H. Urakawa Nagoya Math. J. Vol. 67 (1977), 65-88

ANALYTIC TORSION OF SPACE FORMS OF CERTAIN COMPACT SYMMETRIC SPACES

HAJIME URAKAWA

Introduction

Let M be a compact, oriented Riemannian manifold of dimension d_r and let *Γ* be the fundamental group of *M.* For a finite dimensional representation *p* of *Γ* on a vector space *F,* Ray and Singer [10] have defined the *analytic torsion T(M,p)* as follows: We denote by *E* the vector bundle over *M* with typical fibre *F* defined by the representation *p*. Let $A^p(E)$ be the space of *E*-valued *p* forms on *M*. Let A^p be the Laplacian (cf. § 1) on $A^p(E)$, and let $H^p(E)$ be the space of harmonic forms in $A^p(E)$. Then

$$
\zeta_p(s) = \frac{1}{\Gamma(s)} \int_0^\infty t^{s-1} \{ \text{tr } e^{-tA^p} - \text{dim } H^p(E) \} dt
$$

is (cf. [10]) an analytic function of *s* for large Re (s) and it extends (cf.. [10]) to a meromorphic function in the s-plane which is analytic at *s =* 0. The analytic torsion $T(M, \rho)$ is defined (cf. [10]) as the positive root of

$$
\log T(M,\rho) = \frac{1}{2} \sum_{p=0}^d (-1)^p p \zeta_p'(0) \ .
$$

They have showed (cf. [10]) that if $H^p(E) = (0)$ ($0 \le p \le d$), then the analytic torsion $T(M,\rho)$ does not depend on the Riemannian metrics on *M.* Ray [9] has calculated the analytic torsion $T(M, \rho)$ for lens spaces, and also obtained that $T(M, \rho)$ coincides the Reidemeister torsion (cf. [10]) for lens spaces.

The purpose of this paper is to compute the analytic torsion $T(M, \rho)$ for space forms of certain compact symmetric spaces.

Let *G* be a compact simply connected Lie group, and let $\tilde{M} = G/K$ be a simply connected compact globally symmetric space (cf. [5]). Let

Received June 4, 1976.

T be a discrete subgroup of G acting fixed point freely on \tilde{M} . Then the fundamental group of the orbit space $M = \Gamma \backslash \tilde{M}$ (called a *space form* of \tilde{M} [16]) of Γ in \tilde{M} is isomorphic to Γ . Let ρ_r be the representation restricted to *Γ* of a finite dimensional unitary representation *p of G.* Then our main result (cf. Corollary 3.1 in §3) can be stated that

if rank
$$
G
$$
 – rank $K \neq 1$, then $T(M, \rho_r) = 1$,

which is proved in §3 using the explicit formula (cf. Theorem 2.2 in §2) of the fundamental solution of the heat equation. To obtain this formula we devote in $§ 1$ and a part of $§ 2$ to review the harmonic theory in [7] for $A^p(E)$ in case of a compact symmetric space \tilde{M} .

The author wishes to thank Professor S. Murakami and Professor H. Ozeki for their encouragements and helpful advices.

§ 1. Preliminary

1.1. Analytic torsion

Let *M* be a compact orientable Riemannian manifold of dimension *d,* and *Γ* the fundamental group of *M.* We denote by *M* the universal covering manifold of M, and by *®* the projection of *M* onto *M.* The fundamental group \varGamma of M operates on \tilde{M} , and we denote by $\tau_{_{\varGamma}}$ the operation on \tilde{M} of an element $\gamma \in \Gamma$. Let ρ be a representation of Γ in a vector space F. *Γ* operates on $\tilde{M} \times F$ by

$$
\gamma(x, u) = (\tau_r x, \rho(\gamma)u) , \qquad x \in \tilde{M} , u \in F , \quad \gamma \in \Gamma .
$$

The quotient manifold $E = \frac{F}{M \times F}$ has a vector bundle structure over *M* with typical fibre *F*. Let $A^p(E)$ be the space of all *E*-valued p-forms on *M.* Since the vector bundle *E* is locally constant i.e. it is given by a system of locally constant transition functions, a coboundary operator *d* of degree 1 on the graded module $A(E) = \sum_{p=0}^{d} A^p(E)$ can be defined in a natural way. Let *E** be the dual vector bundle of *E.* Then for $\theta \in A^p(E)$ and $\omega \in A^q(E^*)$, a differentiable real valued $(p + q)$ form ${}^{t}\theta \wedge \omega$ on *M* is defined as usual (cf. Part I § 2, [7]). We assume that an inner product is given on each fibre of *E* which depends differenti ably on the base manifold *M* (cf. [7]). The Riemannian metric of *M* and the inner product of the fibre bundle *E* give (cf. [7]) the linear isomorphism

$$
\sharp: A^p(E) \longrightarrow A^p(E^*) .
$$

The Riemannian metric of *M* defines the operator * on real valued forms on *M* as usual, and we extend (cf. [7]) this operator $*$ linearly to $A^p(E)$. For θ , $\omega \in A^p(E)$, we can define

$$
(\theta,\omega)=\int_M\,{}^t\!\theta\,\wedge\,*\sharp\,\omega\;.
$$

We define the operator ∂ of degree 1 on the graded module $A(E) = \sum_{p=0}^{d} A^p(E)$ *so* that $\sharp(\partial \theta) = d(\sharp \theta)$ holds for all $\theta \in A(E)$. Put

$$
\delta\theta=(-1)^{dp+d+1}*\partial*\theta
$$

for all $\theta \in A^p(E)$. Then δ is an operator of degree -1 on $A(E)$ and

$$
(\delta\theta,\omega)=(\theta,d\omega)
$$

holds for all θ , $\omega \in A^p(E)$. We define the Laplacian A^p on $A^p(E)$ by putting

$$
4^p = d\delta + \delta d \; .
$$

Let $L_2^p(E)$ be the completion of $A^p(E)$ with respect to the inner product (,) and let

$$
A^{\textit{p}}_{\textit{\lambda}}(E) = \{\theta \in A^{\textit{p}}(E) \colon A^{\textit{p}}\theta = \textit{\lambda}\theta\}
$$

for $\lambda \in \mathbb{R}$. Put $H^p(E) = A_0^p(E)$. Then it is known (cf. [1]) that each $A^p_1(E)$ is finite dimensional $(\lambda \in \mathbb{R})$, $A^p_2(E) = 0$ except for a discrete set of non-negative *λ'a* and this countable sequence of subspaces *A^P (E)* gives an orthogonal direct sum decomposition of $L_2^p(E)$:

$$
L^p_{\text{\tiny{2}}}(E)=\textstyle\sum\limits_{\lambda}A^p_{\text{\tiny{A}}}(E)
$$

Moreover the series

$$
(1.1) \t Zp(t) = \sum_{\lambda} e^{-\lambda t} \dim (A_{\lambda}^p(E))
$$

converges (cf. [10]) for every $t > 0$ and

$$
\zeta_p(s) = \frac{1}{\Gamma(s)} \int_0^\infty t^{s-1} (Z^p(t) - \dim H^p(E)) dt
$$

= $\sum_{k>0} \lambda^{-s} \dim A_k^p(E)$

is (cf. [10]) an analytic function of *s* for large Re (s) and it can be ex tended (cf. [10]) to a meromorphic function of s-plane, which is analytic at $s=0$.

DEFINITION. The *analytic torsion* $T(M, \rho)$ of the Riemannian manifold *M* is defined (cf. [10]) as the positive real root of

(1.2)
$$
\log T(M,\rho) = \frac{1}{2} \sum_{p=0}^{d} (-1)^p p \zeta_p'(0) .
$$

1.2. The space **form of Riemannian symetric space**

Let G be a compact simply connected (necessarily semisimple) Lie group of dimension *n*. Let θ be a C^{∞} involutive automorphism of G. Let *K* be the subgroup of G consisting of all fixed points of *θ.* Then *K* is connected and the coset space $\tilde{M} = G/K$ is a simple connected, compact, globally symmetric space (cf. [5] Theorem 7.2 Ch. VII). Let be a discrete subgroup of *G* acting fixed point freely on M. Then *M* is the universal covering manifold of the quotient manifold $M = \Gamma \backslash \tilde{M}$ which is called a *space form* of a symmetric space *M* (cf. [16]). The fundamental group of *M* is isomorphic to *Γ.* Let *p* be a finite dimensional unitary representation of *G* on a complex vector space *F*. Let $E = E_p$ be the vector bundle over M with typical fibre F associated to the representation restricted to *Γ* of *p.* The projections of *M* onto *M,* of G onto $\Gamma \backslash G$ are denoted respectively by ϖ and ϖ_0 and the projections of $\varGamma\backslash G$ onto M , of G onto \tilde{M} are denoted respectively by π and π_{0} . Then *Γ* \setminus *G* has a principal fibre bundle of a group *K* with a projection π. Let ρ_K be the restriction of ρ to K. Then the vector bundle E is (cf. [7] Prop. 3.1) associated to the principal fibre bundle $\Gamma \backslash G$ by the representation ρ_K of the group K. Let $(,)_F$ be the inner product in the space *F* invariant under $\rho(g)$, $g \in G$. Since (,)_{*F*} is invariant under $\rho(K)$, it may define canonically a metric in the fibres of *E.*

Let g be the Lie algebra of G and let $\mathfrak k$ be the subalgebra of g corresponding to K. Let $\mathfrak{p} = \{X \in \mathfrak{g} : \theta X = -X\}$. In this paper we use the same letter for a differential mapping and its differential. Let *B* be the Killing form of g. Then $g = f + \mathfrak{p}$ (the direct sum) and $B(X, Y) = 0$ $(X \in \mathfrak{k}, Y \in \mathfrak{p})$. We may identify \mathfrak{p} with the tangent space $T_0\tilde{M}$ at the origin $0 = \{K\} \in \tilde{M}$ in a natural way. Then the Killing form B which is negative definite and invariant under the Ad *(K)* action on *p* allows us to define a Riemannian metric \tilde{g} on \tilde{M} such that $\tilde{g}_0 = -B$ on $T_{\tilde{g}}\tilde{M}$ $\times T_0\tilde{M}$. *Γ* preserves this metric \tilde{g} on \tilde{M} and, so, there is a Riemannian metric g on M so that $\varpi^* g = \tilde{g}$.

Let $\{X_1, \dots, X_d, X_{d+1}, \dots, X_n\}$ be a basis of g such that i) $B(X_i, X_j)$

 $= -\delta_{ij}$ ii) $\{X_1, \dots, X_d\}$ spans ϕ and iii) $\{X_{d+1}, \dots, X_n\}$ spans \check{r} . Since the element *X* of g can be considered as a left invariant vector field on G , the vector field X is projectable to a vector field $\varpi_0(X)$ on $\Gamma \backslash G$. Since this mapping $X \mapsto \mathcal{B}_0(X)$ is an injective homomorphism of g into the Lie algebra of all vector fields on *Γ\G,* we shall identify *X* with $\mathfrak{w}_0(X)$.

Let $\{\omega^1, \dots, \omega^n\}$ be the dual basis of the dual space g^* of g with respect to $\{X_1, \dots, X_n\}$. Then they can be considered as left invariant forms on G and so are Γ invariant; then there is a form on $\Gamma \backslash G$ which induces ω^i through ω_0 . We shall denote also this form by ω^i . Let *h* be a Riemannian metric on $\Gamma \backslash G$ such that $\sigma_0^* h = g$. The volume element *dv* associated to this metric *h* is given by $dv = \omega^1 \wedge \cdots \wedge \omega^n$. Since K is connected, we can define a G invariant orientation on *M* so that $\{X_1, \dots, X_d\}$ is positively oriented. Since *Γ* preserves this orientation, we can define an orientation of M such that the projection ω is orientation preserving. Let *dm* be the volume element on *M* defined by *g.* Moreover we denote by dk^* the invariant volume element $\omega^{d+1} \wedge \cdots \wedge \omega^n$ on *K*, where ω^{d+1} , \cdots , ω^n are considered as left invariant 1 forms on *K*. Then for every continuous function f on $\Gamma \backslash G$, we have (cf. [7] Lemma 5.2)

(1.3)
$$
\int_{\Gamma \backslash G} f(y) dv = \int_M dm \Bigl(\int_K f(R_k y) dk^* \Bigr)
$$

where R_k is the action of $k \in K$ on $\Gamma \backslash G$ and $\int f(R_k y)dk^*$ is regarded as *JK* a function on M . In particular, if f' is a continuous function on M , then we have (cf. [7] Lemma 5.3)

(1.4)
$$
\int_M f' dm = \frac{1}{\text{vol}(K)} \int_{r/a} (f' \circ \pi) dv.
$$

1.3. The inner product of $A^p(E)$

Let $A^p(\Gamma, \tilde{M}, \rho)$ be the space of all F valued p forms on \tilde{M} such that

$$
\tau_r^*\eta = \rho(\gamma)\eta \; , \qquad \gamma \in \Gamma \; .
$$

We denote also by *d* the exterior differentiation on $A^p(\Gamma, \tilde{M}, \rho)$ which defines a coboundary operator of degree 1 on the graded module $A(\Gamma, \tilde{M}, \rho)$ $=\sum_{p=0}^dA^{\,p}(\varGamma, \tilde{M}, \rho).$ For $\eta\in A^{\,p}(\varGamma, \tilde{M}, \rho),$ define θ in $A^{\,p}(E)$ by

$$
\theta_{\mathfrak{a}(x)}(\mathfrak{w}(L_1),\,\cdots,\mathfrak{w}(L^p))=\mathfrak{w}_x(\eta_x(L_1,\,\cdots,L^p))
$$

for $x \in \tilde{M}$ and $L_1, \cdots, L^p \in T_x(\tilde{M})$ where ω_x is the linear isomorphism of *F* onto the fibre $E_{\sigma(x)}$ of *E* over $\sigma(x)$ defined by $\sigma_x(u) = \sigma(x, u)$, $u \in F$. Here ω is the natural projection of $\tilde{M} \times F$ onto E. Then the mapping $\eta \rightarrow \theta$ defines (cf. [7] p. 369) an isomorphism of the complex $A(\Gamma, \tilde{M}, \rho)$ onto the complex *A(E).*

Let $A^p(\Gamma \backslash G, K, \rho)$ be the space of all F valued p forms on $\Gamma \backslash G$ such that (i) $\theta(X)\eta^0 = -\rho(X)\eta^0$, $X \in \mathfrak{k}$ (ii) $i(X)\eta^0 = 0$, $X \in \mathfrak{k}$ where $\theta(X)$ is the Lie derivation by X and $i(X)$ is the interior product by X .

 $\text{For}~~\eta \in A^{\,p}(\Gamma,\tilde{M},\rho) , \text{ define } \tilde{\eta} \text{ by }$

$$
{\tilde \eta}_g = \rho(g^{-1}) (\pi_0^* \eta)_g \; , \qquad g \in G \; .
$$

Then there exists uniquely an element $\eta^0 \in A^p(\Gamma \backslash G, K, \rho)$ such that η $=\omega_0^*\eta^0$. The mapping $\eta \mapsto \eta^0$ defines (cf. [7] p. 376) a linear isomorphism of $A^p(\Gamma, \tilde{M}, \rho)$ onto $A^p(\Gamma \backslash G, K, \rho)$. Define a coboundary operator d^o on the graded module $A(\Gamma \backslash G, K, \rho) = \sum_{p=0}^d A^p(\Gamma \backslash G, K, \rho)$ such a way that $d^{\scriptscriptstyle 0}\eta^{\scriptscriptstyle 0} = (d\eta)^{\scriptscriptstyle 0} \ \ {\rm for}\ \ \eta\in A^{\scriptscriptstyle 0}(\Gamma,\tilde M,\rho).$

For an F valued p form η^0 on $\Gamma \backslash G$, we define a system of F valued $\text{functions}~\{\tilde{\eta}_{i_1\cdots i_p};1\leq i_1^{}<\cdots< i^p\leq d\} \text{ on } \varGamma\backslash G \text{ by }$

$$
\tilde{\eta}_{i_1\cdots i_p}=\eta^0(X_{i_1},\cdots,X_{i_p})\ .
$$

For $\eta^0 \in A^p(I^\prime \backslash G, K, \rho),$ $\tilde{\eta}_{i_1 \cdots i_p} = 0$ if there exists some $i_\nu > d.$

There corresponds to each form $\theta \in A^p(E)$ a form $\eta \in A^p(\Gamma, \tilde{M}, \rho)$ and $\text{to each form } \eta \in A^p(\Gamma, \tilde{M}, \rho) \text{ corresponds a form } \eta^0 \in A^p(\Gamma \backslash G, K, \rho).$ More over the form η^0 is determined by the system $\{\tilde{\eta}_{i_1...i_n}\}$. Then the inner product (,) in $A^p(E)$ is given as follows: For $\theta, \omega \in A^p(E)$, then

$$
(1.5) \qquad \qquad (\theta,\omega)=\frac{1}{\text{vol }(K)p\,!}\sum_{i_1,\cdots,i_p=1}^d\int_{\Gamma\backslash G}(\tilde{\eta}_{i_1\cdots,i_p},\tilde{\zeta}_{i_1\cdots i_p})_Fdv
$$

where $\{\tilde{\gamma}_{i_1...i_p}\}$ (resp. $\{\tilde{\zeta}_{i_1...i_p}\}$) is the system of *F* valued functions on $\Gamma\backslash G$ corresponding to θ (resp. ω) (cf. [7] Prop. 5.1),

Let the inner product (,) in $A^p(\Gamma, \tilde{M}, \rho)$ by $(\eta, \zeta) = (\theta, \omega)$ where (resp. ζ) $\in A^p(\Gamma, \tilde{M}, \rho)$ corresponds to θ (resp. *ω*) $\in A^p(E)$. Let $L_2^p(\Gamma, \tilde{M}, \rho)$ be the completion of $A^p(\Gamma, \tilde{M}, \rho)$ with respect to this inner product.

1.4. The Laplacian on $A^p(\Gamma, \tilde{M}, \rho)$

We shall use the following convection for the ranges of indices: $1 \leq \lambda, \mu, \dots \leq n$; $1 \leq i, j, \dots \leq d$ and $d+1 \leq a, b, \dots \leq n$. Let $[X_i, X_{\mu}]$ $=\sum c_{\mu}^* X_{\nu}$. Then in case of G compact, we have the following relation:

$$
\begin{cases} c_{i j}^k = c_{k a}^b = c_{a b}^k = 0 \\ c_{i j}^a = -c_{a j}^i = c_{j a}^i = -c_{i a}^i \end{cases}.
$$

LEMMA 1.1. *For* $\eta \in A^p(\Gamma, \tilde{M}, \rho)$ *, we have*

$$
(d\eta)_{i_1\cdots i_{p+1}}^{\sim} = \sum_{u=1}^{p+1} (-1)^{u-1} (X_{i_u} + \rho(X_{i_u})) \tilde{\eta}_{i_1\cdots i_u\cdots i_{p+1}}.
$$

For a proof, see [7] Prop. 4.1.

LEMMA 1.2. *There exists an operator δ of degree —1 on the complex* $A(\Gamma, \tilde{M}, \rho)$ *such that*

$$
(\delta \eta, \zeta) = (\eta, d\zeta) , \quad \text{for } \eta, \zeta \in A(\Gamma, \tilde{M}, \rho) .
$$

Moreover for A^p (Γ,M,p), we have

$$
(\delta \eta)_{i_1 \cdots i_{p-1}}^{\gamma} = -\sum_{k=1}^{d} (X_k + \rho(X_k)) \tilde{\eta}_{k i_1 \cdots i_{p-1}} \qquad (p \ge 1),
$$

$$
\delta \eta = 0 \qquad (p = 0).
$$

Proof. Since the case $p = 0$ is trivial, we may assume $p \ge 1$. Let $\zeta \in A^{p-1}(\Gamma, \tilde{M}, \rho)$. By (1.5) and Lemma 1.2,

$$
(\eta, d\zeta) = \frac{1}{\text{vol}(K)p!} \\
\times \frac{d}{\zeta_{i_1, \dots, i_{p-1}}} \int_{\Gamma \backslash G} \left(\tilde{\eta}_{i_1 \dots i_p}, \sum_{u=1}^p (-1)^{u-1} (X_{i_u} + \rho(X_{i_u})) \tilde{\zeta}_{i_1 \dots i_u \dots i_p} \right)_F dv \\
= \frac{1}{\text{vol}(K)p!} \\
\times \sum_{i_1, \dots, i_{p-1}} \sum_{u=1}^p \int_{\Gamma \backslash G} (\eta_{i_u i_1 \dots i_p}, (X_{i_u} + \rho(X_{i_u})) \tilde{\zeta}_{i_1 \dots i_u \dots i_p})_F dv \\
= \frac{1}{\text{vol}(K)(p-1)!} \\
\times \sum_{j_1, \dots, j_{p-1}=1}^d \sum_{k=1}^d \int_{\Gamma \backslash G} (\tilde{\eta}_{k j_1 \dots j_{p-1}}, (X_k + \rho(X_k)) \tilde{\zeta}_{j_1 \dots j_{p-1}})_F dv \\
= \frac{1}{\text{vol}(K)(p-1)!} \\
\times \sum_{j_1, \dots, j_{p-1}=1}^d \int_{\Gamma \backslash G} \left(-\sum_{k=1}^d (X_k + \rho(X_k)) \tilde{\eta}_{k j_1 \dots j_{p-1}}, \tilde{\zeta}_{j_1 \dots j_{p-1}} \right)_F dv
$$

since the last equality follows from that $(\rho(X)u, v)_F = -(u, \rho(X)v)_F X \in \mathfrak{g}$, $u, v \in F$ and that $\int_{F \setminus G} (X f_1, f_2)_F dv = - \int_{F \setminus G} (f_1, X f_2)_F dv$ for $X \in \mathfrak{g}, F$ valued **J** *Γ\G* **J** *Γ\G* C^{∞} functions f_1, f_2 on $I \setminus G$ (cf. [7] Lem. 5.1).

Put

$$
\tilde{\theta}_{j_1...j_{p-1}} = -\sum_{k=1}^d (X_k + \rho(X_k)) \tilde{\eta}_{k j_1...j_{p-1}}
$$

and define an *F* valued $(p - 1)$ form θ^0 on $\Gamma \backslash G$ by

$$
\theta^0 = \frac{1}{(p-1)!} \sum_{j_1,\dots,j_{p-1}=1}^d \omega^{j_1} \wedge \dots \wedge \omega^{j_{p-1}}.
$$

 $\text{Then } \theta^0(X_{j_1}, \dots, X_{j_{p-1}}) = \tilde{\theta}_{j_1, \dots, j_{p-1}} \text{ and } \theta^0 \in A^{p-1}(\Gamma \setminus G, K, \rho).$ Let $\theta \in A^{p-1}(\Gamma, \tilde{M}, \rho)$ which corresponds to θ^0 , and define the operator δ by $\delta \eta = \theta$. Then we have $(\delta \eta)_{j_1 \dots j_{p-1}}^{\sim} = \tilde{\theta}_{j_1 \dots j_{p-1}}$ and $(\delta \eta, \zeta) = (\eta, d\zeta)$. Q.E.D.

We define the Laplacian operator Δ^p by $\Delta^p = d\delta + \delta d$ on $A^p(\Gamma, \tilde{M}, \rho)$. Then the isomorphism $A^p(E) \ni \theta \mapsto \eta \in A^p(\Gamma, \tilde{M}, \rho)$ transforms the operators *δ, Δ^p* in $A^p(E)$ to the operators *δ, Δ^p* in $A^p(\Gamma, \tilde{M}, \rho)$. For $\lambda \in \mathbb{R}$, let $A_{\lambda}^p(I,\tilde{M},\rho) = \{ \eta \in A^p(I,\tilde{M},\rho) \colon A^p \eta = \lambda \eta \}.$ Then this isomorphism induces the isomorphism of $A^p_2(E)$ onto $A^p_2(\Gamma, \tilde{M}, \rho)$.

PROPOSITION 1.1. For $\eta \in A^p(\Gamma, \tilde{M}, \rho)$, we have

$$
(\Delta^p \eta_{i_1\cdots i_p})^{\sim} = -\sum_{\nu=1}^n (X_{\nu} + \rho(X_{\nu}))^2 \tilde{\eta}_{i_1\cdots i_p}.
$$

Proof. Let $p \ge 1$. For $\eta \in A^p(\Gamma, \tilde{M}, \rho)$, we have

$$
(1.6) \quad (4^{p}\eta)_{i_{1}\cdots i_{p}} = -\sum_{k=1}^{d} (X_{k} + \rho(X_{k}))^{2} \tilde{\eta}_{i_{1}\cdots i_{p}} + \sum_{k=1}^{d} \sum_{u=1}^{p} (-1)^{u-1} \{ [X_{k}, X_{i_{u}}] + \rho([X_{k}, X_{i_{u}}]) \} \tilde{\eta}_{k i_{1}\cdots i_{u}\cdots i_{p}}
$$

from Lemma 1.2 and Lemma 1.2. Since η^0 satisfies $\theta(X)\eta^0 = -\rho(X)\eta^0$, $X \in \mathfrak{k}$ and $c_{a i_u}^k = -c_{k i_u}^a$, we have

(1.7)
$$
(X_a + \rho(X_a))\tilde{\eta}_{i_1\cdots i_p} = -\sum_{u=1}^p \sum_{k=1}^d c_{ki_u}^a \tilde{\eta}_{i_1\cdots (k)_u\cdots i_p}
$$

where $(k)_u$ denotes that the index i_u is replaced by the index k. Then by (1.7), the second term of (1.6) coincides with

$$
\sum_{a=d+1}^{n} (X_a + \rho(X_a)) \Biggl(\sum_{k=1}^{d} \sum_{u=1}^{p} c_{ki_u}^a \tilde{\eta}_{i_1 \cdots (k) u \cdots i_p} \Biggr)
$$

=
$$
- \sum_{a=d+1}^{n} (X_a + \rho(X_a))^2 \tilde{\eta}_{i_1 \cdots i_p} .
$$

$$
\rho = 0, \text{ if } \eta \in A^0(\Gamma, \tilde{M}, \rho) \eta^0 \text{ satisfies}
$$

For $p = 0$, if $\eta \in A^0(\Gamma, \Gamma)$

$$
(X_a + \rho(X_a))\eta^0 = 0.
$$

Then $(\Delta^p \eta)^0 = -\sum_{\nu=1}^n (X_\nu + \rho(X_\nu))^2 \eta^0$. Q.E.D.

§2. **Fundamental solution of the heat equation**

2.1. Space $C^{\infty}(G, F \otimes \wedge^p \mathfrak{p}^*)^{\mathfrak{q}}$

To calculate the series $Z^p(t)$ (1.1), we have to estimate the funda mental solution (cf. [6]) of the heat equation

$$
\frac{\partial u_t}{\partial t} = -\varDelta^p u_t \qquad (t > 0) , \ u_t \in A^p(E) .
$$

But we shall transform this equation to the equation on the space $C^{\infty}(G, F \otimes \wedge^p \mathfrak{p}^*)^0$ which is isometrically isomorphic to $A^p(E)$, and construct (cf. Theorem 2.1) the fundamental solution of this transformed equation on $C^{\infty}(G, F \otimes \wedge^p \mathfrak{p}^*)^{\mathfrak{g}}$ which will be used to calculate the series *Z p (t).*

Let \mathfrak{p}^* be the dual space of \mathfrak{p} . The adjoint action of K on \mathfrak{p} induces the action of K on the exterior tensor product $\bigwedge^p \mathfrak{p}^*$ of \mathfrak{p}^* such that for $1 \leq i_1 \leq \cdots \leq i^p \leq d$,

$$
\mathrm{Ad}^{\ast}_{p}\left(k\right)\!\left(\omega^{i_1}\wedge\ \cdots\ \wedge\ \omega^{i_p}\right)=\mathrm{Ad}^{\ast}\left(k\right)_{\mathfrak{p}}\!\omega^{i_1}\wedge\ \cdots\ \wedge\ \mathrm{Ad}^{\ast}\left(k\right)_{\mathfrak{p}}\!\omega^{i_p}
$$

where $Ad^*(k)_{\varphi}\omega = {}^tAd (k^{-1})_{\varphi}\omega, \ \omega \in \varphi^*, \ k \in K$. Here ${}^tAd (k)^p$ is the trans posed action of the adjoint action Ad *(k)^p* of *K on p.* The product group $\mathbf{Y} \times K$ acts on $F \otimes \wedge^p \mathfrak{p}^*$ by

$$
(\gamma, k)(u \otimes \eta) = (\rho(\gamma) \otimes \mathrm{Ad}^*_{p}(k))(u \otimes \eta) = \rho(\gamma)u \otimes \mathrm{Ad}^*_{p}(k)\eta
$$

 $\text{for } (\gamma, k) \in \Gamma \times K, \ u \in F \text{ and } \eta \in \wedge^p \mathfrak{p}^*.$

DEFINITION 2.1. Let $C(G, F \otimes \wedge^p \mathfrak{p}^*)$ denote the set of all $F \otimes \wedge^p \mathfrak{p}^*$ valued continuous functions on G and let $C^*(G, F \otimes \wedge^p \mathfrak{p}^*)$ be the set of all $F \otimes \wedge^p \mathfrak{p}^*$ valued C^{∞} function on G. Define

$$
C(G, F \otimes \wedge^p \mathfrak{p}^*)^0 = \{ \varphi \in C(G, F \otimes \wedge^p \mathfrak{p}^*) \colon \varphi(\gamma g k) = (\gamma, k^{-1}) \varphi(g) \text{ for all } \gamma \in \Gamma, \ k \in K \} .
$$

$$
C^{\infty}(G, F \otimes \wedge^p \mathfrak{p}^*)^0 = \{ \varphi \in C^{\infty}(G, F \otimes \wedge^p \mathfrak{p}^*) \colon \varphi(\gamma g k) = (\gamma, k^{-1}) \varphi(g) \text{ for all } \gamma \in \Gamma, \ k \in K \} .
$$

Now we define an injective mapping

$$
\varepsilon: A^p(\Gamma, \tilde{M}, \rho) \longrightarrow C^{\infty}(G, F \otimes \wedge^p \mathfrak{p}^*)
$$

by

$$
\varepsilon(\eta)(g) = \sum_{1 \leq i_1 < \cdots < i_p \leq d} \eta_{i_1 \cdots i_p}(g) \otimes \omega_{i_1} \wedge \cdots \wedge \omega_{i_p} \qquad (g \in G) .
$$

Here $\eta_{i_1\cdots i_p}(g) = \eta(\tau_g X_{i_1}, \cdots, \tau_g X_{i_p})$ and the tangent vector $\tau_g X_i$ of \tilde{M} at $\pi_0(g)$ is the image of $X_i \in T_0\widetilde{M} = \mathfrak{p}$ under the differential of the transla- tion τ_g at 0.

Then the mapping ε defines an isomorphism of $A^p(\Gamma, \tilde{M}, \rho)$ into $C^{\infty}(G, F \otimes \wedge^p \mathfrak{p}^*)^0$. Let \varLambda^n_p be an operator of $C^{\infty}(G, F \otimes \wedge^p \mathfrak{p}^*)^0$ defined by

(2.1) J0M?) = ε(J^)

for $\eta \in A^p(\Gamma, \tilde{M}, \rho)$. For $\lambda \in \mathbb{R}$, let

$$
C^{\scriptscriptstyle{\infty}}_{{\scriptscriptstyle{\mathcal X}}}(G, F \otimes \wedge^p {\mathfrak p}^*)^{\scriptscriptstyle 0} = \{ \varphi \in C^{\scriptscriptstyle{\infty}}(G, F \otimes \wedge^p {\mathfrak p}^*)^{\scriptscriptstyle 0}\, ; \, \varDelta^n_{{\scriptscriptstyle 0}} \varphi = \lambda \varphi\}\;.
$$

Then for every $\lambda \in \mathbf{R}$, the mapping ε induces an isomorphism of $A^p_1(\Gamma, \tilde{M}, \rho)$ onto $C^{\infty}_\lambda(G, F \otimes \wedge^p \mathfrak{p}^*)^e$

Moreover we define the metric (,) in $C(G, F \otimes \wedge^p \mathfrak{p}^*)$ by

$$
(\varphi, \varphi') = C \sum_{1 \leq i_1 < \dots < i_p \leq d} C \int_G (\varphi_{i_1 \dots i_p}(g), \varphi'_{i_1 \dots i_p}(g))_F dg
$$

where *dg* is the Haar measure on *G* with total volume 1, the constant $C = vol(G)/vol(K)$ and

$$
\varphi(g) = \sum_{1 \leq i_1 < \dots < i_p \leq d} \varphi_{i_1 \dots i_p}(g) \otimes \omega_{i_1 \wedge \dots \wedge \omega_{i_p}},
$$
\n
$$
\varphi'(g) = \sum_{1 \leq i_1 < \dots < i_p \leq d} \varphi'_{i_1 \dots i_p}(g) \otimes \omega_{i_1 \wedge \dots \wedge \omega_{i_p}}.
$$

Let $L_2(G, F \otimes \wedge^p \mathfrak{p}^*)$ be the completion of $C(G, F \otimes \wedge^p \mathfrak{p}^*)$ with respect to this inner product and let $L_2(G, F \otimes \wedge^p \mathfrak{p}^*)^0$ be the completion of $C(G, F \otimes \wedge^p \mathfrak{p}^*)^0$ be the completion of $C(G, F \otimes \wedge^p \mathfrak{p}^*)^0$ in $L_\mathrm{2}(G, F \otimes \wedge^p \mathfrak{p}^*)^0$

Notice that for $\eta \in A^p(\Gamma, \tilde{M}, \rho)$,

$$
(2.2) \t\t \eta_{i_1\cdots i_p}(g) = \rho(g)\tilde{\eta}_{i_1\cdots i_p}(\tilde{\omega}_0(g)), \t g \in G.
$$

For

$$
\begin{aligned} \tilde{\eta}_{i_1\cdots i_p}(\varpi_0(g))&=\eta^0_{\varpi_0(g)}(X_{i_1},\,\cdot\cdot\cdot,X_{i_p})\\&=(\varpi_0^*\eta^0)_g(X_{i_1},\,\cdot\cdot\cdot,X_{i_p})\\&=\rho(g^{-1})(\pi_0^*\eta)_g(X_{i_1},\,\cdot\cdot\cdot,X_{i_p})\\&=\rho(g^{-1})\eta_{\pi_0(g)}(\tau_gX_{i_1},\,\cdot\cdot\cdot,\tau_gX_{i_p})\\&=\rho(g^{-1})\eta_{i_1\cdots i_p}(g) \end{aligned}
$$

where for each $X \in \mathfrak{p}$, the image of the tangent vector X_g of G at g under the projection π_0 coincides with the image of the tangent vector X_0 of *M* at 0 under the translation τ_g .

Then from (1.5), (2.2), the definition of the inner product in $A^p(\Gamma, \tilde{M}, \rho)$ and the invariantness of (,)_{*F*} under the action ρ of *G*, the mapping ε induces the isometry of $L^p_2(\Gamma, \tilde{M}, \rho)$ onto $L_2(G, F \otimes \wedge^p \mathfrak{p}^*)^0.$ Hence we have the decomposition

$$
L_2(G, F \otimes \wedge^p \mathfrak{p}^*)^0 = \sum_{\lambda} C^{\scriptscriptstyle\infty}_\lambda(G, F \otimes \wedge^p \mathfrak{p}^*)^0 \; .
$$

Therefore we have

(2.3)
$$
Z^p(t) = \sum_{\lambda} e^{-\lambda t} \dim C^{\infty}_\lambda(G, F \otimes \wedge^p \mathfrak{p}^*)^0.
$$

2.2. The Laplacian in $C^{\infty}(G, F \otimes \wedge^p \mathfrak{p}^*)^0$

Now let r be the right regular representation of G on $L_{\scriptscriptstyle 2}(G, F\otimes \wedge^p {\mathfrak p}^*)$ i.e.

$$
(r_g \varphi)(x) = \varphi(xg) \qquad (x \in G)
$$

for any $g \in G$, $\varphi \in L_2(G, F \otimes \wedge^p \mathfrak{p}^*)$. For any $X \in \mathfrak{g}$, we define $r(X)$ by

$$
r(X)\varphi = X\varphi \qquad \varphi \in C^{\infty}(G, F \otimes \wedge^p \mathfrak{p}^*)
$$

where $X\varphi(g) = [(d/dt)\varphi(g \exp tX)]_{t=0}, g \in G$. Then $X \mapsto r(X)$ $(X \in \mathfrak{g})$ is a representation of g on $C^{\infty}(G, F \otimes \wedge^{p} \mathfrak{p}^{\ast}).$ Let $U(\mathfrak{g}^{c})$ be the universal enveloping algebra of \mathfrak{g}^c . Then this representation extends uniquely to a representation of $U(q^c)$ which is denoted again by r. Let $\Omega = \sum_{i=1}^n X_i$ $\in U(\mathfrak{g}^c)$. Then the operator $r(\varOmega)$ on $C^{\infty}(G, F \otimes \wedge^p \mathfrak{p}^*)$ commutes with the right and left translations of G on $C^{\infty}(G, \otimes \wedge^p)^*)$. Hence we have

$$
r(\Omega)C^{\infty}(G, F \otimes \wedge^p \mathfrak{p}^*)^0 \subset C^{\infty}(G, F \otimes \wedge^p \mathfrak{p}^*)^0.
$$

Moreover we have

PROPOSITION 2.1. For $\eta \in A^p(\Gamma, \tilde{M}, \rho)$, we have

$$
(\varDelta^p \eta)_{i_1 \cdots i_p} = - \sum_{\nu=1}^n X_{\nu}^2 \eta_{i_1 \cdots i_p}
$$

that is,

$$
\Delta_0^p \varepsilon(\eta) = -r(\Omega) \varepsilon(\eta) .
$$

Proof. By (2.2), we have for $X \in \mathfrak{g}$, $\eta \in A^p(\Gamma, \tilde{M}, \rho)$,

$$
(X + \rho(X))(\tilde{\eta}_{i_1\cdots i_p} \circ \tilde{\omega}_0)(g) = (X + \rho(X))(\rho^{-1} \circ \eta_{i_1\cdots i_p})(g)
$$

=
$$
(X\tilde{\eta}_{i_1\cdots i_p}) \circ \tilde{\omega}_0(g).
$$

Proposition 2.1 follows from Proposition 1.1. Q.E.D.

Let $H^p_0(G, F \otimes \wedge^p \mathfrak{p}^*) = C_0^{\infty}(G, F \otimes \wedge^p \mathfrak{p}^*)^0 = {\varphi \in C^{\infty}(G, F \otimes \wedge^p \mathfrak{p}^*)^0}$; $A_0^p \varphi$ $= 0$ }. From Proposition 2.1, for $\varphi = \sum_{1 \leq i_1 < \cdots < i_p \leq d} \varphi_{i_1 \cdots i_p} \otimes \varphi_{i_1 \wedge \cdots \wedge \varphi_{i_p}}$ $\in C^{\infty}(G, F \otimes \wedge^p \mathfrak{p}^*)^0$, we have

$$
\Delta_0^p \varphi = r(\Omega) \varphi = \sum_{1 \leq i < \cdots < i_p \leq d} \Omega \varphi_{i_1 \cdots i_p} \otimes \varphi_{i_1 \wedge \cdots \wedge \varphi_{i_p}}.
$$

Then

$$
A_0^p \varphi = 0 \Longleftrightarrow \Omega \varphi_{i_1 \cdots i_p} = 0 \qquad (1 \leq i_1 < \cdots < i_p \leq d)
$$

$$
\iff \text{every } \varphi_{i_1 \cdots i_p} \text{ is a constant mapping of } G \text{ into } F.
$$

Hence $H^p_0(G, F \otimes \wedge^p \mathfrak{p}^*) \cong \{\eta \in F \otimes \wedge^p \mathfrak{p}^* \colon (\gamma, k) \eta = \eta \text{ for all } (\gamma, k) \in \Gamma \times K\}.$

Therefore we have the following theorem.

THEOREM 2.1. Under the assumption in § 1, for $0 \le p \le d$, we have

$$
\dim H^p(E) = [\rho_{\Gamma} : I_{\Gamma}][\mathrm{Ad}^*_{p} : I_{K}].
$$

Here ρ_r *is the representation of* ρ *restricted to* Γ , $[\rho_r : I_r]$ (resp. $[Ad^*_r : I_{\kappa}]$) *is the multiplicity with which the trivial representation* I_r (resp. I_k) of *I* (resp. K) occurs in ρ_r (resp. Ad_{p}^{*}).

COROLLARY 2.1. *We preserve the notation and the assumption in* § 1. *Then*

(2.4)
$$
\sum_{p=0}^{d} (-1)^p p \dim H^p(E) = [\rho_{\Gamma} : I_{\Gamma}] \int_K \chi(k) dk
$$

where $\chi(k) = \sum_{p=0}^{d} (-1)^p p_{\chi_p^*}(k)$, $\chi_p^*(k)$ is the trace of $\text{Ad}_{p}^*(k)$ on $\wedge^p p^*$ and *dk is the Haar measure on K with total volume 1.*

2.3. The fundamental solution of the heat equation on $C^{\infty}(G, F \otimes \wedge^p p^*)^c$

Now let *T* be a maximal torus of *G* and let t be the subalgebra of corresponding to *T*. Let $\Gamma_0 = \{H \in \mathfrak{t} : \exp H = 1\}$ be the kernel of the homomorphism $exp: t \rightarrow T$. Let *I* be the set of all *G*-integral forms on i:

$$
I = \{ \lambda \in \mathfrak{t} : \lambda(H) \in 2\pi Z \quad \text{for all } H \in \Gamma_0 \}.
$$

Let $($, $)$ be an Ad (G) invariant positive definite inner product on g

defined by $(X, Y) = -B(X, Y)$, $X, Y \in \mathfrak{g}$. Let Φ be the set of all nonzero roots of the complexification \mathfrak{g}^c of $\mathfrak g$ with respect to the complexi fication t^c of t. We choose an arbitrary lexicographic order in t. Let *+* be the positive root of *Φ* with respect to this order. Let *D* be the set of all dominant G -integral forms on t :

$$
D = \{ \lambda \in I : (\lambda, \alpha) \geq 0 \quad \text{for all } \alpha \in \Phi^+ \} .
$$

Since an irreducible representation of G is uniquely determined, up to equivalence, by its highest weight, there exists a bijection of D onto the set of equivalence classes of irreducible representations of G. For $\lambda \in D$, let χ_{λ} (resp. d_{λ}) be the trace (resp. degree) of the irreducible representation with the highest weight *λ.*

Define (cf. [14]) an absolutely convergent series $Z_t(g)$ by

$$
(2.5) \t\t Zt(g) = \sum_{\lambda \in D} d_{\lambda} e^{-(\lambda + 2\delta, \lambda)t} \chi_{\lambda}(g) , \t t > 0
$$

where $\delta = \frac{1}{2} \sum_{\alpha \in \mathfrak{g}^+} \alpha$.

PROPOSITION 2.2. For $\varphi \in C(G, F \otimes \wedge^p \mathfrak{p}^*)$, the unique solution of the *equation*

(2.6)
$$
\begin{cases} \frac{\partial \varphi_t}{\partial t} = r(\varOmega)\varphi_t, & \varphi_t \in C^{\infty}(G, F \otimes \wedge^p \mathfrak{p}^*) \\ \lim_{t \downarrow 0} \varphi_t = \varphi & (pointwise convergence) \end{cases}
$$

is *given by*

(2.7)
$$
\varphi_t(g) = \int_{G} Z_t(x^{-1}g)\varphi(x)dx
$$

where Z^t (g) is the function (2.5) *and dx is the Haar measure on G with total volume* 1. Moreover we denote by K_t the mapping (2.7) $\varphi \mapsto \varphi_t$. *Then we have*

$$
(2.8) \t KtC(G, F \otimes \wedge^p \mathfrak{p}^*)^0 \subset C^{\infty}(G, F \otimes \wedge^p \mathfrak{p}^*)^0.
$$

Proof. Since $\Omega_{\chi} = -(\lambda + 2\delta, \lambda)_{\chi}$, $\lambda \in D$ (cf. [13]), we have $(\partial/\partial t)Z_t$ $= \varOmega Z_t$. Then for $\varphi \in C(G, F \otimes \wedge^p \mathfrak{p}^*),$ we have $\varphi_t \in C^{\infty}(G, F \otimes \wedge^p \mathfrak{p}^*)$ and

$$
r(\Omega)\varphi_t(g) = \int_{\mathcal{G}} (\Omega Z_t)(x^{-1}g)\varphi(x)dx
$$

=
$$
\int_{\mathcal{G}} \frac{\partial}{\partial t} Z_t(x^{-1}g)\varphi(x)dx = \frac{\partial}{\partial t} \varphi_t(g)
$$

By Peter-Weyl's theorem, for every complex continuous function f on G, we have

$$
\lim_{t\downarrow 0}\int_{a}Z_t(x^{-1}g)f(x)dx=f(g).
$$

Then for every $F \otimes \wedge^p \mathfrak{p}^*$ valued function φ , we have also

$$
\lim_{t\downarrow 0}\int_{G}Z_t(x^{-1}g)\varphi(x)dx=\varphi(x).
$$

The last statement follows from that for $\varphi \in C(G, F \otimes \wedge^p \mathfrak{p}^*)$, and $g_1, g_2, g \in G$,

$$
\varphi_t(g_1gg_2) = \int_{\mathcal{G}} Z_t(x^{-1}g)\varphi(g_1xg_2)dx.
$$
 Q.E.D.

Define the operator P on $C(G, F \otimes / \wedge^2 P)$ by

$$
P\varphi(g) = \sum_{\tau \in \Gamma} \int_{K} \rho(\tau) \otimes \mathrm{Ad}_{p}^*(k) (\varphi(\tau^{-1}gk)) dk
$$

for $\varphi \in C(G, F \otimes \wedge^p \varphi^*)$. Then the operator P satisfies the following conditions :

(i) *P* maps $C(G, F \otimes \wedge^p \mathfrak{p}^*)$ onto $C(G, F \otimes \wedge^p \mathfrak{p}^*)^0$.

$$
(ii) P^2 = P.
$$

Moreover for $\varphi \in C(G, F \otimes \wedge^p)$, by means of Propositions 2.1 and 2.2, $K_t P\varphi$ ($t > 0$) has the following properties:

(i) $K_t P \varphi \in C^{\infty}(G, F \otimes \wedge^p \mathfrak{p}^*)^0$, (ii) $\frac{\partial}{\partial t}(K_t P \varphi) = r(\varOmega)(K_t P \varphi) = -\varDelta_0^p(K_t P \varphi)$ and (iii) $\lim K_t P \varphi = P \varphi$.

On the other hand, for $\varphi \in C(G, F \otimes \wedge^p \mathfrak{p}^*)$,

(2.9)
\n
$$
K_t P\varphi(x) = \int_{\sigma} Z_t(y^{-1}x) P\varphi(y) dy
$$
\n
$$
= \sum_{\tau \in \Gamma} \int_{\sigma \times \kappa} Z_t(y^{-1}x) \rho(\tau) \otimes \mathrm{Ad}_p^*(k) \varphi(\tau^{-1} yk) dk dy
$$
\n
$$
= \int_{\sigma} \left(\sum_{\tau \in \Gamma} \int_{\kappa} Z_t(ky^{-1} \tau^{-1} x) \rho(\tau) \otimes \mathrm{Ad}_p^*(k) dk \right) \varphi(y) dy.
$$

$$
(2.10) \tZ_t^p(x,y) = \sum_{\gamma \in \Gamma} \int_K Z_t (ky^{-1} \gamma^{-1} x) \rho(\gamma) \otimes \mathrm{Ad}_p^* (k) dk.
$$

Therefore we obtain the following theorem.

THEOREM 2.2. *For t* > 0 , let $Z_t^p: G \times G \to \text{End }(F \otimes \wedge^p \mathfrak{p}^*)$ be the *smooth map defined by* (2.10) *. Then* Z_i^p *is the fundamental solution of the heat equation* $\partial \varphi_t / \partial t = -\varDelta_b^p \varphi_t$ *(t > 0),* $\varphi_t \in C^{\infty}(G, F \otimes \wedge^p \mathfrak{p}^*)^0$, that is, *for* $\varphi \in C(G, F \otimes \wedge^p \mathfrak{p}^*)$, put

$$
\varphi_t(x) = \int_{\mathcal{G}} Z_t^p(x, y) \varphi(y) dy , \qquad x \in G.
$$

Then ψ^t satisfies the following properties:

- (i) $\varphi_t \in C^{\infty}(G, F \otimes \wedge^p \mathfrak{p}^*)^0$,
- (ii) $\frac{\partial \varphi_t}{\partial t} = -\varphi_t$ and
- (iii) $\lim_{t \downarrow 0} \varphi_t(x) = \varphi(x)$ for every $x \in G$.

COROLLARY 2.2. *Let Z^v (t) be the series* (1.1). *Then we have*

$$
(2.11) \tZp(t) = \sum_{\gamma \in \Gamma} \chi_{\rho}(\gamma) \int_{G \times K} Z_{t}(\gamma^{-1}gkg^{-1}) \chi_{p}^{*}(k) dk dg
$$

rer J GXK where χ^p (γ) is the trace of ρ(γ).

Proof. By (2.3) and Theorem 2.2, we have

$$
Z^{p}(t) = \sum_{\lambda} e^{-\lambda t} \dim C^{\infty}_{\lambda}(G, F \otimes \wedge^{p} \mathfrak{p}^{*})^{0}
$$

= trace of the operator $e^{-tA^{p}}: C^{\infty}(G, F \otimes \wedge^{p} \mathfrak{p}^{*})^{0}$
 $\longrightarrow C^{\infty}(G, F \otimes \wedge^{p} \mathfrak{p}^{*})^{0}$
= trace of the operator $e^{-tA^{p}} \circ P: C^{\infty}(G, F \otimes \wedge^{p} \mathfrak{p}^{*})$
 $\longrightarrow C^{\infty}(G, F \otimes \wedge^{p} \mathfrak{p}^{*})^{0}$
= trace of $K_{t} \circ P$
= $\int_{G} tr Z^{p}_{t}(g, g) dg$

where $\text{tr }Z_i^p(g,g)$ is the trace of the endomorphism $Z_i^p(g,g)$ of $F\otimes\wedge^p\mathfrak{p}^*$. The last equality follows from (2.10) . Q.E.D.

Remark. In case of $\Gamma = \{1\}$, we have due to Corollary 2.2,

(2.12)
$$
Z^p(t) = \int_K Z_t(k) \chi_p^*(k) dk.
$$

If $p = 0$, this formula has been obtained in [2].

The following Corollary is obtained immediately from Corollary 2.2.

COROLLARY 2.3. We preserve the above notations. Then we have

(2.13)
$$
\sum_{p=0}^d (-1)^p p Z^p(t) = \sum_{\gamma \in \Gamma} \chi_{\rho}(\gamma) \int_{G \times K} Z_{\iota}(\gamma^{-1} g k g^{-1}) \chi(k) dk dg.
$$

 $where \ \ \chi(k)=\sum_{p=0}^d\,(-1)^p p\chi_p^*(k), \ \ \chi_p^*(k) \ \ is \ \ the \ \ trace \ \ of \ \ {\rm Ad}_p^*\,(k) \ \ on \ \ \wedge^p\, \mathfrak{p}^*$

§3. Computation of Analytic Torsion

3.1. To calculate analytic torsion, we have to compute *χ(k)* $=\sum_{p=0}^d (-1)^p p_{\chi_p^*}(k)$, $k \in K$. For this purpose, we prepare a lemma as follows.

Let *V* be a *d* dimensional real vector space and let *A* be an endo morphism of V. For $1 \le p \le d$, $\wedge^p A$ is a linear operator of $\wedge^p V$ into itself,

$$
(\wedge^p A)(v_1 \wedge \cdots \wedge v_p) = Av_1 \wedge \cdots \wedge Av_p, \qquad v_i \in V.
$$

We define $\bigwedge^{\circ} A$ to be the identity endomorphism of the field of scalars. Let $\text{tr } (\bigwedge^p A)$ be the trace of the endomorphism $\bigwedge^p A$. Then it is known that

$$
\det\left(xI-A\right)=\sum_{p=0}^d\left(-1\right)^p\operatorname{tr}\left(\bigwedge^pA\right)x^{d-p}
$$

where I is the identity endomorphism of V and x is an indeterminate. So we have

(3.1)
$$
\left[\frac{d}{dx}\Big\{x^d \det\Big(\frac{1}{x}I-A\Big)\Big\}\right]_{x=1} = \sum_{p=0}^d (-1)^p p \operatorname{tr}(\wedge^p A) .
$$

Hence we obtain

LEMMA 3.1. We preserve the notation in $\S 1$. For $k \in K$, we have

$$
\chi(k) = \sum_{p=1}^d (-1)^p p \chi_p^*(k) = \left[\frac{d}{dx} \left\{ x^d \det \left(\frac{1}{x} I_p - \operatorname{Ad} \left(k^{-1} \right)_p \right) \right\} \right]_{x=1}
$$

where $I_{\mathfrak{p}}$ is the identity operator on \mathfrak{p} , Ad(k)_p is the adjoint action of *K* on p and $d = \dim G/K = \dim \mathfrak{g}$.

Proof. By the definition and (3.1), Lemma 3.1 is obtained imme diately.

Let t_t be a Cartan subalgebra of t . Let t be the centralizer of t_t in g. Then t is (cf. [3] Lemma 32) a θ -stable Cartan subalgebra of g and

(3.2)
$$
t = t_t + t_\mathfrak{p}, \qquad t_\mathfrak{p} = t \cap \mathfrak{p}.
$$

So, dim t_p = rank *G* – rank *K*. Let T_K be the analytic subgroup of *K* corresponding to t_t . Then T_K is a maximal torus of K since K is connected. We choose once for all a lexicographic order in t_t . Let Φ_t be the root system of (f^c, t_i) , i.e. the set of non-zero elements β of the dual space \mathfrak{t}_i^* of \mathfrak{t}_i such that $\{E \in \mathfrak{k}^c : [H, E] = \sqrt{-1} \beta(H)E$ for any $H \in \mathfrak{t}_i\}$ is not zero. Let Φ_t^+ be the set of all positive roots of Φ_t with respect to this order. For every continuous function f on K such that $f(k_1 k k_1^{-1})$ $f(k)$ for every $k_1, k \in K$, it follows (cf. [5] Ch X) that (Weyl's integral formula for *K)*

$$
\int_{K} f(k)dk = \frac{1}{w_K} \int_{T_K} D_K(h) f(h) dh
$$

where w_K is the order of the Weyl group of the compact group K, dh is the Haar measure on T_K with total volume 1 and

$$
D_K(h) = \Big|\prod_{\beta \in \Phi_{\mathfrak{k}}^+} \left(\exp \left(\frac{\sqrt{-1}}{2} \beta(H) \right) - \exp \left(-\frac{\sqrt{-1}}{2} \beta(H) \right) \right)^2 \Big|
$$

for $h = \exp H \in T_K$.

By means of this formula, Corollaries 2.1 and 2.3, we have

$$
(3.3) \quad \sum_{p=0}^{d} (-1)^p p Z^p(t) = \frac{1}{w_K} \sum_{r \in \Gamma} \chi_{\rho}(r) \int_{G \times T_K} D_K(h) Z_{\iota}(\gamma^{-1} y h y^{-1}) \chi(h) dh dy
$$

(3.4)
$$
\sum_{p=0}^d (-1)^p p \dim H^p(E) = \frac{[\rho_r: I_r]}{w_K} \int_{T_K} D_K(h) \chi(h) dh.
$$

So, using Lemma 3.1, to calculate $\chi(h)$ for $h \in T_K$, we have to investigate the action of ad H on \mathfrak{p} for $H \in \mathfrak{t}_{\mathfrak{k}}$.

3.2. For $\lambda \in \mathfrak{t}^*$, let λ_t (resp. $\lambda_\mathfrak{p}$) be the restriction of λ to \mathfrak{t}_t (resp. \mathfrak{t}_t). We choose once for all a lexicographic order on t^*_n . We define an order on t^* in such a way that

$$
\lambda \in \mathfrak{t}^*, \lambda > 0 \Longleftrightarrow (i) \quad \lambda_{\mathfrak{p}} > 0 \quad \text{or}
$$

(ii) $\lambda_{\mathfrak{p}} = 0 \quad \text{and} \quad \lambda_{\mathfrak{r}} > 0.$

Let Φ be the root system of (q^c, t) , i.e. the set of non-zero elements α of the dual space t^* of t such that $g_{\alpha} = \{E \in g^c : [H, E] = \sqrt{-1} \alpha(H)E$ for any $H \in \mathfrak{t}$ is not zero. Let Φ^+ be the set of positive roots of Φ with respect to this order. For $\alpha \in \Phi$, define $\alpha^{\theta} \in \Phi$ by $\alpha^{\theta}(H) = \alpha(\theta H)$, $H \in \mathfrak{t}$. Let g_{α} be a root subspace of g_c for $\alpha \in \Phi$. Then we have that

(3.5)
$$
\alpha \in \Phi \Longleftrightarrow \alpha^{\theta} \in \Phi \quad \text{and} \quad \theta(\mathfrak{g}_{\alpha}) = \mathfrak{g}_{\alpha^{\theta}}.
$$

The root α vanishes identically on t_p (resp. t_t) if and only if $\alpha = \alpha^6$ (resp. $\alpha = -\alpha^{\theta}$). Let $\Phi_I = {\alpha \in \Phi : \alpha^{\theta} = \alpha}$ and let $\Phi_C = {\alpha \in \Phi : \alpha^{\theta} \neq \alpha}$ and $\alpha \neq -\alpha^{\theta}$. Then $\Phi = \Phi_I \cup \Phi_C$ (a disjoint union) since there is no $\alpha \in \Phi$ which vanishes identically on t_t (cf. Lemma 33 [3]). Let $\Phi_{I,t}$ $= {\alpha \in \Phi_I : g_\alpha \subset {\mathfrak k}^c}$ and let $\Phi_{I,\mathfrak p} = {\alpha \in \Phi_I : g_\alpha \subset \mathfrak p^c}$. We denote the inter section of Φ_I (resp. $\Phi_{I,t}$, $\Phi_{I,\nu}$, Φ_c) with Φ^+ , by Φ_I^+ (resp. $\Phi_{I,t}^+$, $\Phi_{I,\nu}^+$, Φ_c^+). Let τ be the conjugation of \mathfrak{g}^c with respect to g. For every $\alpha \in \Phi$, we choose a root vector E_a such that $\tau E_a = -E_{-a}$. By (3.5), we can take a non zero complex number $c_a(\alpha \in \Phi_c)$ such that $\theta E_a = c_a E_a$ ^{*a*}. Then each c_a $(\alpha \in \Phi_{C})$ satisfies

$$
(3.6) \t\t\t c_a c_{\alpha\theta} = 1 , \t\t c_{-\alpha} = \overline{c_{\alpha\theta}} .
$$

For $\alpha \in \Phi_{\alpha}^*$, we have

$$
E_{-\alpha} = \frac{1}{2}(\theta E_{-\alpha} + \theta(\theta E_{-\alpha})) - \frac{1}{2}(\theta E_{-\alpha} - \theta(\theta E_{-\alpha}))
$$

= $\frac{1}{2}(c_{-\alpha}E_{-\alpha\theta} + c_{-\alpha\theta}E_{-\alpha\theta}) - \frac{1}{2}(c_{-\alpha}E_{-\alpha\theta} - c_{-\alpha\theta}E_{-\alpha\theta})$
= $\frac{c_{-\alpha}}{2}(E_{-\alpha\theta}\theta + \theta E_{-\alpha\theta}\theta) - \frac{c_{-\alpha}}{2}(E_{-\alpha\theta} - \theta E_{-\alpha\theta}).$

By the choice of the order of t^* ,

(3.7)
$$
\alpha \in \Phi_{\mathcal{C}}^{\dagger} \Rightarrow -\alpha^{\theta} \in \Phi_{\mathcal{C}}^{\dagger}.
$$

Hence we have

$$
0^{\mathcal{C}} = t^{\mathcal{C}} + \sum_{\alpha \in \Phi_I} CE_{\alpha} + \sum_{\alpha \in \Phi_C^+} C(E_{\alpha} + \theta E_{\alpha}) + \sum_{\alpha \in \Phi_C^+} C(E_{\alpha} - \theta E_{\alpha}) ,
$$

that is

(3.8)
$$
\begin{cases} \mathfrak{f}^{\mathcal{C}} = \mathfrak{t}_{\mathfrak{l}}^{\mathcal{C}} + \sum_{\alpha \in \Phi_{\mathcal{I},\mathfrak{l}}^{\mathcal{C}}} \mathbf{C} E_{\alpha} + \sum_{\alpha \in \Phi_{\mathcal{C}}^{\mathcal{C}}} \mathbf{C} (E_{\alpha} + \theta E_{\alpha}), \\ \mathfrak{p}^{\mathcal{C}} = \mathfrak{t}_{\mathfrak{p}}^{\mathcal{C}} + \sum_{\alpha \in \Phi_{\mathcal{I},\mathfrak{p}}} \mathbf{C} E_{\alpha} + \sum_{\alpha \in \Phi_{\mathcal{C}}^{\mathcal{C}}} \mathbf{C} (E_{\alpha} - \theta E_{\alpha}). \end{cases}
$$

Since $\alpha \neq \alpha^{\theta}$ ($\alpha \in \Phi_c$), we can define non-zero vectors X_a, Y_a ($\alpha \in \Phi_c$) by $X_a = E_a + \theta E_a, Y_a = E_a - \theta E_a$ for $\alpha \in \Phi_c$. By means of $\theta \tau = \tau \theta$ and τE_a

COMPACT SYMMETRIC SPACES 83

$$
=-E_{-\alpha}
$$
, we have $\tau X_{\alpha} = -X_{-\alpha}$ and $\tau Y_{\alpha} = -Y_{-\alpha}$. Then we have

(3.9)
$$
\begin{cases} W_{\alpha} = X_{\alpha} - X_{-\alpha} , & Z_{\alpha} = \sqrt{-1}(X_{\alpha} + X_{-\alpha}) \in \mathfrak{k} \\ \tilde{W}_{\alpha} = Y_{\alpha} - Y_{-\alpha} , & \tilde{Z}_{\alpha} = \sqrt{-1}(Y_{\alpha} + Y_{-\alpha}) \in \mathfrak{p} \end{cases}
$$

for $\alpha \in \Phi_c^*$. Since $\alpha^{\theta} \neq \alpha$, $-\alpha(\alpha \in \Phi_c^*)$, all W_a , Z_a , \tilde{W}_a and \tilde{Z}_a are non-zero for $\alpha \in \Phi_{\mathcal{C}}^*$. Moreover we have, for $\alpha \in \Phi_{\mathcal{C}}^*$,

$$
(3.10)
$$
\n
$$
\begin{cases}\nW_{-\alpha^{\theta}} = -\frac{1}{2} \left(\frac{1}{c_{\alpha}} + \frac{1}{c_{-\alpha}} \right) W_{\alpha} + \frac{\sqrt{-1}}{2} \left(\frac{1}{c_{\alpha}} - \frac{1}{c_{-\alpha}} \right) Z_{\alpha}, \\
Z_{-\alpha^{\theta}} = \frac{\sqrt{-1}}{2} \left(\frac{1}{c_{\alpha}} - \frac{1}{c_{-\alpha}} \right) W_{\alpha} + \frac{1}{2} \left(\frac{1}{c_{\alpha}} + \frac{1}{c_{-\alpha}} \right) Z_{\alpha}, \\
\widetilde{W}_{-\alpha^{\theta}} = \frac{1}{2} \left(\frac{1}{c_{\alpha}} + \frac{1}{c_{-\alpha}} \right) \widetilde{W}_{\alpha} - \frac{\sqrt{-1}}{2} \left(\frac{1}{c_{\alpha}} - \frac{1}{c_{-\alpha}} \right) \widetilde{Z}_{\alpha} \text{ and} \\
\widetilde{Z}_{-\alpha^{\theta}} = \frac{\sqrt{-1}}{2} \left(\frac{1}{c_{\alpha}} + \frac{1}{c_{-\alpha}} \right) \widetilde{W}_{\alpha} - \frac{1}{2} \left(\frac{1}{c_{\alpha}} + \frac{1}{c_{-\alpha}} \right) \widetilde{Z}_{\alpha},\n\end{cases}
$$

where all coefficients $\pm \frac{1}{2}(1/c_a + 1/c_{-a})$, $\pm \sqrt{-1/2}(1/c_a - 1/c_{-a})$ are real numbers due to (3.6).

Now we choose any root α_1 of Φ_c^* . If $\Phi_c^{\dagger}\langle{\alpha_1, -\alpha_1^{\theta}}\rangle$ is non-empty, we choose any root α_2 belonging to $\Phi^+_c \setminus {\alpha_1, -\alpha_1^{\theta}}$. Then $-\alpha_2^{\theta}$ belongs to *+* $\langle \alpha_1, -\alpha_1^{\theta}, \alpha_2 \rangle$. Inductively we may choose a subset $\{a_1, \dots, a_r\}$ of Φ_c^+ such that $\{\alpha_1, \dots, \alpha_r, -\alpha_1^{\theta}, \dots, -\alpha_r^{\theta}\} = \Phi_{\mathcal{C}}^*$. Then by (3.9), (3.10) and the choice of $\{\alpha_1, \dots, \alpha_r\}$, $\sum_{i=1}^r (RW_{\alpha_i} + RZ_{\alpha_i})$ (resp. $\sum_{i=1}^r (RW_{\alpha_i} + RZ_{\alpha_i})$) is a real form of $\sum_{\alpha \in \phi_{G}^{+}} C(E_{\alpha} + \theta E_{\alpha})$ (resp. $\sum_{\alpha \in \phi_{G}^{+}} C(E_{\alpha} - \theta E_{\alpha})$).

On the other hand, for $\alpha \in \Phi_f^+$, we put $U_{\alpha} = E_{\alpha} - E_{-\alpha}$, $V_{\alpha} = \sqrt{-1}(E_{\alpha})$ $+~E_{-a}$). Then $\sum_{\alpha\in \Phi_{I,t}^+} (\bm{R} U_\alpha + \bm{R} V_{\alpha})$ (resp. $\sum_{\alpha\in \Phi_{I,b}^+} (\bm{R} U_\alpha + \bm{R} V_{\alpha})$) is a real form of $\sum_{\alpha \in \mathfrak{\phi}^+_{{\bm{I}},\bullet}} \bm{C}\bm{E}_\alpha$ (resp. $\sum_{\alpha \in \mathfrak{\phi}^+_{{\bm{I}}}}$

Therefore together with (3.8) we obtain the following lemma:

LEMMA 3.2. We preserve the above notation. Then we have the *following direct sum decomposition:*

$$
\check{f} = f_t + \sum_{\alpha \in \Phi_{I,t}^+} (RU_{\alpha} + RV_{\alpha}) + \sum_{i=1}^r (RW_{\alpha_i} + RZ_{\alpha_i}),
$$

$$
\check{\rho} = f_{\check{\rho}} + \sum_{\alpha \in \Phi_{I,u}^+} (RU_{\alpha} + RV_{\alpha}) + \sum_{i=1}^r (R\tilde{W}_{\alpha_i} + R\tilde{Z}_{\alpha_i}).
$$

LEMMA 3.3. For each $H \in \mathfrak{t}_{\mathfrak{k}}$, we have

$$
\det\left(xI_{\mathfrak{p}}- \mathrm{Ad}\left(h\right)_{\mathfrak{p}}\right)= (x-1)^{\ell_{\mathfrak{p}}} \prod_{\alpha \in \Phi_{I,\mathfrak{p}}^+ \cup \{\alpha_1, \cdots, \alpha_r\}}\left\{(x-\cos\alpha(H))^2+\sin^2\alpha(H)\right\}
$$

where $\ell_{\varphi} = \dim t_{\varphi} = \text{rank } G - \text{rank } K.$

Proof. For $\alpha \in \Phi_I$, we have by the definition of U_α , V_α ,

 $[H, U_{\alpha}] = \alpha(H)V_{\alpha}$, $[H, V_{\alpha}] = -\alpha(H)U_{\alpha}$ $(H \in \mathfrak{t}_{t})$.

On the other hand we have for $\alpha \in \Phi_c$,

$$
[H, X_{\alpha}] + [H, Y_{\alpha}] = \sqrt{-1}\alpha(H)X_{\alpha} + \sqrt{-1}\alpha(H)Y_{\alpha}
$$

by $E_a = (X_a + Y_a)/2$. For $H \in \mathfrak{t}_t$, we compare the \mathfrak{k}^c (resp. \mathfrak{p}^c) component of this equality to obtain $[H, X_a] = \sqrt{-1} \alpha(H) X_a$ (resp. $[H, Y_a] = \sqrt{-1} \alpha(H) Y_a$). Then we have

$$
[H, W_{\alpha}] = \alpha(H)Z_{\alpha} , \qquad [H, Z_{\alpha}] = -\alpha(H)W_{\alpha} ,
$$

$$
[H, \tilde{W}_{\alpha}] = \alpha(H)\tilde{Z}_{\alpha} \quad \text{and} \quad [H, \tilde{Z}_{\alpha}] = -\alpha(H)\tilde{W}_{\alpha}
$$

by the definition of W_a , Z_a , \tilde{W}_a and \tilde{Z}_a . Hence from Lemma 3.2, we have Lemma 3.3. Q.E.D.

PROPOSITION 3.1. *We preserve the above notation. Then for h* $= \exp H, H \in \mathfrak{t}_i$, we have

\n- (i)
$$
\chi(h) = 0
$$
 $(\ell_{\mathfrak{p}} > 1)$
\n- (ii) $\chi(h) = -\prod_{\alpha \in \Phi_{I,\mathfrak{p}}^+ \cup \{a_1, \ldots, a_r\}} (2 - 2 \cos \alpha(H))$ $(\ell_{\mathfrak{p}} = 1)$ and
\n- (iii) $\chi(h) = \prod_{\alpha \in \Phi_{I,\mathfrak{p}}^+} (2 - 2 \cos \alpha(H)) \times \sharp(\Phi_{I,\mathfrak{p}}^+) \qquad (\ell_{\mathfrak{p}} = 0).$
\n

Proof. From Lemma 3.1 and 3.2, we have, for $h = \exp H$ $(H \in \mathfrak{t}_t)$,

$$
\chi(h) = \left[\frac{d}{dx}\Big\{x_d \det\Big(\frac{1}{x}I_{\mathfrak{p}} - \mathrm{Ad}\,(h^{-1})_{\mathfrak{p}}\Big\}\right]_{x=1}
$$

$$
= \left[\frac{d}{dx}\Big\{(1-x)^{\ell_{\mathfrak{p}}}\prod_{\alpha \in \mathfrak{G}_{I,\mathfrak{p}}^+}\prod_{\cup \{\alpha_1, \dots, \alpha_r\}}(1-2x\cos\alpha(H)+x^2)\Big\}\right]_{j=1}
$$

by means of $d = \dim p = \ell_p + 2\#(\Phi_{I,p}^+) + 2r$ where $\#(\Phi_{I,p}^+) + 2r$ where $\sharp(\Phi_{I,\mathfrak{p}}^*)$ is the order of $\Phi_{I,\mathfrak{p}}^*$. In case of $\ell_{\mathfrak{p}}=0$, then $\Phi=\Phi_{I}$. Hence Proposition 3.1 is obtained. $Q.E.D.$

On the other hand, the root system Φ_K of *i^c* with respect to t_t is given due to (3.8) by

$$
\varPhi_{K} = \{\alpha_{t} : \alpha \in \varPhi_{C} \ \cup \ \varPhi_{I,t}\}
$$

where α_t is the restriction of α to t_t . For $\beta \in \Phi_K$, let E'_β be E_α if $= \alpha_t$, $(\alpha \in \Phi_{I,t})$ or X_a if $\beta = \alpha_t$, $(\alpha \in \Phi_c)$. Then E_β is a root vector of

c with respect to t_t for β . Let U'_β be U_α if $\beta = \alpha_t$, $\alpha \in \Phi_{I,t}$ or W_α if $B = \alpha_t$, $\alpha \in \Phi_c$. Put $\mathfrak{m} = \sum_{\beta \in \Phi_K} CE_{\beta} \cap \mathfrak{k}$. Then we hav

$$
\sum_{\beta \in \Phi_K^+} (\mathbf{R} U_{\beta} + \mathbf{R} V_{\beta}^{\prime}) = \mathfrak{m}
$$
\n
$$
= \left(\sum_{\alpha \in \Phi_{I,t}} \mathbf{C} E_{\alpha} + \sum_{\alpha \in \Phi_C} \mathbf{C} X_{\alpha} \right) \cap \mathfrak{k}
$$
\n
$$
= \sum_{\alpha \in \Phi_{I,t}^+} (\mathbf{R} U_{\alpha} + \mathbf{R} V_{\alpha}) + \sum_{i=1}^r (\mathbf{R} W_{\alpha_i} + \mathbf{R} Z_{\alpha_i}) .
$$

Hence for $h = \exp H \in T_K$,

(3.11)
$$
\det (I_{\mathfrak{m}} - \mathrm{Ad} (h)_{\mathfrak{m}}) = \prod_{\alpha \in \Phi_{I,1}^+ \cup {\{\alpha_1, \dots, \alpha_r\}}} (2 - 2 \cos \alpha(H))
$$

$$
= \prod_{\beta \in \Phi_I^+} (2 - 2 \cos \beta(H)) .
$$

Then we have

PROPOSITION 3.2. *For* $h = \exp H \in T_K$, $D_K(h) = \left| \prod_{e \in \mathfrak{o}_t^+} \left(\exp \left(\frac{\sqrt{-1}}{2} \beta(H) \right) - \exp \right) \right|$ $\prod_{\alpha \in \mathfrak{o}_{I,\mathfrak{l}}^+} \prod_{\cup \; (\alpha_1, \cdots, \alpha_r)} \left(\exp \left(\frac{\sqrt{-1}}{2} \alpha(H) \right) - \exp \right)$

Proof. For $h = \exp H \in T_K$, by means of (3.11),

$$
D_K(h) = \left| \prod_{\beta \in \phi_{\vec{t}}} \left(\exp\left(\frac{\sqrt{-1}}{2} \beta(H)\right) - \exp\left(-\frac{\sqrt{-1}}{2} \beta(H)\right) \right)^2 \right|
$$

\n
$$
= \left| \prod_{\beta \in \phi_{\vec{t}}} (2 - 2 \cos \beta(H)) \right|
$$

\n
$$
= \left| \prod_{a \in \phi_{\vec{t},\mathfrak{p}}} \prod_{\substack{\cup \{a_1,\dots,a_r\} \\ a_1,\dots,a_r}} (2 - 2 \cos \alpha(H)) \right|
$$

\n
$$
= \left| \prod_{a \in \phi_{\vec{t},\mathfrak{p}}} \prod_{\substack{\cup \{a_1,\dots,a_r\} \\ a_1,\dots,a_r}} \left(\exp\left(\frac{\sqrt{-1}}{2} \alpha(H)\right) - \exp\left(-\frac{\sqrt{-1}}{2} \alpha(H)\right) \right)^2 \right|.
$$

\nQ.E.D.

3.3. Main theorem

THEOREM 3.1. *We preserve the assumption in* §1. *Then we have that*

Case (**i**) rank G – rank $K \neq 1$,

$$
\sum_{p=1}^{d} (-1)^p p Z^p(t) = \sum_{p=0}^{d} (-1)^p p \dim H^p(E)
$$
\n
$$
= \begin{cases}\n0 & (\text{rank } G - \text{rank } K > 1) \\
2^{-1} \dim M & (\text{rank } G - \text{rank } K = 0)\n\end{cases}
$$

Case (ii) rank G – rank $K = 1$,

$$
(3.12) \quad \sum_{p=0}^d \, (-1)^p p Z^p(t) = -\frac{1}{w_K} \sum_{\tau \in \Gamma} \chi_{\rho}(\tau) \int_{G \times T_K} Z_{\iota}(\tau g h g^{-1}) D(h) dh dg ,
$$

(3.13)
$$
\sum_{p=0}^{d} (-1)^p p \dim H^p(E) = \frac{-[p_r: l_r]}{w_K} \int_{T_K} D(h) dh
$$

where $D(h) = \left| \prod_{i=1}^n \left(\exp\left(\frac{\sqrt{1-1}}{2} \alpha(H) \right) - \exp\left(-\frac{\sqrt{1-1}}{2} \alpha(H) \right) \right)^2 \right|$ for $h =$ $\exp H \in T$.

Proof. If rank G – rank $K > 1$, then by means of (3.3), (3.4) and Proposition 3.1 (i), we obtain the results. If rank G – rank $K = 1$, by means of (3.3), (3.4), Proposition 3.1 (ii) and Proposition 3.2, we obtain (3.12) and (3.13). Let rank $G - \text{rank } K = 0$. Then i has a Cartan subalgebra t of g . Let T be a Cartan subgroup of G corresponding to t . Then *Γ* consists only of the identity of *G* since every translation τ_g $(g \in G)$ has a fixed point and *Γ* is assumed to act on \tilde{M} fixed point freely. In fact, $G = \bigcup_{g \in G} gKg^{-1}$ since G and K are connected and K has a maximal torus *T* of G. Then we have

(3.14)
$$
\sum_{p=0}^{d} (-1)^p p Z^p(t) = \int_T Z_t(h) D_K(h) \chi(h) dh
$$

and

(3.15)
$$
\sum_{p=0}^{d} (-1)^p p \dim H^p(E) = \int_T D_K(h) \chi(h) dh.
$$

From Proposition 3.1 (iii) and Proposition 3.2, we have $D_K(h)\chi(h) = D(h)$ \times # $(\Phi_{I,\mathfrak{p}}^*)$ = *D*(*h*)2⁻¹ dim (*G/K*). Therefore applying Weyl's integral formula for G to (3.14) , (3.15) , we have

(3.14) =
$$
\int_{a} Z_{i}(g) dg = 1
$$
 and
(3.15) = $\int_{a} dg = 1$. Q.E.D.

Due to Theorem 3.1., we have

COROLLARY 3.1. *Under the assumption in* §1, *we have*

$$
T(M, \rho_r) = 1 \quad \text{if rank } G - \text{rank } K \neq 1
$$

where ρ_r is the representation restricted to Γ of an arbitrary finite *dimensional unitary representation p of G.*

Remark. Ray and Singer [10] showed in general that $T(M, \rho) = 1$ for every even dimensional Riemannnian manifold. The new fact ob tained in this paper is that $T(M, \rho_r) = 1$ in case of $M = \Gamma \backslash \tilde{M}$ where \tilde{M} *is an odd dimensional simply connected symmetric space G/K such that G* is compact, semisimple and rank G – rank $K > 1$. Such irreducible symmetric spaces *M* are as follows: all odd dimensional compact simple Lie group except $SU(2)$; $SU(n)/SO(n)$, $n = 4m$ or $4m + 3$ $(m \ge 1)$; *SU(2n)/Sp(n), n* = 2*m* ($m \ge 1$) (cf. [5] Ch. IX.). In the case $\tilde{M} = SO(2n)$ $/SO(2n-1)((2n-1)$ dimensional sphere), $T(M, \rho)$ has been calculated in Ray [9]. The cases $\tilde{M} = SU(2)$; $SU(4)/SO(4)$; $SU(3)/SO(3)$; $SO(p + q)$ $\sqrt{SO(p)} \times SO(q)$ $(p, q = \text{odd}, p > 1, q > 1)$ are remained for a further study.

REFERENCES

- [I] M. Atiyah, R. Bott and V. K. Patodi: On the Heat Equation and the Index theorem. Inventiones math., 19 (1973), 279-330.
- £ 2] A. Benabdallah: Noyau de diffusion our les espaces homogenes compacts. Bull. Soc. math. France, 101 (1973), 265-283.
- £ 3] Harish-Chandra: Fourier transforms on a semisimple Lie algebra I. Amer. J. of Math., 79 (1957), 193-257.
- $[4]$ --: Discrete series for semisimple Lie groups II. Acta Math., 116 (1966), 1-111.
- £ 5] S. Helgason: Differential geometry and symmetric spaces. Acad. Press (1962).
- £ 6] T. Kotake: The fixed point theorem of Atiyah-Bott via parabolic operators. Comm. Pure Appl. Math., XXII (1969), 789-806.
- £ 7] Y. Matsushima and S. Murakami: On vector bundle valued harmonic forms and automorphic forms on symmetric Riemannian manifolds. Ann. of Math., 78, No. *2* (1963), 365-416.
- [8] S. Murakami: On the automorphisms of a real semisimple Lie algebra. J. Math. Soc. Japan, 4 (1952), 103-133.
- £ 9] D. B. Ray: Reidemeister torsion and the Laplacian on lens spaces. Advances in Math., 4 (1970), 109-126.
- [10] D. B. Ray and I. M. Singer: R-torsion and the Laplacian on Riemannian manifolds. Advances in Math., 7 (1971), 145-210.
- [11] \longrightarrow : Analytic torsion for complex manifolds. Ann. of Math. (2) 98 (1973), 154-177.
- [12] N. K. Stanton: Holomorphic R-torsion for Lie groups. Proc. of Symp. in Pure Math., 27 (1975), 343-347.

- [13] M. Sugiura: Fourier series of smooth functions on compact Lie groups. Osaka J. Math., 8 (1971), 33-47.
- [14] H. Urakawa: The heat equation on compact Lie group. Osaka J. Math., 12 (1975), 285-297.
- [15] G. Warner: Harmonic analysis on semisimple Lie groups I. Springer (1972).
- [16] J. Wolf: Spaces of constant curvature. 3rd Ed. Publ. or Perish, Inc. (1974).

Nagoya University