M. Kurata Nagoya Math. J. Vol. 67 (1977), 41-52

HARTMAN'S THEOREM FOR HYPERBOLIC SETS

MASAHIRO KURATA

§ **1. Introduction, notation and definitions**

Hartman proved that a diίfeomorphism is topologically conjugate to a linear map on a neighbourhood of a hyperbolic fixed point ([3]). In this paper we study the topological conjugacy problem of a diffeomorphism on a neighbourhood of a hyperbolic set, and prove that for any hyperbolic set there is an arbitrarily slight extension to which a sub shift of finite type is semi-conjugate. In the sequel, *M* denotes a com pact C^{∞} manifold with some Riemannian metric $|\cdot|$.

THEOREM 2. Let $f : M \to M$ be a diffeomorphism with $A \subset M$ a *hyperbolic set. Then there is a neighbourhood U of the zero-section of* $T_A M$ and a bundle map $h: U \to A \times M$ such that $(f \times f) \circ h = h \circ Tf$. *(We regard U and* $A \times M$ *as a microbundle).*

THEOREM 3. *Let f, A be as above, and W a neighbourhood of A. Then there are a hyperbolic set A' with* $A \subset A' \subset W$ and a subshift of *finite type which is semi-conjugate to A.*

DEFINITION. Let E be a vector bundle with norms $\|\cdot\|$ on each fibre. A vector bundle map $T: E \to E$ is hyperbolic if E splits into

$$
E=E^s\oplus E^u
$$

where E^s and E^u are T invariant subbundles, and there are $0 \leq \lambda \leq 1$, $c > 0$ such that for $n \geq 0$,

$$
\begin{aligned}\n\|T^nv\| &\le c\lambda^n\, \|v\| &\qquad\text{if}\;\; v\in E^s\\ \n\|T^{-n}v\| &\le c\lambda^n\, \|v\| &\qquad\text{if}\;\; v\in E^u\,\,.\n\end{aligned}
$$

We may assume $c = 1$ ([4]). Skewness of *T* is min $\{\|T\|E^s\|, \|T^{-1}|E^u\|\}.$

Received February 17, 1976.

Revised September 4, 1976.

Let $f: M \to M$ be a diffeomorphism. $M \supset A$ is a hyperbolic set if Λ is a closed *f*-invariant subset, and $Tf\Lambda$ is hyperbolic. When its splitting is $Tf\vert A = E^s \oplus E^u$, define

$$
Bs(r) = \{v \in Es | |v| \leq r\}
$$

\n
$$
Bu(r) = \{v \in Eu | |v| \leq r\}
$$

\n
$$
Bsx(r) = Bs(r) \cap TxM
$$

\n
$$
Bux(r) = Bu(r) \cap TxM
$$
.

Let $p: E \to A$ be a vector bundle with norms. $\Gamma = \Gamma(E)$ denotes the Banach space consisting of all bounded cross sections on *A* (not neces sarily continuous) with sup norms. Let $\mathfrak{M}(T) = \{ \text{maps} : \Gamma \to \Gamma \}$. For any $y \in E$, $\sigma_y \in \Gamma$ is given by

$$
\sigma_y(x) = \begin{cases} y & \text{if } x = py \\ 0 & \text{otherwise} \end{cases}.
$$

We define

 $\tilde{\mathfrak{M}}_f(I^{\prime}) = \{ H \in \mathfrak{M}(I^{\prime}) \mid H \text{ satisfies the following condition (I), (II)} \}.$ Condition (I), $H(\sigma_z)(x) = 0$ for $x \neq fp(z)$ (II), $H(\sigma_z)(fp(z)) = H(\sigma)(fp(z))$ for any σ with $\sigma(p(z)) = z$.

For any $H \in \mathfrak{M}_r(\Gamma)$, let a map

$$
\varPhi(H):E\to E
$$

be given by $\Phi(H)(z) = H(\sigma_z)(fp(z))$. Then we define

 $\mathfrak{M}_f(\Gamma) = \{ H \in \mathfrak{M}_f(\Gamma) \mid \Phi(H) \text{ satisfies the following condition (III)} \}.$ Condition (III). *Φ(H)* is continuous.

Define

 $\mathfrak{M}^{\flat}(\Gamma) = \{ H \in \mathfrak{M}(\Gamma)| H \text{ is bounded} \}, \text{ } \tilde{\mathfrak{M}}^{\flat}{}_{f}(\Gamma) = \tilde{\mathfrak{M}}_{f}(\Gamma) \,\cap \, \mathfrak{M}^{\flat}(\Gamma) \text{ and }$ *m b* $\mathfrak{M}_f(\Gamma) = \mathfrak{M}_f(\Gamma) \cap \mathfrak{M}^b(\Gamma).$

The norm of $\mathfrak{M}^b(\Gamma)$ is defined by the sup norm. For a Lipschitz map f , Lip (f) denotes its Lipschitz number.

§2. Hartman's theorem for hyperbolic sets

LEMMA 1. (1) $\widetilde{\mathfrak{M}}^b{}_f(\Gamma)$ is a closed linear subspace of $\mathfrak{M}^b(\Gamma)$. (2) $\mathfrak{M}^b{}_f(\Gamma)$ is a closed linear subspace of $\widetilde{\mathfrak{M}}^b{}_f(\Gamma)$.

Proof. Proof of (1) is easy. \mathfrak{M}^b _{*f*}(*Γ*) is non-empty because a con

tinuous, bounded, fiber and zero-section preserving map from *E* into *E* over *f* induces an element of $\mathfrak{M}^b{}_f(T)$. Let $\tilde{\mathfrak{M}}^b{}_f(E) = \{h: E \to E \mid h \text{ is a }$ bounded map over f (not necessarily continuous)}. $\mathfrak{M}^b{}_f(E) = \{h \in \tilde{\mathfrak{M}}^b{}_f(E) \mid h\}$ is continuous}. Then $\mathfrak{M}^b{}_{f}(E)$ is a closed linear subspace. And the map

$$
\varPhi: \widetilde{\mathfrak{M}}^b{}_f(\varGamma) \longrightarrow \widetilde{\mathfrak{M}}^b{}_f(E)
$$

is a continuous linear map. Thus $\mathfrak{M}^b_{f}(F) = \Phi^{-1}(\mathfrak{M}^b_{f}(E))$ is a closed linear subspace.

LEMMA 2. (1) If $H \in \widetilde{\mathfrak{M}}_f(\Gamma)$, $G \in \widetilde{\mathfrak{M}}_g(\Gamma)$, then $G \circ H \in \widetilde{\mathfrak{M}}_{g \circ f}(\Gamma)$ and $\Phi(G \circ H) = \Phi(G) \circ \Phi(H)$.

(2) If $H \in \mathfrak{M}_f(\Gamma)$, $G \in \mathfrak{M}_g(\Gamma)$, then $G \circ H \in \mathfrak{M}_{g \circ f}(\Gamma)$.

(3) For a homeomorphism $H \in \mathfrak{M}_f(\Gamma)$, $H^{-1} \in \mathfrak{M}_{f^{-1}}(\Gamma)$ and $\Phi(H) \in \mathfrak{M}_f(E)$ is an invertible map with $\Phi(H)^{-1} = \Phi(H^{-1})$.

Proof. (1), (2) are obvious.

For any $x \in A$ and $\sigma \in \Gamma$, $H(\sigma)(x) = 0$ if and only if $\sigma(f^{-1}(x)) =$ $\sigma_{\sigma} f^{-1}(x)$ (f⁻¹(x)) = 0 because $H(\sigma)(x) = H\sigma_{\sigma} f^{-1}(x)$ and H is injective. Thus $H^{-1} \sigma_z(x) = 0$ for $x \neq f^{-1} p(z)$.

For any $z_0 \in E$, $\sigma \in \Gamma$ with $\sigma(pz_0) = z_0$, define $z' = (H^{-1}\sigma_{z_0})(f^{-1}p(z_0)),$ $z'' = (H^{-1}\sigma)(f^{-1}p(z_0)).$ Then $\sigma(pz_0) = (H \circ H^{-1}\sigma)(pz_0) = (H \sigma_{z''})(pz_0)$, and $\sigma_{z_0}(pz_0) = (H \circ H^{-1}\sigma_{z_0})(pz_0) = (H\sigma_{z'})(pz_0)$. On the other hand $(H\sigma_{z'})(x) =$ $(H\sigma_{z})(x) = 0$ for $x \neq p z_0$. Then $H\sigma_{z'} = H\sigma_{z''}$. Because H is injective we have $\sigma_{z'} = \sigma_{z''}$, that is $z' = z''$. Thus $H^{-1} \in \widetilde{\mathfrak{M}}_{f^{-1}}(T)$. $\Phi(H^{-1}) = \Phi(H)^{-1}$ follows from (1).

LEMMA 3. If $H \in \mathfrak{M}_f(\Gamma)$ is a homeomorphism and H^{-1} is a Lipschitz *map, then Φ(H) is a homeomorphism.*

Proof. By Lemma 2, $\Phi(H)$ is an injection and $\Phi(H)^{-1} = \Phi(H^{-1})$. For any $r > 0$, define $B(r) = \{z \in E \mid ||z|| \leq r\}$. It is sufficient to prove that for any $r > 0$

$$
\Phi(H) \, | \, \Phi(H)^{-1}(B(r)) : \Phi(H)^{-1}(B(r)) \to B(r)
$$

is a homeomorphism. We have

$$
\|\varPhi(H)^{-1}(B(r))\| = \|H^{-1}(B'(r))\| \leq r \operatorname{Lip}(H^{-1})
$$

where $B'(r) = {\sigma_z \in \Gamma | \|\sigma_z\| \leq r}.$ $\Phi(H)^{-1}(B(r))$ is compact because \cdot (B(r)) is a closed subset of $B(r \text{ Lip }(H^{-1}))$. Then $\Phi(H)|\Phi(H)^{-1}(B(r))$ is a homeomorphism.

44 MASAHIRO KURATA

LEMMA 4. Let $T \in \mathfrak{M}_f(\Gamma)$ be a hyperbolic linear homeomorphism. *Then there is* $\epsilon > 0$ *such that for any* ψ , $\phi \in \mathfrak{M}^b$ _{*f*}(*Γ*) *with* Lip (ψ), Lip $(\phi) < \varepsilon$, there is a unique map $H_{\psi\phi} \in \mathfrak{M}_{\mathfrak{b}_{\mathrm{id}}}(I)$ satisfying

$$
(T + \psi) \circ (\mathrm{id} + H_{\psi \phi}) = (\mathrm{id} + H_{\psi \phi}) \circ (T + \phi) .
$$

Proof. The proof is essentially due to Pugh ([5], [6]). Let $0 \lt \epsilon$ min $\{1 - \lambda, \|T^{-1}\|^{-1}\}$ where λ is a skewness of T, and

$$
\mu: \mathfrak{M}^b(\Gamma) \to \mathfrak{M}^b(\Gamma)
$$

be defined by

$$
\mu(H)=(\mathscr{L}_\phi^*-{\rm id})^{-1}(\phi-\psi\circ({\rm id}\,+H))\circ(T+\phi)^{-1}
$$

where $\mathscr{L}_{\phi}^*(H) = T \circ H \circ (T + \phi)^{-1}$ with $(\mathscr{L}_{\phi}^* - \text{id})$ being invertible. Then Lip (μ) < 1 and there is a unique fixed point $H_{\psi\phi}$ (c.f. [5], [6]). Because $T + \phi$ is a homeomorphism and $(T + \phi)^{-1}$ is a Lipschitz map, $(T + \phi)^{-1}$ $\in \mathfrak{M}_{f^{-1}}(F)$ follows from Lemma 2. Then $(\phi - \psi \circ (\mathrm{id} + H)) \circ (T + \phi)^{-1} \in$ $\mathfrak{M}^b_{\mathrm{id}}(\Gamma)$ if $H \in \mathfrak{M}^b_{\mathrm{id}}(\Gamma)$.

Similarly $\mathscr{L}_{\phi}^*(\mathfrak{M}_{\mathrm{Id}}^b(\varGamma)) \subset \mathfrak{M}_{\mathrm{Id}}^b(\varGamma)$.

Thus a linear map

$$
\mathscr{L}_{\mathfrak{a}}^* \, | \, \mathfrak{M}_{\mathrm{id}}^{\mathfrak{b}}(\Gamma) \colon \mathfrak{M}_{\mathrm{id}}^{\mathfrak{b}}(\Gamma) \to \mathfrak{M}_{\mathrm{id}}^{\mathfrak{b}}(\Gamma)
$$

is well defined, and $\mathscr{L}_{\phi}^* | \mathfrak{M}_{\text{id}}^{\text{b}}(I)$ is hyperbolic with an associated splitting

$$
\mathfrak{M}^b_{\text{id}}(\Gamma) = \mathfrak{M}^b_{\text{id}}(\Gamma; \Gamma^u) \oplus \mathfrak{M}^b_{\text{id}}(\Gamma; \Gamma^s)
$$

where

$$
T^a = \{ \sigma \in \Gamma \mid \sigma(x) \in E^a \text{ for } x \in \Lambda \}
$$

$$
\mathfrak{M}_{\text{Id}}^b(\Gamma; \Gamma^a) = \{ H \in \mathfrak{M}_{\text{Id}}^b(\Gamma) \mid H(\sigma) \in \Gamma^a \text{ for } x \in \Gamma \}
$$

for $a = u$, s.

Therefore $(\mathscr{L}_\phi^*-{\rm id})\,|\, \mathfrak{M}_{\rm id}^b(\varGamma)$ is invertible, and $(\mathscr{L}_\phi^*-{\rm id})^{-1}(H)\in \mathfrak{M}_{\rm id}^b(\varGamma)$ for $H \in \mathfrak{M}^b_{\mathrm{id}}(\Gamma)$. (*Γ*). Thus we have $\mu(\mathfrak{M}_{\text{Id}}^b(\Gamma)) \subset \mathfrak{M}_{\text{Id}}^b(\Gamma)$. Because $\mathfrak{M}_{\text{Id}}^b(\Gamma)$ is a closed linear subspace of $\mathfrak{M}^b(\Gamma)$, a unique fixed point $H_{\psi\phi}$ of μ is in $\mathfrak{M}^b_{\text{Id}}(\Gamma)$.

LEMMA 5. *Let T be as above. Then there is ε >* 0 *such that for* $any \psi \in \mathfrak{M}^b$ _{*f*}(*Γ*) with $\text{Lip}(\psi) \leq \varepsilon$ there is a unique map $H \in \mathfrak{M}^b_{\text{id}}(r)$ satis*fying*

$$
(T + \psi) \circ (\mathrm{id} + H) = (\mathrm{id} + H) \circ T.
$$

Moreover $id + H$ *is a homeomorphism.*

LEMMA 6. Let $p: E \to A$ be a vector bundle. Let A be compact, $V \subset E$ be a neighbourhood of the zero-section. Assume $\phi: V \to E$ is a *fiber preserving map and*

- (1) $\phi|(V \cap p^{-1}(x))$ *is differentiable for* $x \in A$
- (2) $T_z\phi$ is continuous with respect to $z \in V$
- (3) $\phi(0_x) = 0_{f(x)}$
- (4) $T_{0x}\phi = 0$,

where $T_z\phi$ *is the differential of* $\phi|(V \cap p^{-1}(x))$ *at* $z \in V \cap p^{-1}(x)$ *and* 0_x *is the zero vector at* $x \in A$ *.*

Then for any ε > 0, *there is a neighbourhood W of the zero section, and a fiber preserving map*

$$
\tilde{\phi} \colon E \to E
$$

such that

- (5) $\tilde{\phi} | W = \phi | W$
- (6) Lip $(\tilde{\phi}) < \varepsilon$
- (7) *φ is bounded with the sup norm.*

Lemma 5 follows from Lemma 4, and Lemma 6 is a vector bundle version of ([5] p. 79).

THEOREM 1. Let $p: E \to A$ be a vector bundle with A compact, $f: A \rightarrow A$ be a homeomorphism. Let $T: E \rightarrow E$ be a hyperbolic vector *bundle map over f.*

Then there is $\varepsilon > 0$ *satisfying the followings; for any fiber and zerosection preserving map* $\phi: E \to E$ *over* f such that ϕ is bounded with *sup norm and* $\text{Lip}\left(\phi\right) \leq \varepsilon$, there is a unique fiber preserving map $h_{\phi}: E \rightarrow$ *E over* id *such that the diagram*

$$
E \xrightarrow{T} E
$$

\n
$$
id + h_{\phi} \downarrow \qquad \qquad \downarrow id + h_{\phi}
$$

\n
$$
E \xrightarrow{T + \phi} E
$$

is commutative. Moreover $id + h_{\phi}$ *is a homeomorphism.*

Proof. Let λ be a skewness of $T, \varepsilon > 0$ be such that $\varepsilon < \min\{1 - \lambda, \lambda\}$ *\ti*_{*T*⁻¹}^{*n*}¹^{*n*}*₁***^{***n***}₁^{***n*}

 $T_*: \Gamma(E) \to \Gamma(E)$

given by

$$
T_{\ast}(\sigma)=T\circ\sigma\circ f^{-1}
$$

is a hyperbolic isomorphism with an associated splitting

$$
\Gamma(E)=\Gamma(E^s)\oplus\Gamma(E^u)\ .
$$

Then

$$
||T_*|T(E^s)|| = ||T|E^s|| < \lambda
$$

$$
||T_*^{-1}|T(E^u)|| = ||T^{-1}|E^u|| < \lambda.
$$

For a map $\phi: E \to E$ with Lip $(\phi) \leq \varepsilon$, we define a map

 $\phi_*\colon \Gamma(E)\to \Gamma(E)$

by $\phi_*(\sigma) = \phi \circ \sigma \circ f^{-1}$. Then

 $\text{Lip} (\phi_*) = \text{Lip} (\phi)$

and

$$
\phi_*\in \mathfrak{M}^{\mathfrak{d}}{}_f(\varGamma(E))
$$
 .

By Lemma 5, there is a unique map $H \in \mathfrak{M}^b_{\text{Id}}(T(E))$ with the commutative diagram;

$$
\Gamma(E) \xrightarrow{T_*} \Gamma(E)
$$
\n
$$
\downarrow id + H \qquad \qquad \downarrow id + H
$$
\n
$$
\Gamma(E) \xrightarrow{T_* + \phi_*} \Gamma(E) .
$$

The map $h_{\phi}: E \to E$ defined by

$$
h_{\phi}(z) = H(\sigma_z)(p(z))
$$

is the required map. The uniqueness follows from the unique

THEOREM 2. *(Hartman's theorem for hyperbolic sets) Let* $f: M \to M$ be a diffeomorphism, $\Lambda \subset M$ be a hyperbo *Then there are a neighbourhood U of the zero section in a map*

 $h: U \rightarrow A \times M$

which maps U homeomorphίcally onto a neighbourhood of the diagonal in $A \times M$ *with*

- 1) $pr_2 \circ h = p$
- 2) $h(0_x) = (x, x)$
- 3) *the diagram*

$$
U \cap Tf^{-1}(U) \xrightarrow{Tf} U
$$

\n
$$
h \downarrow \qquad h \downarrow \qquad h \downarrow
$$

\n
$$
A \times M \xrightarrow{f \times f} A \times M \qquad commutes.
$$

Proof. Let $\varepsilon > 0$ satisfy $\varepsilon < \min\{1 - \lambda, \|T^{-1}\|^{-1}\}$ where λ is the skewness of $Tf\mid A$. Assume that $W\subset T_A M$ is a neighbourhood of the zero section of $T_{A}M$.

By taking *W* sufficiently small, a map $F: W \to T_A M$ can be given by

$$
(f \times f) \circ (p, \exp) = (p, \exp) \circ F.
$$

Define $\phi = F - T_0F|W$, where

 $T_0F: T_A M \to T_A M$

is the differential of *F* on the zero sections. By Lemma 6 there are a neighbourhood of the zero section $U \subset W$, and a fiber preserving map over f

 $\tilde{\phi}: T_{A}M \rightarrow T_{A}M$

such that

- (1) $\tilde{\phi} | U = \phi | U$
- (2) Lip $(\tilde{\phi}) < \varepsilon$

(3) $\tilde{\phi}$ is bounded with the sup norms. Define $\tilde{F} = T_0 F + \tilde{\phi}$. Then

 $\tilde{F}=F$ on U Lip $(F - T_aF) < \varepsilon$ $\tilde{F} - T_0 F$ is bounded on $T_A M$ with the sup norms.

By Theorem 1, there is a fiber preserving map over id_A

$$
\tilde{h}:T_{\scriptscriptstyle A} M\to T_{\scriptscriptstyle A} M
$$

with

$$
\vec{h} \circ T_0 F = \vec{F} \circ \vec{h}
$$

\n
$$
\vec{h} \text{ is a homeomorphism}
$$

\n
$$
pr \circ \vec{h} = p.
$$

Because the derivative of the exponential map at the zero-section is the identity, $T_0F = Tf$. Thus $h = (p, \exp) \circ \tilde{h}$ V is the required map.

§ 3. Semi-conjugacies of subshifts to hyperbolic sets

Let $\mathscr{A} = \{A_1, \dots, A_n\}$ be a finite set and $T = (t_{ij})$ be a $n \times n$ 0 - 1 matrix. \mathscr{A}^Z denotes the space of maps from integers Z into $\mathscr A$ with compact-open topology $(\mathscr A$ and Z have the discrete topologies). The shift transformation $\rho: \mathcal{A}^Z \to \mathcal{A}^Z$ is defined by

$$
\rho((x_i)_{i \in Z}) = (x_i')_{i \in Z} \quad \text{where} \quad x_i' = x_{i+1}
$$

for $(x_i)_{i\in Z}\in \mathscr{A}^Z$.

Let Σ be the ρ invariant set of \mathscr{A}^Z given by

$$
\mathcal{Z} = \begin{Bmatrix} (a_i)_{i \in Z} \in \mathscr{A}^Z | t_{n_i n_{i+1}} = 1 & \text{where} \\ a_i = A_{n_i} \end{Bmatrix}.
$$

 Σ is called a subshift of finite type on the symbol $\mathscr A$ determined by the intersection matrix *T.*

Bowen ([1]) proved that when $A \subset M$ is a basic set of an Axiom A diffeomorphism there are a subshift of finite type *Σ* and a semiconjugacy $\Pi: \Sigma \to \Lambda$, i.e. Π is surjective and $f\Pi = \Pi \rho$ ([1]).

In this section we consider the case when *A* is a hyperbolic set. Our result is the following.

THEOREM 3. Suppose $f : M \to M$ is a diffeomorphism, $A \subset M$ is a *compact hyperbolic set and W is a neighbourhood of A.*

Then there are a finite set $\mathscr{B} = \{B_i\}_{i=1,\dots,N}$, and a matrix $T = (t_{ij})$ *satisfying the followings;*

1) for any $1 \leq i \leq N$, B_i is a closed m-disk and $A \subset \bigcup \mathrm{int} B_i$

i

- 2) $T = (t_{ij})$ is a $N \times N$ 0 1 matrix
- 3) the diagram

is commutative, where Σ is the subshίft of finite type on the symbol & determined by the intersection matrix T, and p is the shift transformation.

- 4) *Π* is a continuous map given by $\Pi((a_i)_{i\in \mathbb{Z}}) = \bigcap f^{-i}(a_i)$.
- 5) $A' = \Pi(\Sigma)$ is a closed hyperbolic set with $A \subset A' \subset W$.

Proof. Step 1. We may assume that *W* is a neighbourhood of *A* so small that any invariant set contained in *W* is hyperbolic ([4]). Let ϵ be a positive number such that an expansive constant of a hyperbolic set in W is greater than ε . Let U be a neighbourhood of the zero-section of $T_A M$ on which the map $h: U \to A \times M$ with $(f \times f) \circ h = h \circ Tf$ is defined by Theorem 2. \hbar is given by

$$
\bar{h} = pr_2 \circ h : U \xrightarrow{h} A \times M \xrightarrow{pr_2} M .
$$

Choose $r_1 > r > 0$ such that

$$
Tf(B^u(r)) \subset \text{int } B^u(r_1)
$$

\n
$$
Tf^{-1}(B^s(r)) \subset \text{int } B^s(r_1)
$$

\n
$$
U \supset B^s(r_1) \oplus B^u(r_1)
$$

\n
$$
W \supset \bar{h}(B_x^s(r) \times B_x^u(r))
$$

\ndiam $\bar{h}(B_x^s(r) \times B_x^u(r)) \le \varepsilon$ for $x \in \Lambda$.

Step 2. For any $x \in A$, let $V_x \subset A$ be a neighbourhood of x in Λ such that

1) for any $y \in f^{-1}V_x$

 $f \bar{h}(B_y^s(r) \times B_y^u(r)) \subset \text{int } \bar{h}(B_x^s(r) \times B_x^u(r_1)), \text{ and } f \text{ maps } \bar{h}(B_y^s(r))$ $\times \partial B_y^u(r)$ into int $\bar{h}(B_x^s(r) \times (B_x^u(r_1) - B_x^u(r)))$ with degree ± 1 . (Here "f maps with degree ± 1 " means that the homomorphism f^* between the homology groups is of degree ± 1 . This does not depend on isomorphisms: $H_{u-1}(\bar{h}(B_u^s(r) \times \partial B_u^u(r))) \approx H_{u-1}(\text{int }\bar{h}(B_u^s(r))$ $X (B_x^u(r_1) - B_x^u(r)) \approx Z$. Here *u* denotes also the fiber dimension of the unstable bundle *E^u .)*

2) for any $y \in fV_x$

O MASAHIRO KURATA

 $f^{-1}\bar{h}(B_y^s(r) \times B_y^u(r)) \subset \text{int } \bar{h}(B_x^s(r_1) \times B_x^u(r))$, and f^{-1} maps \times $B_y^u(r)$) into int $\bar{h}((B_x^s(r_1) - B_x^s(r)) \times B_x^u(r))$ with degree ± 1 .

The existence of neighbourhoods V_x satisfying 1), 2) follows from the continuity of *h* and the fact that the homomorphisms

$$
\begin{aligned} f_{\ast} &\colon H_{u-1}(f\bar h(B^s_{f^{-1}(x)}(r)\times \partial B^u_{f^{-1}(x)}(r)))\\ &\to H_{u-1}(\text{int }\bar h(B^s_x(r)\times (B^u_x(r_1)-B^u_x(r))) \end{aligned}
$$

and

$$
\begin{aligned} f^{-1}_* \colon H_{s-1}(f^{-1}\bar h(\partial B^s_{f(x)}(r) \times B^u_{f(x)}(r)))) \\ \to H_{s-1}(\text{int }\bar h((B^s_x(r_1) - B^s_x(r))\times B^u_x(r))) \end{aligned}
$$

are isomorphic.

Let $\{U_x\}_{x \in A}$ be a refinement of $\{V_x\}_{x \in A}$ such that $f(U_y) \cap U_x \neq \emptyset$ (resp. $f^{-1}(U_y) \cap U_x \neq \phi$) implies $f(U_y) \subset V_x$ (resp. $f^{-1}(U_y) \subset V_{x}$).

Choose $X_1, \dots, X_N \in \Lambda$ such that $\{U_{x_i}\}_{i=1,\dots,N}$ is a covering of Λ .

Step 3. An intersection matrix $T = (t_{ij})$ is given as follows. $t_{ij} = 1$ if

- 1) $f\bar{h}(B_{x_i}^s(r) \times B_{x_i}^u(r) \subset \text{int } \bar{h}(B_{x_j}^s(r) \times B_{x_j}^u(r_1))$ and f maps $\bar{h}(B_{x_i}^s(r)$ $\times \partial B^u_{x_i}(r)$ into int $\bar{h}(B^s_{x_j}(r) \times (B^u_{x_j}(r_1) - B^u_{x_j}(r)))$ with degree ± 1 .
- $r\in\mathbb{R}^{n}(\mathbb{B}^{s}_{x_{j}}(r)\times B^{u}_{x_{j}}(r))\subset\mathop{\rm int}\bar{h}(B^{s}_{x_{i}}(r_{1})\times B^{u}_{x_{i}}(r))\ \ \text{and}\ \ f^{-1}\ \ \text{maps}\ \ \bar{h}(\partial B^{s}_{x_{j}}(r))\in\mathcal{B}^{n}(\mathbb{B}^{n}_{x_{j}}(r))$ $\left(\times\ B^u_{x_j}(r))\right)$ into int $\bar h((B^s_{x_i}(r_{\rm\scriptscriptstyle 1})-B^u_{x_i}(r))\times B^u_{x_i}(r))$ with degree $\pm 1.$ $t_{ij} = 0$ otherwise.

Step 4. Suppose that i_0, \dots, i_m satisfy $t_{i_n i_{n+1}} = 1$ for $n = 0, \dots, m$ *—* 1. Define maps

$$
H^{\scriptscriptstyle (i_n)}\colon \bar h(B^s_{x_{i_n}}\!(r_{\scriptscriptstyle 1})\times B^u_{x_{i_n}}\!(r))\to \bar h(B^s_{x_{i_n}}\!(r)\times B^u_{x_{i_n}}\!(r))
$$

by

$$
H^{\langle i_n\rangle}(\bar h(z_1,z_2)) = \begin{cases} \bar h((z_1,z_2)) & \quad \text{if} \ \, |z_1| \leq r \\ \bar h\Big(\Big(\frac{rz_1}{|z_1|},z_2\Big) \Big) & \quad \text{if} \ \, |z_1| > r \ , \end{cases}
$$

and a map

$$
H: \bar{h}(B^s_{x_{i_m}}(r) \times B^u_{x_{i_m}}(r)) \to \bar{h}(B^s_{x_{i_0}}(r) \times B^u_{x_{i_0}}(r))
$$

by

$$
H=H^{\langle i_0\rangle}\circ f^{-1}\circ\cdots\circ H^{\langle i_{m-2}\rangle}\circ f^{-1}\circ H^{\langle i_{m-1}\rangle}\circ f^{-1}
$$

Then we have

$$
\begin{aligned} H(\bar h(B^s_{x_{i_m}}\!(r)\times B^u_{x_{i_m}}\!(r))) \, \cap \, \bar h(\text{int }B^s_{x_{i_0}}\!(r)\times B^u_{x_{i_0}}\!(r)) \\ = \mathop{\cap}\limits_{n=0}^m f^{-n}(\text{int }B^s_{x_{i_n}}\!(r)\times B^u_{x_{i_n}}\!(r)) \,\, .\end{aligned}
$$

By the definition of $t_{i_n i_{n+1}} = 1$, the map

$$
H_*: H_{s-1}(\bar h(\partial B^s_{x_{i_m}}(r)\times B^u_{x_{i_m}}(r)))\to H_{s-1}(\bar h(\partial B^s_{x_{i_0}}(r)\times B^u_{x_{i_0}}(r))
$$

is isomorphic. This implies

$$
H(\bar h(B^s_{x_{i_m}}(r) \times B^u_{x_{i_m}}(r))) \cap \bar h(\text{int }B^s_{x_{i_0}}(r) \times B^u_{x_{i_0}}(r)) \neq \emptyset.
$$

Hence

$$
\bigcap_{n=0}^m f^{-n}(\bar h(B^s_{x_{i_n}}(r)\times B^u_{x_{i_n}}(r)))\neq \phi.
$$

For a finite sequence $i_{-\ell} \cdots i_m$ satisfying $t_{i_{n}i_{n+1}} = 1$ ($-\ell \leq n \leq m-1$)

$$
\begin{aligned} &\overset{m}{\underset{n=-\ell}{\bigcap}}f^{-n}\bar{h}(B^{s}_{x_{i_{n}}}(r)\times B^{u}_{x_{i_{n}}}(r)))\\ &=&f^{-\ell}\Big(\overset{m+\ell}{\underset{n=0}{\bigcap}}f^{-n}(\bar{h}(B^{s}_{x_{i_{n-\ell}}}(r)\times B^{u}_{x_{i_{n-\ell}}}(r)))\Big)\\ &\neq&\phi \end{aligned}
$$

because

$$
\bigcap_{n=0}^{m+\ell} f^{-n}(\bar h(B^s_{x_{i_{n-\ell}}}(r)\times B^n_{x_{i_{n-\ell}}}(r)))\neq \phi.
$$

This implies

$$
\bigcap_{n\in\mathbb{Z}}f^{-n}(\bar{h}(B^s_{x_{i_n}}(r)\times B^u_{x_{i_n}}(r)))\neq\phi
$$

if $t_{i_n i_{n+1}} = 1$ $(n \in \mathbb{Z})$. $\text{Put} \;\; J = \{ \{j_n\}_{n \in Z} \,|\, j_n \in \{1, \,\cdots,\, N\},\, t_{j_nj_{n+1}} = 1\},\;\; \text{$\Lambda' = \bigcup_{i,j \in I} \bigcap_{n} f^{-n} \bar{h}(B^s_{x_{j_n}}(r))\}$ \times $B^u_{x_{j_n}}(r)$). Then Λ' is a hyperbolic set contained in W, and $\bigcap f^{-n}\bar{h}(B^s_{x_{i_n}}(r))$ $X B^{u}_{x_{i}}(r) \subset \Lambda'$. An expansive constant of $f|\Lambda'$ is greater than $\text{diam } \tilde{h}(B^s_{x_i}(r) \times B^u_{x_i}(r)) \text{ for any } 1 \leq i \leq N. \quad \text{Thus } \cap f^{-n}\bar{h}(B^s_{x_{j_n}}(r) \times B^u_{x_{j_n}}(r))$ = one point if ${j_n} \in J$. $\Pi(\Sigma) = A'$. For any $x \in A$ and $n \in Z$, there $\text{is} \ \ U_{x_{i_n}} \ \ \text{with} \ \ f^n(x) \in U_{x_{i_n}} \subset \bar{h}(B^s_{x_{i_n}}(x) \times B^u_{x_{i_n}}(x)).$ Thus $x \in \bigcap f^{-n} \bar{h}(B^s_{x_{i_n}}(r))$ $\times B^{u}_{x_{i_n}}(r)$). Therefore $\Lambda \subset \Lambda'$.

Put
$$
B_i = \bar{h}(B_{x_i}^s(r) \times B_{x_i}^u(r)), \mathscr{B} = \{B_i\}_{i=1,...,N}
$$
.

52 MASAHIRO KURATA

Then \mathscr{B} and $T = (t_{ij})$ define the required subshift. This completes the proof.

COROLLARY. Let $f: M \to M$ be an Anosov diffeomorphism. Then *there are a subshift of finite type* Σ and a semi-conjugacy $\Pi: \Sigma \to M$.

In the case when f satisfies $Q(f) = M$, the above was proved by Sinai ([7]). But we don't know that the above semiconjugacy can be chosen such that there is an integer *N* with the cardinal number of $\pi(x) \leq N$ for any $x \in M([2])$.

REFERENCES

- [1] Bowen, R.: Markov partitions for Axiom A diffeomorphisms, Amer. Jour. Math., 92 (1970), 725-747.
- [2] ----: Markov partitions and minimal sets for Axiom A diffeomorphisms, Amer. Jour. Math., 92 (1970), 907-918.
- [3] Hartman, P.: Ordinary differential equations, Wiley, 1964.
- [4] Hirsch, M. W. and Pugh, C.: Stable manifolds and hyperbolic sets, Global Analysis, Proc. Symp. Pure Math., A.M.S., 14 (1970), 133-167.
- [5] Nitecki, Z.: Differentiable dynamics, MIT Press, 1971.
- [6] Pugh, C.: On a theorem of P. Hartman, Amer. Jour. Math., 91 (1969), 363-367.
- [7] Sinai, Ja. G.: Markov partitions and C-diffeomorphisms, Functional Analysis and its applications, 2 (1968), 61-82.

Hokkaido University