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INVOLUTIONS IN CHEVALLEY GROUPS

OVER FIELDS OF EVEN ORDER

MICHAEL ASCHBACHER* AND GARY M. SEITZ**

Let G = G(q) be a Chevalley group defined over a field Fq of char-
acteristic 2. In this paper we determine the conjugacy classes of invo-
lutions in Aut(G) and the centralizers of these involutions. This study
was begun in the context of a different problem. Namely, we wanted
to find those groups H containing a standard component A satisfying
A/Z(A) ^ G and m2(CH(A)) > 1. Such groups H are determined in [3],
where the results of this paper are crucial. In dealing with groups H
as above a very important consideration is the tightly embedded sub-
groups in Aut(G). Consequently we study such subgroups in this paper.

The classical groups and the exceptional Chevalley groups are treated
separately. Finding the involutions in the classical groups is accom-
plished using the underlying vector space and regarding the group as a
group of matrices. The results give an explicit matrix representation
for the involutions in G and their centralizers. For the exceptional
groups the (£, ΛΓ)-structure is used. Representatives for the classes of
involutions are given as explicit products of elements of root groups.
The centralizers are determined completely; one could obtain precise
generators and relations if needed. One useful piece of information is
the complete list of parabolic subgroups containing a given centralizer
of an involution.

The analysis of outer automorphisms is carried out in the context
of the (B, ΛΓ)-structure, with the exception of the orthogonal groups where
certain information is already available from the linear algebra.

We remark that for t an involution in G,CG{t) is known to be 2-
constrained with Or(CG(t)) = 1. It turns out that O2(CG(t)) is always of
class at most 3; for the classical groups the class is at most 2.
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The paper is organized as follows. § 2 contains preliminary results

and §3 contains a discussion of groups with {B, Λ/)-pairs, giving com-

mutator relations and root systems for the exceptional Chevalley groups.

Sections 4-8 are concerned with the involutions in the classical groups.

Included is a description of the underlying geometric configuration.

Sections 9-11 give technical information needed in the analysis of the

structure of the centralizers and for finding the tightly embedded sub-

groups. The involutions in the rank 2 Chevalley groups have been pre-

viously determined, so in § 12 we find the involutions in the remaining

exceptional Chevalley groups. Then Sections 13-18 contain the precise

information on the centralizers of these involutions. § 19 is concerned

with the outer automorphisms. In § 20 we prove that certain types of

tightly embedded subgroups in Aut (G) have all their involutions in G.

Finally in §21 and §22 we return to the classical groups with a dis-

cussion of exceptional Schur multipliers and further analysis of tightly

embedded subgroups.

Section 2. Preliminaries.

In this section we record some preliminary lemmas to be used in

later sections, especially Section 20.

(2.1) Let G = PQA be the semi-direct product of the product of the p-

group P<\G and the group QA. Assume that A is a cyclic p-group

acting fixed-point-freely on Q, and that CP{Q) = 1. Then all complements

to PQ in G are conjugate.

Proof. This is contained in Theorem 3.3 of [20].

(2.2) Let t be an involution in a group D. Then L{CD{t)) < L{D) and

if F*{D) is a 2-group then 0{CD{t)) = 1.

Proof. See 2.6 and 2.7 of [2].

(2.3) Let G be a finite Chevalley group {normal or twisted) defined over

a field of characteristic p. Then p-local subgroups of G are contained

in proper parabolic subgroups.

Proof. Borel-Tits, 3.12 of [4].

(2.4) Let G be a finite Chevalley group {normal or twisted) defined over
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a field of characteristic p. Then for any p-elernent x Φ 1, F*(CG(x)) is
a p-group.

Proof. This follows from 2.3 and the fact that for proper parabolic
subgroups, P of G,F*(P) is a p-group.

(2.5) // X is a 2-group of rank > 1 acting on a group Y of odd order,
then Y = <Cγ(x):xeX*> = ΓUZ{Y).

Proof. See Gorenstein [12].

Section 3. The (B, iV)-structure of the exceptional groups.

Throughout most of this paper we will be concerned with deter-
mining the involutions, and their centralizers, in the Chevalley groups
G defined over fields of characteristic 2. In the case of the classical
groups the representation of G on its natural module is used to obtain
this information. However in the case of the exceptional groups we
must utilize the {B, ΛΓ)-structure of G and work entirely within local sub-
groups. Moreover in the case of the classical groups our results are
stated in terms of the natural modules while in the case of the excep-
tional groups our results are given explicitly in terms of the (B,N)-
structure.

Therefore in this section we record notation and basic facts con-
cerning the (B, Λ/>structure of the exceptional groups.

We write G = G(q) to meaμ that G is defined over a field Fq of
characteristic 2. Fix a Tit's system for G. So let U be a Sylow 2-
subgroup of G with B = NG(U) and U = O2(B). Then B = UH where
H is an abelian 2'-group normal in N. Write W = N/H, the Weyl group,
W = <sx, , sn}, where the st are the fundamental reflections. Associ-
ated with W is a root system Δ in Rn with positive roots A+ and funda-
mental system {a19 -,an}. We label the Dynkin diagram of G and the
roots in Δ as in Bourbaki [5].

For each root r e Δ there corresponds a subgroup (called a "root
group") Ur < G such that G = (Ur: r e Δ} and U = fl Ur in some fixed

ordering of Δ+. Then H normalizes each Ur and the permutation rep-
resentation of W on Δ and on {Ur: r e Δ) are equivalent under the cor-
respondence r++ Ur. For i = 1, -,n let st = U_a.(ϊ)Uaί(ί)U_a.(l). Here

we are labeling the elements of Ur by using the base field (or other
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fields for the twisted groups) and we are identifying st as both a coset

of H in W and as an element in G. This will not cause difficulty and

it is true that ELβi(l)tfβ<(l)tLβ<(l)ff = 8teW.

For i = 1, , n let «ίf* be the set of all roots in Δ with positive

coefficient of α<. Then JS?* c J \ If i = 1, . . ,w and m > 0, let &*m

denote the set of long roots with coefficient of at equal to m (respec-

tively Sf*m for the short roots). We write Qt = <ϊ/ r: reJS?*) and set

For Sc {1, ,n} we let Ps = <β, st:ίeS>. The conjugates of the

subgroups Ps are called the parabolic subgroups of G, and some informa-

tion concerning the structure of Ps can be obtained simply by looking

at the Dynkin diagram. Namely Ps = QSLSH, where Qs = O2(PS),

Ls = <£7±αί: i & S} = <l7β<, s^: i g S) and the structure of L 5 as a Chevalley

group can be read off from the Dynkin diagram. The group Qs is the

product of the groups Ur for r e l j ^ .

We will need the following cases of the Chevalley commutator rela-

tions.

(3.1) Let a,βeΔ.

i) If a + βed, then [Ua, Uβ] = 1.

ii) // a, β, a + β are all in Δ and of the same length, then

[Ua(s)> Uβ(t)] = Ua+β(st).

iii) // G = FA(q)y a and β short roots, and a + β a long root in Δ,

then [Ua, Uβ] = 1.

iv) // G = 2EQ(q), a and β short roots, and a + β a long root in Δ,

then [Ua(s),Uβ(t)] = Z7β+̂ (β«t + βt«), /or s,teFqi.

v) If G — F4(g), g > 2, a is a long root, β a short root such that

a + βe Δ, then [Ua, Uβ] = Ua+βUa+2β.

vi) // G = 2E6(q), a a long root, β a short root and a + βe Δ, then

[Ua(c),Uβ(d)] = Ua+β(cd)Ua+2β(cddq), for ceFq and deFq2.

Basic facts involving parabolic subgroups and the Bruhat decomposi-

tion of G will be used repeatedly. Also we will need a list of some of

the roots in Δ+ for Δ of type F4, E6, E7, and E8. These are given in the

following tables and are based on the following labeling of the Dynkin

diagram
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1 3 4 5 6

1 3 4 5 6 7

E7

1 3 4 5 6 7 8

TABLE 1

Roots in 4+ for Δ of type F 4

1.
2.

3.

4.

5.

6.

7.

8.

1000
1100

1120

1220

1122

1222

1242

1342

9.
10.

11.

12.

13.

14.

1110
1111

1121

1221

1231

1232

15.
16.

17.

0100
0120

0122

Sft
24.

18.
19.

20.

21.

22.

23.

2342

0010
0110

0111

0121

0001

0011

Let r — r
24

s = r14

cc = r 1 2

TABLE 2

Roots in 4+ for J of type
O?l

1. 10000
0

17. 00000
1

if?
27. 01000

0
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2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

11000
0

11100
0

11100
1

11110
0

11110
1

11111
1

11111
0

11210
1

11211
1

12210
1

12211
1

11221
1

12221
1

12321
1

12321

2

18.

19.

20.

21.

22.

23.

24.

25.

26.

00100
1

01100
1

00110
1

00111
1

OHIO
1

01111
1

01210
1

01211
1

01221
1

r = r16

28.

29.

30.

31.

32.

33.

34.

35.

36.

01100
0

OHIO
0

01111
0

00100
0

00110
0

00111
0

00010
0

00011
0

00001
0

r = r2

= r,,

Roots in Δ+ having non-zero coefficient of a2 or a7, for Δ of type E7.

se\ n se\
1. 000001

0

2. 000011

0

3. 000111

0

4. 001111

0

TABLE 3

ero

7.

8.

9.

10.

coemcie

n se\
001111
1

011111
1

111111
1

012111
1

22. 123211

2

23. 123221

2

24. 123321

2

25. 124321

2
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5. 011111

0

6. 111111

0

r =

11. 112111

1

12. 012211

1

13. 112211

1

14. 122111

1

26.

27.

134321
2

234321
2

<£\ Π if I

38.

39.

40.

Roots

a = r
21

β = T

7 —
 r
48

3 =
 r
i8

e = Tl9

φ = r
13

t = r
14

n ̂
2
 n ̂ i

, 111000
1

, 111100
1

111110
1

in <e
%
, for

1. 0000001

if
8
 n

0

J2fϊ

2. 0000011
0

41.

42.

43.

Δ of

9.

15.

16.

17.

18.

19.

20.

21.

112100
1

112110
1

122100
1

012221
1

122211
1

112221
1

122221
1

123211
1

123221
1

123321
1

44.

45.

46.

T A B L E 4

type E
s
.

1111111
0

16.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

112210
1

122110
1

122210
1

0122211
1

000000
1

001000
1

011000
1

001100
1

001110
1

011100
1

011110
1

012100
1

012110
1

012210
1

47. 123210
1

48. 123210
2

23. 1232111
2
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3.

4.

5.

6.

7.

8.

se*
29.

30.

31.

32.

33.

34.

35.

36.

r =

0000111
0

0001111
0

0011111
0

0011111
1

0111111
0

0111111
1

n (JS?I; u se D
1343221
2

1243321
2

0122221
1

0122221
1

1222221
1

1232221
1

1232221
2

1233221
1

10.

11.

12.

13.

14.

15.

37.

38.

39.

40.

41.

42.

43.

1111111
1

0121111
1

1121111
1

0122111
1

1122111
1

1221111
1

1233221
2

1233321
1

1243221

2
1233321

2
2343221
2

1343321
2

1244321

2

17.

18.

19.

20.

21.

22.

44.

45.

46.

47.

48.

49.

50.

Ψ

1222111
1

1122211
1

1222211
1

1232111
1

1232211
1

1233211
1

2343321
2

1344321
2

1354321

2
2344321
2

1354321
3

2354321
2

2354321
3

= 2343210
2

24.

25.

26.

27.

28.

51.

52.

53.

54.

55.

56.

57.

θ

1232211
2

1233211
2

1243211
2

1343211
2

2343211
2

2454321
2

2454321
3

2464321
3

2465321
3

2465421
3

2465431
3

2465432
3

a = rβ ] r = r41
ε = r4; ω = r,.

Section 4. The unimodular group.

Let V be an ^-dimensional vector space over GF(q)9 where n > 3,

and # is even. SL(V) is the group of all linear transformations of V

of determinant 1. Given an ordered basis {xt} of V and geSL(V), as-

sociate with g the n x n matrix (gtJ) where

In considering such matrices we follow the notation of M. Suzuki in [22].



CHEVALLEY GROUPS 9

Given an involution a in SL(V), define the rank of a to be the di-

mension of the commutator space [V, a] of a. The rank of a is also the

number of Jordan blocks of (c%) of size 2 with respect to a basis of V

in which a is in Jordan form. Hence

(4.1) Let a and b be involutions in SL(V). Then a and b are conjugate

in SL(V) if and only if they have the same rank.

Fix an ordered basis for V and associate each element of SL(V)

with its corresponding matrix. Following Suzuki, given an integer £ in

the range 1 < £ < n/2, define the involution j£ of SL(V) by

Here Im is the m x m identity matrix and Io is taken to be void.

j£ has rank £ and is referred to as the Suzuki form of its class.

We conclude

(4.2) The involutions j£, 1 < i < n/2, are a set of representatives for

the conjugacy classes of involutions of SL(V).

(4.3) The centralizer Ce in SL(V) of the involution je consists of those

matrices g of the form

\ ]
g = \p(g) Y(g) such that (det (X))2 det (Y) = 1 ,

IQ(g) R(g) X(g)\

where X{g) and Q(g) are of size £ x £, Y(g) has size (n — 2£) x (n — 2£),

P(g) has size in — 2£) x £, and R(g) has size £ X (n — 2£). Further the

map g —> (X(g), Y(g)) is a homomorphism of C£ into GL£(q) x GLn_2e(q)

with the image containing SL£(q) x SLn_2£q), and covering both factors

if n Φ2£. The kernel T£ is equal to O2(C£).

Proof. See Suzuki [22], pages 1048 and 1049.

The remaining three lemmas in this section follow by direct com-

putation.

(4.4) For g,heC£
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\X(g)X(h)

gh = P{g)X{h) + Y(g)P(h) Y(g)Y(h)

[Q(g)X(h) + R(g)P(h) + X(g)Q(h) R(g)Y(h) + X(g)R(h) X(g)X(h)\

(4.5) Let g,heCt with

Then

I DX

Y~\PΌX + AX + WP) Wr

QQi") X-\RWr + CY + DR) DΣ\

where

Q(h°) = X-1[RY-\PDX + AX + WP) + BX + CP + DQ + QDX] .

Further if heTt then

Π
h" = Y~λAX

_X~KBX + CP + RY~ιAX) X~ιCY l\

Certain subgroups of Ct are of interest:

Je = {geZe: Q(z) = al,ae GF(q)}

Lf = {geCe: P(g) = Q(g) = R(g) = 0}

Le = {geL*:det(X(g)) = l}.

(4.6) (1) Ct = TeL*

(2) Z, = Z(Te).

(3) If n = It then Te = Zt.

(4) If n Φ 2£ then Ze = Φ(Tt).

Section 5. Unitary, symplectic and orthogonal groups.

We continue the hypothesis and notation of Section 4.

Let θ be an automorphism of GF(q) with θ2 = 1. A θ-symmetric

bilinear form on V is a map (,) from V x V to GF(q) such that for

each x, y, z e V and a e GF{q)
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(x + y,z) = (x, z) + (y, z) ,

(ax, z) = a(x, z) , (a;, z)θ = (2, a;) .

The form is symmetric if 0 = 1 and hermitian symmetric if 0 is an

involution. v e F is singular if (v, v) = 0. The form is symplectίc if

it is symmetric and each vector of F# is singular.

Given a matrix M = (Mίy) over GF(g) let M* = (Λf^) be the trans-

pose of M and Mθ = (Mθ

i3). Define π = *θ.

(5.1) Lei ( ,) be a θ-symmetric form on V and {x^ an ordered basis of

V. Define J — (JiS) to be the n x n matrix with Jί3 = (xif Xj). Then

g e SL(V) preserves the form ( , ) if and only if

J = gjg* .

Proof. Straightforward calculation.

For veV and X c V define

v1 = {x e V: (a?, v) = 0}

The form is said to be nondegenerate if F-1- = 0. A space F with a non-

degenerate hermitian symmetric form is called a unitary space. A space

with a nondegenerate symplectic form is called a symplectic space.

It is well known that

(5.2) Let V be a unitary space. Then there exists a basis of V in

which V has form J(V) = In.

Define E2m to be the 2m x 2m matrix with 1 in the (2i, 2i — 1) and

(2i — 1,2i) positions and 0 elsewhere.

(5.3) Let V be a symplectic space. Then n is even and there exists a

basis of V in which V has form J(V) = En.

5.2 and 5.3 imply that, up to isomorphism, there is a unique unitary

space of dimension n over GF(q2) and a unique symplectic space of di-

mension 2m over GF(q). An ordered basis for V in which V has form

In or En9 for V unitary or symplectic, will be referred to as a unitary

or symplectic basis, respectively.

Denote by SU(V) and Sp(V) the subgroup of SL(V) which preserves

the corresponding unitary and symplectic form, respectively. GU(V)
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denotes the full group of automorphisms of the unitary space. As

det(g) = det(#*) and En is nonsingular, 5.1 and 5.3 imply Sp(V) is the

full group of automorphisms of the symplectic space.

A quadratic form on a symplectic space 7 is a map Q of V to

GF(q) such that for each x, y e V and each a e GF(q)

Q(ax) = a2Q{x) , Q(x + y) = Q(x) + Q(y) + (x, y) .

A symplectic space with a quadratic form will be referred to as an

orthogonal space.

Suppose {u, v) is a symplectic basis for V. Define Q: V -* GF(q) by

Q{au + bv) = α& .

Then Q is a quadratic form. Denote the 2-dimensional orthogonal space

with this form by D = D+.

Let <x#2 + x + a be an irreducible polynomial over GF(q). Then

Q(au + bv) = aa2 + ab + ab2

is a quadratic form on F, and the space with this form is denoted by

Q = D_.

A singular point in an orthogonal space is a 1-dimensional subspace

(Vs) with Q(v) = 0. It is well known that

(5.4) Up to isomorphism, D and Q are the only 2-dimensional orthogo-

nal spaces over GF(q). Q has no singular points. D has exactly two

singular points.

Denote by DmQk the orthogonal sum of m copies of D with k copies

of Q. It is easy to check

(5.5) D2 is isomorphic to Q2.

It follows that

(5.6) Up to isomorphism, Dm and Dm~1Q are the only orthogonal spaces

of dimension 2m.

The orthogonal space Dm is said to have sign + and the space Dm~~ιQ

sign —. Denote by Oε(V) the subgroup of Sp(V) preserving the quadratic

form on V of sign ε.

Given an orthogonal space V of sign ε, an orthogonal basis for V is
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a symplectic basis {#J such that Q(xt) = 0 for i < n — 1 and

! + bxn) = /β(α, δ)

/+(α, 6) = α& /_(α, 6) = ao? + ab + ab2 .

By 5.6, V possesses an orthogonal basis.

SLn(q)> SUM, SpM and O;(?)

denote the special linear, unitary, symplectic and orthogonal groups

determined by a space of dimension n over GF(q), or GF(q2) in the unitary

case. SLn(q) has a center of order (q — 1, w) and SUn(q) has a center

of order (q + l,w). Ln(<z) and Un(q) denote the factor groups over these

centers. Ω8

n(q) denotes the commutator group of Oε

n(q). As q is even

Section 6. Involutions in the unitary group.

We continue the hypothesis and notation of sections 4 and 5.

(6.1) Let a and b be involutions in SU(V). Then the following are

equivalent.

(1) a is conjugate to b in SU(V).

(2) a is conjugate to b in SL(V).

(3) a and b have the same rank.

Proof. See [25], page 34.

(6.2) Let t be an involution in SU(V) of rank £. Then there exists a

basis for V in which t — j e is in Suzuki form and V has unitary form

Us

Further g eC£ is in SU(V) if and only if

Xπ = X'1 Yπ = Y-1 YRπ = PXπ

XQ* + RRπ + QXπ = 0 .

The map g —> (X(g), Y(g)) is a homomorphism of C = C(t) Π SU(V) into

GU£(q) X GUn_2t(q) with the image containing SUe(q) X SUn_2£(q), and

covering both factors if n Φ 2£. The kernel is Tt Γi C = 02(C).
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Proof. Let {#*} be a unitary basis for V. Define seSL(V) by

X\ = Xn-i+i 1 < ί < &

x\=iχt £ < i <n — £ .

Then s has rank ^ and by 5.1, seSU(V). Hence by 6.1, we may take

t = 8. Choose a e Fq2 such that a + aθ = 1 and let β = 1 + a. Define

Vi = a?f + x\ 1 < i < i

Vi = Xi £ <i <n — I

yt = aXt_n+4 + βXi n - £ <i<n .

Then {T/J is the desired basis. Calculating using 5.1, we determine the

conditions on g. This together with 4.3 yields the remaining conclu-

sions.

Section 7. Involutions in the symplectic groups.

In this section we assume V to be a symplectic space and t an in-

volution in Sp(V). It is well known that

(7.1) Let U<V. Then dim (7) = dim (U) + dim (U1). Therefore if U

is non-degenerate then V is the orthogonal sum of U and UL.

Given an involution t e Sp(V) define

V(t) = {veV:(v,v') = 0}

V(t) is the kernel of the additive map v -» 0,^0, so

(7.2) Vit) is a subspace of V of codimension at most 1 with V(t)L < V(t).

Given subspaces U and W of V with U Π W = 0 and (U, W) = 0,

write <E7, PF> = t / φ ΐ F . That is Z7ΘW is the orthogonal sum of U

and W.

(7.3) Assume V = 7(ί).

where [W, t] — 0 and βacfe ^ is a ^-dimensional symplectic space with

symplectic basis {yίό} such that y\x = yi3 and τ/ξ2 = yu. In particular t

has even rank £ = 2m.
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Proof. Choose ueV with uι & (u). Set u = yx and uι = yz. Let

v e C^)1 — u1-. Then v* e uL — (%0-S so v ΐ vK By choosing a suitable
multiple of v we may take (u, v) = 1. Set y2 = v and yi = vι. Then
^i = <Vt 1 < ^ < 4> has the properties claimed above. 7j is nondegen-
erate, so by 7.1, V =VΊ® Vt, with V± a ί-invariant symplectic space.
Hence the result follows by induction on the dimension of 7.

The following lemma is immediate.

(7.4) Assume ueV with (u, uι) Φ 0. Then for a2 — {u, uι)~ι, x1 = au and
x2 = χ\ is a symplectic basis for (u9 u

tsy.

(7.5) Assume U = V(t) Φ V and set X = UL. Let I be the rank of t.
Then either
(1) ί is odd, [V, t] = X®[U, t] and V = Γ 0 YL where Y has symplectic
basis {y, y1} and [Y, t] = X.
(2) i is even and V = Y Θ YL for some Y with symplectic basis
{Vi: 1 < i < 4} such that y\ = y2, y\ = yA. Further [17, ί] = [Y1, t]@X
has codimension 1 in [7, t] and X —

Proof. Let P be maximal with respect to P = ®Pt where Pt has
a symplectic basis {xifXi}. By 7.1, 7 = P Θ P 1 . By 7.4 and maximality
of P, P-1 < U. [7, t] = [P, t] Θ [P\ t], so £ = dim ([P, t]) + dim ([P\ ί]) =
α + &. By 7.3, 6 is even, so t = α mod 2. Further C7 = P-LΘP(ί)
and

P(Q = <a;< + ̂ , a?< + x\: 1 < i < a, 1 < j < a} .

Hence x = 2]< (̂ i + $) is a generator of X.
Assume ^ is odd. Then a is odd, so setting y = Σt ̂ *> {l/> 2/̂  ^s a

symplectic basis for Y = <»,?/«> and [s/,t]=X. By 7.1, F ^ Γ θ Γ 1 .
Then Y^ < JC-L < U and [7, t] = [Y, t] θ [Y1, t]=X® [ϋ, t].

So assume £ is even. Let τ/3 = ΣίΦ1 xt and τ/4 = y\. £ is even so
a — 1 is odd and hence (τ/3, τ/4) = 1. Let xx — yx and x{ = y2. Then Y =
<y<: 1 < i < 4> is as claimed. By 7.1, 7 = Y θ Yx. Then Ϊ7 = YL φ Y(ί)
and Y(t) = (yt + ys: 1 < i < j < 4>. So [17, ί] = [Y ,̂ t] θ [Y(0, t] = [Y-1-, t]
θ X has codimension 1 in [7, ί] = [Yx, t] 0 [Y,«].

(7.6) Lβί ^ 6e ίfee rαtiA: of t. Then there exists a basis {x^ of V

with form
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in which t = j t and exactly one of the following holds:
(1) ί, is even, V = V(t) and F = Et.
(2) i is odd, V(t) = <Xi: i Φ n - i + 1>, V(t)L = <«!>

'•F .J
(3) t is even, V(t) = ζxt: 1 < i < ny, V{tY = <»,>

Proof. Assume first F = V(t). Then define F ,̂ t/^, and W, 1 < i <
1 < j < 4, as in 7.3. Define

%n-e+2ί z=z Vί2

and let {xi+i: 1 < ί < n — 2£) be a symplectic basis for PP.
Assume next that F(0 ^ V. Choose Y and its symplectic basis as

in 7.5. If £ is odd let xλ = ?/, α;n_ +̂1 = j/*, and choose {^: 1 Φ i Φ n — £ + 1}
to be a basis for Y-1 = YHt) as in the last paragraph. If £ is even de-
fine

Xn-M = Vi + Vi %n = Vi

Choose the remaining basis vectors as in the last paragraph.
We shall say an involution t e Sp(V) is in symplectic Suzuki form

if the basis is chosen as in 7.6. Denote by a£, b£, and ct the Suzuki
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forms in (1), (2), and (3) of 7.6, respectively. It follows from 7.6 that

(7.7) Let t and s be involutions in Sp(V). Then the following are
equivalent :
(1) t is conjugate to s in Sp(V).
(2) t and s have the same symplectic Suzuki form.
(3) t and s have the same rank £, and if ί is even then V(t) and V(s)
have the same dimension.

(7.8) Let F — F* be an 6 x ί matrix and

r FΛ

[F

Let g e C£. Then gjg* = / if and only if

XFX* = F YEY* = E YER* = PFX*

0 = XFQ* + RER* +

(7.9) Let t = a£ be in Suzuki form, g e C£, and E = E4 or En_2£. Then
geSp(V) if and only if

XEX* = E YEY* = E YER* = PEX*

0 = XEQ* + RER* + QEX* .

The map g —> (X(g), Y(g)) is a homomorphism of C = Ce Π Sp(V) onto
SpM X Spn_u{q) with kernel Te Π Sp(V) = O2(C).

Proo/. 4.3,7.6, and 7.8.

(7.10) Let t — be be in Suzuki form, let g e C£, and E = E£_x or En_u.
Then
(1) geSp(V) if and only if

X = p 1 R = Γ *1 P =

wiί/i or, /8 α»ώ ^* row vectors and

WEW* = E ccEA* = γ* + βEW*

YEY* = E LEW* + WEL* = AEA* .
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(2) The map g -> (W(g), Y(g)) is a homomorphism of C = C£ Π Sp(V)

onto Spe_x(q) X Spn_u(q) with kernel Te Π C = 02(C).

(7.11). Let t = cβ be in Suzuki form, let g eC£9E = Ee_2 or En_m and

Π

Then
(1) 5 if and only if

X = I WEa* W
x α: 11

where β, γ, p, f, μ*9 andη* are row vectors and

WEW* = E YEY* = E P= YER*F~ιX

0 = XFQ* + RER* + QFX* .

(2) The map g —> (W(g), Y(g)) is a homomorphism of C = C£ Π Sp(V)

onto Sp£_2(q) X Spn_u{q) with kernel 02(C).

(7.12) Assume the hypothesis of 7.11. Then

(1) If geZe then geSp(V) if and only if

r + s + z = 0 LE = £7L*

7 = Ep* ξE = μ* + η* .

(2) // # e Z / ^ with a = μ = p = η = ξ = O then g e Sp(V) if and only if

YEY* = E WEL* = LEW*

WEW* = E r + z + s + xz = O.

(7.13) Let Q and X be as in 7.11. Then

(1) If a = 0 and W = 1 then
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r + zx p z
μ + Xη L η

y + (r + s + zx)x ξ + px s + zx\

(2) If μ = v = p = ξ = 0, W = I and L = al then

I r + zx za z

(r + zx + a)Ea* L + zEa*a zEa*
y + (r + s + zx)x a(a + s + xz) xz + s\

These last three lemmas follow from straight forward calculations.
Section 8. Involutions in the orthogonal groups.

In this section assume that V is an orthogonal space of sign ε. It

is well known that

(8.1) (1) O6

2(q) is dihedral of order 2(q — ε).

(2) O4

+(g) is the wreath product of L2(q) by Z2.

(3) Oι(q) is the split extension of L2(q2) by a field automorphism of

order 2.

(4) Oβ(q) is the split extension of L4(q) by a graph automorphism.

(5) Ot(q) is the split extension of UA(q) by a graph automorphism.

Given the isomorphisms in 8.1 we assume n > 8 in this section, al-

though most of the discussion remains valid without this restriction.

(8.2) Let t be an involution in Oε(V) of type a£. Then there exists a

basis {Xi} of V in which t is in its symplectic Suzuki form, Q(â ) = 0

for 1 < i < & and n — i < i < n, {xt: ί < i < n — £} is an orthogonal basis

for the space W it generates, and W has sign ε.

Proof. Choose {xt} so that t is in Suzuki form. For 1 < i < i define

Ui = \Xn-e+2i-l9 %n-£+2ί/

Then Vi = UiΦUl = Ui 0 Ui9 so by 5.5, V< is isomorphic to D2. Thus

choosing the basis vectors {yiό} for Vt in 7.3 to be an orthogonal basis

for Vi9 we have Q(xj) = 0. Further as V is the orthogonal sum of W

and the spaces Vi9 and each Vt has sign +, e = sgn (V) = sgn (W). Hence

we need only choose the basis vectors xs in W to form an orthogonal

basis for W.
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(8.3) Let t e Oε(V) be the type b£. Then there is a basis {xt} of V in

which t is in symplectic Suzuki form, Q(x^ = 1, X = (jxl9 xn-e+\} ^&s

sign e , Q(xt) = 0 for 1 < i < £ and n — £ + 1 < i < n9 {x^. £ < ί < n — £}

is an orthogonal basis for the space W it generates, and W has sign + .

Proof. Choose {#*} so that t is in Suzuki form. Define

U = (Xi'.KiK £, n-£ + l<i<n).

Considering t restricted to U9 8.2 implies U has sign + and we may

choose the basis vectors xs in U to be singular, t restricted to X is

the transvection with center xl9 so Q(Xχ) = 1.

Suppose W has sign —. We may assume Y = ζx4+lfxi+2y = Q. Let

a2 = Q(xM)9 xf

M = α ^ + &,+1, and < _ m = an_,+1 + axi+2. Then Q(a?ί+1) = 0

and {x19 x'n-t+i9 x'£+19 xs+2} is a symplectic basis for X + Γ. As Q(a?ί+1) = 0,

Yr = <a?i+1, x̂ +2> = -D, so with this change of basis W has sign ε. Hence

sgn (X) = sgn (7) = ε.

The proof of the next lemma is similar to that of 8.2 and 8.3, and

is omitted.

(8.4) Let t e O'(V) be of type ct. Then there is a basis {#J of V in

which t is in Suzuki form9 Y — (xl9 xt9 xn_£+ι, xny has sign ε, Q(x^) = 0

for 1 < i < £ and n — £ + 1 < i < n9{xi: £ < i < n — £} is an orthogonal

basis for the space W it generates, and W has sign + . Also

Q(ax1 + bxt + cxn_M + dxn) = ad + b(b + c + d) + (c2 + d2)Q(xn) .

We shall say an involution t in O(V) is in orthogonal Suzuki form

if the basis for V is chosen as in 8.2-8.4 for the suitable type of t. In

particular if t is in its orthogonal Suzuki form it is also in symplectic

Suzuki form. Therefore

(8.5) Let t and s be involutions in O*(V). Then the following are equiv-

alent :

(1) t is conjugate to s in Oε(V).

(2) t is conjugate to s in Sp(V).

(3) t and s have the same (orthogonal or symplectic) Suzuki form.

(8.6) Let t — a£ be in orthogonal Suzuki form and g eCe Π Sp(V). Then

(1) g e OS(V) if and only if Y(g) e O6

n.n(q) and
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£/2 (n-2i)/2

/ i 9i(2j-l)9i(.n-i + 2j) + 9i(2j)9un-t + 2j-l) = = 2-1
i yi

(2) Tfte racφ g-*(X(g), Y(g)) is a homomorphism of C = C£Π Oe(V) onto

Sps(q) X O -ufa) M t t λ βrnβί T , Π C = O2(Q.

Proo/. Let G - Sp(TO,H = 0>(V), and # e C, Π G. Then flreff if

and only if Q(xJ) = QCίcJ for each i. Define

tf = <%i: 1 < i < A w - £ < i <> n}

W = <&<:£ <i<.n- £> .

Then V = C70 T7 and from the form of /(V) in 7.6 and the value of the

quadratic form Q on {xt} given in 8.2 we determine that for u + w =

and Q restricted to W has sign e.

Hence for 1 < i < £9 Q(xt) = 0 and

= 0

since sr^ = 0 for j > £. That is Q(xt) = Q{xf) for i < £. Similarly for

Xi e W, Q(xj) = Q(xtY(g)), so Q(xt) - Q(xf) if and only if Y(g) e OS(W) =

O;.M(g). Finally if Q(g) = P(flr) = 0, then for < < £, Q(xn_M) = 0 =

Q(»n-/+i) Therefore 7.9 yields the result.

(8.7) Let t = bt be in orthogonal Suzuki form. Then the map g —>

(W(flO> y(ff)) is a homomorphism of C = C£Π O'(V) onto Sp^^q) X Spn_2£(q)

with kernel ^ ί l C = O2(C).

Proof. The proof goes as in 8.6. The only problem is to show that

if φ: g-*(W(g), Y(g)) then Cφ covers Spe_λ(q) X Spn_2e(q). Proceeding as

in 8.6, Cφ covers Sp£^(q) x O^/g). Let TJ =• <xt\ ί <%<n — ΐy and Γ

the transvection in Sp(U) with center a?<+1. Then Γ'gO+(17). Further

O+(t7) is maximal in SptfT), so Sp(ΪT) = <Γ, O+(f7)>, and it suffices to

exhibit # € C with Y(flr) = Y. Define g by
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9 = a Y

β

where α* = (0,1,0, •) and β = (1,0,0, •).

(8.8) Let t = c£ be in orthogonal Suzuki form and g e Ct Γ) Sp(V). Given

a matrix A = (α<y) Zeί -A* 6e ίfee iίJt row vector of A and define

Then

(1) geOe(V) if and only if (i)-(iv) hold with notation for g as in 7.11

and 7.12.

(i) τ\ = QiYt) forl<i<n-2S.

(ii) s(s + 1) = Qtf).

(iii) Vί[Vί + (WEa*^] + (WEa^Q(xn) + (Lί9 Wt) = 0.

(iv) y + 8(8 + x + 1) + x2Q(x „) + (£, α) = 0.

(2) Γfee map g —• (TF(^), Y(^)) is a homomorphism of C = Oe(Ύ) Γ) C^ onίo

Sp£_2(Q) X Spn_2£(q) with kernel O2(C).

Proof. The proof goes as in 8.6 and 8.7. We exhibit an element

g e C such that Γ(#) = Y is the transvection with center x£+1:

el

Q =

1
τ

where r* = (0,1,0, •) and β = (1,0,0, •)•

(8.9) Let t = c£ be in orthogonal Suzuki form and geC£ with notation

as in 7.11 and 7.12. Then

(1) // g eZ£ then g e Oe(V) if and only if z = 0 .or 1, y = s2 + s,r + s

+ z = 0,27 = £ > * , f£7 = μ* + 27*, LE = L*,
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(2) If g e Z£L£ with a=μ=p=η=ξ— 0 then g e O*(V) if and only if

WEW* = # , Y e Oi-U(q), WEL* = L£W*, r + « + s + »« = 0,2/ + s(s + a? + 1)

= xQ(xn), z = 0 or 1, and (L;, T7<) = 0 /or βαcft 1 < i < ί — 2.

Proof. Calculate.

(8.10) Γfee commutator group Ωε of Oε is a simple subgroup of index 2

in O\ teΩe if and only if t is of type a or c.

Proof. The first statement is well known. The transvections in Oβ

are not contained in Ω\ Further if £ is the rank of t then t is the

product of m transvections where £ = m mod 2.

(8.11) Let t = c2 and z are involutions in Z£ Π Ω'(V). Then

Q(z) = \ 1
Lr(r + 1) A

Proof. By 8.9 if a is an involution in Z, Π O'(V) then

ls
f 1
ls(s + 1) sJ

with z — 0 or 1. But if 2 = 1 then a has rank 1, so αg Ωe(V).

(8.12) Let G — Ωε

n(q) and t an involution of G in Suzuki form. Then

(1) tG is a conjugacy class in Oe

n(q) unless n = 2£, ε = + , and t — a£.

(2) Let n — 2£, ε = + , and t = α̂ . Γfeen ίfee cZαss 0/ t in O*n(q) splits

into two classes in G. If s is of type a£ then s etG exactly when

dim ([Ύ, s] Π [7, t]) is even. Further CG(t) = <tG Π CG(t)>O2(CG(t)).

Proof. Unless t — aίyn — 2£, and ε = + , t centralizes a transvec-

tion, so by 8.10, tG is a conjugacy class of Oε

n. So assume n = 2£9 ε = + ,

and ί = α̂ . Then, under the action of G, there are two classes of totally

isotropic ^-dimensional subspaces of V. Moreover if U and W are two

such subspaces then U is conjugate to W under G exactly when

dim (£7 ΓΊ W) is even. As [V, t] is such a subspace, the first two remarks

of (2) follow.

If £ = 0 mod4 then the involution seL with X(s) = £7̂  is in ίG,

since dim([7,ί] Π [V9s]) = ^/2 is even. Similarly if ^ = 2 mod 4 then

the involution reCe with
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X{r) = J
is in f°. Also C(f)/O2(C(t)) = L is simple unless q = 2 and n = 4, in

which case <sL> = L. So the last part of (2) follows.

Section 9. Two lemmas.

In this section we prove two lemmas which help describe the action

of the centralizer C, of an involution in the classical groups, on O2(C).

Let G be the subgroup of SL£(q),SU£(q), or Sp4(q) generated by all

transvections, or a subgroup of 0}(q) of index at most 2. Here q is a

power of 2, A > 1, and A > 4 if G < O4(q). Consider G as a matrix

group with respect to a natural basis {xt} for the linear space V cor-

responding to G.

Let ilf be the ring of all n X A matrices over the corresponding field,

i.e. GF(q) unless G < SU(q), in which case the field is GF(q2).

(9.1) Let G act by right multiplication on M. Then CM(G) = 0 and G

has no orbits of length 2.

Proof. If PeM,geG, and Pg = P, then g fixes each of the row

vectors of P. Consequently CM(G) = 0. If P is in an orbit of length 2,

then CG(P) = H < G has index 2 in G and it is easy to check that this

forces P = 0, a contradiction.

(9.2) Le£ n = A and exclude the case G < O*£(q). Let G act by conju-

gation on M. Then the centralizer in M of G is the set of scalar

matrices and if N is a G-invarίant A-group of M containing I with

[G, N] Φ 0, then one of the following holds:

(1) G = L2(2) and N consists of

ro 01 ri oi ri I Ί ro η
Lo oJ'Lo lJ 'L i oJ'Li l J 1

(2) G = Z72(2) and choosing a to be a generator of GF(4), N consists

of either

LO oJ'Lo lJ'Lo αJ'Lo a

or
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(ϋ) f° °1 Γ1 °1 ί1 °1 Γ° °1
w
 Lo oJ'Lo lJ'Lo oJ'Lo lJ'

(3) G < SU3(2) and SU3(Z) does not act on N.

Proof. CM(G) = (aiy is well-known and equivalent to the fact that G

is absolutely irreducible on V. Assume that N is a 4-group as described.

Then G has an orbit of length 2 on N so q = 2 and G = L2(2), J72(2),

>Sp(4,2), or the subgroup of SU3(2) generated by transvectors.

If G = Sp(4,2), then G' < C(N), contradicting the fact that Gr is

absolutely irreducible on V. Similarly if G < SU3(2) and SU3(2) acts on

N, then O3(SC73(2)) < C(N), whereas O3(SC73(2)) is absolutely irreducible

on V.

If G = L2(2) or Z72(2), we calculate to obtain (i) or (ii).

Section 10. Certain normal subgroups of centralizers.

In this section we assume G is equal to SLn(q),SUn(q),Spn(q), or

Ωn(θ)> n > 4, and q a power of 2. We exclude the cases L4(2) ^ A8 and

£p4(2) ^ SQ. If G is orthogonal we take n > 8.

Let £ be an involution of G of rank £, C = CG(t) and J = £G Π C.

Let ^ be an involution in O2(C) such that either [u, Δ\ = 1 or <w, ί> < C

We wish to determine all possibilities for u. This is done in 10.6-10.8.

Let z = ^ Π G, Γ = Γ, Π G, and C = C/T. Set ίC = O2\C), except

if ί is of type c£ we take only those matrices in (7.11) (1) having a = 0

and a; = 0. Then K/T = LJT x L2/Γ, where the factors are unimodular,

unitary, symplectic, or orthogonal groups.

Notice K Π Li is quasisimple unless L̂  is O^Ctf), L2(2), C72(2), SU3(2), or

Sp4(2). Therefore

(10.1) K Π Li is generated by any one of its classes of involutions unless

Li ^ SpA(2) and Lt is generated by involutions of type a2 or b19 or

Li ^ O6

m(q) and Lt is generated by transvections.

(io.2) K = <κ n J>.

Proo/. Let D = <Ίf£ Π J>. By 10.1 it suffices to exhibit conjugates

r and s of t in Z such that lΦΨeKV\Lλ and s projects nontrivially on

Π L2, with the projections of r and s in a suitable class if K Π Z^ is
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Spι(2) or 0^(g). The case where G is unimodular or unitary is left to

the reader. Let G be symplectic or orthogonal, r and s are exhibited

below for a£, be, and c4. In each case W is a suitable involution of

maximal possible rank, m = n — 2£. J is the 2 x 2 matrix all of whose

entries are 1. If n = 2^ and t = α*, then (10.2) follows from (8.12)(2).

W

W

W

*TO-2

W

W

w

w
E,

1 m-2

W

w

w

w

W

Let geC and set X = X(flr), Y = Y(flr), etc. Recall the definition of

u.

(10.3) // M e T, then t = c2 and

= £ J
iίfe d Φ 0. If G is symplectic then q = 2.

Proo/. Γ = O2(C) unless t = c,, so take t = ĉ . Then by (7.11) (1)
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X = I WEa* W
x « II

and if g = u then TV = /. Let U be the set of elements in 02(C) with

a = 0. Then by 4.5 the action of g on O2(C)/U is determined by

= a(x)W. £ is even so by 10.2 and 9.1 we conclude ue U. So

1
/

d 1.

Suppose ^ > 2. By 7.11 and 7.13, if geZ then

r p z
μ L η

r + zd p z
Qiuη = 1 μ + dη L η

IV + (r + s + zd)d ξ + dp s + dz\

so that [#, u] = l exactly when z =
then by 8.9 the element geZ with

However if £ Φ 2

1 1 1
1

1

1 1

is in J , so t h a t [u, Δ]Φl and <u, t > ^ C. Also by 7.12 and 8.9, \Z: Cz(u)\

> 2 only if £ = 2, G is symplectic, and g > 2.

(10.4) = Pin) = 0.

Proof. Let geK. By 4.5 and 10.3 the action of # on %Z is deter-
mined by P(u°) = Γ - T ^ Z and β(^) = Z"lβ(tt)Γ. As w > 3, either
n — 2£ or ^ is greater than 1, and it t = a£ then £ > 1. Hence by 9.1
and 10.2, POO = R(u) = 0 if G is unimodular or unitary, or if t = α̂ .

Suppose t = bt. Then by 7.10

and then
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ueT, so R(u) = X~lR{u)Y for every geC. By 10.2, K =

<X Π J>. Further ra - 2^ is even so if n Φ 26 then n — 24>l. Thus

by 9.1, jβ(w) = 0.

A similar argument works if t = ce vand ueT. So assume u & T.

Then by 10.3, t = c2. If G is symplectic then by 10.3 q = 2, so w > 4,

and L2 ^ Srpn_4(g). If G is orthogonal then w > 6 , son — 2£ = n — 4>A

and L2 ^ Spn_£q). Hence by 9.1, R(u) = 0.

(10.5) ^ e 2 .

Proof. Assume not. By 10.4, R(u) = P(w) = 0, so u& T. By 10.3,

ί = c2 and

As R(u) = 0, the image of

Further

-E J
under u is determined by R(u°) = X(u)R.

LTΛ ίdβ + γl

so tfc centralizes </Z exactly when /3 = 0. However as g ranges over C,

β ranges over all possible row vectors of length n — 4, so unless n = 4,

1^1 > 2. Also if n > 4 then

0 1 1
0 1 l j

is in J by 8.9, while by 4.5, Q(u°) Φ Q(u).

So n = 4 and hence G is symplectic. Now by 10.3, G = Sp4(2), against

our hypothesis.

(10.6) Let t = j t or a£. Then

(1) if [u, J] = 1 then u e J49 and

(2) i/ ^ = {u, ut) then either

(i) G = SLn(2) or S;pn(2), ^ = 2, and Q(u) is

1 Ί or Γ° 1 ] .
l OJ Ll l J
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(ii) G = SUn(2)9 £ = 2, and Q(u) is

\
.0 0

29

Γ° ° 1 .
Lo l J

Proof, u9 is determined by Q(u9) =
from 9.2 and 10.2.

(10.7) Let t = be.
(1) </ [M, J] = 1,

(2)

Thus the result follows

Proo/. By 7.10,

where β and ̂  are respectively row and column vectors of even length
£ - 1. So by 9.2 and 10.2, γ = 0 = 0 and L = α/ if [̂ , J] = 1. Also
if uc = {%, %£} then

= r° *i ΦI.

(10.8) Let t = c,.
(1) i/ [î , Δ\ = 1

rl

i/ G is orthogonal y = r(r + 1).
(2) // Mσ = {%, ̂ ί} ίfeen G = Spn(2), £ = 2, and Q(u) is one of

Γ0 1] Γl 1] Γl 1] Γ0 1]

Li l J ' L i oJ 'Lo oJ'Lo I J
Proof. By 7.11

\r p z\

[y ξ s\

= YWEcc* W

[ x a
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Choosing a — x = 0 we find

= \W~l

V

pw

JW

ξW

so by 9.1 and 10.2, μ — p = η = ξ = 0 and L = al is scalar. Choosing
W =•/, it follows from 7.13 that

r + zx za z
(r + zx + ά)Ea* L + zEa*a zEa*

y + (r + s + zx)x a(a + s + xz) xz + s\

So as CC(Δ) < C we conclude either I — 2 or z = 0 and α = r = s. Fur-
ther if G is orthogonal then by 8.9, y = r(r + 1).

So take ^ = 2. Then if G is orthogonal, 8.11 implies r = s, s = 0,
and 7/ = r(r + 1). So take G symplectic. Then for x Φ 1

1
x 1

/
1

1 x ly

is in J, so if [u, Δ\ = 1 then z = 0 and r = s. Also if [w, A] Φ 1 then
as QOM) = Q(^g) + / for each such g, q = 2 and Q(%) is as claimed.

Section 11. Alpha and beta groups.

In this section we continue the hypothesis stated in the first para-
graph of Section 10. In addition we take q > 2.

A primary involution is defined to be a transvection in the unimod-
ular, unitary, or symplectic group, and an involution of type a2 in the
orthogonal group.

Given an involution t e G define a(t) to be the set of elements g in
G such that g + / = a(t + I) for some scalar a. a(t) is the a-group of
G containing t. In addition if t is of type c£ or of type b£ let β(t) be
the group generated by all involutions s in G such that V(s) = V(t) = U
and

(/ + s)\u = a(I + t)\u

I + s = ail + t) mod C/1
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for some scalar a. β(t) is the β-group of G containing t.

In this section we investigate the a and β-groups and the primary

involutions. The next two lemmas relate the a and /3-groups to the results

in Section 10. For it is easy to check that

(11.1) Let t be in Suzuki form. Then a(t) = J£ Π G.

(11.2) Let t = c£eΩε. Then ze β(t) exactly when zeZ with

r
rl

r(r + 1) r j

Therefore the results in Section 10 imply a(t), or β(t) if t is of type

be or c£, is the center of the centralizer of t.

(11.3) Let t be an involution of rank £ > 1 in SL or SU. Then there

exists s e tG ΓΊ C such that a(t)a(s) contains one a-group of rank 1, one

of rank £ — 1, and q — 1 a-groups of rank £.

Proof. Take t in Suzuki form and for scalars a and b define

g{a, b) e C(t) by

g(a, b) =

Let s = g(l, c), 0 Φ c Φ 1. Then

/i-2

g(l, 0) is of rank 1, #(0,1) is of rank i — 1, and the remaining a?-groups

have rank I.

The next two lemmas are proved in the same manner.

(11.4) Let t = a£, £ > 2. Then there exists setG Π C such that a(t)a(s)

contains one a-group of type a2, one of type a£_2, and q — 1 of type a£.

( 1 1 . 5 ) L e t t = c i f £ > 2 , o r t = b e , £ > 1 . T f t e w ί / ^ e r e β ^ i s ί s s e t G Γί C

such that β(t)β(s) contains one a-group of type a£_2> or a£_u one β-group

of type c2y or b19 and q — 1 β-groups of type c£, or be, respectively.

(11.6) Let t = a2 or t = bx. Then there exists s etG Π C such that a(t)
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and a(s) are the unique a-groups of type t in a(t)a(s) and the remaining

q — 1 a or β-groups are of type c2.

Proof. This can be proved as above for the symplectic groups. In

the case of the orthogonal groups t = a2 and it is easier to recall

Ω£(q) ^ LA{q), Ω;(q) ^ U4(q), and argue directly.

(11.7) Let t be a primary involution. Then CG(tY = TL.

Proof. Assume ί is a transvection in Suzuki form. For x e T and

g e L, R(x) is a row vector of length m — n — 2 and R(xg) — R(x)Y(g).

Thus L acts on the space U of row vectors R(x) in its natural represen-

tation. L is irreducible on U. Hence U = [U,L], so T/Z = [T/Z,L]

and then T = [T, L]Z. So as L is quasisimple it suffices to show Z <

[Γ,L].

If G is unimodular or unitary then an easy calculation shows Z =

Φ(T), so Z < \T,L\. If G is symplectic Z < [T,L] follows from §3 of

[7].

Next assume G is orthogonal and t = a2. Arguing as above T/Z =

[T/Z,L\. As Ω£(q) ̂  L4(g) and £?6~(g) = U4(q), with a2 corresponding to a

transvection under the respective isomorphism, Z < [To, Lo] where To =

T Π Go, ί/o = L Π Γo, and Z < Go < G with Go ̂  flj(«).

(11.8) Let tteG be transvections, ζvty = [ί4, F], F< = CF(i*)

(1) [ίi, t j = 1 if cmd only if vt e Vj for i Φ j .

(2) W ^ L2(g) if and only if vt £ Vj for i ψ j .

(3) G is transitive on subgroups isomorphic to L2(q) containing the a-

group of a transvection.

(4) // W = L2(q) then CG(W) is isomorphic to GLn_2(q), GUn_2(q), or

Spn-2(q) for G unimodular, unitary, or symplectic, respectively. Further

WCG(W) is not centralized by an involutory automorphism of G. Unless

G = L4(q) or U4(q), the same holds for WE(CG(W)).

Proof. (1), (2), and the first part of (4) follow by calculation choos-

ing suitable bases for V. By [21] the automorphism group of G is known,

and the remainder of (4) follows by inspection.

A flag is an incident point hyperplane pair. The unimodular group

is transitive on pairs of flags ((v19 VJ, (v2, V2)) with vt&V'j9i Φ j . If G
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is unitary or symplectic then Vt = vt and G is transitive on pairs (vl9 v2)

with v1 £ V2. Hence (2) implies (3).

(11.9)* Let G = β;(g), t=a2 and s e tG. Set U = [ί, F]

Γfeew

(1) Z = a(ί).

(2) s e a(t) i/ and only if U = [s, V],

(3) [s, ί] — 1 if and only if s stabilizes U.

(4) [t, £s] = 1 i/ UL ΓΊ C7S ̂  0.

(5) W is ίsomorphίc to a Sylow 2-group of L3(q) if and only if 0 ψ

Z7-1- n us
 Φ u.

(6) W ^ L2(q) if and only if 0 == UL Π Us if and only if U + Us ^ D\

(7) G is transitive on subgroups isomorphic to L2(q) containing the a-

group of a primary involution.

(8) If W ^ L2(q) then CG(W) ^ L2(q) x Ωs

n_M, and WCG(W) is not cen-

tralized by an ίnvolutory automorphism of G.

Proof. (1) follows from an easy calculation. Assume U = [s, V].

Then Cv(s) = U1- = Cv(t), so seZ, and (1) implies (2). (3) follows from

(2).

Assume 0 Φ us e UL Π Us. Let v e U - <u). 0 = (W, C7) = (u, Us).

setG, so V(s) = V. Hence (v,ι;0 = 0. So ?7S = <us, vs} < vL. Hence

Us < ϋL, so [C7s,t] = 0, and then [P,t] = 1. This is (4).

Assume 0 ^ C7-1 Π i7s ^ Z7. Let A = [s, F]. C7 + A is contained in a

nondegenerate 6-dimensional space B. As ί7 + A < β, β is TF-invariant

so W < Ω(B). Ω(B) ^ L4(g) or ^(g) with t corresponding to a transvection

under the isomorphism, so W is isomorphic to L2(q) or a Sylow 2-group

of L3(g). As [t, ts] = 1, it is the latter. This proves half of (5).

If Us Π C/1 = 0 then [7, s] < Γ = U + Vs is nondegenerate and W-in-

variant, so W < ΩiY). Hence Y ^ D2, fl(Y) s L2(q) x L2(g) and Tf is a

factor of Ω(Y). Further CG(W) = (C(Ψ) Π β(Γ)) X ΩiY^-) s L2(g) x fl;.4(g).

This completes (5) and shows that (6)-(8) follow from (3) and (5).

(11.10) Let t be a transvection and s an involution in G such that

CG(t)°° ^ CG(s)°°. Then either s is a transvection or G = Sp4(q), s is of

type a2, and tG is fused to sG by a graph automorphism.

Proof. Let X = City and Y = C(s)~. Z/0 2(Z) ^ Gw_2(^) where

G = SL, Si7, or Sp. But the factors of Y/O2(Y) are Gn_w(g) and GΛ(g)
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where β is the rank of s and k — β9 £ — 1 or β — 2. We may take £>1,

so n - 2 < β < n/2. Thus n = 4 and fc = ^ = 2. However O2(C(/2)) is

abelian while 02(COΊ)) is not. Hence G — /Sp4(g) and s is of type α2

(11.11) Lei £ = a2€Ωn(θ) &nd s an involution in G with C(s)°° = C(t)°°9

then s is primary.

Proof. C°°/O2(C) ^ L2(q) x β^_4(g). Further unless n = 8 and e = + ,

Ωn-ι(Φ is simple and only primary involutions have a factor of this

kind. If n = 8 and e = + then Ω^Xq) ̂  L2(^) x L2(^) and only primary

involutions have 3 factors.

(11.12) L e t t = jΎ o r b x . L e t h b e a n i n v o l u t i o n i n C — T a n d geC

w i t h

Then

(1) H2 = I,HA = A,CH = C and CA = 0.

(2) // [Y,H] = 1 then

h° =
1

Y-\AX + P + HP) H
_X-lRY-\P + HP) + RY~ιA + X-'CP + B χ-

(3) Assume A = (al9 , αw)*, C = (c^ , cm)9 and

J
aλ = α2 and cγ = c2.

Proof. Calculation using 4.4 and 4.5.

(11.13) Assume the hypothesis of 11.12 with h as in 11.12.1 and

•-H-
Assume Cτ(e) ^ CΓ(fe) and C°° Π C(e) = C°° Π C(fe). Tfeen 7ι e eZ.

Proof. Let # e Cτ(h). Then by 11.12, P = HP and R = RH, so that
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Cτ(h) < Cτ(e). Thus as Cτ(e) ^ Cτ(h), even Cτ(e) = Cτ(h). Hence 11.12

implies RA = CP whenever </ € Cτ(e). This implies α̂  = ĉ  = 0 for i > 2.

By 11.12, αj = α2 and cx = c2. Next as C°° Π C(e) ^ C°° Π C(fe), fe cen-

tralizes an element g with

By 11.12, C = CY + β ί ί + β, which implies cx = 0. Similarly a, = 0.

Therefore fe e eZ.

(11.14) Let t be a transvection and β an automorphism of C°°. Let

1

e =

Then eβ is a transvection and a(e)β = a(eβ).

Proof. Let h = e .̂ By 11.7, C°° = TL. Cc~/T(e) ^ CCoo/τ(h), so by

11.10 either feΓ is a transvection in C/Γ or C/T ^ ^ 4 ( g ) and hT is of

type α2. However in the latter case q3 = |CΓ(e)| while g2 = \Cτ(h)\. Hence

conjugating if necessary in C°° we may take h e eT.

Then by 11.13, h e eZ. Further the involutions in a(e)Z = X are

precisely those with the same centralizer as e (or h) and thus β acts on

X. But a(e) = [X,N(X)], so α(β)^ = α(e). Hence hea(e), so έ is a

transvection and a(e)β = αr(e) = α(fe).

(11.15) Let t = α2efl;(g). Le£ ̂ 3 δe an automorphism of C°° and

Proof. The proof is similar to that of 11.14 and is omitted.

Section 12. Involutions in Exceptional Chevalley groups of characteristic 2.

Recall the notation for groups with a (B, Λ/>pair established in Sec-

tion 3. Let G = G(q) be a Chevalley group with q even, and G Φ F^q),

PSp{n, q) n > 4. Let G have root system J. For G Φ PSU(n, q) n odd,
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2Ir

4(q)>Sz(q),2G2(q) let r be the root of highest height in Δ and Ur the

corresponding root subgroup. In the remaining cases let Ur be the root

subgroup of order g3, q2, g2, g3 respectively, such that Ωλ(TJr) = Z(U). For

s e J write Zs = Ω^JJs)- In all cases Zr < Z(U) and, unless G — PSL(n, q),

P = NG(Zr) is a maximal parabolic subgroup of G.

The structure of P is described in [7]. In particular P — QLH where

Q = O2(P), L is a Che valley group (or a direct product of Chevalley

groups in case G is an orthogonal group of dimension > 8), QL<\P and

QL < C(Zr) < P.

(12.1) Two conjugates of Zr generate a 2-group or a conjugate of

Proof. Let Ω = {Z%\ geG}. Then from 2.8 and 4.2 of [7] we see

that (lp, lp) = m is the number of orbits of P on Ω and

m = 2 if G has rank 1

m = 3 if G is unitary or symplectic of rank > 2.

m = 4 if G = G2(<?) or 3Z)4(g)

m = 5 if G is an exceptional group of rank > 3 or if G ^ 2F4(g).

m = 6 if G ̂  PS0~(2n, q), n>4, PSO+(n, q)n>4, or PSL(^, g) ti > 3.
m = 1 if G ^ PSO+(8, q) (there is an error in [7] for this case).

We will do the case m = 5, the other cases being quite similar. Con-

sider the following subsets of Ω.

Ω1 = {Zr} , Ω2 = {Z°:Zr Φ Z\ < Q} , Ω3 = {Z?: Z? < P - Q} ,

β4 = {Z?: <Zr, Z
g

r} is isomorphic to a Sylow 2-subgroup of L3(q)} ,

β 5 = {Z?: (Zr9 Zf) s <^ r, £_r> = SL(2, g)} .

We first note that each of these subsets is P-invariant and it is easy to

verify that ΩtΦ^ for i = 1, , 5. This requires information concern-

ing the root system Δ and commutator relations, but is elementary.

Consequently these are the orbits of P in Ω. If Z% e Ωx U Ω2 U Ωz U ΩA

then (Zr,Zΐ) is a 2-group. The result follows.

We remark that for G = PSO±(2n9 q) n > 4 {G Φ PSO+(8, g)), we have

L^L,χ L2 with conjugates of Zr in each of LιyL2. If G = PS0+(8, g),

then L = Lxχ L2χ L3 with each Z^ ̂  L2(g). This accounts for the extra

orbit. In PSL(n, q) Q = QiQ^ with Qx <3 P, QTO O P. This also gives an

extra orbit.

(12.2) Let t be an involution in G. Then there is a conjugate Z9

r of Zr
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such that (Zg, Zg

r

ιy ~ <Zr, Z_r>.

Proof. If G has rank 1 this is obvious. For G of rank 2 the

classes of involutions are known (see Section 18) and we check this

directly (keeping in mind G φ Sp(4, q)). So we may assume G is of

rank n > 3 and we proceed by induction on n. Since n > 3 L contains

a conjugate of Zr. We first conjugate, if necessary, replacing t by an

element of U. Suppose t g Q. Then considering the image of t in

LQ/Q — L we inductively see that there is a conjugate Zg

r of Zr such

that (βg

r9Z
g

r

ιy is not a 2-group. So (12.1) yields the result. Consequently

we may assume that t e Q.

If teZr~ Q', then we obtain the result by considering ίe<C7±r> =

SL(2, q). So assume that teQ — Zr and consider the image i of t in

Q = Q/Zr. Write Q = []*-i E7̂  when the product is over a certain set

of roots in Δ+ such that βi = r for some i and such that Q = t/^

X ' * * X ^ Also P — (B, Si, , ŝ _!, 8J+19 , sn} for some j or G =

PSL(n + 1, QO and P — <(.£>, s2, , sn_i>. In the latter case let j — 1.

We choose notation so that Uβl = C7αjf. and Uβ2 = D"αy+α. where i,y are

given as follows

i) G ^ PSO±(£9 q) t even, ^ > 8 = 2 . i = 1

ii) G classical not in (i) j = 1 i = 2

iii) G = ^ ( Q ' ) ,
 2£76(^) i = 1 ί = 2

iv) G ̂  £7β(^) y = 2 ΐ = 4

v) G ̂  E7(q) j = 1 i = 3

vi) G ̂  ί78(g) / = 8 i = 7.

Suppose that for some ^ ϊ projects non-trivially to Ϊ7^ and βe ~ ecj.

Then from (2.4) of [7] and the choice of i we have an element w eW

Π L such that tw projects non-trivially to Uβ2 = C7βy+β<. Using (3.1) (i)

we can find an element u of C/_α. < L such that ίww projects trivially to

Uβl and non-trivially to Uβ2. Then conjugation by Sj shows that twusj e

U — Q, reducing to a previous case.

Finally we have the case where no such I exists. This only occurs

when all non-trivial factors in I correspond to roots of length different

from that of aj. This can only occur when G — 2E6(q),PSU(£,q) A odd,

PSO~(S, q). In these cases we check the possible roots γ with Uγ < Q

and argue essentially as above, using (3.1).
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Proof. Let g e NG«Zr,Z_r}). Then setting X = <Zr,Z_r) there is

some xeX such that gx eN(Zr) = P. Now P == QLJΪ and Lίί < iV(Z).

So write gx = qy where qeQ,y e LH. We then have q e Q ΓΊ N(X) and

checking commutators we see that [Z_ry q] is a 2-group contained in Z7W0,

where w0 is the word of greatest length in the generators {s19 « ,sn}.

Consequently [Z_r, q] < UWo Π X = Z_ r, and g e N(Z_r). Then g e P Π PWo

= Lίf and so g = 1. Consequently geXLH and the result follows.

(12.4) Let teG be an involution. Then some conjugate of t lies in

LZr(l).

Proof. Since t normalizes (Z^Zfy this follows from (12.2) and

(12.3).

We define roots r = t0, tl9 , ίfc as follows. Let L be the Levi factor

of N(Zr). Then L is a Chevalley group if G is not an orthogonal group,

and L = X xY with Y ̂  SL(2, g) and X orthogonal if G is orthogonal.

(X = L2(q) x L2(g) if G s PSO+(8, g)). In the first case let tλ be the root

of highest height in the root system Δx c Δ of L. In the second case let

tx be the unique root in Δ with Utl < Y and let t2 be the highest root in

Δx. Now continue the selection of ί/s by considering NL(Ztl) (or Nx(Zt2)

for G orthogonal). Then setting Z€ = (ZtoZ_t^ we have Z ^ SL(2, g).

(12.5) a) < Z ί : i = O,. .,fc> = I o χ . . . χ I f c .

b) Z?αcfc involution in G is conjugate to one in Xo Xk.

c) If G = PSL(n, g), PSU(n, g), ̂ 6(g), 2F4(g) or 2Eβ(q), then Nw(Xo

• Xk) induces Sk+1 on Xo Xk and each involution in G

is conjugate to yt for some ΐ = 0, , fc, where yt — Zr(l)Ztl(l)

• Ztt(X).

Proof, a) follows from the construction of the Z/j/s, noting that

at each stage X is contained in the Levi factor of N{Zi_^). Also b)

follows easily from (12.4) and construction. It remains to prove c).

From b) it suffices to prove that NW(XO Xk) induces Sk+1 on Xo Xk.

But this follows using induction and calculating with roots to see that

there is an element w eW stabilizing {XQ - Xk] and interchanging Xo

and -XΊ.

From (12.5) we obtain just a few possibilities for the conjugacy

classes of involutions. It remains to narrow this list still further and

to find representatives more convenient for finding the centralizers. We
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use the notation and labeling or roots as in Table 1,2, 3,4 of Section 3.

We remark that the following results give representatives for the

classes of involutions, although we wait until later sections to prove

that no further fusion takes place among the involutions listed. We now

allow the case G = FA(q).

(12.6) (Guterman [14]) Each involution in F4(g), q even, is conjugate to

one of the following:

i) t = £7,(1)

ii) u = 17,(1)

iii) tu = £7,(1)17,(1)

iv) v = £7β(l)£7,(l).

(12.7) Each involution in 2E6(q), q even, is conjugate to one of the fol-

lowing :

i) t = Ur(X)

ii) u = £7,(1)

iii) v = E7α(l)E7,(l).

Proof. Here P = P1 = Q A # = N(Zr), where Lx = <ί/±α2, ϋ±at, U±ai>

^ SC7(6, g). Then tx = a2 + 2a3 + 2a4 = r17, t2 = a2 + 2a3, and ί3 = ** = 2̂

Then by (12.5) c) each involution in 2EQ(q) is conjugate to one of

£7r(l) , £7r(l)£7rχτ(l) , Z7r(l)£7riτ(l)E7βi+1βi(l) , £

By (12.5) b) there is an element g eG such that g interchanges Ur(l) and

C7α2(l), and g interchanges Uri7(l) and C7α2+2α3(l). Then (J7r(l)E7riτ(l)Γβ (1> =

(ffβ,(l)tf.,+ι«,(l))IWl) = Ua%(X)Uβt+βt(X) and by (3.1) (C7 r(l)C7 r i7(l)r-(1)σ--(5) =

I7.i+α,(l) - 27,(1), where d e F82 satisfies 3 + 3« = 1. Set α? = gUβt(X)U_βt(X).

We have (£7r(l)E7riτ(l)Z7βi+Jα,(l))* = £7βf+βs(l)E7riτ(l). Conjugating this last

element by s^^s^Ss^ we obtain E7β(l)E7^(l).

Finally consider the involution yz = Σ7r(l)C7ri7(l)C7α2+2α3(l)l7α2(l). Con-

jugating by tfβ,(l)ϊ7_βi(l)β2 we have y3 - C7r(l)C/ri7(l)£/α3(l) - flr. Next

conjugate g by £7r4(l)Z7n(l)s2SiS2£7βa(l) to get

g ~ C7r9(l)C7r8(l)t7r5(l) .

Then conjugate this by s2Ua9(l) to obtain

g ~ ί/r9(l)£/rβ(l)C7ri4(l) (here use (3.1)(iv)) .

Next conjugate by £7ri7(l)Z7r,(l) to get
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g ~ u
Finally conjugation by s3s4s2s3s2 gives

g ~ Uaa)Uβ(l)

This completes the proof of (12.7).

(12.8) Each involution in E6(q), q even, is conjugate to one of the fol-

lowing :

i) x=UrO)

ii) y = Uaa)Uβ(l)

iii) z = #,(1)17,(1)17.(1).

Proof. We proceed as in (12.7). Here P = P2 and L^<JJ±ai:iφ2y

^ SL(6, g). The roots t0, , ί* are ί0 = r, ^ = r8, f2 = r29, t3 = r31. Con-

sequently each involution in G is conjugate to one of

Ur(ΐ) , UrOWrJX) , Z7 r(l)t7 r β(l)l7 r M(l) , C7r(l)C7r8(l)C/r29(l)C7r31(l) .

Conjugating C7r(l)C7rg(l) by s2s4s3 we obtain Ua(l)Uβ(ΐ) and conjugating

£7 r(l)[7 r8(l)£7 r29(l) by s2sAs3s6s5 we obtain I7r(l) 17,(1) 17.(1). I t remains to

consider

g = C/r(l)C/r8(l)C/r29(l)C7r31(l) .

Conjugating g by s2szs1sβsAs3sδ we obtain

Conjugating by Z7ai(l)E7β,(l) we have

g ~ C

Next conjugate by ί7αi(l) to obtain

g ~ E

2 3(l) C/r9(l) Z7r(l) Z7r25(l) Ur,Q) ϋrn(ΐ) UrJX)

ua)urQ.)urjχ).

Then conjugation by C/r25(l) we have

Finally conjugation by SiS^gS^^Si shows that
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g ~ Ur(X)UJX)U.O.) .

This completes this proof of (12.8).

(12.9) Each involution in E7(q), q even, is conjugate to one of the fol-

lowing :

i) x = 17,(1)

ii) y = U.(X)U,(X)

iii) z = 1^(1)^,(1)17.(1)

iv) u = ϋr<X)U+<X)U,Q.)

v) v = ura)uβa)uΨa)uf(i).
In the proof of (12.9) we will use (12.4) as usual, and consequently

we need the involutions in L = Lx s SO+(12, q). We have

(12.10) Let G = E7(q) and Lx — (U±ai: i φ 1>. Then each involution in

Lj is conjugate to one of the following:

i) Uraa)
ii) i7rio(l)C7r37(l)

iii) Z7,.(1)17,T(1)

iv) I7,M(l)l7,4α)I7,.(l)

v) UJX)ϋJ(X)Urta)
vi) C7r3β(l)C/r3

Proof. ^ has root diagram of type Dβ with fundamental system

{az, as, at, α6, ae, aΊ}. The highest root is Uris = Z(U Π Lj) and NLl(UrJ =

Q0L0iϊ0, where Qo = O2(Q0L0ίί0),ίί0 = H Π Lu and L, = <U±ai: ί Φ 1,6> =

<C/±Λi: t = 2,3,4,5> x <?7±Λ7> S «SO+(8, Q) X SL(2, q). Consequently each

involution in Lλ is conjugate to an involution in Lo x <C/±ri5>. We first

find the involutions in (U±ai: i = 2,3,4,5> s <SO+(8, g). For this we again

use (12.4) noting that the highest root is [7rs5 and the corresponding

Levi factor is <C/±a2> X <C/±«3> X <^±,5> Conjugating by elements of

<s2, , s5> we obtain the fact that each involution in <t/± α i : i = 2,3,4, 5>

is conjugate to one of

I7rtt(l) , Uat<X)UrJX) , U

(For this use the fact that (C7aa(l)C/a3(l)C7α5(l)[7r85(l))9 = Un(X)UJX)UvQ.),

where g = Uai+a^)Uasi+aSX)Un+aι(V)Ua3+at+aβ.).) Consequently each involu-

tion in L t is conjugate to one of



42 MICHAEL ASCHBACHER AND GARY M. SEITZ

J 7 r M ( l ) , C7α 3(l)C7 r 3 5(l) , C7α 5(l)C7 r 3 5(l) , C7α 2(l)C7 r 3 5(l) ,

C7α 3(l)C/α 5(l)C/ r 3 5(l) , C7 r 3 5(l)C7 r i 5(l) , C7α 3(l)C/ r 3 5(l)C7 r i 5(l) ,

ω , C7α 2(l)C7 r 3 5(l)C7 r i 5(l) ,

We easily have ϊ/ r M (l) ~ J7 r i β(l). Conjugating Uαz(l)Urn(X) by s6sδs4s2s7s6sδ

s4s6s7, Z7βa(l)Z7rM(l) by s6s7sδs4s3s6sδs4s6sδ, and C7ra5(l)ϊ7riB(l) by s6sδ we see

t h a t each of these elements is conjugate to Z7rio(l)Z7r,7(l). Conjugating

Z7ββ(l)Z7rw(l) by s6s7s4s3 we have this element conjugate to J7 r β(l)J7 r 7(l).

Next conjugate Uαt(X)Uαfΐ)Uru(ΐ) by s,sδs4s2s7sδs6s4 and obtain £7 r 3 6(l)ί7 r 4(l)

Z7rβ(l). Conjugate C7α3(l)C7r35(l)C7ri5(l) by s6s5s4s2sδs4s6 and get this element

conjugate to C/ r 3 6(l)ί7 r 3 3(l)[/ r 5(l). Next conjugate E/α5(l)C7y35(l)t/ri5(l) by

s6s7s4s5 and get C7r36(l)Z7r4(l)ί7r8(l), and conjugate C7α2C/r35ί7ri5 by s4sQsδs7s4szs7

getting Urua)Ur,(X)UrJX).

We now prove (12.9). Using (12.4) we have each involution in

G = E7(q) conjugate to one in Lx?7r(l). Consequently each involution in

G is conjugate to gr for g one of the involutions in (12.10). We must

show that each of these is conjugate to one of x,y,z,u,v.

Conjugating Z7ri5(l)E7r(l) by s&sfo and £7rio(l)[/r37(l)t7r(l) by s1s3s4s5s2s6,

we see that Z7ri5(l)C7r(l) ~ y and l7riβ(l)I7rw(l)J7r(l) - z. Next conjugate

J7rβ(l)ί7rτ(l)J7r(l) by s1s3s4s255s4s6s5 to obtain u. Transforming Z7r3β(l)?7r4(l)

Z7rβ(l)ί7r(l) and C7r36(l)?7r33(l)C7r7(l)ί7r(l) by s1s3s5s4s2s5s4s5s6s3 and s1s3s4s5s6s7s3,

respectively, we check that both of these involutions are conjugate to v.

We claim that g = C7r3β(l)ί7r33(l)C7r5(l)C7r(l) is conjugate to z. To see

this first conjugate by s1s3s4s5s2s6s5s4 to get

g ~ ϋrM(l)UrJX)ϋriιa)ϋrJX) .

Conjugate this by Ua7(l)Ua5(T) and obtain

g - C7r45(l)C/r4β(l)C7ri4(l)C7r44(l)C7ril(l) .

Then conjugate by C7βs(l) to obtain

- C7r45(l) C7r46(l) UrJX) Uru(l) Ur(X) UrJX) Uril

= urjχ)urjχ)ura)urιlω.

Finally conjugating by UU6(l)s7s,sδs4s2s6sδs4s2 gives g ~ z.

The last case is g = C7β,(l)J7r,B(l)l7riβ(l)Z7βB(l)Z7r(l). Conjugate g by
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t h e e l e m e n t s1s6S4S2S3S4s5S4S2S3sτs6s7S4S5S3S4S2 a b o v e t o g e t

g ~ vUai+a,+aι+<κl+a,(ΐ) .

Then conjugating by s2s4 Z7,,,(l) we have

g ~ UrtSl)UrιJl)Urua)UrJX)UrJX)UrJX)Uru(l) .

Conjugation by £7α,(l) then gives

g ~ UrJX) UrJX) C/ril(D I7ri,(l) Uri3(D UrJX) UruQ) Uru<X) UrJX) UrJX)

= UrJX)UrJX)UrJX)UrJl)Ura<X)UrttO.) .

Next conjugate by £7α3(l) and get

g ~ UrJi)UrJX)UrJX)UrJX)UrJX)rJX)UrJX)UrJX)UrJX)

Consequently g ~ UrJX)UrJX)UrJX)UrJX)UrJX) and conjugation by

ί/_a,(l) and then by s5s7s3s4s2 gives g ~ v. This completes the proof of

(12.9).

(12.11) Each involution in Es(q), q even, is conjugate to one of the fol-

lowing :

i) x = 17,(1)

ii) y = Ua<X)U,(X)

iii) z = [7r(l)C7a(l)ί7e(l)

iv) u = UJ\)Uiί\)U,Q.)UJ\)

Proof. For G = Es(q) we have P = P 7 and L = L7 gί E7(q). By

(12.4) each involution in G is conjugate to one in L7f/r(l), so each in-

volution in G is conjugate to one of

ur(i), u,na)ur(χ), u.ίl(X)u,jχ)ura),
UtJX)U.JX)U,ua)Uτa) . ί/Sl3(l)t7Sll(l)f/Sl5(l)C7r(D ,

U.JX) U.JX) U.JX) U.JX) Ur(X) ,

where our notation is combining that of Tables 3 and 4. We will write

USi rather than Ur( to indicate we are using Table 3 for E7. For example

Conjugating Z7βaτ(l)17r(l) by s8s7s6s5s4s2 we see that this involution is

conjugate to y. Then conjugate ϊ7 ίa i(l)tf ίM(l)ϊ7r(l) by s^s^s^s.s^s^

obtaining z.
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Next we claim t h a t g = C7Sl3(l)C7Sl4(l)[7Sl5(l)C7r(l) ~ z. To see this

first conjugate by S^SQSHS^S^S^SQS^ gett ing

g ~ C7ra2(l)C7r34(l)C7r24(l)C7r37(l) .

Conjugate this element Z7β7(l)E7βa(l) to get

g ~ C7r22(l)C7r25(l)C7r3β(l)C/r34(l)C7r24(l) .

Then conjugate by Z7β5(l) and obtain

g ~ C7r22(l)C/r25(l)C7r34(l)C7r24(l)C7r25(l)

- C/r22(l)i7r34(l)C7r(l)i7r24(l) .

Now conjugate by Z7r,6(l) to get

g ~ C7r22(l)C/r34(l)C7r24(l) ,

and then by SjSiS^QS^s^s^SzS^SQSγ to get the claim.

The last case is U,JX)U,JX)UtJX)U,JX)Ur(X) = QU.JX) where g is

as in the preceding paragraph. The series of conjugations leading to

g ~ z when applied to gUSi8(ϊ) yields

<7C7S48(1) ~ zϋtu(X) .

From here conjugate by s7s6s5s4szs1 and get #?7S48(1) — u. This completes

the proof of (12.10).

Section 13. Centralizers of involutions in F4(q), q even.

Let G = FA(q) with q a power of 2. Then W = <s1? s29 s3, s4> and the

action on {a19 a2, a3, <*4} is as follows

(aj)Si = α^ if | ΐ — j \ > 2 .

(α<)Sί = — at .

(^)s< = α, + «< if \i - j\ = 1 and (i, /) ^ (3,2) .

(α2)s3 = α2 + 2tf3 .

We will distinguish the roots r = 2342, s = 1232, α = 1221, and β =

1242. Then r and /3 are long roots (hence conjugate under W) and s

and a are short roots (and conjugate under W). Also r is the root of

highest height.

In [14] Guterman determined the four conjugacy classes of involu-

tions in FJjq) and their centralizers. So we simply use his results together
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with some necessary additional information concerning structural proper-

ties of the centralizers. From (12.6) we have

(13.1) F4(g) has four conjugacy classes of involutions with representa-

tives given by

i) t = Ur(X)

ii) u=Us(l)

iii) tu = Ur(X)U,a)

iv) v = E7β(l)17,(l).

We next discuss the centralizers of these involutions. CG(t) = O2'(P^)

= Qi<# ±«* i = 2,3,4> = QA, where A ^ Sp(fi, q). Moreover Z(CG{t)) =

Z7r = Qί, Qi < CG(tY, and P x contains a subgroup of order q — 1 transitive

on C7*. (The structure of Px is discussed in [7], Section 4.)

The graph automorphism interchanges r and s, fusing t and u.

Consequently CG(u) = O2\PA) = Q,{U±a.: i = 1,2,3> = Q4L4, where L4 ^

Sp(6, g). Also Z(CG(U)) = Us = Qi, Q4 < CG(u)', and P 4 contains a sub-

group of order q — 1 transitive on C/ξ.

Next consider tu, with centralizer CG(tu) = O2'(P1>4) = QiQ4<t/±α2, C/±β8>

= QiQ4L14, where L14 ^ Sp(4, g). Using Table 1 together with (3.1) we

show that (Q&Y - Uri0UrilUri2Uri3 x ί/rί/s and ( Q ^ J ' - Z{QXQA).

Now (3.1) shows that <t/±α3> = <f/α3, s3> ^ SL(2, g) acts on C/ri0?7ril as

it does on its natural 2-dimensional module over Fq. Similarly <C/±α2>

^ SL(2, g) acts irreducibly on UriJ7riz. Consequently Z(CG(tu)) Γ) (QiQt)'

= i7rC/s. Consider the elementary abelian group QiQJiQxQiY, which is

acted on by L M . Using the action of the groups <C/±α2> = SL(2, q) ^

(U±a^) we see that in this action the trivial space for L1>4 is the image

of <ί/r9, Uri7}. Moreover L M does centralize <£/rg, Ϊ7ri7>. However

We make one final observation concerning CG(tu). Suppose P is

parabolic and contains CG(tu). Then considering P/O2(P) we see that

P - Λ,P 4 , or P1 4. On the other hand U < CG(t) < P, so Lemma 1.6 of

[19] implies that P = P19 P 4 or P1 4. So CG(tu) is contained in only the

parabolic subgroups Pί9P4,Pu.

Next we consider CG(v). Guterman proves that CG(v) = (JJ±at>

U±ai, Ur: r > 0, r Φ a2y α3, ̂  + α2, a3 + α4>. Then CG(v) < P2>3, covers

O2'(P2,3/O2(Λ,3)), and setting UQ = CG(v) Π O2(P2)3), we have ?70 = O2(CG(y))y

|O2(P2,3): ί/0| = ^4, and CG(v) = UQ«U±ai> x <C7±α4».
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We will need information concerning the structure of Uo and the

action of L2>3 = <£/±αi> x <Z7±α4> on Z70. First we note that Uo =

< [ / r : r e i f 2 U J£?3,r Φ a2,α3,ax + <*2><*s + <*4> Next we use (3.1) and Table

1 to determine C/'o and Z(U0). For example [£/ri6, E7rJ = Z7rβ, [E7r20, UrJ

= Uru, [Ur3, Urβ] = Uru, [Uriι, UrJ = Uri3, [Ur§, UrJ = Ur7 = Uβ, [Ur9, UrJ

= Uri2 = £7α. So each of Ua, Uβ, Ura, Urit, Uru, and t/r24 are in U'o.

Moreover we see that each of these is in Z(U0) It is then easy to check

that U'o = Z(UQ) = C7αC7, X UrJJriJJriJJr^ and that [ί/0,L2)3] - t/0. Also

(3.1)(iii) shows that UaUβ<Z(CG(v)), whereas (3.1)(ii) shows that <C/±αi>

acts irreducibly on Urs x C7T24 (which affords the natural module for

£L(2, g)), and that <C/±α4> acts irreducibly on Z7ri3 x Uru.

Assume q > 2. Then using (3.1) and Table 1 we have [Uai, Z7ri6] =

C7r3, so Urs and C7̂ 3 = i7r5 are in CG{v)'. Similarly [C7α4, ϋu] = Uri2Ur6,

so C7ri2, Ure, Us

r\ = f/r4 are all in CG(vY. Continuing we see that Ur <

CG(v)' for each root r e J+ satisfying Ur < UQ. In particular C0(v) =

O\CG(y)) = C^Cv)'.

Continue the assumption that q > 2. It is easy to see that there is

a subgroup Ho < H such that Ho = H1 x H2, H1 = H2 is cyclic of order

q — l,Hi centralizes Ua and is fixed-point free on Uβ, while H2 centralizes

Uβ and is fixed-point-free on Ua. For example this can be seen by

observing that <C7±α, U±β> = <C7±α> x <f/±^> = SL(2, q) X SL(2, g).

We claim that the set U*aU*β is uniquely determined by the abstract

structure of the group CG(y). Recall that Z(U0) = UaUβ X Y with

y^Cβί'v) and UaUβ — Z{CG{v)). So C/̂ f/̂  is uniquely determined. Con-

sider Uo = Uo/Y and let bars denote images. Using (3.1) we have Uo =

B1 x B2χ β3, where Bs is elementary and BlyB2 are both special of

order qδ with respective centers Πa and D .̂ In fact for ί = 1,2 2?* =

<Zί, Yt>, where Z€ and Y< are elementary of order q2 and for each
xieX*i,\CYi(xί)\ — q. It is then easy to describe the elements of order

4 in Uo and to compute their squares. We conclude that the elements

in U*aU*β each have the same number of square roots, and this number

is different from the number of square roots of an element in U*a U U*β.

This proves the claim.

Finally we claim that the only maximal parabolic subgroups of G

containing CG(v) are P3, P4, PίlS% and Pl*s\ We first check that CG(v) <

P{lS2 and Psf\ This is easily done by showing that Uo < Q[l8% Π Qί4S3 and

noting that L2,3 < Lf82 Π Ll*sκ
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Suppose CG(v) < P\ some g. First assume that Uo Π O2(PgY — 1.

Then Uo Π O2(P{) is abelian. The results in [7] Section 4 show that

IC70 Π O2(Pf)| < α10, so that |Z70O2(Pf)/O2(Pf)| > 48. On the other hand

Lg ^ Sp(6,q) and CG(v)O2(Pg)/O2(P°) is contained in a proper parabolic

subgroup of Pί/O2(Pf) that has a section isomorphic to <£7±αi> x <?7±α4>

= SL(2, g) X SL(2, g). This is impossible. Consequently Uo Π O2CP07 =£ 1

and tf? Π Uo Φ 1. Now CG(v) < O2\Pl) = C(Ug

r), so ϋ% Π Z70 < Z(Cσ(t;))

and consequently Ug = Uβ. As r = /3S2Sl, we have # e P ^ ^ and P? = PflS2.

Similarly (by applying a graph automorphism) if CG(v) < Pf, then Pf =

P|4S3.

Next suppose CG(v) <P°2. We consider two cases. First assume that

Uo < O2(Pf). From Table 1 and (3.1) we see that Q2 has class 3 with

[Q2> Q2> QJ = Ur8Ur2i and in P2, <C/±αi> acts irreducibly on [Q2, Q2, Q2].

Now L2 ̂  SL(2, qθ X SL(3, g). So CG(v) must cover <U±ay if g > 2 and

O3«l7±αi>
δί) if g = 2. In either case CG(y) acts irreducibly on [Q2, Q2, Q2]

9.

Since |E70| = qls and |Q| | = g20, we must have [Q2, Q2, Q2] < ί/0 and hence

in Z(U0) and normal in CG(v). It then follows that [Q2, Q2, Q2]
g = UuUru9

geNiϋrJUrJ = P2. Now assume that ί/0 £ O2(P|), so that CG(v)Qi/Qg

2 is

contained in a parabolic subgroup of Pi/Qξ. This group has the form

Pi Π P f for a? 6 Pi. As SL(2, g) X SL(2, g) is involved in CG(v), i = 3 or 4.

Now #£ = p2g for some p2 e P2, so (Pf Π PfΛ) = (P2 Π Pi)P2°. If i = 3,

then since P 2 Π P 3 = NG((O2(P2 ΓΊ P3))0 = NG(£7£) and C70 < O2(Pf Π PfO,

we have P 2 Π P 3 = (P2 Π Pz)
P2g, p2g e P 2 Π Pz,ge P2, as desired. If i = 4,

then CG(Ί>) < (P2 Π P 4)P a g < P|4S3. But then (P2 Π P,)P2g is a parabolic sub-

group of P|4S3 and it is easy to see that this must be (P2 Π P4)
S4S3. Con-

sequently (P2 Π Pdv*g = (P2 Π P4)
S4S3 and p2^s3s4 eP2 Π P4. Again 5r e P2.

So in all cases Pf = P 2 . Similarly we show that CG{v) < Pi implies Pf =

P 3 . This proves the claim.

We have now proved

(13.2) The maximal parabolic subgroups of G containing the centralizers

of the involutions in (13.1) are as follows:

i) CG{t)<Pλ

ϋ) CG(u) < P 4

iii) Co(tu) < Pl9 P 4

iv) CG(v) <P2,P3,Pϊs%Pr>.

(13.3) With notation as in (13.1) we have
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i) CG(t) = (CG(t)Y = O2'(Λ). Z(Cσ(t)) = Qί = C/r.

ii) cG(%) = (CG(u)Y = O2'(P4).

iii) CG(^) = O2'(PU) = QχQΛ.4

.) = ( Q ^ ) ' and Z(CG(tu)) = £7r[/s .

iv) CG(V) = <C7±βl, Ϊ7± β 4, Ur: r > 0, r Φ a2, a3, a, + a2, a3 + a,} = C/0L2>3,

= O2(CG(v)) = CG(v) Π Q2Q3 αwd L2,3 s >SL(2, g) x SL(2, g). C7J =

[7^ = Z(P0(v)), Uo = [l70,L2 f 3], and /or g > 2 CG(^) = C^W7 -

O\CG(v)).

(13.4) For g > 2 there is a subgroup Ho — Hx x H2< H such that H19

H2 are cyclic of order q — 1, H1 centralizes Ua and is ftxed-point-free on

Uβ, and H2 centralizes Uβ and is fixed-point-free on Ua. Also q > 2

implies that Ό\Wβ is determined uniquely by the abstract structure of

the group CQ(v).

For the case q > 2 we consider the centralizer of a certain subgroup

of H.

(13.5) Let q > 2 and set W0 = HΠ <C/±r>, Wx = H Π <?7±5>. Then CG(Wi)

= WiX Lί9 when Lo = <ί7± α 2, C/±α3, i7±α4> and Lx - <D r

± β l, I7±αβ, C/±α3>. More-

over Lo^ L^ Sp(6, q).

Proof. We deal with WQ, the proof for ^ being similar. Let P =

ΛίG(C7r) = Q(L0 x TF0), where Q = O2(P). Then T70 is fixed-point-free on

Q. Similarly WQ is fixed-point-free on O2(NG(U_r)). We conclude that

LQ — (Uγ:γ e Δ,U7< C(W0)}. In particular Lo is invariant under CN(WQ),

where N/H = TF, the Weyl group. The Bruhat decomposition gives

CG(WQ) = ^ ( ^ ^ ( T F ^ C ^ ί Ψ α ) = <Cί7(ΐ^0), ^ ( Ψ o ) ) . Now NG(L0) > Lo x

<ί/±y> and Lo x <C7±r> - <ί/δ: δ e J, Z7δ < iV(L0)>, so Ĉ CTFo) < 2V(L0 x <C7±r»

and it follows that CN(W0) < Lo x <?7±r>. The result follows.

Section 14. Centralizers of involutions in 2E6(q).

In this section let G = 2S6(g), g even. Then G has Weyl group of

type FA and roots will be labeled as in Section 13 and Table 1. The

action of W on Δ is as in Section 12.

From (12.7) we have

(14.1) Each involution in 2EQ(q), q even, is conjugate to one of the fol-
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lowing

i) t = ϋr(X)

ii) u = Us(l)

iii) v = C/α(l)?7,(l).

We now find the centralizers of t,u, and v. For this we will use

the results of Section 4 in [7] for information concerning the parabolic

subgroups P1 and P4. For Px we have Qλ special of order g21 with

ZiQJ = £7r = C7r24 and Lt ^ SE7(6, q) acts irreducibly on Q/Z(QX). In ad-

dition Q A = CG(C7r) - CG(ί), A = Lί, [Lx, QJ = Qx, CG(t) = CG(£)', and

iJx = CH(L^) acts regularly on Z7*. For P 4 we have Q4 = O2(P4) and

i24 = Z(Q4) has order g8. Moreover Lx ^ SO~(8, g) acts on R4 preserving

a non-degenerate quadratic form and in this action the isotropic 1-spaces

are conjugates of Ua,a long. We will use the following notation for a

a short root:

Then Va has index q in Ua.

Consider u = US(X), an anisotropic vector in # 4 . Consequently CL4(^)

^ SO(7, g). From (3.1)(iv) we see that CUa (u) = 7α3. Moreover s3 e

<Fα 3, F_α3> ^ SL(2, g).

Then UrJJri^VriJJr%VrχJUruVrJJrJJrι has order <f and hence equals

U Π CLi(u). The Bruhat decomposition can now be used to show that

<C7αi, C7α2, 7α3, s1? 8i9 s3> = CL4(w).

Suppose P = Pf is parabolic and C^C )̂ < P. Since CG00 involves

50(7, g), i = 1 or 4. If i = 1, then since |Q4 | = g24 > g21 = |QX|, Q4 ^ Qf

and (C0(u)YQi/Qi is in a proper parabolic subgroup of L 4 ^Sf7(6, g).

But again there is no room for £0(7, g). So i = 4. The above argu-

ments easily imply that Q4 = Ql, so g e N(Q4) = P4. Then 2.3 guarantees

that CG(t0 < P for some proper parabolic subgroup P, so together with

the above we have CG(u) = CP4(^) = Q4(ίC4 X ίZΊ).

Next we determine CGCv), where v = ^ ( 1 ) ^ ( 1 ) . We first note that

(αOsj = a = (α)s4 and (βK = β = (β)s4. Also C7αi centralizes t / ^ . How-

ever, C7β4 Π C(ι;) = C7α4 Π C(Ua(ΐ)) = 7α 4 a subgroup of order g. Indeed

if γeΔ and α + ^ e J , then C(v) Π Σ7r = 7 r (see (3.1)(vi)). Then the

Chevalley relations imply that s4 e <V±ai> = <7α4, s4> ^ SL(2, g). So <ϊ7±αi>

x <v±aάy = c L i » .
Next use (3.1) and Table 1 to verify that
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Cu(UJ = <JJr :r Φ az,az + a4, aA, a2 + 2az + ao ax + a2 + 2az + a4}

Cuiϋβ) = <kϋr:rφa29aι + a2} .

But also v is centralized by F α 4 , T α 2 + 2 α 3 + α 4 , and Vai+a2+2as+aί. Con-

sequently if we set Uo = C(v) Π Q2QZ = C(v) Π O2(P2,3) we can use (3.1)

to check t h a t

Cπ(v) = t70(E7ei X 7 J

and

C70 = <JJr: r e Se2 U J2f3f ^ ̂  ru> rls, r2, r 2 3 , r 2 1 , rn}Vr21Vril .

In part icular |Z7: Cv{v)\ = g9 and |Z70| = q25. We first determine the

structure of Uo and the action of <E/±αi> X <T±α4> on UQ. Using (3.1)

and Table 1 we have [Uru, Ur9] = Uw [C7r5, C7rJ - Ur7 = Uβ9 [Uu, UrJ =

UrJJr., [Ur.9 UrJ = C7ri2 = C7α, [C7r20, C7rJ = [7ri3C7r8, [t/ r i 9, CTJ = ?7r4, and

[ί/ r i 0, i7rao] = C7rβ. I t is easy to see t h a t

[7Ό = (UaUβ)X (PrJJrJ X (E7 r t t l7 rJ X (C7r4C7r6) .

If we set ϋλ = <C7r: r e J2f2 U -Sf3>^ =̂  ̂ i5>^i8>^2>^23>^2i>?π>> then we
also have

Σ7ί = Ê ί, [C71? 17X, E7J = C7r8?7r24 , and C7ί Π Z ί ^ ) = UaUβUrsUrzi .

We then find that

[UQ, Uo, Uo] = f/r8C/r24 and [7,C/r8C/r24 < Z(C70) Π tfj .

It is easy to see that <C/±αi> acts irreducibly on UrsUr2i and <F±α4>

acts without fixed points on Z7ri3t7ri4. Also <V±α4> acts irreducibly on

UΌ/UaUβUrsUr^UπsUru. From here and (3.1) one easily determines the

action of <C/±αi> X <T±«4> on U'o. Also it is easy to see that [<I7±βl> X

<7±aιy, UJUQ = UJUΌ and all composition factors for <C7±αi> X <7±α4> on

UQI UQ are of order q2 and isomorphic to the usual module for SL(2, g)

S <ff±βι> = <F±α4>. In particular if X - C70«Z7dhCTα> x <7 ± α 4 », then Z^ =

X if q > 2 and X' = t70(O3«l7±βl> X <F± α 4») if g = 2.

From (3.1)(vi) we have F α = Cϋa(VrJ and F α = C ^ ί F ^ ) . Conse-

quently VaUβ = 2(Z). Next we note that since some element of W con-

jugates the pair (a, β) to (ai9 aλ)9 H contains a subgroup HQ = Hλχ H2

such that H1 ̂  Jϊ2 is cyclic of order q — 1, fl^ is regular on C7J and

centralizes Vα, while ίf2 is regular on 7 α and centralizes Uβ. Also we

see that \CH(UaUβ)\ = |CH(t;)| = (g — l)2(g + 1) so there is a subgroup
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H^ < H such that H^ is cyclic of order q + 1 and XH00 = CPiz(v).

The next step is to determine the maximal parabolic subgroups of

G containing Z t L . Once we have this information we will be able to

prove that XH0 = CG(v). The claim is that the only maximal parabolic

subgroups of G containing XH0 are P2,Pz,P{xS\ and Psf\

Suppose CG(v) < P°. As in the case of F4(q) we first assume that

Uo Π O2(Pg

1Y = 1. Then UQ Π O2(P0 is abelian and the structure of Qx

forces \UQ Π O2(P?)| < 410 Hence |£70O2(P?)/O2(P?) > 415 = |LX|2. As Zίf^

involves SL(2, q) x SL(2, g) this is impossible. Consequently Uo Π O2(PiY

Φ 1, and so Uo Π £7? =£ 1. As before X < O2'(P9 = C(17?) implies C7? Π Uo

< Z{X) = V,,^, and consequently C7? = C/̂ . Also r = j9*ail, so geP&Sz

and Pf = PίlS2.

Suppose that XiίL < Pf. As before we obtain a contradiction if

Uo Π O^Pf)' = Uo n (Q40
7 = I. Since <C/±αi> acts irreducibly on [Uo, ϋ0, Uo]

= f/r8C7r24, either Ur8Ur2ί < (Qff or UrsUr2, Π (Qf)/ - 1. If ί/r8[/r24 < (Qί)',

then Ql < C(UuUrJ. But N(UrsUrJ = P2, so we have Ql < P2. In fact

Qi < C(UrJJrJ implies that Ql < Q2Ll2. Write g = 6^^ where 6eJS,

weW,ueU. Then Q?< Q2L12 = Q2<C7±σs, C7±e4>> and so there is an ele-

ment wx e <s3, s4> such that QfWl < U. But it is easily checked that for

w2 e W, (^4)w2 c Δ+ implies w2 e <5n s29 s3>. Consequently w e P4<53, s4>.

As <?7±αi> X <^±α4> < Pi = ^ Γ , we have weP 4s 4s 3. Using the Bruhat

decomposition we may assume that u e UazUaz+ai and from here we get

u — 1. Consequently Pf = Psfz as claimed. So assume Ur8Ur2i Π (Qf)' = 1.

As [Z7o, U09 Uo] = UrsUw UΌ Π (QJ)' < Z(Ĉ α) and hence t̂ ί Π (Qf)/ < 7 β ^ .

As \UQ\>\Ql\,X/U0 is in a proper parabolic subgroup of (P4/Q4)
g and

\U0Ql/Ql\ < q9. Hence \ϋ0 Π Qf| > g16. The commutator relations in (3.1)

imply that for g eU0 — t/J, there is an element heU0 such that [g, h] <

VaUβ. Consequently g £ Uo Π (QϊY and Uo Π (Qf)7 < 7αC7r Thus | Uo Π Qf |

<<z18, and since [70(Qfy ^ Qf, |C70 Π Qf| < q18 and \U0Ql/Ql\> q7. As

t/oίQί)7 Φ Qf, FβZ/̂  Π (Qf)' Φ 1 and so Z fixes a 1-space of the orthogonal

space i?f. Since XQl/Ql has Sylow 2-subgroups of order at least 2<f

this space must be singular. Then consideration of the parabolic sub-

groups of (P4/Q4)
g contradicts the fact that XQl/Ql involves SL(2,q) x

SL(2, q).

If XH^ < Pf, then we argue as in the case of F4(q) to get Pf = P2.

So we are left with the case XH^ < Pf. Here the situation is a little

different than in F4(q) as the parabolic subgroups are not permuted by
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a graph isomorphism centralizing the involution. First we note that

Uo £ Qi. Indeed | Uo/ Z7J| = qu while QJ = <C7r: r e J2?ϊ U ̂  for i > 2> and

IQ3/Q3J = <Z12 So XQljQl is contained in a proper parabolic subgroup of

O2'(Pf/Qf). As X involves SL(2,q) x SL(2,q) this parabolic subgroup has

the form Pf Π P\x for some x 6 Pf and ί = 1 or 2. At this stage we can

use the same argument presented for F£q). We have now determined

the necessary information on parabolic subgroups.

At this point we can prove that XH^ = CG(v). We know by (2.3)

that CG(v) < P for some proper parabolic subgroup P. Consequently

XH0 < CG{v) < P and P = P2, P3, PίlS% or P^κ If Cσ(v) < P2, then # e CG(v)

implies g = δww where w e <sx) X <s3, s4> and it is easy to check that

we<S!> x <s4>. Then CG(v) < P 2 Π P 4 and Zi ϊ^ = Cp2 n P 3O). Similarly

we are done if CG(y) < P3. If CG(v) < PflS2 = NG(Us

r

lS*) = NG(Uβ), then it

will follow that Cσ(v) Π QilS2LilS2 < CG(C7̂ ) Π Cσ(v) < CG(Ua(\)) < PJ* . Then

CGO) < PflS2 Π P|4S3 and again it is easy to check that CQ(v) < P 2 Π P 3 and

hence CG(v) = Zίf^. Say Cσ(v) < P|4S3. Then we are done if O2(Co(v))

£Qϊs* by a previous case. So O2(CG(v) = CG(^) Π O2(PfS3) and this is

easily seen to be Uo Π O2(P|4S3) Then (Uo Π O2(PI4S3))/ generates a subspace

of i?r s stabilized by CG(y). But (C70 Π O2(P|4S3))r = UrsUr2i is an isotropic

2-space of Rl*s* and hence CG(v) < P|4S3 Π P2. From here we get CG(v) <

Qϊ*ζU±ai, U±ai}H and checking we have CG(v) = XH^.

As in the case of F£q) we show that VlWβ is determined uniquely

by the abstract structure of CG(v). Summarizing

(14.2) The maximal parabolic subgroups of G containing the centralizers

of the involutions in (14.1) are as follows:

i) CG{t)<Px

ϋ) CG(u) < P4

iii) CG(y) < P 2 , P 3 , PίlS% P ^ 3 .

In particular G has 3 classes of involutions.

(14.3) With notation as in (14.1) we have

i) CG(t) = (CG(t)Y = O2 '(Λ), ^(C β (t)) - Qί = ί/r.

ii) CG(^) = Q4(X4 X flΊ). ί ίβre Hx = CG(Q4) is ĉ /cZΐc 0/ order g + 1,

JSΓ4 = <D r

σ i ,C7 β i ,7 β , , s 1 ,β 2 ,8 3 >^SO(7,«), ^ ^ β r β Vaz = C(u) Π Ua3 and \VJ

= «. Aίso [X4, QJ = Q4, CG(uY = Cσ(w), and Z(Q4L4) = 7 S = Z(Cσ(w)) =

{Us(c):ceFq}.

iii) C σ ( v ) = C70C<l7βΛ, * > X < 7 a 4 , s , ) ^ , ^feβre UQ = <C7 r: r e Ĵ f2 U J ? s ,
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f Φ r2,rn,rlδ,rmr2l,r23yVriιVr21. Vr = Ur Π C(v) is elementary of order q,

and H^ is cyclic of order q + 1. Moreover [U09 Uo, UQ] — UrJJriu and

Z(CG(v)) = 7βtf,, where Va = C^(7 r i l ) . AZso O2'(CG(v)/U0) ^ SL(2, g) x

SL(2, g) and [E70, CGW] = C70. Ifq>2 then CG(y)f = Z70«C7ai, S l> x <F a 4, s4».

// gr = 2, tfcβw C^Ci;)' = C7o(03«C7ai, sx> X <7 a 4, s4») < CG(v).

(14.4) For g > 2 ίfeerβ is a subgroup Ho = Hλ x H2 < H such that Hl9

H2 are cyclic of order q — 1, Hx centralizes Va and is fixed-point-free on

Uβ, while H2 centralizes Uβ and is fixed-point-free on Va. The set VlWβ

is uniquely determined by the abstract structure of CG(v).

We complete this section by finding the centralizer of a certain sub-

group of H.

(14.5) Let q>2 and set W, = H Π <I7±r>, W, = H Π <Ϊ7±S>, and Wx =

( ^ + 1 . Γfeβn Cσ(TFα) = W0LQ and C0(Wd - WXLU when Lo = <C7±α2, U±az,

U±ai} and Lλ = <Z7±βl, ί7±α2, ί7±α3>. Moreover Lo ^ SC7(6, g) α^d Lx ^

SO"(8, g).

Proof. The proof is similar to the proof of (13.5).

Section 15. Centralizers of involutions in 2?6(g), g even.

Let G = #β(gr) with g = 2α. Then \H\ = (g - 1)6(3, g - I)" 1 , TF =

<Si, * y s6> and the action of W on J is determined by

(αr4)s2 = (a2)s4 =z a2 + a±

(aj)st = a, + aj if \i - j\ = 1 and {i, /} ^ {1,2}, {2,3}

(α4)s< = — at ,

with (α^s* = α^ for all other pairs (i, j). We remark that in computa-

tions with commutators (3.1)(ii) is the only relevant commutator, making

such calculations particularly easy.

We use the notion of Table 2, distinguishing the roots r,a,β,γ,d,ε

in J + . By (12.8) we have

(15.1) Each involution in E6(q), q even, is conjugate to one of the fol-

lowing

i) x = Όr(X)

ii) y = t7β(l)E7,(l)

iii) z = Z7r(l)ί73(l)C7e(l).
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We will see in (15.4) that no two of x,y,z are conjugate. This

will be clear from the structure of the centralizers of these involutions.

Let x = C/r(l). We use the results in Section 4 of [7] to see that

CG(x) = O2\P2) = P'2 = Q2L2. Also P 2 = Q2L2W09 where [L2, Wo] = 1, Wo

is cyclic of order q - 1, and ψ 0 Π L2 = Z(L2). C G W ) = W0L2.

The method for finding the other centralizers is as follows, and will

be used repeatedly in Section 16 and Section 17. Say t = Uβl(l) Uβk(T)

is one of the involutions in (15.1), (16.1), or (17.1) with k>l. We will

exhibit a certain parabolic subgroup P>B with Levi factor L such that

CL(t) > Lo, where Lo is generally obtained from L as the fixed points of

a graph automorphism. Usually Lo will be maximal in L and since

L ^ C(ί), we obtain Lo = CL(t). Then we find Cθ2(P)(£), Cv(t), and hence

By (2.3) we know that CG(t) is contained in a proper parabolic sub-

group of G. We find all parabolic subgroups of G containing CP(t).

There are very few of these and we are able to conclude that CG(t) =

CP(t).

We obtained Lo as follows. From the action of W on the set of

root groups we know that Cw(t) is just the stabilizer in W of {tl9 -,**}.

This can be found by first finding CW{Q Π Π Cw(tk) and then study-

ing the induced group. The roots t19 ••-,** have been chosen so that

Cw(t) is clearly the set of fixed points of a parabolic subgroup of W

under a graph automorphism. From here P, L, Lo are obvious.

Consider CG(y) where y = C7α(l)C7/l). The root groups Us < U not

centralizing Ua(ΐ) and Uβ(X) are as follows:

Ua(l) {s = r34, r32, r20} {s + α = r14, r15, r16}

C//1) {s = r27, r28, r19} {s + β = r14, r15, r16} .

It is then straightforward to check that

Cu(UaUβ) = <ZJr:reΔ+,r Φ r1 9,r2 0,,r2 7,r2 8,r3 2,r3 4>

Cu(y) = (Cv{UaU,), UrJc)UT27(c), UrJc)Ur28(c), UrJc)UrJc): ceFq>.

In particular ICWtf.tf,)! = ( z M C ^ ) ! = g33, and \U: Cv(y)\ = q\

Let Lo = <Uaz(c)UaJ,c), C7α4, C/α2, s3s5, s4, s2: c e F^>. Then Lo < L, where

L is the Levi factor of P1 ) 6. Moreover it is straightforward to check

that Lo < C(y) and L ^ C(y). Now L ^ i)4(gr) and Lo is obtained as the

fixed group of a graph automorphism of L. It follows that Lo ^ #3(g).
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Let w = s1565355s4s253s5s453s5. Then (UaUβ)
w = Uai x Ua6 < <ί/±βl> X

(U±aey, so H is transitive on C7JZ7J. Setting ί^ = CH(y) we have lίfj —

(q - 1)4(3, g - I)" 1 .

Next we set Uo = QiQ6 and ίf0 = CHl(L). Then Lo x Ho normalizes

Uo and we set X = ?7o(̂ o X #o) The first observation is that U0L0 =

(Cϋ(y), Cw(y)y. Consider the action of Lo on QxQ6. Since Qx, Q6 are ele-

mentary it is easy to check that Z(U0) = Qx Π Q6 = UΌ and that

= q8. Using Table 2 and (3.1) we also check that [Lo, UQ] = UQ. As Z7*E7*

is fused by if we see that (UaUβy contains (q — I)2 conjugates of y and

2(q — 1) conjugates of x. Set P = (JJa(c)Uβ(c) \ ceFqy. Then choosing

heH such that fe centralizes Uβ but not £7α we have PPh = ?7ai7 .̂ Also

P = Z(X).

We will show that X = CG(i/) and that P 1 ? P 6 are the only parabolic

subgroups of G containing X. Suppose that P = P$>X. Since X/O2(X)

involves Sp(6, q) we must have i — 1 or 6. Then O2(P) is abelian and

so O2(X) ^ 02{P) and X is contained in a proper parabolic subgroup of

P. This parabolic subgroup has the form P? Π Pf, where j e {1,6} —

{i} and fc e Pf. This implies that X < (Px Π Pβ)™, for some p, e Pt. On

the other hand at this point we must have O2(X) < O ̂ P^^ ΓΊ P6)
Pίg) and

by orders, equality holds. Since P1 Π P 6 = NoίQiQJ, vtg e Px Π P 6 and

P? - Pi.

To see that X = CG(y) we note that CG(y) is contained in a parabolic

subgroup of G and the graph automorphism of G centralizes y. Con-

sequently CG(y) < Pi Π P6. Now L l fβ operates on Z{QXQ^ = (QiQJ' and

using Table 2 it is easy to see that L1)6 preserves a non-degenerate

quadratic form on Z(QXQ^ in which Z{QXQ^ is the orthogonal direct sum

of hyperbolic planes UaUβ9 UTlQUrii, Ur7Uri5, and UuUri9. In this action

the elements of C7* for s e A+ are singular vectors, and y is an aniso-

tropic vector. So CLl(i(y) ^ SO(7, <?) = Sp(6, g) = Lo and it follows that

X = Cσ(i/).

Now we consider CG(z),z= U7(ΐ)Uδ(l)UXΪ). We proceed as before

by first finding CΌ(z) and C^^). The root groups Us for sezl + not

centralized by E7r, t/,, and U6 are as follows:

Uγ {s = n, r2, r3, r4} {s + γ = r13, r14, rlβ, r16}

^ 3 I s 4" ^27> ^34> ^29> ^22/ {^ + 0 = T 1 2 , T1Z, T 1 5 , f ^ }

Ϊ7. {s = nQ> rM9 r 3 3 , r 2 1} {s + e = r 1 2 , r 1 4 , r 1 5 , r 1 6} .
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It is then easy to check that CV(f/rZ7δt/£) = <JJS: s e J+ and s Φ r19 r2, r3, r4,

T2i9r229r279r299r33yrUfr369rMy. Also it is easily seen that z is centralized by

each of Uφ(c)UΨ(c) for (φ9 ψ ) e C = {(r19 r34), (r27, r36), (r2, r35), (r3, r29), (r29, r33),

(r4,r22),(r4,r21)}. We then have C^s) - <Cu(UrUdUe), Uφ(c)UΨ(c): c e Fq,

(<p,ψ)eCy. In particular \Cπ(z)\ = g31.

Let Lo - <C7±α2, s Λ , s3s6, Uaί(c)Ua,(c), E/α3(c)£/α6(c): c e Fβ>. Then Lo < L,

where L is the Levi factor of P4, and it is easy to see that Lo = CL(z).

Lo = <U±a2, S A , s3s6, Uai(c)Ua5(c), Ua3(c)Uaβ(c) :ceFq}

^ SL(2, q) x SL(3, g) .

N o w we set

Z70 - (CqSXJγUδUX C7r3(c)C7r29(c), C7r29(c)?7r33(c), C7r4(c)?7r22(c),

(15.3) Urχc)Ur21(c):ceFqy

X = C/0L0 = Cp4(z) .

Next consider the structure of Uo and the action of Lo on Z70. We

have |J70| = Q27 and X < P4. Checking Table 2 and (3.1) we easily see

that U'o = PJ = Q̂ Q̂ , where QJ = <C7S: s e J^> and Qt = ί7 r i5 x C7ri6. Also

we check that [U09 Uo, Uo] = Qt < Z(U0) and that <?7±α2> acts irreducibly

on [Uo, Z70, Z7J. Next we can use Table 2 and (3.1) to verify that

[L0,UQ/UQ] = UJUΌ, so that [Lo, C70] = Ϊ7O. In doing so it is useful to

note that modulo U'o we have

<[/r3(c)C7r29(c), C7r29(c)f7r33(c), C7r4(c)C7r22(c), Ur£c)Ur21(c): c eFqy

= <Urt(c)Urn(c), ϋrSc)Uru(c): c e Fβ> X <[7r3(c)C7r33(c), UrJίc)Urn(c) :ceFqy

and that <C/±α2> acts on both factors as on the natural module for

<C7±α2> S SL(2, q).

Say g > 2. For w = s4s3s5s2s4s3s5s1s6s2s3s5s4, we have {̂ , δ, ε}w = {a2, α3, αr5},

so (?7rC7δC7£)- = C7α2 x Ua3 X C7α5 < <C7±Λ2> x <C7±αs> X <C7±ff5>. Therefore

there is a subgroup of H of the form Hr x Hδ X He such that ίfr is

regular on C7* and centralizes UδUe, and iϊ 3 is regular on U\ and cen-

tralizes UrUe, and fl", is regular on U\ and centralizes UrUδ. Let P =

</7r(c)C7δ(c)C/e(c): ceFqy. We check that P = Z(X). Let fceff}. Then

PP* = <[/r(c)[/δ(c)C7e(c), Ur(dc)Uδ(c)Ue(c):ceFqy for some fixed 1 ̂  deF*.

It follows that P P Λ = C7r x P and that P P Λ contains g — 1 conjugates

of x, q — 1 conjugates of y, and (q — I)2 conjugates of z.

We must still show that X — CG(z) and find the parabolic subgroups
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of G that contain X. Suppose that X < P\. We note that for i Φ 4,

3?3 = 0 and consequently Qέ has class at most 2. Therefore i =£ 4 implies

that Uo £ Q?. First assume that i = 4. If Z70 < Qf, then [£70, Z70, Z70] =

[Qί, Qί, Qf] and P 4 = iVG([J70, £/0, C7J) = Pf. Say C70 £ Qf. Then XQljQl

is contained in a parabolic subgroup of Pf/Qf. Say XQl/Ql is contained

in P p for pePf . Since C70 = [C70, Lo], C70 is contained in a conjugate Q*

of Q = Q3Q4. Using Table 2 and (3.1) we check that [Q,Q,Q] = Q ^

and [Q, Q, Q, Q] = QJ. Now X/Uo involves SL(S,q) and consequently X

covers the conjugate of L1>2,3,4 = <C7±α5, C7±αβ> in P£ Π Pf2)/O2(P? Π Pfp).

However it is easy to see that this group acts without fixed points on

[Qi,Qi,Qi]/[Q4,Qt,Qi,Q'\, while [UQ, Uo, Uo] is centralized by the corre-

sponding factor isomorphic to SL(3, q). It follows that [Uo, Uo, Uo] <

[Q\ Qe, Q\ Qe] and by orders these must be equal. Then P 4 = NG(Qi) =

NG([Q\ Q\ Q\ Q1) = P | . But then g e P 4 and Uo < Ql, a contradiction.

By symmetry we have XQi/Ql not contained in Pfp for peP. Also this

argument works to eliminate the cases of X<Pl Π P{p or Pf Π Plp. So

we are left with the case of X < Pf Π Pfp. As the other parabolics have

been eliminated we must have UQ < O2(Pl Π Pp) but Uo £ O2(Pί). Since

PJO2(P4) ^ <27±α2> X SL(3, gf) x SL(3, ί), we must have O2'(X) < X, whereas

we have already seen that O2'(X) = X. So this is also a contradiction.

We now assume X < P? Π Pj p = P for i ^ j and i, ^ 4. Say i = 1,

/ = 2. Then |Q l f 2 | = g26 implies that Uo £ O2(P? Π Pf) and Z is in a

proper parabolic subgroup P of Pf ίl Pf. By the above P — P1)2>5 and

X covers O2'(P/O2(F)). Then £/0 < O2(P) and « e C/ί < O2(Fγ. Let Loo <

Lo = SL(2, g) x SL(3, g) be a direct sum of Singer cycles. Then check-

ing the action of Loo on K = O2(P)' we have CK(LOO) — UriβUr2β. But

(UruUr2βy c xG and P 2 is the unique parabolic subgroup of G containing

CG(x). This is a contradiction. Similarly (i,f) Φ (1,3), (1,6).

Next assume that (ί,j) = (1,5). By the above Uo < O2(P) — QiQ5.

From Table 2 and (3.1) we have [ Q ^ , Q&s, Q^g] of order g4 and cen-

tralized by <C7±αβ>. Now O2'(P/O2(P)) ςz SL(4,q) x SL(2,q), where the

factor of SL(2, g) centralizes [I70, Uo, Uo]. As Lo ^ SL(3, g) x SL(2, g) we

have <ϊ7±αβ> < C([?7o, U09 UQ]), which is false. Thus (i, j) Φ (1, 5) and hence

i Φ 1. By symmetry i ^ 6.

Now assume i = 3. Then j =̂  1,4,6 by the above. Since X/O2(X)

^ SL(2, g) x SL(3, g) we argue as in the above paragraph to show that

(i,j) φ (3,2). Thus j = 5. Then Uo < O2(Pl Π P D ^ Q3Q5 From Table
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2 and (3.1) Q3Q5 has class 4,Z(Q3Qύ = UriιUr»Uru and <C7±α2, C7±α4> ς*

SL(3, q) acts irreducibly on Z(Q3Q5). Since O2'(P3,5/Q3Q5) ^ <Z7±αi> X

<[7±α2, C7±α4> x <[/±αβ>> the preimage of the SL(3, g) in X covers the factor

of SL(3,q) in Pf Π P p . However the preimage centralizes [J70, £70, Σ70l

Consequently [Uo, UQ, Uo] Π Z(O2(Pg Π Pg*)) = 1. As Q = O2(Pf Π Pf*) -

Q3Q5, |Q | = \QZQ5\ = g3*. Since t/0 Π [Q, Q, Q, Q] = 1, \U0Φ(Q)/Φ(Q\ < q.

Also U0Φ(Q) < Q, as Uo < Q. But then we must have [X, Q/Φ(Q)] =

UQΦ(Q)/Φ(Q) < Q/Φ(Q). However the preimage of the SL(3,q) in X/Uo

covers the SL(3, q) in P? Π Pg*/Q and checking the action of <C7±α2, U±a4}

on Q3Qδ/(Q3QδY we see that [<C/±α2, C/±α4>, Q3Q5] = Q3Q5, which is a con-

tradiction. Therefore i Φ 3 and by symmetry £ ̂  5. We have proved

that the only parabolic subgroup of G containing X is P4.

Now CQ(z) is contained in a parabolic subgroup by (2.3), so we have

CG(z) < P4. Considering Cβ(z) acting on [Q4, QJ/[Q4, Q4, QJ we have

C0(z)QJQ4 < O2/(P4/Q4) However ZQ4/Q4 is maximal in O2'(P4/Q4), and

so ZQ4 = CG(z)Q4. Since X > C^(^) we have X = Cσ(«).

We now summarize our results.

(15.4) The maximal parabolic subgroups of G containing the centralizers

of the involutions in (15.1) are as follows:

i) CG(x)<P2

ii) CG(y)<P19P6

iii) CG(z)<P 4.
In particular G has precisely three classes of involutions.

(15.5) i) CQ(x) = O2'(P2) = Q2L2, cmd L2 ^ SL(6, g) acts irreducibly on

Q2/Z(Q2). The group Q2 is special with center Ur. There is a cyclic

group WQ < H of order q — 1 such that [L2, Wo] = 1, L2 Π Wo = Z(L2),

P2 = Co(x)W0, and CG(W0) = W0L2.

π) CG(y) = U0(L0 x Ho), where Uo = Q^ Lo - <JJat(c)Ua%{c)9 Uai, Ua2,

s3s5, s4, s 2 : c e F^> ^ Sp(6, g) = SO(7, q), and Ho is cyclic of order (q — 1)/

(3, q - 1). We have [Lo, Uo] = Z70. Aίso Z7J = ^(?70) = Qi ΓΊ Q6 M s order

qs and L l f 6 αcίs on Z([/o) preserving a non-degenerate quadratic form in

which Lo is the centralizer of an anistropic 1-space containing y.

Z(CG(y)) = P — (Ua(o)Uβ(c): c eF q } . There is an element heH such that

UaUβ = PPh. Also (UaUβy contains 2(q — 1) conjugates of x and (q — I) 2

conjugates of y.

iii) Cβ(z) = U0L0 where U0,L0 are given in (15.2) and (15.3). The
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group Uo has class 3 with [UQ, Uo] = QtQt and [UQ, U09 Uo] = Q\ < Z(U0).

Lo ^ SL(2, q) x SL(S, q), [Lo, UQ] = £70 and Lo acίs irreducibly on Z(U0).

The involution z e [Uo, Uo] - [Uo, Uo, Uo]. Z(CG(z)) = P = <ϋ\{c)V\{c)V\{c):

c e Fqy. There is an element heH such that PPh = Ur x P . F o r £/ws fe,

P P Λ contains q — 1 conjugates of x9 q — 1 conjugates of y, and (q — I) 2

conjugates of z.

Section 16. Centralizers of involutions in E7(q), q even.

Let G = E7(q) with g = 2α. Then |ίf| = (g - I)7, W = <s2, , s7> and

the action of Ψ on J in essentially as in £76(g):

(aj)8t = a, + aj if |i - j \ = 1, {ί,;} =£ {1, 2}, {2, 3} ,

with (aj)Si = α:̂  for all other pairs (i, f). As in ί/βίg) the only non-trivial

commutator relation is in (3.1)(ii). Distinguish the roots r, a, β, γ, δ, e, φ,

φ,θ as in Table 3. From (12.9) we have

(16.1) Each involution in EΊ(q), q even, is conjugate to one of the fol-

lowing :

i) x = Z7r(l)

ϋ) y = E7β(l)t7,(l)

iii) z = 17,(1)17,(1)17.(1)

iv) u - E7,(l)t7t(l)t7,(l)

v) i; = L7r(l)l7,(DC7+(l)t7,(l).

We will determine the centralizers of x,y,z,u, and v. For x =

Ur(ί) we can use the results in Section 4 of [7] to check the following.

CG(x) = Q Λ and Lγ ^ SO+(12,g) acts irreducibly on QJZiQJ = Qx/^.

The parabolic subgroup Px = Qi(Lχ X Wo) where Wo is cyclic of order

q — 1 and is regular on £/*. Finally CG(T70) = ΫF0 X Lλ.

Next consider 3/ = C7β(l) C7/1). The root groups Us < U with s e J+

and such that Us does not commute with C7β(l) and 17̂ (1) are as follows:

C7β(l) {s = a29 a2 + aA, a2 + az + α4,«! + α2 + «r3 + α:4} {α + s = r24, r25, r26, r27}

Z7/1) {s = ofβ, <24 + α6, α:3 + α4 + αβ,«! + α3 + α4 + 5̂} {β + s = 2̂4> 2̂5> ̂ 26> ̂ 27}

It follows that
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(16.2) CjjiUJJβ) = ζUs:sψ a2,αβ,r29,r31 - a2,r30,r33 - α 2 , r 3 8 , r 3 9 — α:2>

(16 3) Cu(V) = <Cϋ(P UJ' V &W M UrJc)Ursi_a2(c), f/r3O(c)[7r33_α2(c),

U

In particular |£7: Cσ(2/)| = g4 and \Cυ(y)\ = g59.

Let L ^ D5(<?) x SL(2, g) be the Levi factor of P6. Then let Lo be

the direct product of the SL(2, g) factor with the fixed point group of

the graph automorphism of the Dδ(q) factor. Then

A) = <Uai, Uas9 Uai, Ua2(c)Ua5(c),slf s 3,s 4 9s 2s 5 :ceF q>χ <£/±α7>

= Sp(S, q) X SL(2, q)

and

Uo = Q6 .

Then one checks that Lo < C(y), L ̂  C(2/) and X = C70L0 = CPβ(τ/). We

first show that the only parabolic subgroup of G containing X is P 6.

To see this first note that |E70| = |Qβ | = Qi2 so if P = P% > X and |O2(P)|

< qi2, we must have X contained in a parabolic subgroup of the form

Pi Π Pf, for some p e P = Pf. Since X/02(X) ^ Sp(8, g) x SL(2, g) the

only possible values for i are i — 6,7. If i = 7, then j must exist and

hence j = 6. But by orders Sp(8, g) X >SL(2, q) £ P? Π P6^. So i = 6 and

Uo < O2(P) = Qί. But then Q6=U0 = Q% and # e N^ίQe) = P6.

Consider the structure of X < Q6L6. We check using Table 2 and

(3.1) that U'o = Qe = QS Construct a quadratic form on U'o as follows.

Elements in root groups are isotropic, UΌ = UrihUr22 X Uri7Ur2β X Uri8Ur2S

X ϊ7r20Z7r24 X Ur21Ur2Z is a decomposition into orthogonal hyperbolic planes

and in each factor g(Uri(s)Urj(t)) = si. Then it is easy to verify that

L6>7 = <Z7±βl, J7±βί, £/±α3, C7±α4, C/±α5> ^ SO+(10, q) preserves this form. Since

nisotro pic CLl6(y) ^ SO(9,g) ^ Sp(8,g). Consequently CLβ(y) = Lo and

Using Table 3 and (3.1) we see that [Lo, U0/Ul] = C7O/Z75, so [Lo, C70]

Z70. If q > 2, then CQ/) = C(ΐ/)', while for g = 2, CO/)7 has index 2 in

CO/) (as <ί7±α7> = S3). There is an element w eW such that (α, β)w = (a19 a6),

so (UaUβ)
w < <U±ai> X <ί/±αβ> and H is transitive Z7*17J. So setting P =

<JJa(c)Uβ(c): ceFq}, we have an element heH such that UaUβ — PPh.

Then P P Λ contains 2(g — 1) conjugates of x and (g — I)2 conjugates of

y. Also P =
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We next find CG(z)9 z = Ur(l)U8(l)Ue(l). As usual we begin with

CΌ(z). The roots s e J + such that Us does not centralize Ur> Uδ9 and Us

are as follows

Ur \β = V\9 ^2, r3, τ 4 , τ69 TQ} \γ + s = τ 2 2 , 2̂3? ^20 2̂5? 2̂6> ^27}

(16.4) £75 {s = αr4, ^ 4 + αβ> ^2 9 ) ^31, n 5 > n j {̂  + s = ^20> r2l, r 2 3 , r 2 4 , r 2 δ , r 2 7}

^ e \S = CXQJ 0ί5 + <X6, f28,
 /Γ 3 2, ̂ 34, T 4 Q | {ε + 5 = T 2 0 , V2D T22) ^25> ̂ *26> ̂ *27J

consequently Cu(UrUδUε) = (Us: se d+ not a root in 16.4>. In addition

for ceFq CO{z) contains the following elements of U.

Ua7(c)Ua2(c), C7r2(c)C7r29(c), C7r3(c)C7r31(c), C7r4(c)C7r32(c), Ur,

(16.5) [7r35(c)C7r34(c), £7re(c)[/r41(c), UUί(c)Ur4Λ(c), Ua£c)Uaβ(c),

We then obtain

Cu(z) = CQz(z)CUf)Lz(z) , where

<Ct,(C7rί7,C76), [7r5(c)C7r35(c), t/r34(c)C7r35(c), C7re

Ur.(c)UUl(c):ceFq>

(16.6) C n L 3 ω = <^α i> X <U.t9 UJcWJc), Ua£c)Ua7(c), C7α4+α5+αβ,

Ua2+a,+a,+a,+a7, f/«4+α5(c)C/«5+α6(c), C7ra(c)C7r29(c),

Uu{c)Urn{c), C/r4(c)C7r32(c)> .

I t is easy to check from (3.1) t h a t CVnL3(2) is isomorphic in a natural

way to a Sylow 2-subgroup of SL(2, #) x S^(6, g). We set

(16.7) Lo = <C^ n L 3 (^), s19 sδ9 s4s6, s2s7>

= <U±ai> X <C7α5, f/α4(c)[/α6(c), C7α2(c)C7α7(c), sδ, s4s6, s2s7: ceFq>.

Then U0LQ < CPs(z) and Lo = <£7±αi> X <L00>, where Loo is the fixed point

group under the graph automorphism of the Levi factor of P 1 ) 3 . I t

follows t h a t

Lo ^ SL(2, g) x Sp(6, q) .

We use Table 3 and (3.1) to check t h a t |Z70| = q4δ, U'Q = QlQl = QJ,

and [C70, C70, Z70] = Q^ = [Q3, Q3, Q3]. Also we check t h a t [Lo, C7O/C7$] = C70/t/£,

so t h a t [Lo, C70] = UQ. We have <i7±αi> < Lo acting irreducibly on
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[Z70, Z70, Uo], To show t h a t CPz(z) = U0L0 we will use the following lemma.

(16.8). Let M = <£/± α i, . ., U±2n^} ς* PSL(2n9 q) and MQ = <[/αi(c)C7α2n_1(c),

• ^«n-.ι(c)C7βn+1(c), C7αn, s1s2n_1, sn_iSn+i> s n : c e f g > ^ Sp(2w, q) be the

natural embedding of Sp(2n, q) in SL(2n, q). Then MQ is maximal in M.

Proof. We sketch a proof by induction. Let V be the natural

module for SL(2n, q). It is easy to produce a non-degenerate alternat-

ing form on V left invariant by Mo. It follows that Mo is transitive on

V*. Suppose that MQ < T < M and let Px be the stabilizer in M of a

1-space in V. Then M = MJPι and T = MQ(Pι Π Γ). The structure of

Pλ is well-known: Pλ — QLHQ, where Q is elementary of order q2n~\L^

SL(2n — 1, g) acts in the natural way on Q, and Ho is cyclic of order

q — 1 normalizing L and Q. Also Px Π Mo = Qo(^o X BΊ) where Qo is

elementary of order q2n~ι and Lo ^ Sp(2n — 2,q) acts on Qo/Qo Π Q in

the natural way. Here Qo Π Q is a 1-space in Q. If Γ Π Q > Mo Π Q =

Qo Π Q, then since Lo is irreducible on Q/Qo Π Q we have Q < T. But

then Px = N^ίQ) and M = AfoPj = ΓΛ implies that M = QM = Qτ < T,

a contradiction. So T Π Q = Qo Π Q and Γ Π P t stabilizes a 1-space of Q.

Consequently T Γ\ P1 < QL^H where Lx is a maximal parabolic subgroup

of L. But QLiίf = P1 ) 2 is a parabolic subgroup of M corresponding to

the stabilizer of a 1-space of V and a hyperplane containing it. Now

P12 = QQQ(SL(2n - 2, g)iϊ00) where iϊ0 0 is abelian. If T D P x covers the

SL(2n — 2, g) then we have ΎB — M where Z? > HQQQ0Q is a Borel group

of M. This contradicts the main theorem of [19]. Otherwise we have,

by induction (or without any argument if n = 2), T Π Pj < (Mo Π Pi)ίf00

and hence T = M0UL where K can be chosen as a subgroup of if. From

here it is easy to see that K < Mo and T = Mo, a contradiction.

Since O2'(P3/QZ) ^ SL(2, g) x SL(6, g) we can use (16.8) to verify that

U0L0 = C(«) Π O2\PZ) and from here we obtain U0L0 = CP3(^).

We claim that P 3 is the only parabolic subgroup of G that contains

UQL0 and that U0LQ = CG(z). The second statement follows from the first

since we know, from (2.3), that CG(z) is contained in a parabolic sub-

group of G. So suppose that X = ?7ô o < -P? By order considerations

for Z/C70 ^ SL(2, g) X Sp(6, q), we have ί ^ 2,4,5. Also we have \U0\ = g45

so ί/0 £ Qf unless i = 3. If ί = 3 then C70 < Of and P 3 = iV^ίtQs, 03, Q31)

= JVG([J70, C70, C7J) = ΛΓσ([Q
ff, QS Qσ]) = Pf, so the claim holds. Suppose



CHEVALLEY GROUPS 63

then that i ^ 3 a s well. If ΐ = 7, then Uo £ Qf and we have Uo < P? Π Pγ

where j = 1 or 6 and pePf. In either case we still cannot have Uo <

(Pi Π P f ) . Consequently we must have U0L0 < Pg

7 Π P$p Π P?*1 for some

fteP?. Again order considerations rule this out. So i Φ 7. Similarly

i Φ 1,6. We now have the claim, so CG(z) = £70L0.

We set P = <Ur(c)Uδ(c)Uε(c): c e Fq>. Then P = Z(Pβ(z)). As in other

cases we have i ϊ transitive on [7JZ7JE7*. Consequently there is an element

heH such that h centralizes UδUε but not Ur Then PPh = P x Ur and

P P Λ contains q — 1 conjugates of a?, g — 1 conjugates of y, and (g — I)2

conjugates of z. This completes our discussion of CG(z).

For u— Uφ(l)UΨ(ϊ)Uθ(l) we first list the roots seJ+ such that Us

does not commute with Uφ, JJΨ, or ί7β.

U9 {s = αβ, α3, αr3 + α4, αr3 + a4 + a5 + a6, r30, r34, r36, r45}

{^ ~Γ S = 7" 1 7 > 'Γjβ, ^ 9 , T 2 i> ^22* ^24> ^25> ^27J

ί7+ {s = ^5> ocδ + α β , α 4 + α B , α 4 + αr6 + α 6 , r 3 1 , r 3 2 , r 3 7 , r 4 4}

i Ψ + S = ViQ, T18, T 1 9 , 7*20? ^22> ^23> ^26> ^27/

[/̂  {s = a19 ax + a3, aλ + az + aA9 «i + α 3 + α 4 + <̂5> r38> ^y 4̂i> 4̂3}

{ε + S = 7*17, T l g , ^ O J ^21? ^23> ^24> ^25? ^26/

So CuiUφUψUe) = (Us:s not as in 16.9)>. In addition, for each ceFq,

Cu(u) contains the elements

Uβ,(c)Uai(c), C7α3(c)C7α5(c), C7 α 3 + α 4 (c)[7 α 4 + α 5 (c), E7 β l + β , (c) l7 β i + α β (c) ,

(16.10) ^ β 4 + β . + β β ( c ) t 7 β l + β i + α 4 ( c ) , ? 7 α 3 + α 4 + α 5 + α β ( c ) ? 7 α i + α 3 + α 4 + ί r 5 ( c ) , C7 r3O(c)C7 r31(c) ,

fi), Ursι(c)Urz9(c), C7 r 3 6(c)C/ r 4 1(c), C7

We note that U0 = Q7< CΌ(UψUfUt) < CΌ{u) and that Cπ(u) = ^Cu(U,U^Ud)9

Uri(c)Urj(c): ceFq,(iJ) as in (16.10)>. In particular |[70| = g27 and

| C ^ ) | = g51.

The Levi factor L of P 7 is isomorphic to E6(q). Let Lo be the group

of fixed points under the graph automorphism of L. Then

(16.11) Lo = <C7α2, [7α4, C7α3(c)[/α5(c), C7αi(c)C7αβ(c),s2, s 4 , s 3 s 5 , S l s 6 : ceF ? >.

Also we see that

( 1 6 ' 1 2 ) X = U0L0 < CPη(u) .
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We first claim that P 7 is the only parabolic subgroup of G contain-

ing X. Since X/O2(X) = Lo ^ F4(q) we see by order considerations that

if X < Pf, then i = 1 or 7. Also we must have Uo < O2(P?), for otherwise

X < Pϊ Γl P f for some i^j,pePl If i = 1, then O2(Pf) = Qi which is

special of order <?33 with center C7r. If M has index 2 in Z7r, then QJM

is extra-special of order 2g32 and from here it is clear that 02{Pg

%) cannot

contain an abelian group of order q27 = \Q7\. Consequently i = 7, Z70 <

O2CP?) and by order Q7 = E70 = O2(P?) = Q?. Then # e 2V(ζ>7) = P 7 and the

claim holds.

Since CG(u) is contained in a parabolic subgroup of G we must have

CG(u) < P7. The following lemma forces CG(u) = X.

(16.13) Lei Lo ^ F,(q) be embedded in M = L7^ E,(q) as in (16.12). Then

Lo is maximal in M.

Proof. We outline a proof in the following way. First check that

if Lo < T < M and if H Π T > H Π Lo then we have the contradiction

that T — M. We will use Guterman [14] to obtain a contradiction. Let

tut2,t{t2 be the central involutions given in (13.1) i),ii),iii) respectively.

Then check that in EQ(q), tλ ~ x, t2 ~ y, txt2 — y, where x, y are as in

(15.1).

The idea is to show that Cτ(td = CLo(ίi), Cτ(t2) = CLQ{Q9 and Cτ(txt2)

= CLQ(tλt2). For then [14] shows that Γ ^ iΓf

4(<3r) and consequently Lo = Γ,

a contradiction. Using the result in § 13 and § 15 we see that in each

case either the centralizers behave as desired or T > Uai for i = 1,3,5,

or 6. But this implies that T = M. For example if C7αi < Γ, then T >

<C7αi, C7s

αf> - <U±ai> and β l e T. Also Γ > <ί/α iC7_α i>
s^ 6 = <C/±α3> and

s3 e Γ. Then s19 •• , s 6 e Γ and clearly this forces T = M.

We have now found CG(^) = Z70L0 and we need the action of Lo on

Ϊ7O = Q7. Set P = <U9(c)UΨ(c)U,(c): c e Fβ>. Then Lo centralizes P < Q7

and P — Z(CG(u)). Also we argue as in previous situations to find heH

such that PPh = Uφ X P. Then P P Λ contains q — 1 conjugates of #,

<? — 1 conjugates of y, and (g — I)2 conjugates of u.

Let S = <JJ9{c)Uiίc), Uφ(c)Uθ(c): ceFq> and set

(16.14) ^ = <fif, C7S: 5 e ^ 7 , s ^ p, ψ, 0} .

Then checking the action of Lo on [70 = Q7 we see that

(16.15) U0LQ = VXLX x P
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and

(U0L0Y = J7Λ .

The final centralizer to consider in this section is CG(y), where v —

UrQ.)U90.)U+(l)U,a) = UrO)u. The roots s e Δ+ with 17, £ C(UΨUΨUΘ) are

listed in (16.9) and for Ur in (16.4). Each root s in (16.9) satisfies

Us < C(Ur), so the elements in (16.10) centralize v. In addition for each

ceFq the following are in C(v)

Uri(c)UrJc), UrΛ(c)Urn(c)9 C7r3(c)C7r34(c)

U

I t follows t h a t \Cu(UrU9U^Ue)\ = g63"24"6 - q*z and \CΌ{v)\ = tf33+18 - q*\

Notice t h a t C ^ ) > Cu(UrUφUΨUθ) > Q2 Π Q7, Cρ?(v) = Q2 (Ί Q7, and

CQi(UrUφUΨUθ) = (Q2 Π Q7)<£/s: s = r28, r2fl, r33, r35, r40, r42, r44, r47, r48>. Setting

^o = CQ2QΊ(V) we have

(16 17) U° = CQ>(UrU*u+ueKUrί(c)Urj(c): ceFq, (i,j) as in (16.16) or

(i, j) = (30,31), (32,38), (34,39), (36,41), (37,43), (45,44)> .

Setting

(16.18) Lo = <C7α4, UJc)Ua5(c), Uai(c)Uaβ(c), s4, s3sδ, Sls6 = ceFq},

we have from the work on CG(u), that Lo ^ B3(q) = Sp(6, g) as it occurs

naturally in a parabolic subgroup of <£/±α2, Lo>, which was proved to be

naturally isomorphic to F4(g). Now set X = Z70L0. Then X = C(v) ΓΊ P2,7.

We note that Lo normalizes Uo and we consider the structure of X.

First use Table 3 and (3.1) to show that [£70, £/0] = <C7S, U9(c)U+(c),

Uφ(c)Uθ(c):ceFq,se(^7n se}> i}^\,sΦr13,r14,r15> and also that [UQ, Uo, Uo]

= Qϊ Π Q7 = [Q2Q7,Q2Q7,Q2Q7]

We note t h a t Q\ = ?7r x (Q2

2 Π Q7) and t h a t Lo acts on Q^ Π Q7

and centralizes C7r. Let P = <Ur(c)Uφ(c)UΨ(c)Uθ(c): ceFq} and P o =

<JJf(c)U+(c)U§(c):ceFq>. Then we check that [Lo, UJUQ X POUO/U'O =

C70/t7$, so that C70 = [Lo, Z7J X P o and Z 7 = [Lo, C70]L0 = Z 7 / .

As in other cases we obtain H transitive on [/*[7*Z7̂ [/5, so there is

an element heH such that Λ, centralizes UφUΨUθ but not C7r. Then

PPh = [ / r χ P and P P Λ contains q — 1 conjugates of α, g — 1 conjugates

of u, and (g — I)2 conjugates of v. Moreover we can check that

P = Z(X).
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We claim that the only parabolic subgroups of G that contain X are

P 2 and P7. Say X < P = Pf. Since X involves Sp(6, q), i Φ 4,5. Say

i == L Since |Qi| = q33 and |C70| = q42, we have Uo £ O2(P) and hence X

< Pf Π P f for some j Φi and p e P. The only possible values for / are

j = 2,3,6 or 7. Say / = 2. Then we must have Uo £ O2(Pi Π P f ) ~ ζ^Q,.

We observe that |Z7J| = q21 and that U'o is abelian. Consequently, since

£?! is special with center Ur and |Qi| = <?33 we cannot have U'o contained

in Qj. However Q2Qi/Qi is abelian, so the case is out. The same ar-

gument works for y = 3,6,7. Thus i Φ 1. If i = 3, then since L3 ^

SL(2, g) X SL(6, g) we must have Z7X - [J70,LJ < O2(Pf) s Q3. But

|[Q3, Q3, Q3]| = α2 while \[Uιy Uu J7J| = g6. So i =£ 3. If i = 2 then X £

O2(P) and Z < Pf Π P f for some j Φ 1,2,3,4,5. As X/ Uo s Sp(6, g) we

must have / = 7 and C70 < O2(Pf Π Pf) = Q. Then order considerations

show that [I70, C70, ?70] = [Q, Q, Q] so that flr e N([Q2Q7, Q2Q7, Q2Q7]) = P2,7 < P 2

and Pf = P2. Next we assume that i = 6. Then since O2(P) — Q6 has

class 2 we must have Z70 ̂  O2(P) and so Z < Pf Π Pg

Ί

v, some p e P. Then

Uo < O2(P$ n Pp) - Q6Q7. Since |Q6Q7/Q6| - g and L6,7 is trivial on Q6Q7/Q6,

we must have [Uo, Lo] < Q6. However [J70, Lo] has class 3. This is im-

possible, showing that i Φ 6. Finally ϊ = 7 forces X < P? Π Pfp and we

proved earlier that this forces gp e P 2 Π P 7 and as p e Pf, we have P =

P7. At this point the claim is proved.

Since CG(v) < P for some parabolic subgroup P of G, CG(v) < P 2 or

P7. We will show that CGiv) is contained in P 2 Π P7. If CG(v) < P7 then

since v&Q7, we have CG(v)Q7/Q7> centralizing an involution in P7/Q7 and

this forces CG(v) < P 2 Π P7. Suppose that CG(v) < P2. It is easily verified

from (3.1) and Table 3 that L2 acts on Ql as on the natural module for

SL(l,q). Also XQ2/Q2, viewed as a subgroup of L2, fixes the hyperplane

Ql Π Q7 of Ql and is transitive on the remaining hyperplanes. If CG(v)

does not fix Ql Π Q7, then it follows that CG(v) is 2-transitive on the set

of hyperplanes in Ql and this forces (Q7Q2/Q2)
CG(V) = (Q7Q2/Q2)

P* = L2Q2/Q2

to be in CG(v)Q2/Q2. But this is impossible as L2 does not fix vQ'2/Qί.

Thus CG(v) stabilizes Ql Π ζ?7 and CG(v) < P 2 Π P 7 as desired.

Since CG(v) <P2(λP7 and L2,7 ^ SL(6, g) we apply (16.8) to see that

X =1 CG(v). We have now completed our discussion of E7(q) and we list

our results below.

(16.19) The maximal parabolic subgroups containing the centralizers of
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the involutions in (16.1) are as follows:

i) CG(x) < P1

π) CG(y)<P6

in) CG(z) < P 3

iv) CG(u) < P7

v) CG(v)<P29P7.

In particular, no two of the involutions x,yyz,u,v are conjugate.

(16.20) The structure of the centralizers of the involutions on (16.1)

are as follows:

i) CG(x) = QiLx and Lλ ^ SO+(12, q) acts irreducibly on QJZiQJ =

Qι/Ur. Also Pλ = Q^L,! x Wo), where WQ < H is cyclic of order q — 1

and CG(W0) = Wox L,.

ϋ) Cβ(y) = U0L0, where Uo = Qβ, Lo ^ Sp(8, q) x SL(2, g) and Lo =

<C7αi, C7α3, [7α4, Ua2(c)Ua5(c), s19 s3, β« s2s5: c e Fq} X <C7±α7>. [Lo, [70] = C70, CG(y)

= CG(y)' if q > 2, and CG(y)' has index 2 m CG(i/) i/ g — 2. Γfee group

LQ>7 ^ SO+(10, g) αcίs on [J70> EAJ = ^(f^o) αwd preserves a non-degenerate

quadratic form. In this action Lo Π L6>7 is the stabilizer of the aniso-

tropic \-space P — (Ua(c)TJβ(c): c e Fqy = Z(CG(y)). There is an element

heH such that PPh = UaUβ contains 2(g — 1) conjugates of x and (q — I)2

conjugates of y.

iii) CG(z) = £70L0, where Uo < Q3 and Lo < L3 are ^riven in (16.7).

We have Lo ^ SL(2, q) x Sp(6, g), [Lo, C70] = ?70, and UQ has class 3 ^iίfe

[Uo, Uo, Uo] = QJ. Cβfe)7 = CG(«) if q>2 and CG(z)' has index 2 in CG(z)

if q = 2. Z(CG{z)) = P = (Ur(c)Uδ(c)UXc): c e Fq} and there is an element

heH such that PPh = P x Ur contains q — 1 conjugates of x, q — 1

conjugates of y, and (q — I) 2 conjugates of z.

iv) Cβ(w) = U0L0, where Uo = Q7, F4(g) ^ Lo < L7, and Lo = <Ua2, Uai,

Ua9(c)Ua,(c), C/ai(c)C7aβ(c), st9 8O szsδ, s^: c e Fq}. Let P = <Uψ(c)U+(c)Uθ(c):

c e Fq>. Then P = Z(CG(u)), Uo = [Lo, C70] X P, and CG(v) = [Lo, U0]L0 x P

has derived group [Lo, ί70]L0. There is an element heH such that PPh

= Uφ x P contains q — 1 conjugates of x, q — 1 conjugates of y, and

(q — I ) 2 conjugates of u.

v) CG(Ϊ ) = U0L0, where Uo < Q2Q7 is given in (16.17) and Sp(Q, q)

= Lo< L2t7 is given in (16.18). Uo has class 3 with [Uo, UQ, Uo] — Q7 Π Q\

= [Q2Q7, Q2Q7, Q2Q7I Set P = <TJγ(c)Uψ{c)U^c)Ue(c): c e Fq} and P o -

<Uφ(c)U+(c)Uθ(c): c e Fq}. Then Uo = [Lo, C70] x P o and CG(y)' = [Lo, [70]L0.
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There is an element heH such that PPh = Ur X P contains q — 1 con-

jugates of x, q — 1 conjugates of u, and (q — I) 2 conjugates of v. Also

P = Z(CG(v)).

Section 17. Centralizers of involutions in E8(q), q even.

Let G = E8(q), Q = 2α. Then \H\ = (q - I)8, W = <s1? - , s8> and the

action of W on Δ is determined by

= a2 + a4

aj if \i - j \ - 1 and {i,;"} Φ {1,2}, {2, 3}

with (α^s^ = α^ for all other pairs (i,j). As in E6(q) and £/7(g) commu-

tators are simplified as there is but one root length. We use the nota-

tion of Table 4 and distinguish the roots r, a, β, γ, δ, ε, ψ, ψ, θ, ω. From

(12.10) we have

(17.1) Each involution in Es(q), q even, is conjugate to one of the fol-

lowing

i) x = ϋr(X)

ii) y = C7α(l)^(l)

iϋ) z = ura)uδa)uχi)
iv) v - ufωuΨa)u9a)um<χ).

We will determine the centralizers of x,y,z,v. For x — Ur(l) we

use the following information from Section 4 of [7]. CG(x) = O2'(PQ) =

QQL8 and L8^E7(q) acts irreducibly on Q8/Ur. Also we check that P8 =

Q8(L8 x Wo), when Wo is cyclic of order q — 1, Wo is regular on U*r, and

CG(W0) = TF0 x L8.

Next consider Cσ(2/), y = i7α(l)ί7/l). Since α, /3 6 Jδfj C7αί7̂  < Z(QX) and

Ĉo = Qi < CΌ(y). The roots s e J + such that C7S does not centralize £7α

or C/̂g are as follows

U
a
 {S = OΓ

2
, α

2
 + ̂ 4> <̂ 2 + ̂ 4 + «5> <̂2 + ̂ 4 + #5 + «β>

^
 +
 ^

 + a& +
 ^

 + a7
'
 r
^
S + a = Tδ2

'
 TδZ
'
 Tδi
'
 Tδδ
'
 TδQy
 ^

U
β
 {s = a

3
, a

3
 + a

4
, a

3
 + a

A
 + a

δ
, a

2
 + a

4
 + a

δ
 + a

6
,

a3 + a4 + aδ + a6 + a7, r7} {s + β = r 5 2, r 5 3, r 5 4, r 5 5, r 5 6, r5 7} .
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Consequently Cυ(JJaϋ^ = (Us: s not in (17.2)>. In addition for each

ceFq, y is centralized by

Ua3+a,+a5+aβ+a7(c)Ua2+a4c+a5+aβ+a7(c)f Ur7(c)Uu(c) .

It now follows that C(y) contains Lo where

L ° = ( U a ^ U a * ^ f U«*' U*" U' ' U^ ϋ**'S2S*'Si>Sδ'SQ'SJ's*:ce

' s BQ(q) s Sp(12, q) ^ SO(13, g) .

Now C7o = UΊ — Ql As in other situations it is easy to define a non-

degenerate quadratic form in Q[ that is preserved by Lx ^ SO+(14, q).

In this action the root groups are isotropic 1-spaces and UaUβ is a

hyperbolic plane. The element y is anisotropic so CLl(y) = SO(13, g). It

follows that Z = U0L0 = CPl(i/). We check that [Lo, C70] = Uo.

We claim that Px is the only parabolic subgroup of G that contains

Z . Say X < P\. By order considerations with respect to X/ Uo = Sp(12, g)

we see that i = 1,7, or 8. We can eliminate ί = 7 since Sp(12, q) £ EQ(q).

Consequently i ~ 1 or 8 and by orders and (2.3) we have Uo < 02{Pf).

Then i = 8 is out since |[7ί| > g = \Q'8\. Consequently i = 1, C70 = O2(Pf)

= Qf, and g e Px as desired.

Since CG0/) is contained in some parabolic subgroup of G we can

now conclude that X = CG(j/). Since i ϊ is transitive on U*aUl there is

an element h e H such that h centralizes Uβ but not C7α. Setting P =

<Ua(c)Uβ(c); ceFqy, we have PPh =z P x Ua contains 2(g — 1) conjugates

of x and (q — I)2 conjugates of y. Also we check that P = Z(CG(y)).

Next we find CG(s), where s = Ur(X)Uδ(X)UXΐ). We first note that

the roots s e J&7 such that Us ^ C(U7UδUε) are as follows

(17.5) r14 - a8, r15 - ΛT8, r16 - α8, r14, r15, r16 .

However ^ is centralized by each of

CTrM-

ϋru(c)UrJ.c), Ura(c)ϋra(c)

for ceFq. It follows that

(17.7) Z70 = <Z7(,ϊ7f4(c)t7M(c):ί6JSf7, ί not in (17.9) and Uψi(c)UΨJ(c) as

in (17.6)> - Cβτ(2).
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Moreover \Q7: Uo\ = q2 and \U0\ = q81. Next let

(17.8) L o o = <C7α2, UaA, Uas(c)Ua5(c), Uai(c)Uae(c), s2, s4, s3sδ, « A : c e Fq> .

Then using (3.1) we have Loo < C(z). In addition Loo is the fixed point

group under the graph automorphism of the Levi factor, L, of P7,8 we

have Loo ^ F4(q) and Loo maximal in L by (16.13). Consequently

(17.9) Lo = <L00, U±aΛ>gzFM x SL(2, g) Z = C/<A = CP7(z) .

Next we use Table 4 and (3.1) to show U'o = Qί = Q2

7 and [Z70, Z70, C/o] =

Qϊ. Moreover zeUΌ and [Lo, Z70] = Uo.

We claim that the only parabolic subgroup of G containing X is

P 7. For suppose that X < Pf. Since X involves F4(q) x SL(2, g) the only

possible values for i are i = 1,2,7, 8. By (2.3) we can choose a suitable

parabolic subgroup P of Pf such that Uo < O2(P). Then P/O2(P) will

involve F4(q) x SL(2,q). But then in P/O2(P) some involution contains

F4(g) in its centralizer. Since \U0\ = g81 we can easily check that only

i = 7 is possible and here P = P?. Then Q\ = [Uo, Uo, Uo] = (Ql)g and

g e NG(Ql) = P 7. This proves the claim. Since Cβ(^) is contained in a

parabolic subgroup we now have X = CG(z).

Set P = <?7r(c)?7β(c)C76(c): c e Fα>. Then P = Z(CG(z)) and there is an

element fe e H centralizing UδUε but not Ur. Consequently PPh — Urx P

contains q — 1 conjugates of x, q — 1 conjugates of 2/, and (<? — I)2 con-

jugates of z. We check that P = Z(X).

We still must find CG(u), where w = C7,(l)C7^(l)i7,(l)C7ω(l). We begin

with CQ2(U). Listed below are the roots s e £f2 such that Us does not

centralize one of the subgroups Uφ, UΨ, Uθ, 27ω.

Uφ\β — ^6> *̂8> ^11> *̂13> ^"l6> ^ S l / l ^ I ψ = = ^50> *̂52> *̂53> ^54> ^55? ^56J

ί7^{s — r 6 — α 8 , r 1 0 — α 8 , r 1 2 — α 8 , r 1 4 — α 8 , r 1 8 — α 8 , r 3 2}

{s + ψ = r 4 8 , r 5 2 , r 5 3 , r 5 4 , r 5 5 , r 5 7}

C7β{s = a2 + a3 + 2a4 + a5, r 1 2 — a6 — a7 — α 8 ,

(17 .10) r 1 5 — αr6 — a7 — a8, r20 — a7 — α 8 , r 2 0 — α 8 , r 2 0}

{S + σ = T 4 8 , T 5 0 , 7*52, T 5 5 , T 5 6 , Tgyj

C7ω{s = r 8 — a7 — a8, r 1 0 — a7 — as, r 1 5 — a7 — as,

r 1 7 — a7 — as, r 1 9 — a89 r 1 9}

{s + ω = τ 4 8 , τ 5 0 , r 5 3 , r 5 4 , r 5 6 , r 5 7} .
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Consequently CQ2(UψUΨUθUω) = <C7S: s e ^ , s not in (17.10)>. In addition

for each ce Fq u is centralized by each element of the form

(17.11) Un(c)Uΐ2(c) ,

where γlfγ2 appear in (17.10) and γ1 + px = γ2 + p2 for p19 p2 e {φ, ψ, θ9 ω}.

Consequently we have

(17.12) Z70 = CQ2(u) = <JJt, Uri(c)Un(c):te&291 not in (17.10), ϊlfγ2 as in

Next we set

(17.13) Lo = <C7α5, Uai(c)Ua8(c), UJc)Ua7(c), Uai(c)Uae(c), s5, β A , szs7, s4s6: c e

Then we check that LQ < C(u). Moreover if L is the Levi factor of P2

then Lo is the fixed point group under the graph automorphism. Con-

sequently Lo = Sp(8, q). By (16.8) Lo is maximal in L, and since L ^ C(u)

we check the action of H and conclude that X = U0L0 = CP2(u).

We note that C70 < Q2 and |ϋ70| = g82. Using Table 3 and 4 we check

that U'o - Qi = Q» and that [C70, C70, Σ7J - [Q2, Qa, Q2] = Qi Then % e i/J.

Also l^ l = g36 and |[C70, C70> Uo]\ = q\ We have L2 acting on [?70, C70, Uo]

as on the natural module for SL(8, g) and there is a non-degenerate

alternating form preserved by Lo. Also [Lo, Zo] = Z o and we can use

the action of Lo on Uo and the structure of Uo to see that Z(X) =

We claim that P 2 is the only parabolic subgroup of G containing X.

Say X < Pi = P. Then Lo ^ Sp(8, g) implies that i Φ 3,4, 5. First suppose

that i = 8. Then \O2(F)\ = |Q8 | - g57 and P / = Cβ(Z(P2(P))). If Z(O2(P))

Π Z =£ 1 then Z(Q2(P)) Π X is properly contained in Z(Z).

We first claim that Z(O2(P)) < Uo. Otherwise since O2(P) is special

with center Ug

r we have (£70 Π O2(P))/(U0 Π Z(O2(P))) abelian and with the

structure of O2(P)/C70 Π Zφ2{JP)) this forces |C70 Π O2(P)| < g29, and hence

I U0O2(P)/O2(P)\> q53. But since P7O2(P) ^ £77(g) and Lo ^ Sp(8, g) this is

impossible. Consequently Z(O2(P)) < Uo.

Now |C/0O2(P)/O2(P)|>g82-57 = q2b and [/£ has order g36 and is abelian.

Again the structure of 02{P) forces | U'o Π O2(P)| < g29. As Z{O2(P)) < Z(X),

Z(X) = Ug

r = Z(O2(P)) (which would give u — x). Considering the possi-

bilities for C70O2(P)/O2(P) we see that |£/'o Π O2(P)| > q. From here it
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follows that [U09 Uo, Uo] = Q\ < O2(P). Indeed Lo acts irreducibly on

[UQ, UQ, UQ] so if the containment were false then [UQ, Uo, Uo] Π O2(P) = 1.

But no parabolic subgroup D of E7(q) involving Sp(8, q) has O2(D) of

class at least 3 with \[O2(D), O 2 φ), O2(D)]\ > q\ The assertion follows.

Let |t/'o Π U2(P)\ = qe. Then 9 < I < 29 by the above. Since Z{X) ίl

[£70, J/o, C/o] = 1, tfo Π O2(P) must centralize t/Ό Π O2(P). The structure of

O2(P) then implies that | Uo Π O2(P)\ < q"Ί~e and | t/0O2(P)/O2(P)| > 425+' > qu.

Next we use the fact that Ql < O2(P) and Q\ is abelian to get Cθ2{P)(Qϊ)

= g49 (here we use the theory of extra special groups). But Cθ2(P)(QD <

NG(Ql) = P2, and this implies that COa(P)(QD < Uo and |?70 Π O2(P)| > q49.

But then |C70| > qi9qM = g83, a contradiction. Thus i =£ 8.

Suppose that i = 7. Then |O2(P)| = g83. Since |[Q7, Q7, Q7] | = |Ql\ = q\

we cannot have Uo < O2(P) ^ Q7. The only possibility is X < Pi Π Pf

for j = 1 or 6 and flr e P. Then | U0O2(P)/O2(P)\ < q16 and | Uo Π C72(P)| > qQ\

Also in this case U'Q < O2(P), so Q̂  < O2(P) and Z(O2(P)) < N(Ql) = P2.

But O2(P) has center of order g2 which will be centralized by Lo. This

contradicts \Z(X)\ = g.

Next assume that i = 6. Here (P/O2(P)Y = SO+(10, g) x SL(3, g).

As [Lo, C70] = Z70 we must have Uo < O2(P). Since O2(P) - Q6, Z(O2(P)) - Q4

6

which is centralized by Lo. As above this contradicts \Z(X)\ = q.

If i = 1, then |O2(P)| < |[/0 | and we have £70 ̂  O2(P). Then we have

X <Pl P[ P9/ for some j and some g e P. By orders y ^ 2, so by our

previous work this is impossible.

Finally if i = 2 we argue that by the above C70 < O2(P) and then

Q2 = [Uo9 UQ9 UQ] = [ θ 2 ( P ) , O2(P), O2(P)] = (QD^ So g e N(Qϊ) = P2. This

proves the claim. Consequently CG(u) = CPa(^) = X.

Setting P = <C7ίO(c)ϋr

ψ(c)[7,(c)[7ω(c):ceFα> we have P = Z(X) and

there is an element heH centralizing U+UθUω but not Uφ. Then P P Λ =

P X Uφ contains q — 1 conjugates of 0, and (# — I)2 conjugates of u.

We have now completed our analysis of E8(q) and we summarize

our results as follows.

(17.14) The maximal parabolic subgroups of G containing the centralizers

of the involutions in (17.1) are as follows.

i) CG(x)<P8

ϋ) CG{y)<Px

in) CG(z)<P7
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iv) CG(u) < P2.

In particular no two of the involutions x,y,z,u are conjugate.

(17.15) i) CG(x) = O2'(P%) = Q8L8, where L8 = EΊ(q) acts irreducίbly on

Q8/Ur = Qs/Q's. Άϊso P 8 — Q8(L8 x J/Fo) where Wo is cyclic of order q — 1

and CG(W0) = Wox L8.

ϋ) Ĉ C?/) = U0LQ, where Uo = Q1 and LQ ^ Sp(12, q) is as in (17.4).

Also yeU'0 = Z(U0), [Lo, C70] - UQ, and Cβ(y)' = CG(y). Let P = <Ua{c)

Uβ(c): c e Fqy. Then P = Z(CG(y)) and there is an element he H such

that PPh = P X Ua< CG(y) contains 2(q — 1) conjugates of x and (q — I)2

conjugates of y. The group Lx ^ SO+(14, q) acts on V'Q preserving a

non-degenerate quadratic form. In this action P is an anisotropic 1-

space.

iii) CG(z) = U0LQ where Uo < Q7 is given by (17.8) and Lo ^ F4(q)

X SL(2, g) is ^ e n by (17.9). TFe feave zeU'0 = Ql and [Uo, Uo, Uo] = Q\.

Also P = <C7r(c)[7,(c)C7s(c): ceFq> = Z(CG(Z)), [Lo, Uo] = Uo and \CG(y): CG(y)'\

= 1,2 depending on whether q > 2 or g = 2. There is an element heH

such that PPh = P x Ur < CG(z) contains q — 1 conjugates of x, q — 1

conjugates of y, and (q — I)2 conjugates of z.

iv) CG(u) = [70L0, where UQ,L0 are given in (17.12) and (17.13).

flβre £70 < Q2 and Lo ^ Sp(8, g). We have ueUf

0 = Q'2, [Uo, Uo, Uo] = Ql,

[Lo, Uo] = C70, and Cβ(y) = C0(yY. Setting P = <U9(c)ϋΨ(c)U,(c)ϋm(c):

ceFqy we have P = Z(CG(u)). There is an element heH such that

ppii — p x JJΨ < CG(u) contains q — 1 conjugates of x, q — 1 conjugates

of z, and {q — I) 2 conjugates of u.

Section 18. Involutions and centralizers in the exceptional rank 2 groups.

In this section let G = G2(q) q > 2,3D4(q), 2F,(q) or 2F4(2)', where q

is a power of 2. We will simply record the information on centralizers

since much of this already appears in the papers of Thomas [23], Thomas

[24], and Parrot [18]. For example the involution classes are given in

these papers. The centralizers are either explicitly presented in the

appropriate reference or easily obtained from the given information and

the commutator relations. These results are also easily obtained from

Fong-Seitz [10] Sections 9 and 10, using a root diagram and arguing as

in earlier sections.

In each case the group G has a (B,ΛΓ)-pair of rank 2 (except for
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2F4(2)0 and we can label the roots with respect to a fundamental set

{alfa2} for J. Then <S!,s2> = D12 if G = G2(q) or 3Z)4(g) and <slys2> ^ D16

if G =-Ψ4(q). In the first case we assume that aλ is a long root and a2

a short root.

Listing the roots in A+ we have

A+ = {rx = a19 r2 = a2, r 3 = (ajs^ r 4 = (a2)s19 r 5

,ΛQ ^ = (oc1)s2s1,r9 = (a2)s1s2} , o r

J + = {Tι = α i , r2 = αr2, r3 = (α^s,, r4 = ( α X , r5

= (αi)s2Si, r6 = (α:2)s1s2, r7 = (ads2sλs2, r8 = (α:2)s1s2s1} ,

depending on whether ζβl9 s2> ^ D12 or D16. If G = G2(g
f) then [7ri and

?7r2 are elementary of order q9 while if G = *D4(q), Uri and C7r2 are ele-

mentary of order q and q3 respectively. If G — 2F4(q) then q is an odd

power of 2, and we order a19 a2 so that Urι is elementary of order q and

Z7ra is isomorphic to the Sylow 2-subgroup of Sz(q).

(18.2) G has 2 conjugacy classes of involutions with representatives z,

t. If G = G2(q) or 3DA(q) we may choose z = Z7rβ(l) and t = C7rβ(l). //

G = 2F4(g) or 2F4(2)' we may choose z e β!(Z7r8)
# and ί = Z7rτ(l). z is a

2-central involution and t is not a 2-central involution.

Let Pi — (B, s2y and P 2 = (B, sx> be the proper parabolic subgroups

of G if G Φ 2F4(2)/, and if G = 2F4(2)/ let Pt be the intersection with G

of the appropriate parabolic subgroup Pt of G = 2F4(2).

(18.3) If G Φ 2F4(2)/ tfcβw Px is ίfee unique proper parabolic subgroup G

containing CG(z) and P2 is the unique proper parabolic subgroup of G

containing CG(t).

(18.4) Let G = G2(tf), q > 4.

i) σG(β) = (FtΛ) = f/0L0, ^feβrβ UQ = 02(Λ) and Lo = <C7±r2> ^

SL(2,q). Also Z(CG(z)) = C7r5 and C^^)7 = Cσ(2).

ϋ) c σ (ί) = U0L0, where Uo = C7r3 X C7r5 x C/rβ and Lo == <C/±ri> s

SL(2, q). Also U0L0 = (C7rβ x C7r5)L0 x ?7rβ where Lo acίs irreducibly on

Ur9 X ffri.

(18.5) Lβί G = 3D£q)

i) CG(^) = O2/(Λ) = C/ô o, ^ ^ ^ β C70 = O2(Λ) and Lo = <£/±r2> =

SL(2, g3). J7J > Z(C^(«)) = C/r5 awd CG(zY = Cσ(«).
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ϋ) CG(t) = U0L0, where Lo = <C7±ri> ^ SL(2, g) and Uo = UrtUuϋuV

Vr4c where Vr. = {Uri(c): ceFqS and t r (c) = 0}. Aiso [Lo, Z70] == Z7

(18.6) Lβί G = 2F4(g). If q = 2, ίftera 2F4(g) - 2F4(g)' contains no invo-

lutions,

t/<A» wΛβre UQ = O^Λ) and Lo = <C7±r2> ^

J and [U0,L0]Ur8 = [70. Aίso A C ^ ) < t ^ ί ' J ' .

ϋ) CG(t) = ?70L0, wfeere Lo = <C7±ri> s SL(2, q) and Uo = β^C/^)

OrflxWr)Vr%UrJJrJJr%. Here U'o = Ω1(ϋr^Urfiί(ϋr^ Z(CG(t)) = C7r7, and

[t70,LJ = C70.

Let ί7ô o be the centralizer of an involution as described in (18.4),

(18.5) or (18.6). Assume that Lo ^ S3 or S«(2). Let TF0 = Lo Π H, ex-

cept in case G = 3DA(q) and C70L0 = Ca(z), in which case we set WQ =

(Lo Π H)q~\ a cyclic group of order q2 + q + 1. Then

(18.7) £7(CG(ΐF0)) - O2/(CG(ΐF0)) - L wiίfe L as follows

i) // G = G2(q) and CG(z) = C70L0, ίfeβn L = <C7±r5> ^ SL(2, g) i/

q>4, and L = <C7±ri, ί/±r3, C7±r5> ^ SL(3,4) i/ g = 4.

ϋ) // G = *D4(q) and CG(z) = U0L0, then L = <C7±ri, [7±r3, C/±r5> ^

iii) If C = Ψ£q) and Cβ(z) - U0LQ, then L = <f/±r8> ^

iv) If G = GM or 'D4(q) and CG(t) = E7<A>, then L = (U±u} s

SL(2, g) or SL(2, g3)> respectively.

v) 7/ G - 2F4(g) and CG{t) = U0L0, then L = <C/±r7> ^ SL(2, g).

Section 19. Outer automorphisms.

Let G = G(q) be a Chevalley group of characteristic 2 with Z(G) — 1

having root system J, and regard G< Aut(G). In this section we will

determine the classes of involutions in Aut (G) — G and their centralizers

in G.

First we need the involutions in Out(G). In any case Out (G) has

at most 3 classes of involutions. If Δ has no double bonds and G is

untwisted, then each involution in Out (G) is conjugate to a graph, field,

or graph-field automorphism of G. In this case Out (G) can have 0,1,

or 3 classes of involutions depending on the existence of field automor-

phisms of Fq and on whether Δ admits graph automorphisms. When G
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is untwisted and Δ has a double bond and admits a graph automorphism

(J = F 4 or B2, as G2 will not occur in even characteristic) a different

situation occurs. For this see (19.3). In the twisted groups there will

be a unique involution in Out (G) except for G = 2F4(q) where there is

none and G = 3D4(q) where there is one only if q is a square.

If G = PS0~(2n, q), then Out (G) has just one involution and the

results of Section 8 give the necessary information on involutions in

Aut (G) — G. For G = PS0+(2n, q) Section 8 gives the involutions in the

coset of the graph automorphism of Δ. Consequently these cases will

not be discussed here.

The first result handles field automorphisms.

(19.1) Suppose that G = G(q) is an untwisted Chevalley group or that

G ^ *D4(q). Assume that q = q\ and that a is an involutory field auto-

morphίsm of G. Then Gσ contains just one class of involutions and we

have CG(σ) = G(q0).

Proof. This follows from Lang's theorem [17]. However an ele-

mentary proof is as follows. Let B = UH be a Borel group normalized

by σ, chosen such that H is a σ-invariant abelian group of odd order.

Write H = Hoχ H19 where HQ = CH(σ) and Hλ = [H,σ].

Let x e Gσ be an involution. As U(σy is Sylow in G<y> we may

assume x e Uσ. Consider the group ΌH^σ). We claim that C (̂ίZΊ) — 1.

Otherwise considering the decomposition of U into a product of root

groups we see that Hλ < C(US) for some seΔ+. However σ acts as a

field automorphism on <(C/±S) = SL(2, q) (or possibly SL(2, q3) if G = 3D4(q)),

so that Hλ Π (U±sy Φ 1 and acts fixed-point-freely on Us. This is im-

possible, proving the claim.

Now (2.1) applies and gives the result.

(19.2) The following groups G have each involution in Aut (G) — G

conjugate to a field automorphism: G2(q), 3D4(q), PSp{2n, q) n > 3, E7(q),

and E8(q).

Proof. For each of these groups there are no graph automorphisms

and all diagonal automorphisms have odd order. The result follows from

(19.1) and Steinberg's theorem [21].

(19.3) Let G = PSp(4, q) or FA(q). Then Out (G) is cyclic of order 2a,

where q = 2a. In particular if q is a square, then each involution in
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Aut (G) — G is conjugate to a field automorphism of G.

Proof. If σ is a graph automorphism of G then one checks (see

Carter [6], Section 12.3) that σ can be chosen such that <V> is the

group of field automorphisms of G. Consequently Out (G) = <σ>. If σ2

has even order, then each involution in Out (G) is in <σ2> and the result

follows from (19.1). This proves (19.3).

The following lemma is easily checked.

(19.4) Let τ be an involution acting on an elementary 2-group M. If

|Cjf(r)| = \M\1/2, then each involution in Mr is conjugate to τ.

(19.5) Suppose that G — PSp(4, q) or F4(q) and let t be an involution

in Aut (G) — G. Then all involutions in Aut (G) — G are conjugate.

Moreover

i) CG(t) = PSpiA, q0) or F£q0) if q is a square and q = q\.

ii) CG(t) ^ Sz(q) or Ψ4(q) if q is not a square.

Proof. If q is a square we are done by (19.3) and (19.1). So as-

sume that q is not a square. Let σ generate the group of graph auto-

morphisms preserving Δ and normalizing U. Let τ be the involution

in <V>. We may assume that teτG. In fact since U e Syl2 (G) we may

assume that teτU.

We will give the proof for F4(q), leaving the easier case of PSp(4c, q)

to the reader. We define normal subgroups U1 < U2< £73 of U. For

each i, Ui will be the product of root groups and these roots occur in

pairs, orbits under the graph automorphism of Δ. The roots are

θx = {{1122,1111}, {1222,1121}, {1242,1221}, {1342,1231}, {2342,1232}}

Θ2 = Θ1Ό {{1120,0111}, {1220, 0121}, {0122,1100}}

#3 = θ2 U {{1100,0011}, {0120,0110}} .

Then Z7< = Π Usy where {s,s7}e^ for some s;. Using (3.1) and Table 1

we easily check that each Ui <\ U. Let Uo = 1,U4= C7, and consider the

quotient Ui+1/Ui = Vi9 i — 0,1,2,3. For each such ί, Vt is the direct

sum of elementary subgroups and these subgroups occur in pairs such

that τ interchanges the subgroups in a given pair. Then by (19.4) all

involutions in V^ are conjugate. Apply this to V3, V2, V19 and Vo and

obtain t — τ.

Finally (ii) holds since we know that some involution in Aut (G) — G
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has the correct centralizer.

(19.6) Let G(q) be an untwisted Chevalley group admitting an involu-

tory graph automorphism τ and an involutory field automorphism σ such

that [σ, τ] = 1. Then all involutions in Gστ are conjugate to στ. More-

over q = ql and one of the following holds:

i) G = PSL(n, q) and Cβ(στ)' ^ PSU(n, q0)

ϋ) G = PS0+(2n, q)' and CG(στ)' ^ PS0~(2n, q0Y

iii) G = EQ(q) and CG(στ)' ^ 2E6(q0).

Proof. The information on centralizers is standard, so we need only

prove that all involutions in Gστ are conjugate. We argue as in (19.1).

Let B = UH be a Borel group. We may assume that a and τ normalize

U and H, and we write H = Ho x Hί with Ho = CH(στ) and Hλ = [H, στ].

As in (19.1) it will suffice to show that CuiH,) = 1.

Let Go/G be the group of diagonal automorphisms in Out(G). Then

Go/G is cyclic and Go = [Go, τσ]CGo(τσ), so all fusion in Goτσ is accomplished

under the action of G. Hence we may take G = Go.

Let <ζ> = F * and for each i = 1, , n let χ4 be the character such

that fofe) — ζ and Xi(^) = 1 for all j Φ i. Set ht = h(χi). Then for

If CtfCfΛ) ^ 1, then Ur < CuiHJ for some reJ+. Write r = 2

Then

where ?7; = ?7S and s = Σ ^ ^ Therefore gfS — 1 divides <̂<2o — ̂ . We

now use information concerning the roots in J + , for which the reference

is Bourbaki [5]. Since G = PSLin + 1, q), PS0+(2n, q), or EQ(q), some

β̂  must equal 1. Then for this value of i the divisibility condition

forces γi — qQ > ql — 1 and hence γt > 5. But this does not occur, proving

(19.6).

The remaining cases not treated in Section 8 are G = PSL(n, q),

EQ(q),PSU(n,q), and 2E6(q). In the first two cases let σ be an involutory

graph automorphism preserving Δ and normalizing U, H in a Borel group

B < G. In the second two cases we let σ be the graph automorphism
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of the non-twisted group defining G and restrict a to G. Again we

assume B < G is Borel and normalized by σ.

We must determine the involutions in Gσ and their centralizers.

The methods are similar and we will need the following lemma.

(19.7) Let G, a be as above and t e C0(σ) Π Z(U). Write Q = O2(CG(t))

and assume that CQ/Z{Q)(σ) = CQ(σ)/Z(Q). Then CG(σt) = CG(σ) Π CG(t).

Proof. First we note that there is a root r e J + such that Z(U) =

Z(Ur) and Ur<Q. If G = PSTJin, q), n odd, then Ur is special of order

q3 and σ inverts elements in Ur — Z(Ur). Consequently the covering

condition fails and this case is out. Thus Z(U) = Ur and \Ur\ = q. Then

CG(Ur) = CG(t) = Q(R x HQ) where H0<H,Q = O2(Co(t)) and β σ = # is

a Chevalley group satisfying U = Q(i7 Ω # ) .

Since ( Z 7 Π β ) σ = Z 7 Π β the covering condition on Q forces Cu(σ) to

cover Z7/Z(Q) Π C(σ) = U/Ur Π CO). Let a? e CG(σt) and write α = £lwt2

with ^!, β2eB, w eJV. Then ί^twtίl1 eBwσB. Since C^(σ) covers C^ίσ)

we may assume that w e CN(σ) < CG(σ). Now we use the Bruhat decom-

position and write BwB = BwU~, where U~ = U Π UWoW and where w0

is the word of greatest length in {s19 , sn}. So we may assume x =

hiUitυvv for ux eU,hxe H, u2eU~.

First assume that teU~. We then apply the uniqueness of the

Bruhat decomposition, obtaining hfuft = hfult = / ^ and ί^f = tvi =

^2. Read these equations modulo Z7r < 5 . We conclude that h{ = hx and

using the covering condition we also have u{ = u19 ua

2 = ^2. So we are

done in this case.

Next assume that teUw = U Γi Uw. Then h^v^twtv^ — hιuιtt
V)'~xwu2

and ίω-1 e Z7. Conjugating by at we get the equations hf = /^, u\ttw~x =

t^, ί̂ j = w2. Reading modulo f/r we get h{ — hλ, so we need only show

that ttί = ^i.

If tw~1 eUr, then we argue as above to get U{ = Uλ. So we may

assume that tw~x eUs Φ Ur. Then s and r have the same length and

|£7r| = |t7 f | = q. We can factor U = U/Ur = Π ^ n , where r, e J + - {r}

and where respresentations of elements are unique. Consequently tw~1 e

Us for s a root with (Us,)
σ = Z7S and %! having non-trivial projection to

U^. Otherwise u{tw~x has more non-trivial factors than ux. However

the action of σ implies that Us,(c)σ = Us(c) for each ceFq. This situa-

tion is impossible, proving the lemma.
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(19.8) Let G = PSL(n, q), Eβ(q), PSUin, q), or 2E6(q), and let a be the

graph automorphism as in (19.7). Let r be in Δ+ such that Z(Ur) = Z(U)

and let teZ(Ur)K

i) If G — PSL(n, q) or PSUin, q) for n odd, then all involutions

in Gσ are conjugate to σ.

ii) Otherwise each involution in Gσ is conjugate to either σ or σt.

(19.9) Let G,σ,t be as in (19.7).

i) If G = PSL(n, q) or PSUin, q) for n odd, then CG(σ) ^ PSO+(n, q).

ϋ) If G = PSL(n, q) or PSU(n, q) for n even, then CG(σ) = PSp(n, q)

and CG(σt) is isomorphic to the centralizer of a transvection in PSpin, q).

iii) If G — EQ(q) or 2EQ(q), then CG(σ) = F4(q) and CG(σt) is isomor-

phic to the centralizer of a central involution in F4(q).

In cases (ii) and (iii) Gσ contains precisely 2 conjugacy classes of

involutions in Aut (G).

We note that (19.9) follows from (19.7) and (19.8) once the cover-

ing condition appearing in (19.7) has been checked.

We let r be as in (19.8) and t e Z(Ur)* (recall that Ur = Z(Ur) unless

G = PSUin, q) for n odd). Then P = N(Z(Ur)) is a parabolic subgroup

of G and O2\P) = C0(t) = QL where Q = O2(P) and L ^ SL{n - 2, q),

SL(6, q), SUin - 2, q), or SU(6, q), accordingly as G ^ PSLirt, q), E6(q),

PSU(n, q), or 2E6(q) (see [7], Sections 3, 4). Moreover we can choose L

such that U Π L e Syl2 (L) and L is σ-invariant.

In each case Q can be factored as a product of root subgroups,

Q = Πf-i Uri, and Q = Q/Z(Ur) = Uri X X Urk. If \UTi\ = q and Wu

= Uu, then σ centralizes UΎi. On the other hand if |J7rJ = q2 and Ua

Ύi

= Uri, then Uri(cY = Uu(c*). Finally if \UU\ = q\ then rt = r, CUr(σ) =

Z(!7r) and \CVr{σ)\ = q. If G ̂  PSL(n, g) for n odd, then C7r% = Ur. Φ UΎi

implies that [Uri, Urj] = 1. From this information one can verify the

covering condition of (19.7) in each of the relevant cases.

What remains is the

Proof of (19.8) First we note that if G = PSL(3, q) or PSU(S, q)

then (19.8)(i) is well-known. For s e Δ let Zs = ΩλiUs) iZs = Us unless

G = PSU(n, q), n odd) and set X = <Zr, Z_r}.

L e t j b e a n i n v o l u t i o n i n Gσ. A s CG<σ>iZr) = QL<σ>, w e m a y a s s u m e

t h a t / c e n t r a l i z e s Z y , j e QL(σ}. W e c l a i m t h a t f o r s o m e ^ e G <Z;,Z?: y>

- Z . T o see t h i s i t suffices b y (12.1) t o find geG s u c h t h a t Zg

r,Zγ do
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not generate a 2-group. This we do by induction on the rank of G.

If G = SL(S, q) or SU(3, q) we use the fact that (19.8)(i) holds and check

this directly. Otherwise consider j e QLζσ> and note that σ induces a

graph automorphism on L. Consequently we let j act on QL/Q and

apply induction.

By the above we may assume that j normalizes X and conjugating

by an element of X ^ SL(2, q) and using the fact that O2'(CG(X)) = L w e

may assume that tj e L<V>. Inductively we have j ~ tuσ where u = 1 or

£7S(1), for s the root of highest height in the room system Δι c Δ of L.

Moreover u — 1 if G = PSL(n, q) or PSUin, q) with n odd.

Say G = PSL(n, g) or PS?7(w, g) with n odd. Then / ~ to. If G =

PSU(n, q) then σ acts on Ur and inverts a homocyclic subgroup of order

q2 and exponent 4. It follows that tσ ~ a. If G = PSL(n, q), then C7r =

[tf*χ> 17,,] where sx = ax + + α(n_i)/2, s2 = «ί = α(n+D/2 + +««• Then

σ acts on USlϋsJJr and again σ — σί.

For the remaining cases we are done if u = 1. Consequently we

may assume y — tUs(l)σ. We now perform simple computations to ob-

tain the result. For G = PSL(n, q), r = αx + + ^ . j and s = a2 +

• + αn_2. Then σ centralizes I7βl(l)£7.^,(1) = flr and (tUs(l))9 = Ua+aι(l)

Us+α^QϊUsQ.). As σ interchanges ϊ/,+βl(l) and C/.+^.^l) we have j ~

(Ur(ΐ)Us(l)σy ~ Ua(X)σ - to as desired.

Suppose G = 2?6(tf) Then s — αλ + α3 + α^ + αδ + α6. Conjugating

tuσ by s2s4s1s6s3s5s4s3s5s1s6s2 e C(σ) we have i - ί7α4(l)ί7α3+α4+Λ5(l)σ. Consider-

ing <C7±β8, J7±β4, ?7±α5> = SL(4,q) we use the above to get / — Ϊ7β$+β4+ββ(l)σ

and hence j ~ to.

Finally, suppose that G = 2EQ(q) or PSU(n, q) for % even. Then

there is an element w eW such that {rw, sw} = {α2, <*2 + 2αr3}, {αn, αn + 2αn_x}.

Then weC(σ) and we have ίwσ ~ E7β(l)E7β+2i8(l)ff, where (JJα,TJβy =

UαUβUα+βUα+2β is isomorphic to a Sylow 2-subgroup of PSU(£,q). Then

(C/α(l)f7α+2,(l)σ)^(1) - Uα(l)Uα+βα)σ and conjugating by U_β(c), for ceί 1 2,

with c + cq = 1, we have ί w — [/.^(l)^. Finally the action of σ on U_β

described above together with (19.4) shows that C7_5(l)<7 ~ σ. This com-

pletes the proof of (19.8).

Section 20. Hypothesis II for Chevalley groups of characteristic 2.

Let A be a perfect central extension of a Chevalley group A = A/Z(A)

defined over a field of characteristic 2. We will use our information on
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involutions in Aut(A) to prove

(20.1) Let T be an elementary abelian 2-group acting on A and K < TA

such that

i) m 2 ( T ) > l .

ii) T e Syl2 (K) and K = O(K)T.

iii) T Π C(A) = 1.

iv) K is tightly embedded in TA.

Then T < AC(A).

(20.1) is called Hypothesis 2 in [1] and this result will be essential

in [3].

Assume (20.1) is false and A is a counterexample. We will use

the following notation: KQ = O2,(K) < A and To = T Π AC(A). Since

AC(A)/C(A) ^ A we will let bars denote projections of subsets of AC(A)

to A, when no confusion arises from this abuse.

(20.2) A has (B,N)-rank n>l.

Proof. This can be easily checked from the known structure of

Aut (A).

(20.3) To Φ 1.

Proof. Suppose To = 1. Then m2(Γ) > 1 implies that Out (A) con-

tains a klein group and the Dynkin diagram of A is simply laced. By

Griess [13] either A ^ L3(4) or Z(A) has odd order. In the latter case

CΛ(t) covers CΆ(t) for each t e TK This also holds if A = L3(4) since

CJf) covers O\CΆ(t)) = CΆ(t) for each t e TK Also for t e Γ# [Ca(ί), T] <

CΆ(t) Π K, and so T centralizes C2(t)/O2,,2(C2(t)) for each involution t e TK

Now T contains involutions t1912 such that tλ is in the coset of a field

automorphism of A and t2 is in the coset of a graph-field automorphism

of A. However (19.1) and (19.5) show this to be impossible.

(20.4) NA(K) is 2-constrained.

Proof. K = O(K)T. By (20.3) we may choose t e T*. Then t must

centralize E(NA(K)/0(NA(K))) and so 02,>E(NA(K)) = X = O(X)Cz(t). As

CΛt) < ^ ( K ) , Cz(ί) < C^ί). But Ov,B{CA(fi) = O(C(A)) and so O2,

= 0(N(K)) proving the lemma.

(20.5) CA(t) is 2-constrained for each t e Γ*.
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Proof. L(C(t)) < L(N(K)) = 1 by (2.2) and (20.4).

Knowing (20.5) we can immediately use the information in Section

19 to eliminate many possibilities for A. Let jx e T — AC (A). We then

have

(20.6) T — <Γo>;/i> αwd either A ^ PSO±(n9 q) with n>8 even and j\ of

type bt for some £, or letting σ, t be as in (19.8) (and replacing G by A)

we may assume that A = PSL(n9 q) n even, PSUin, q) n even9 EG(q)9 or
2E6(q), and jλ = at.

Proof. Use (20.5) and the results in Section 19.

(20.7) T<K and T is tightly embedded.

Proof. We first claim that CΆ(T) contains a klein group. Let j e Tjj.

Then CΆ(j) is 2-constrained and O2,(C2(f)) = 1 (by (2.4)). Also To < C2(j)

so assume that TQ = <;>. CA(j) covers O\CΆ(j)). So [O\CΆ(j)), T] <

0\C2(j)) ΓΊ TQK. Since O2,(CΆ(j)) — 1 we must have this commutator

contained in To = </>. It follows that O\CΆ(j)) < CΆ(T). So if the claim

is false 0\C2(j)) has 2-rank < 1 and is 2-constrained. The only possi-

bility is O\CΆ(j)) = 1 or SL(2,3). The latter case contradicts the known

structure of CΆ{j), and O\Cj(j)) = 1 forces A = L3(2) where we also ob-

tain a contradiction.

Let Uo be a klein group in C2(T). Then O(K) = ΓltUo(0(K)) by (2.5),

so it suffices to show that Q — C0(K)(u) = 1 for each u e Γ7J. We have

Q = ΓltT(Q) by (2.5) so we need only show P = Cρ(0 = 1 for each x e TK

But as CAT(x) is 2-constrained (2.4) implies that P < O(CAT(u)) — 1. This

proves (20.7).

At this point we may replace K by T.

(20.8) // Z(A) has odd order, then C2(x) < NΆ(T) for each x e TK In

any case [O\CΆ(x))9 T] < T.

Proof. If Z(A) has odd order, then C2(x) = CA(x) and (20.7) gives

the result. The second statement is similarly proved using O\CA(x)) =

(20.9) If ~Aφ. PSO±in> q), then ta e To, where t is as in (20.6), for some

aeA and CΆ(t) = CA(ta).

Proof. We take jx = at as in (20.6) and consider C2(jd- From (19.8)
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we have C2Q\) isomorphic to the centralizer of a transvection in PSp(n, q)

or to the centralizer of an element of a root group in FA(q), depending

on whether A is as in (19.8) ii) or (19.8) iii). In either case 0\C2(j\)) =

CiϋΊ), so (20.8) implies that dOΊ) < N2(T). Consequently To < C2{jd = Y-

We consider the structure of C2(j\) (see [7], (3.2) and (4.5)). In

either case Z(Y) is a root group of A. Given any normal subgroup

J<Y either Z(Y) < J or J < Z(Y). Consequently To Π Z(Y) Φ 1 and the

result follows.

(20.10) A ψ PSL(n, q) n even, PSU(n, q) n even, EQ(q), or 2E6(q).

Proof. Let j\ = at as in (20.6) and ta e TQ as in (20.9). Let v e Tg

such that v = t\ By (20.8) and (20.9) O2(CΆ(v)) - O\Cz(t)) < N2(T). In

particular j\ centralizes X = E(CΆ{v)IO2{CΆ{v))). However from the def-

initions of a and t we see that a induces an involutory outer automor-

phism of X. This is a contradiction.

We are left with the use Ά^PSO±(n, q) n>q even and jx inducing

bH for some tx (see (20.6)). Consequently we may assume A(j^y — AT =

O±(n, q). Accordingly we let M be the associated ^-dimensional space

over Fq having a non-degenerate quadratic form preserved by A. Let

jeT$ and Pj the stabilizer in A of [M,f\- Then Pj is a parabolic sub-

group of A with Pf = Pj. Let 7 = O2'(C20*)/O2(Cz(i))). Then 7 is the

central product of certain linear groups as described in Section 8.

We first note that Vjl = V and also (20.8) implies that [O2(7), Γ] <

V Π T = 1. Consequently j \ centralizes O\V). On the other hand Pj is

a maximal parabolic subgroup obtained by omitting the £th node of the

Dykin diagram. Consequently O2/(Pj/O2(Pj)) is the central product of

SO^n - 2£, q) and SL(£, q). Suppose j is of type at. Then from (8.6)

we have V the central product of SO^n - 2£, q) and Sp(£, q). As j\

centralizes O2(7), jλ centralizes the factor isomorphic to SO±(n — 2£9 q)

in Or(Pj/O\PJ))f and since j\ is a graph automorphism of G, we must

have n — 2£ < 2. We also note that since C2(x) is 2-constrained for

each x e T* we must have j \ and j J inducing outer automorphisms of

A of type b£l, bί% with ^ > 1 and £2> 1.

Now iV (̂ίΓ0) < P where P is a proper parabolic subgroup of A, the

stabilizer of a singular subspace, Mo, of the natural module M. Using

the known structure of CaOΊ)> and C2OΊΛ given in (8.7) one verifies that
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OKCjiJi)) and OXCjijJ)) stabilize unique isotropic subspaces of M of

dimensions A1 — I, A2 — 1, respectively. Consequently Ax — 1 = A2 — 1 =

dim(i(ϊ0). Similarly if j has type ct then from (8.9) we see that O2(CΆ(]))

stabilizes precisely two isotropic subspaces of M of dimensions 1 and

A — 1. As dim (Mo) = ^ — 1 is even, this is impossible. Consequently

j" has type a£ and from earlier remarks n — 2£ < 2.

Next we use (8.6) to check that Cz(j) stabilizes precisely one isotropic

subspace of M having dimension A. If n — 2£ = 2, then O\CΆU)) will

stabilize isotropic subspaces of dimensions A and A + 1. As O\CΆ{3)) < P

we have A = Aλ — 1 = ί2 — 1 in all cases. Note that if w = 8, then we

must have Aλ = ^2 = 3, so ^ = 2. This contradicts % — 2^ < 2. Con-

sequently w > 8, Z(A) has odd order and Cz(j), CΆ(jd> C2(jiί) a r ^ all in P.

Moreover A > 4 and since 2 ^ < n we have n = 2^x = 2^ + 2.

Let ^ = <ίCi, 9xny be an ordered basis for M as in (8.2), so that

j is in orthogonal Suzuki form relative to 81. Then MQ = [M, j] = <#!,

•"9xty is invariant under CJOΊ)
 a n d it follows from (8.3) that MQ =

<^ e [M, j j : Q(v) = 0>. Then Ί stabilizes M^ = <xl9 -,x£, xi+19 x£+2) =

<^!, ,a;n_/>. From (8.3) we see that there is another basis {x19 - *,x£,

x, y} of Ml such that (x)^ = 1 and (y)j\ = x + y, Q(x) = 1, (x, T/) = 1,

and <x9 yy is non-degenerate. With respect to the basis &' = {xί9 , xi9 x,

y, xn-£+ι> 9 χn} 3 is still in Suzuki symplectic form and g\ has matrix form

B

1
1 1

β

for some A X A matrix B and column vector β. We have CΆ(j) < NΆ(T).

Suppose β Φ 0. Let

be 2 x £ and ί χ 2 matrices and let g e

[
.o o

Q) be the matrix

\0 Q h
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Then j2 = jβλ satisfies dim [M, j2] = 2 and so Cx(j2) £ P. As j2 e T, this

is a contradiction.

Section 21. Coverings of classical groups.

HYPOTHESIS 21.1. A is a quasisimple group such that Z(A) is an

elementary abelian 2-group and A/Z(A) = A is a classical group Ln(q),

Un(q), Spn(q), or Ω*n(q), n > 4, q even. Exclude the cases where A is

L4(2) ^ A8 or Sp4(2) ^ S6. If A is orthogonal take n > 8.

If Z(A) =£ 1 then results of Steinberg and Greiss (eg. [13]) show A

to be £/4(2), C76(2),β8

+(2), or Spβ(2).

HYPOTHESIS 21.2. T is a 4-group in A with Γ Π Z(A) = 1 such

that for each teT*,T < O2(CA(t)) and either

i) [T, ̂  Π CA(t)] = 1, or

ϋ) T<CΛ(jt).

In this section we prove

(21.3) Let A satisfy hypothesis 21.1 with Z(A) Φ 1. Then there exists

no A-group T in A satisfying hypothesis 21.2.

Assume 21.3 to be false and let T be a counter example in A. Let

t e Γ*. We consider the four possibilities for A separately.

(21.4) A £ f/4(2).

Proof. Assume A ^ [74(2). Then A ^ S p ( 4 , 3 ) . Then there is a

unique class fr4 of involutions with teA — Z(A). Further (ΐ)Z{A) is

the unique normal 4-group in CA{t).

(21.5) A ?έ C76(2).

Assume A ^ Z76(2). By Section 6, A has 3 classes of involutions with

representatives j19j2, and j z . Next

(21.6) \Z(A)\<4t and A admits a group of automorphisms transitive on

Z(A)* and fixing each class of involutions in A.

So in particular there is a unique covering B of A such that Z(B)

= <τr> is of order 2. The following facts appear in [16]. B has 6 classes

of involutions π, d, dπ, r, rπ, and n, where d = j u r = j 2 , and ^ = ;3. In

particular each involution x in A lifts to an involution x of B and if x

is fused to j\ or ; 2 then C2(ac) = CB(x) while | C 2 W : CΛ(n)| = 2. Hence
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by 21.6 if follows that

(21.7) Let Z(A) = {*<: 1 < i < m = |Z(A)|}. There are 2ra + 1

0/ involutions in A — Z(A) wiίfo representatives dzi9 rzi9 and n91 < i < m,

where d = yx, f = /2, and n = /3. // cc is fused to dzt or rzt then CΆ(x)

— CA(x)9 while if x ~ n then \CA(x): CΛ(x)\ = m.

It follows from 21.7 and 10.6 that we may take t = n and s — w

for each s e Γ#. Next, calculating using Section 6 we find Cz(n) = FX

where Y is elementary of order 29 and X ^ Ϊ73(2) is the extension of an

elementary group PP of order 9 by a quaternion group Q. Further F

is generated by involutions y of rank 1 or 2, so C2(y) = CA(y) and hence

Φ(Y) = 1. As Γ < O2(CA(f)) = Y9Y centralizes T. As | C Z W: Tϊjn) \ =

m < 4, each involution % with W G Q centralizes t. Thus if v is an in-

volution with [v91] = 1 then [v, ί] = 1. So by 10.6 we conclude T<CA(t).

Then W centralizes T. But W acts without fixed points on F/<ϊ>, a

contradiction. This completes the proof of 21.5.

(21.8) A ^ β 8

+ ( 2 ) .

Assume A ^ £?8

+(2), Then by Section 8, A has five classes of invo-

lutions with representatives a29 c29 c4, α4, and 0,4. Next

(21.9) |Z(A)| = m < 4 and if m — k then A admits a group of automor-

phisms transitive on Z(Af9 fixing a2 and c4, and permuting c29ai9 and

a't transitively.

So in particular there is a unique covering B of A with Z(B) = <π>

of order 2. From [11] and [15] we find there are 4 classes of involu-

tions in B — Z(B) with representatives a9b9c9 and cπ9 where a = α2,6 =

c4, and c = c2. α4 and α̂  lift to elements of order 4. Therefore with

21.9 we conclude

(21.10) If Z{A) — (πy then there are 4 classes of involutions in A — Z(A)

with representatives a9 b9 c9 and cπ9 where a = a29b = c49 and c = c2. If

\Z(A)\ = 4 then a and b are representatives for the classes in A — Z(A)9

with a = a2 and b = c4.

If \Z(A)\ = 2, then C2(δ) = C^(c), so by 10.8 we conclude t </< c or

cπ. Suppose t = α. Calculating using Section 8 we find O\CΆ{a)) = X F

where F = O2(C3(α)) = <F Π aΆ} is extraspecial of order 29 and X is of
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order 27 and acts without fixed points on Γ/<α>. As O\CΆ{a)) = O2(CA(a)),

we have a contradiction. Therefore

(21.11) s ~b for each s e T*.

So we may take t = 6. Let W = O2(C^(ί)) and Q = O2(W). Then

calculating using Section 8 we find

(21.12) Q = (t1 Π ξ)> wίίΛ Z(Q) = O2(CΆ(i)) Π C(Q) =

X e Syl3 (C^ίί)). Moreover F Π Z(Q) = i[Z(Q), X].
x , X] where

Now if [tΛ Π C(0, T] = 1 then by 21.12, T < Z(Q). On the other

hand if T< CA(t) then X centralizes T and then W = <XC(ί)> < C(T). So

again T < Z(Q). But this is impossible since by 21.11, f C ί z ί l C(ί),

while by 21.12, P Π Z(Q) c ϊ[Z(Q),X]. This completes the proof of

21.8.

(21.13) A£Sp6(2).

Assume A = SpQ(2). By Section 7, A has 4 classes of involutions

with representatives bu δ3, α2, and c2. Sp6(2) has a multiplier of order 2,

so A is the covering group of SpQ(2). Let <ττ> = Z(A). By [8], Theorem

3.12

(21.14) A feαs 3 classes of involutions with representatives π,a, and δ,

where a — a2 and b = δ3.

Next by lemmas 3.16 and 3.17 in [8]

(21.15) CA(b) = <δ> x B where B is isomorphic to the centralizer in M12 of

a 2-central involution of M12, and π e B. Moreover O2(B) = (bA Π O2(B)}.

In particular <δ,^> is the unique normal 4-subgroup of CA(b) and

the only 4-group centralized by bΛ Π C(δ). Therefore

(21.16) s - a for each s e TK

Thus we may take t = a. Let g, he A with

1 1

1 1

1
1 1
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Then heaΛ and g is an element of order 3 inverted by h. Further ah

is of type δ3 and hence by 21.14 ah is an involution. Thus heC(a).

So g = [g, h] must centralize T. However an easy calculation shows g

centralizes an involution ΰ in O2(C(α)) exactly when Q(ΰ) is

1
0

0
1

1
1

1
0

0
1

1
1

In particular a and aπ are the only members of aG Π O2(C(a)) centralized

by g.

This completes the proof of 21.3.

Section 22. Tightly embedded subgroups of the classical groups.

HYPOTHESIS 22.1. G = TA = CG(A)A where A = A(q) satisfies hy-

pothesis 21.1, CG(A) is an elementary abelian 2-group, CT(A) — 1 = Φ(T),

m(T) > 1, and T is tightly embedded in G. Further either

(1) |Γ| = 4, or

(2) T* Π N(T) < C(T) for each geG.

Let P be a complement to Z(A) in the preimage in A of the projection

of T on A = AjZ{A), containing Γ Π A . Let t e T* with ^ the rank of

t. Set W - P Π tC(A).

In this section we prove

(22.2) Assume hypothesis 22.1. Then Z{A) = 1, P# is fused in A and

either

( I ) P <J = O2(CA(p)) Π C(pA Π C(p)), |Γ| < q, and one of the following

holds:

(1) J = a(p) and Aut^ (/) is cyclic of order q — 1 cmd regular on

JK

(2) A = Spn(q), p — b£, £ > 1, / = <x(α)α(6) where a and b are of type

ae_λ and b19 respectively, and Aut^ (/) = Zq_λ x Zq_λ is regular

on J - (α(α) U α(6)).

(3) A = Spn(q), p = ce, J = a(a)a(jb) where a and b are of type ae

and b19 respectively, and Aut^ (/) is as in (2).

(4) A = Ω*n(q), p = c£,J = j8(p) and Aut^ (J) is ĉ /cϊic o/ order g — 1

and regular on JK

or,

(II) Γ = P has order 4, and either
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(5) A = SLn(2), t = j 2 , and T < Φ(S), S e Syl2 (CΛ(t)).

(6) A = Spn(2), cmd t = c2.

Proof. If 22.1.2 holds then [P,pA Π d ( p ) ] = [Γ, j^ Π C^(p)] = 1.

Suppose 22.1.2 does not hold. Then 22.1.1 holds so T and P are 4-

groups. Moreover T = <t, s> and sa = si, some α e C^(£). Let {̂ } =

sC(A) Π P. Then s = cu, ce C(A), and c^α = sα = st = c^ί, so ^ α = ^t.

In particular P <1 CA(t). Therefore hypothesis 21.2 is satisfied in A by

any 4-group in P. So by 21.3, Z(A) = 1.

Now suppose P<J. Then as hypothesis 21.2 is satisfied, the results

in Section 10 and Section 11 imply one of (l)-(4) occurs. Also Aut^ (/)

is transitive on PA ΓΊ J so has the form indicated.

Next suppose P £J. Then 22.1.2 is not satisfied, so as shown above,

T and P = ζu> ί> are of order 4 with uCU) = {u,ut}. So by Section 10,

P is a known subgroup of A. Suppose A = Un(q). By 10.6, A = Un{2),

A — 2, and ueZ£ with

But then u is a transvection, so P is not normal in CA(u). The same

argument eliminates the possibility that A = Spn(2) and t = a2 or t = c2

with

Therefore Section 10 implies P* = Γ# is fused and either A = SLn(2) and

t = j2 or A = Sp(n, 2) and t = c2. By 4.6, if A = SLn(2) then T < Φ(S),

In Case II we have shown P* to be fused. Moreover in cases (1)

and (4), P# is fused. Consider cases (2) and (3) and assume P# is not

fused. Then P* contains an element v of type bx or αΛ. But then by

what we have shown, P does not centralize vA Π C(v), a contradiction.

So in general, P* is fused.
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