *#.).

Since a Φ aθ (ae Φc), we can define non-zero vectors Xa, Ya (a e Φc) by

Xa = Ea + θEay Ya = Ea- θEa for a e Φc. By means of θτ = τ^ and τEa
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= —E_a9 we have τXa = — X_a and τYa — — Y_a. Then we have

CΛJ7 V V *7 I T/ V i V \ ,-. ΐ

r Y y ^ Γ(3.9)

for aeΦc Since a" Φ a, —a(cceΦ£), all Wa,Za,Wa and Zα are non-zero

for aeΦc Moreover we have, for αeΦj,

(3.10)
and

2

where all coefficients ± | ( l / c α + l/c_α), ± V —1/2(1/ca — l/c_J are real

numbers due to (3.6).

Now we choose any root ax of Φ£. If Φc\{a19 —a[} is non-empty,

we choose any root a2 belonging to Φi\{al9 —a{}. Then — aθ

2 belongs to

Φ+\{ocl9 —aθ

l9a2}. Inductively we may choose a subset {a19-"9ar} of ΦJ

such that {a19 -*-,ar9 -a{9 9 -aθ

r} = Φ+G. Then by (3.9), (3.10) and the

choice of {a19 ,α r}, Σl=i (RWai + RZa) (resp. Σ*=i (RWat + RZat)) is a

real form of Σ«eΦί C(Ea + ΘEa) (resp. Σ α € Φ j C(Ea - ΘEJ).

On the other hand, for aeΦϊ, we put Ua = Ea — E_a9 Va = Λ ^ Ϊ C E ' *

+ £7_J. Then Σ«6Φΐ, (*C «̂ + Rγ«) (r^sp. Σ«eΦ+ (Λi7« + RVa)) is a real

form of Σ « S Φ + ^^« (resp. Σ«e<^

Therefore together with (3.8) we obtain the following lemma:

LEMMA 3.2. TFe preserve the above notation. Then we have the

following direct sum decomposition:

P = tP + Σ + (Λt7α -

LEMMA 3.3. For each H e tϊ9 we have

det (xlp — Ad (h)p) = (x — lyp f] {(^ ~" c o s a{ + sin2 a(H)}
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where £p = dim tp = rank G — rank K.

Proof. For a e ΦIf we have by the definition of Ua, Va,

[H9 Ua] = a(H)Va , [H, Va] = -a(H)Ua (H e tE) .

On the other hand we have for aeΦc,

[H,Xa] + [H, Ya] = *F-ϊa{

by Ea = (Xa + ΓJ/2. For H e t£, we compare the ϊ c (resp. pc) component

of this equality to obtain [H,Xa\ = <f-ϊa(H)Xa (resp. [H, Ya] = V~^la(H)Ya).

Then we have

[H, Wa] - a(H)Za , [H, Za] = -a(H)Wa ,

[H, Wa] - a(H)Za and [H9 Za] - -a(H)Wa

by the definition of Wa,Za,Wa and Za. Hence from Lemma 3.2, we have

Lemma 3.3. Q.E.D.

PROPOSITION 3.1. We preserve the above notation. Then for h

— exp H, H e ti9 we have

( i ) x(h) = 0 ( 4 , > 1 )

(ii) χ(fe) = - Π (2 - 2 cos a(H)) (£p = 1) and
aeΦΐ,p u {"I'""'"*-}

(iϋ) χ(h) = Π (2 - 2 cos α(ίθ) X #(0ί,p) (^ - 0) .

Proof. From Lemma 3.1 and 3.2, we have, for h == expί ί (f?et f),

= Γ-Afa?, det ( 1 / , - Ad (h-')X\

= Γ-^-fd - ^ Π (1 - 2a cos «(fl) +

by means of d = dim p = ^ + 2#(<P?>P) + 2r where #(Φί,p) + 2r where

#(Φj,p) is the order of ΦlP. In case of ΰp = 0, then Φ = Φz. Hence

Proposition 3.1 is obtained. Q.E.D.

On the other hand, the root system Φκ of ϊc with respect to tf is

given due to (3.8) by

Φκ = {at:aeΦc U Φ7iί}

where at is the restriction of α to i,. For βeΦκ, let Έ\ be Ea if

β — av (a e ΦIΛ) or Xa if /3 = α^ (a e Φc). Then £7̂  is a root vector of
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ϊc with respect to t, for β. Let U'β be Ua if β = α,, α e Φ/)f or

β = at, α e Φ c . Put m = ΣβeΦK

cEβ n *• τ h e n w e h a v e

if

Σ + (RU'f + RV'β) = m

+ Σ car.) n i.)
/

= Σ RVJ i + RZai) .
ΨI,t

Hence for h = exp H e Tκ,

det (/„ - Ad (ft) J = Π (2 - 2 cos a(H))

(3.11)
_7j U {αi,. ,αr}

= Π (2-2cos/3(#)).

Then we have

PROPOSITION 3.2. For h = expH eTκ,

Dκ{h) = n.t ( e x p

...λI J I . _ , ( e x p
- e x p ( -

- e x p

Proof. For h = expire Tκ, by means of (3.11),

Π (2-2cos/3(#))

Π ( 2 - 2 cos a(H))

- exp
2 / '""' \ 2

Q.E.D.

3.3. Main theorem

THEOREM 3.1. We preserve the assumption in §1. Then we have
that
Case (i) rank G — rank K Φ 1,
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= Σ (-1)PP dim #*-

Ό (rank G - rank K>1)

2"1 dim M (rank G - rank K = 0) .

Case (ii) rank G — rank K = 1,

(3.12) Σ i-iypZKt) = —— Σ χ,(r) JG χ r Zfyghg-WWdhdg ,

(3.13) Σ ( - l)yP dim fl^g) == ~ [ p r : / r ] f Z)(ft)dΛ

where D(h) =

exp H e T.

for h =

Proo/. If rankG - rankK > 1, then by means of (3.3), (3.4) and

Proposition 3.1 (i), we obtain the results. If rankG — rank If = 1, by

means of (3.3), (3.4), Proposition 3.1 (ii) and Proposition 3.2, we obtain

(3.12) and (3.13). Let rankG - rankZ = 0. Then ϊ has a Cartan sub-

algebra t of g. Let T be a Cartan subgroup of G corresponding to i.

Then Γ consists only of the identity of G since every translation τg

(g e G) has a fixed point and Γ is assumed to act on M fixed point freely.

In fact, G ~yjgeGgKg~ι since G and K are connected and K has a

maximal torus T of G. Then we have

(3.14) Σ {-lYvZKt) - f Zt(h)DκQι)χQι)dh
p=0 J T

and

(3.15) Σ (-D P P dim H*(E) - f Dκ{h)χ(h)dh .

From Proposition 3.1 (iii) and Proposition 3.2, we have Dκ(h)χ(h) = D(h)

X #(Φ^) = DQι)2~ι dim (G/K). Therefore applying WeyΓs integral formula

for G to (3.14), (3.15), we have

(3.14) - ί Zt(g)dg - 1 and
JG

(3.15) = f dg = l . Q.E.D.
JG

Due to Theorem 3.1., we have
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COROLLARY 3.1. Under the assumption in §1, we have

T(M, Pr) = 1 if rank G - rank K Φ 1

where pΓ is the representation restricted to Γ of an arbitrary finite

dimensional unitary representation p of G.

Remark. Ray and Singer [10] showed in general that T(M, p) = 1

for every even dimensional Riemannnian manifold. The new fact ob-

tained in this paper is that T(M,pΓ) = 1 in case of M — Γ\M where M

is an odd dimensional simply connected symmetric space G/K such that

G is compact, semisimple and rank G — rank K > 1. Such irreducible

symmetric spaces M are as follows: all odd dimensional compact simple

Lie group except SU(2); SU(ri)/SO(n), n = 4m or Am + 3 (m :> 1);

SU(2n)/Sp(n), n = 2m (m ^ 1) (cf. [5] Ch. IX.). In the case M = SO(2n)

/SO(2n — l)((2n — 1) dimensional sphere), T(M, p) has been calculated

in Ray [9]. The cases M = SU(2) S[/(4)/SO(4) SU(3)/SO(3) SO(p + q)

/SO(p) x SO(q) (p, q = odd, p > 1, g > 1) are remained for a further

study.
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