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ON SYMMETRIC SIEGEL DOMAINS
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MASARU TAKEUCHI

Introduction

Let V be a convex cone in a real vector space X, F: Y x Y —> X€ a
V-positive hermitian map on a complex vector space Y, and

D(V,F) = {(z,u)eXc X Y;SmZ-F(u,u)eV}

the Siegel domain associated to V and F. D(V,F) is said to be sym-
metric, if for each point p e D(V, F) there exists an involutive holomorphic
automorphism σp of D(V,F) such that the fixed point set of σp consists
of only the point p. Satake [6] showed that the symmetric Siegel
domain D(V, F) is characterized by the following three conditions (i), (ii)
and (iii).

( i ) V is a self-dual homogeneous convex cone in X.

Let G(V) denote the group of linear automorphisms of V and take a
point eeV. Then the Lie algebra q(V) of G(V) is a reductive algebraic
Lie algebra in ql(X) and the stabilizer

of e is a maximal compact subalgebra of Q(V). Let

(C) 8(7) = Ϊ(V) + p(V)

be the associated Cartan decomposition of g(V). Then, for each xeX

there exists a unique element T(x) e p(V) satisfying T(x)e = x. Choose

an inner product ( , ) on I such that if ιA denotes the transpose of

A e QΪ(X) with respect to this inner product, the Cartan involution as-

sociated to (C) is given by A ι-> —*A. We define a hermitian inner

product < , > on Y by

ζu, v} = (β, F(u, v)) for uyv eY ,
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denoting the C-linear extension to Xc of ( , ) by the same notation ( , ).

Let Herm (Y) be the real subspace of the space End (Y) of C-linear

endomorphisms of Y, consisting of those endomorphisms which are self-

adjoint with respect to this hermitian inner product < , >. Then the

second condition is stated as

( i i ) For each xeX there exists R(x) eHerm (Y) such that

F(R{x)u,v) + F(u,R(x)v) = T(x)F(u,v) for u,veY .

The above R(x) is uniquely determined for xeX, and so we have an

jR-linear map R: X —> Herm (Y) by the correspondence x «-> R(x). The

C-linear extension of the map R will be also denoted by R: Xc —• End (Y).

Then the third condition is stated as

(iii) For each u,v e Y, x e X, we have

R(F(u, v))R(x)u = R(F(u, R(x)v))u .

In this note, we shall classify Siegel domains satisfying the conditions

(i) and (ii), and then determine the ones with the condition (iii) among

these Siegel domains. Our problem reduces to the classification in the

case where V is an indecomposable self-dual homogeneous convex cone,

and so we shall restrict ourselves to consider D(V, F) for such convex

cone V.

Take a maximal abelian subalgebra α in p(V) and put m = dim α.

Then the multiplicities of α-roots of g(7) are the same for all α-roots.

We define a positive integer v to be this multiplicity if m ^ 2, and v — 1

if m = 1. Then the pair (m, v) is a complete invariant for the linear

isomorphism classes of indecomposable self-dual homogeneous convex

cones, and the possibilities of (m, v) are m = 1, v = 1 ra = 2, v ^ > l ; m

= 3, y = l,2,4 or 8 ; m ^ 4 , y = l ,2 or 4. The cone with the invariant

(m, v) will be denoted by Vv

m. We associate to such (m,v) an algebra

Fv

m over R in the following way: Fv

m — the Clifford algebra Cv_λ associated

to the negative definite quadratic form on Rv~\ if m = 2 Έv

m = the

division algebra over R of dimension y, if m Φ 2. Let Λ H-> I denote the

canonical involution of Fv

m. We define a subspace P^ of Fv

m by

P^ = # 1 + R»-ι c Cv_! if m = 2;Pv

m = Fv

m if m =£ 2, and denote by

&:Fv

m-^Pv

m the orthogonal projection to Pv

m relative to the standard

inner product of Fv

m. Let c0 = 1, clf , cυ_! be the standard basis of

PL with relations
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c\ = - 1 (1 ^ i ^ v - 1)

We denote by Aut* (Fv

m, &) the group of those automorphisms of the

algebra Fv

m commuting with λ*->λ and &, and by 3K*(F^) the set of

unitary equivalence classes of /^-modules W over C with a hermitian

inner product <( , > satisfying the condition

(*) < ^ , v> = (u, λv} for λeFv

m, u,v eW .

We define 9W(m,i/) to be the orbit space Aut* (Fυ

m, 0>)\m*(F?J relative to

the natural action of Aut* (F^, 0>) on 9K*(F^). Then our results are

stated as follows.

THEOREM A. The set ίΰl(m,v) is in a bίjectίve correspondence with

the set of affine isomorphism classes of those Siegel domains D(V,F)

satisfying V — Vv

m and the condition (ii).

THEOREM B.υ Let W be an Fv

m-module with a hermitian inner pro-

duct <( , y satisfying the condition (*), and D(Vv

m, F) the Siegel domain

corresponding to W. Then D(Vv

m9F) satisfies the condition (iii) if and

only if m = 1, or m ^ 2 and

v-l

( # ) 2] (ciu> v}<(CiU, w} = 0 for u, v, w e W .
ί = 0

By means of Theorems A and B, we get a new classification of

symmetric bounded domains without the use of the classification of semi-

simple Lie algebras of hermitian type.

Finally we note (cf. Tsuji [8]) that if an /^-module W (m ^ 2) does

not satisfy the condition (#), then the corresponding Siegel domain

D(Vv

m,F) has no infinitesimal automorphisms other than infinitesimal

affine automorphisms.

1. Homogeneous Siegel domains

In this section we recall definitions and fundamental results on

homogeneous Siegel domains. For homogeneous cones and Γ-algebras,

see [9], [10], [11].

Let I b e a finite dimensional real vector space. An open subset V

of X is called a convex cone, if (1) x,yeV, 0 < λ < 1 =̂> λx + (1 — X)y

eV, (2) xeV, λ > 0 => λx e V, and (3) V does not contain any straight

1) In the case of F!J, the same result is obtained by T. Tsuji (unpublished).
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line. We denote by G(V) the subgroup of GL(X) consisting of those
φ e GL(X) satisfying φV = V. V is said to be homogeneous if G(V) acts
transitively on V. Two convex cones F c X and V c X' are said to
be linearly isomorphic, if there exists a linear isomorphism ^: X —> X7

satisfying φV = V. Let ^ c l f (1 <; i <̂  r) be convex cones. Put X
= Xj + + Xr (direct sum) and 7 = V1 + + Vr. Then 7 is a
convex cone in X. This cone is called the direct product of the Yt

(1 <; i <; r) and denoted by 7 = ^ x x F Γ A convex cone V is
said to be decomposable if it is linearly isomorphic to the direct product
Vλ x V2 of non-trivial convex cones V1 and V2 otherwise it is said to
be indecomposable. For a convex cone F c l , the subset 7* of the
dual space X* of X defined by

y* = {ξ e X* f(a?) > 0 for any x e V - {0}} ,

is also a convex cone. V is said to be self-dual if there exists an inner
product (, ) on X such that the canonical isomorphism φ: X —> X* de-
fined by p(#)G/) = (#, 2/) satisfies φV = V*. Each (self-dual) homogeneous
convex cone is linearly isomorphic to the direct product Vx X X Vr

of indecomposable (self-dual) homogeneous convex cones Vt (1 ^ i ^ r),
where the Vt are unique up to linear isomorphism and permutation
(Vinberg [9], [10]).

Let V c X be a convex cone and Y a finite dimensional complex
vector space. A map F: Y x Y —> Xc, where Xc denotes the complex-
ification of X, is called a hermitίan map, if (1) F C ^ + λ2u2, v) = λJPiu^ v)

+ λ2F(u2, v) for !̂, Λ2 e C, wx, ̂ 2> v e Y, and (2) F(u, v) = F(v, w) for ^, v e Y.
It is said to be V-positive, if (1) F(u,u) belongs to the closure V of V
for each ^ e Y, and (2) F(u, u) = 0 => u = 0. For a F-positive hermitian
map F, the domain D(7, F) in Xc x Y defined by

D(7,F) - { few)el c x Y; ^ w « - F(M,M) 6 V} ,

is called the Siegel domain associated to V and F. It is known (Pjateckii-
Sapiro [5]) that D(V, F) is holomorphically isomorphic to a bounded
domain in Xc x Y. We denote by A(D(V, F)) the group of those affine
automorphisms φ of Xc x Y satisfying ^(Z)(7, F)) = Z>(7, F). D(V, F)
is said to be affinely homogeneous if A(D(7,F)) acts transitively on
D(V,F). A Siegel domain satisfying the Satake's conditions (i) and (ii)
is always affinely homogeneous (cf. §3). If D(V,F) is affinely homo-
geneous, then V is homogeneous (Pjateckii-Sapiro [5]). Two Siegel
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domains D(V9F)dXc xY and D(Y', F') c XfC x Yf are said to be
affinely isomorphic if there exists an affine isomorphism φ: Xc x Y ->
Z / c x Y' satisfying <p(D(V,F)) = D(V'9F'). Let £ ( 7 , , F,) c Zf x Y< (1
^ i ^ r) be Siegel domains. Put V = V1 X X Vr c X = Z x + . . . + Xr

and Y = Yx + + Yr. We define a F-positive hermitian map F : Γ χ Y
->X* by

ut> Σ W) = Σ Ftfai, vt) for ^ , Vi e Y, (1 ^ i ^ r) .
i / iΣ
i

The Siegel domain D(V, F) associated to V and F is called the direct
product of the D{VUFJ (l^i^r) and denoted by D(V,F) = ZXTi,Fj)
X x D(Vr,Fr). A Siegel domain D(V,F) is said to be decomposable
if it is affinely isomorphic to the direct product D(V19 VΊ) X D(V2, F2) of
non-trivial Siegel domains D(V19 FJ and D(V2, F2) otherwise it is said
to be indecomposable.

In general, a complex manifold D is said to be homogeneous if the
group of holomorphic automorphisms of D acts transitively on D. D is
said to be symmetric, if for each p eD there exists an involutive holo-
morphic automorphism av of D such that the fixed point set of σp con-
sists of only the point p. It is known (Vinberg-Gindikin-Pjateckii-Sapiro
[12]) that the set of affine isomorphism classes of affinely homogeneous
Siegel domains is in the bijective correspondence with the set of holo-
morphic isomorphism classes of homogeneous bounded domains. Each
symmetric Siegel domain is affinely homogeneous, since the Bergman
metric of a Siegel domain is complete (Nakajima [3]), and a homo-
geneous Siegel domain is affinely homogeneous (Kaup-Matsushima-Ochiai
[2]). Thus we have the bijective correspondence between the set of
affine isomorphism classes of symmetric Siegel domains and the set of
holomorphic isomorphism classes of symmetric homogeneous bounded
domains. Furthermore it is known (Kaneyuki [1]) that each affinely
homogeneous Siegel domain D(V,F) is affinely isomorphic to the direct
product D(V19 Fx) x x D(Vr9 Fr) of indecomposable affinely homogeneous
Siegel domains D(yi9Fi) (1 <̂  i <̂  r), where the D(Vi9Fi) are unique up
to affine isomorphism and permutation, and that D(V9 F) is indecompos-
able if and only if V is indecomposable. Thus our problem reduces to
the case where V is indecomposable.

Now we recall the notion of T-algebras. Let



14 MASARU TAKEUCHI

A= Σ Ait

be a finite dimensional bigraded distributive algebra over R and a «-> α*

be an involutive anti-automorphism of A. A is called a matrix algebra

with involution of rank m, if (1) AίkAu c At,, and AikApq = {0} if fc ^ P,

(2) A& = AΛ<, and (3) A« is a subalgebra of A with the unit element

ei9 for each ί. An element

0 = Σ aίk , α<Jfc G Aίfc

of A will be often denoted by the matricial form a = (αίJfc). The general

element of Aik (resp. of A) will be denoted by aik, bik, cik9 (resp. by

α, 6, c, •). A matrix algebra A with involution of rank m is called a

T-algebra of rank m, if

( I ) There exists an algebra isomorphism θ: Ati -> i? for each i.

( I I ) e^jfc = aik.

(III) There exist wf > 0 (1 ^ i ^ m) such that

niθ(aίkbki) = nkθ(bkίaik) .

(IV) ί(α4»α£) > 0 if α{fc ^ 0 .

( V ) aik(bkicH) = (aikbkt)cH.

(VI) aik(bk£cίp) = (aikbkt)c4p iί ί < k < £ and & < 2?.

(VII) a i k ( b k e b % ) = i β i k b u ) b % iίi<k<L

For a Γ-algebra A of rank m, we define

%fc = dim Aifc for 1 ^ i, fc ^ m ,

tr α = Σ niβ(aii)

(α, δ) = tr α6* for a,b eA .

Then ( , ) is an inner product on A satisfying

(α*,6*) = (α,6),

(αδ,c) = (6,α*c) = (α,c&*) .

It follows from (II) that e = Σ eί * s the unit element of the algebra

A. A permutation £ι->i of the set {1,2, ,m} of indices is said to be

admissible for A, if i < fc, ΐ > fc imply %fc = 0. The renaming Aik

-^-> A^ of the grading of A by an admissible permutation i ι-> £, is

called an inessential change of the grading of A. Γ-algebras A of rank
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m and A' of rank m' are said to be isomorphic, if m — mf and there

exists an algebra isomorphism of A onto Af such that it becomes an

isomorphism as bigraded involutive algebras (i.e., it preserves gradings

and commutes with involutions), after an inessential change of the grad-

ing of A.

For a Γ-algebra A of rank m, we put

X(A) = {a e A α* = a} ,

f(A) = {(ait) eA;aίk = 0 (i > fc), θ(au) > 0 (1 ^ < ̂  m)} ,

7(A) = [tt* t € ̂ (A)} c X(A) .

Then (Vinberg [10]) V(A) is a homogeneous convex cone in X(A) and
the correspondence A -̂ —> V(A) induces a bisection from the set of iso-
morphism classes of Γ-algebras onto the set of linear isomorphism

classes of homogeneous convex cones. Furthermore it is known (Vinberg

[11]) that V(A) is an indecomposable self-dual convex cone if and only

if m = 1, or m ^ 2 and all nίk (i Φ k) are the same non-zero integer.

For such Γ-algebra, we put v = 1 if m = 1, and v — nik (i Φ k) if m ^ 2.

Then the pair (m,v) serves as a complete invariant for the linear iso-

morphism classes of indecomposable self-dual homogeneous convex cones.

It is not difficult to see that our invariant (m, v) coincides with the one

given in Introduction. We know that the possibilities of (m,v) are as

those in Introduction, seeing the classification of Vinberg [9] of such

convex cones. For such pair (m, v) we associate an algebra Fv

m over R

as in Introduction. Then the Γ-algebra Av

m with the invariant (m,v) is

constructed explicitly in the following way.

Let first m = 2, and

be the usual graduation of Cυ_λ — Fv

m. Identifying R with {CV_^)Q = Rl,

we define a linear map @e:Fv

m->R by the projection Cv_λ-+ (CV_^Q.

Putting Pυ

m = (Cv_!)0 + (Cv_i)i, we also define a linear map &: Fv

m -»Pv

m

by the projection Cv_λ -* (Cv_!)0 + (C^X. Denoting by ^ H-> I the canonical

positive involution of Cv_x (defined by the correspondence ciχci% cίs ι->

(—cίs) •(—CfcX—c )̂), w ^ define the standard inner product ( , ) on Fv

m

by

(1.1) U, ̂ ) = ^ ^ for λ,μeFv

m.
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Note that Pv

m is invariant under the involution λ*-+λ and

(1.2) 9teλ = \{0>1 + M) for λ e Fv

m .

Let next m Φ 2. Then F^ is the division algebra over R of dimension

v, and so we have the direct sum decomposition

where λ *-+ λ denotes the canonical involution of F£. Identifying R with

Rl and putting Pv

m = F£, we define linear maps 0tt\ F£ -> if and ^ : F^

—> P^ by the projection F^ —> i?l and the identity map of Fv

m respectively.

Then (1.2) holds also for these Fv

m. The standard inner product ( , ) on

Fv

m is also defined by the formula (1.1). Note that then for each m the

involution λ *-» λ commutes with &e and ^ .

Now, for a general pair (m, v), we denote by Av

m the algebra Mm(F^)

of all matrices of degree m with coefficients in Fv

m. The product in Av

m

will be denoted by α 6. Put α* = ιa for aeAv

m. Then A^ becomes a

matrix algebra with involution of rank m. A linear endomorphism p

of A^ is defined by

a i 1 c if i Φ k

We put Av

m = p(A^) and define a product in A^ by ab = p(α 6) for

α, 6 6 A^. Av

m has the natural bigrading induced from the one of Av

m.

The involution α ^ α * of Av

m leaves Av

m invariant and induces an involu-

tion of Av

m. Relative to these grading and involution, Av

m becomes a T-

algebra of rank m, by taking Ui = 1 for each i. This T-algebra Av

m is

the required one.

Put

Then X^ coincides with the space

of all hermitian matrices in the space Mm(Pv

m) of matrices of degree m

with coefficients in Pv

m. It becomes a compact simple Jordan algebra

by the product

yx) for a?, 2/ € Z^ .
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The unit element e of the T-algebra Av

m is also the unit element of the

Jordan algebra Xv

m. The cone Vv

m is also represented as the interior of

the subset {a Da ^ G l ; } of Xv

m. We define the standard inner product

( , ) on X*m by

(x, V) = Tr xuv = Stt (Trx y) for x,yeX*m,

where Tr denotes the usual trace of a matrix. This coincides with the

restriction to Xv

m of the inner product t r αδ* of the T-algebra Av

m. The

cone Vv

m is self-dual with respect to this inner product. We define an

injective linear map ψ: Xv

m -> Ql(Xv

m) by

ψ(χ)y = xy + yx = 2x\Jy for x,yeXv

m.

Let J4 = ψ(Xv

m) and ϊ^ be the subalgebra of gί(Z^) consisting of all

derivations of the Jordan algebra Xv

m. Then the Lie algebra q(Vv

m) of

the group G(Vv

m) is given by

a(V9J = ϊ i + ts* >

and ϊ^ coincides with the stabilizer of the point eeVv

m in g(F^). Fur-

thermore the above is a Cartan decomposition of Q(Vv

m) and the associate

Cartan involution is given by A *-> —ιA with respect to the standard

inner product of Xv

m. If we put

T(x) = \f(x) for xeXυ

m ,

we have T(x) e pv

m and T(x)e = a? for each a? e Z^.

Next we recall the notion of S-algebras. Let

be a T-algebra of rank m + 1 and j complex structures on C i j T O + 1,Cm + 1 | <

(1 ^ i ^ m). C is called an S-algebra of rank m, if it satisfies the

following additional conditions:

(VIII) α<Λ0'&*,m+i) = j(flikbk,m+d if 1 ^ i < fc ^ m.

( IX ) j(a%m+i) = Oα<fTO+i)* for each 1 ^ i ^ m.

( X ) θ(jaitm+1(jaitm+1)*) = β(α<fTO+1α<*TO+1) for each 1 ^ ί <g m.

will be called the partial complex structure of C. For an S-algebra

C of rank m, we put



18 MASARU TAKEUCHI

A= Σ Cik,

X = {α e A α* = α} ,

7 = {αeβ;α* = α}.

Then A becomes a T-algebra of rank m and is called the T-algebra
associated to C. The complex structure / on B leaves Y invariant and
so induces a complex structure j on Y. This j makes Y into a complex
vector space in the natural way, which will be denoted by (Y, j). The
inner product (, ) on C defined by the Γ-algebra structure on C satisfies

O'α, jb) = (α, b) for α, 6 e B .

Remark. It is known (Takeuchi [7]) that the positive numbers

wj = 2(2 + Σ nik + irii^Λ (1 ^ i ^ m), < + 1 = 1

satisfy the axiom (III).

A permutation i «-• i of the set {1,2, , m} is said to be admissible
for C, if i < k, i > k imply nik = 0. The renaming Cifc ^--> C?g
(1 ^ i, fc ^ m), C€,TO+1 -^-> CϊϊTO+1, Cm+1>ί — > Cm+1>ί (1 ^ ΐ ^ m) of the
grading of C by an admissible permutation ίt->i, is called an inessential
change of the grading of C. S-algebras C of rank m and (7 of rank
mr are said to be isomorphic, if m = mf and there exists an algebra
isomorphism of C onto C" such that it becomes an isomorphism as a
bigraded involutive algebra with partial complex structure (i.e., it pre-
serves gradings and commutes with involutions and partial complex
structures), after an inessential change of the grading of C.

Let C be an S-algebra of rank m. Put

= Σ ttm+M for w = (wiJfc) e Γ ,

and define a symmetric bilinear map Φ: Y x Γ -* X by

φ(^? ^) = i ( ^ + t)^) for u, v e Y .

Then it satisfies Φ(/^, /v) = Φ(u, v) for w, v e Y, and hence the map
F: (Y,j) X (Y,j) ->XC defined by

,v) = i{Φ(w,v) + Λ/^ΛΦ(U9jv)} for M,veY
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is a hermitian map. The maps Φ and F are said to be associated to C.

It is known (Takeuchi [7]) that F is a F(A)-positive hermitian map.

The Siegel domain D(V(A),F) c Xc x (Y,j) associated to V(A) and F

will be denoted by D(C). Then (Takeuchi [7]) the correspondence C ^-* D(C)

induces a bisection from the set of isomorphism classes of S-algebras

onto the set of affine isomorphism classes of affinely homogeneous Siegel

domains.

2. Linear automorphisms of a Siegel domain

We consider the pair ϊ? — (S {mα}1̂ α /̂ί+1) of a matrix algebra

s = Σ smβ
l^α, βgμ + 1

with involution u^>u* of rank μ + 1 and the set {mβ}1^β^/l+1 of μ + 1

positive integers with m ^ = 1, such that (1) partial complex structures

j on Satμ+19Sμ+lta 0- t^ a ^ μ) are defined; (2) linear endomorphisms & on

Saa (l^a^ μ + 1) are defined (3) for each a (1 ^ a ^ μ + 1), there

exists an algebra isomorphism # : Saa -* F^a for some va9 satisfying &λ

= 9Q*),&(9X) = Si&λ) for i e S α α . Such pair S? is called an S-system of

rank /i. The general element of Saβ (resp. of S) will be denoted by

uaβ9 vaβ9 waβ, . ( r e s p . b y w, v,w, •).

Let 5^ = (S; {mα}^α^+1) be an S-system of rank μ and εα the unit

element of the algebra Saa (1 ^ α ^ μ + 1). Identifying i? with 2?εα, we

define a linear map 0te: Sαα —> /? by

^ i = i ( ^ + (^)*) for 2eS α α .

Then we have

0leλ = 0le (<9X) for ^ e Sα α

and the involution u^»u* oί S commutes with Θ* and 0t& on each Sαα.

A permutation a »-> α of the set {1,2, , μ} of indices is said to be ad-

missible for £f9 if a < β, & > β imply Saβ = {0}. The renaming Saβ

^ - > S ; ? (1 ^ α, j8 ^ /£), Sβf,+1 — ^ S;t/I+1, S,+ltα — > S,+lΓα (1 ^ α ^ μ), ma

^-> m~ (I <^ a <> μ) by an admissible permutation α ^ α , is called an

inessential change of the grading of ^ . S-systems S? = (S {mα}) of

rank /i and Sf" — (S/ {m }̂) of rank μf are said to be equivalent, if (1)

μ = μr and (2) after an inessential change of the grading of 5 ,̂ mα

= m'a 0-tί a tί μ) and there exists an algebra isomorphism of S onto S',
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which preserves gradings and commutes with involutions, j and 0>. The
equivalence class of Sf will be denoted by {£?}.

Let C be an S-algebra of rank m. We define an equivalence re-
lation ~ in the set / = {1,2, ,ra} inductively as follows: Let i~ i
for each i. Suppose that an equivalence relation i — fc is defined for
each ί, k with \i — k\ < p. We define i, k with \i — k\ = p to be i ~ k
if (1) nik Φ 0 and niy7rι+1 = nktm+l; (2) nu = ww for each £ Φ i,k; (3) for
each s lying between i and fc (except ί and &), n i s = nks — 0 or i — s,
s ~ k. A grading of C is said to be adapted to the relation ~, if i < fc
< £, i ~ £ imply i ~ k ~ £. In this case we get the decomposition / =

7α (1 ^ α ^ μ) in such a way

for 1 ^ or

« y 7 " o f

that

(2.1) I.

/ into the

; = t ί » , + •••

and hence

(2.2)

We put

(2.3)

—-equivalence

+ 1H.-. + 1, m

m =

/.+1 = {m +

classe

ι+

= Σm

+1 = 1 .

Then the cardinality |/β| of Ia is equal to mα for each I <^ a <L μ + 1.
We define a(i) with 1 ^ α(i) ̂  ^ + 1 by the relation

(2.4) i e / β ( < ) ( l ^ ί ^ m + 1 ) .

THEOREM 2.1. (A) For each S-algebra C, we can make the grad-
ing of C adapted to the relation ~, by an inessential change of the
grading of C.

(B) Let C be an S-algebra of rank m with the grading adapted
to the relation —. Then we can associate to C an S-system if =
OS {ma}ι^a^μ+-d of rank μ with the following properties:

(a) μ is the number of the —equivalence classes Ia in J = {1,2,
• , m), and ma = \la\ (1 ^ a ^ μ).

(b) If a Φ β or β Φ γ,

uaa(yaβwβΐ) = (uaavaβ)wβΐ ,

uaβ(yββwβΐ) = (uaβvββ)wβr .
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(c) There exist linear isomorphisms

(2.5) θik\

satisfying

( 1 ) θu(aikbke) = i

: iβik(aίk)θk\bu))

and hence βu = θ for each ί,

( 2 ) θi*(a£) =

if a{i) Φ a(k)

if a(i) — a(k), i

if i = k

if a(i) Φ a(

if a{i) — a(

if i = £ ,

<=£

'**.) ) *

for each 1 ^ ί ^ m .

Hence we have

(2.6) dim C ί f c =

dim S
(ί)a(k)

if a(i) Φ a(k)

if ί = k .

(C) We associate to each S-algebra C an Ssystem <9* by the pro-

cedures (A) and (B). Then the correspondence C - ^ > S? induces an

injective map from the set of isomorphism classes of S-algebras into the

set of equivalence classes of S-systems.

Proof. We give the proof of the injectivity of the last map, since

the proof of other assertions was contained in Takeuchi [7].

Let Sf — (S {ma}lύa^μ+1) be an S-system. We define m, Ia (1 ^ a

<;μ + l) and a(i) (l^i^m + 1) by (2.1)~(2.4). Take real vector

spaces Cik (1 ^ i, k ^ m + 1) with dimensions (2.6) and linear isomor-

phisms θik as in (2.5). Put

c = Σ cik.
l ^ ΐ , fe^TO + 1

We define a product α&, an involutive linear automorphism a ι-> α* and

a partial complex structure j on C by the relations (1), (2) and (3). It

is easy to see that α ^ α * is an anti-automorphism of C, making use of

the commutativity of u >-> u* with 0* and and hence C becomes a
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matrix algebra with involution and partial complex structure. If fur-
thermore Sf is associated to an S-algebra C", then C becomes an S-
algebra, which is isomorphic to C". This shows the injectivity of our
map. q.e.d.

For an S-algebra C of the grading adapted to the relation ~, the
subalgebra

a(ί)=a(k)

of C is called the kernel of C. We have the following multiplicative
properties related to the kernel Cc (Takeuchi [7]).

LEMMA. 1) If ί Φ p, k Φ q and one of aίk, bkp, cpq belongs to Cc,

then

Cpq) = (aikbkp)cpq .

2) If i φ £ and a(k) equals a(i) or a(S), then

afk(aikbu) = (afkaίk)bk£ ,

or equivalently,

(βiifi^ctt + (aikcke)b*e ,

a>T*Q>ikckt) + bfk{aίkcke) = (afkbίk)ck£ + (bfkaik)ck£ .

3) // 1 <: ί ^ m and aίk e Cc, then

0'&m+i,i)α<* = j(bm+uίaίk) .

Now we consider the group of linear automorphisms of Siegel
domains. Let D(V, F) c Xc x Y be a Siegel domain. Put

GL(D{V,F)) = A(D(F,F)) Π GL(XC x Y) .

Let gΓφ(7,F)) and g(7) denote the Lie algebras of GL(D(V9F)) and
respectively. Identifying as gϊ(Z) Θ gϊ(Y) c $l(Xc x Y), we have (Pjateckii-
Sapiro [5])

βI(D(7, F)) = {(ψ', ^ 0 e 8(7) Θ flΓ(Y) ψ'FdΛ, v)

, ψ'v) (u, veY)} .
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The projection πx: QI(D(V, F)) —> g(V) is defined by the correspondence
(Ψ\ Ψ") -* Ψ. In particular, for the Siegel domain D(C) c Xc X (Γ, /)
associated to an S-algebra C, we have an identification

ql(D(C)) = {(ψ', ψ'0 e β(7(A)) Θ gl( Y) ψ"j - jψ",
φ'Φ(u, v) = ΦW'u, v) + Φ(u, ψ"v) (u, veY)} ,

where Φ: Γ x Y —> Z is the symmetric map associated to C. It is known
(Vinberg-Gindikin-Pjateckii-Sapiro [12]) that gίφ(C)) (resp. g(F(A))) is
an algebraic Lie algebra in gϊ(X x Y) (resp. in QI(X)), and ττx: gί(Z)(C))
—> Q(V(A)) is a rational homomorphism. We shall describe the structure
of QI(D(C)) in terms of the S-algebra C. Assume that C has the grad-
ing adapted to the relation —. Put

xc = cc n x, vc = cc n v(A).

Then it can be shown that Vc is the direct product V1 X x Vμ of the
cones Va corresponding to the Γ-algebras

and hence 7C is a self-dual homogeneous convex cone in Xc, in virtue
of the characterization of Vinberg cited in § 1. The Lie algebra g(Fc)
of G(VC) has a Cartan decomposition

where ϊ (7 c ) is the stabilizer of eA = J] e^e Vc in Q(VC), and p(Vc) is the

image ψ c (Z c ) of the injective linear map ψ c : Xc —• gί(Zc) defined by

ψc(x)y =z xy + yx for x,y eXc .

We define linear maps ψ7: Xc -> gl(Z) and ψ/ 7: Z c -> gI(Γ) by

= xy + I/a? f or x e Z c , 1/ e X ,

=z xu + ux for

and then define an injective linear map ψ: Xc -> gt(X) Θ βt(Γ) by ψ =

fθf, i.e.,

for ^ e Z c , yeX, ueY .

Put
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— 2_i ^ik

Then Tu becomes a Lie algebra by the bracket product [t, t'] = ttf — ft.

A faithful representation ψ:Tu~^ gί(X) 0 gl(Γ) is defined by

ψ(t)(x,u) = (tx + xt*, tu + ut*) for teTu,xeX,ueY .

We define subspaces pc and tu of gt(X) 0 gί(Y) by

, t* =

tu is nilpotent in the sense that it consists of nilpotent endomorphisms

of X x Y. Then we have

THEOREM 2.2. (Takeuchi [7]) We have a direct sum decomposition

as vector spaces with the following properties:

1) tw is £fce maximum nilpotent ideal of

2) gc is a reductive algebraic subalgebra of gϊ(D(C)) without com-

pact factors. QCXC c Xc and the restriction to Xc induces an isomorphism

of gc onto q(Vc). We have a Cartan decomposition

where 1° is the stabilizer of eA in cf, and pc is the one defined in the

above.

3) g0 is a compact subalgebra of gI(D(C)) satisfying qQXc = {0} and

feo,9c] = {O}.

4) The stabilizer ϊ of eA in gΓ(£>(C)) is a maximal compact sub-

algebra of gϊ(D(C)) with the decomposition

COROLLARY. Let C be an S-algebra. Then the rank of an S-system

associated to C is equal to 1 if and only if (1) the associated T-algebra

A is isomorphic to one of the Av

m, and (2) the projection πx: gί(D(C)) ->

g(V(A)) is surjectίve.

Proof. We may assume that C has the grading adapted to the

relation ~ . Let !? = (S; {we}1Sei5e+1) be an S-system associated to C.

Assume μ-1. Then Tu = {0}, X = Z c , V(A) = F c and A is isomor-

phic to ASj. It follows from Theorem 2.2 that
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where q0X = {0} and gc is isomorphic to g(V(A)) through the restriction
to X, and hence πx is surjective.

Conversely assume that (1) and (2) are satisfied. It follows from
(2) that 7rx(gίφ(C))) is reductive and πz(tu) is a nilpotent ideal in
πχ($(D(C))), and hence πΣ(lu) = {0}. Since πΣ is injective on tu, we have
Tu = {0}. Now (1) implies μ = 1. q.e.d.

3. Siegel domains satisfying (i) and (ii)

LEMMA 1. Let D(V,F) c Xc x Y be a Siegel domain associated to
a self-dual homogeneous convex cone V. Then the Satake's second
condition (ii) is equivalent to the following condition

(ii)7 πx: gίφ(F, F)) —> g(F) is surjective.
If D(V,F) satisfies (ii), it is affinely homogeneous.

Proof. If the condition (ii) is satisfied, we have p(V) c πx(ql(D(V, F)))
in the notation in Introduction. On the other hand, we have q(V) =
ϊ(V) + p(V) with [p(V),ί)(V)] = ϊ(V), and hence q(V) c πz(sϊ(D(V9 F))).
This shows (ii)7.

Conversely assume (ii)7. Then D(V,F) is affinely homogeneous (cf.
Pjateckii-Sapiro [5]). From the arguments in § 1, we may assume that
D(V, F) = D(C) of an S-algebra C of rank m satisfying (1) the associated
T-algebra A = Av

m, and (2) τrx: $l(D(Q) -> g(7yJ is surjective. Then as
we have seen in Theorem 2.2 and Cor., gΓφ(C)) contains the image pc

= ψ(Xv

m) of the map ψ = ψ7 φ ψ" given by

= xy + yx for x,y eXv

m = X ,

= xu + ux for α? e Z^, M G Γ .

Take the base point eA e Vv

m and the standard inner product ( , ) on I ; .
Recall that then

T(x) = |ψ7(x) for x e Xv

m .

We shall show that if we put

R(x) = iψ/7(ίc) for a; € Z^ ,

is self-adjoint with respect to the hermitian inner product (eA, F(u, v))
on (Y, f); this will imply (ii). We may assume nt = 1 for 1 ̂  i ^ m,
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in virtue of Remark of § 1. Thus the inner product ( , ) on C coincides

on Xv

m with the standard inner product of Xv

m. We define a hermitian

inner product < , > on (Γ, j) by

(u, v} = (u, v) + V--Ϊ(w, jv) for u, v e Y .

Then we have 4(eΛ, F{u, v)) — (u, v} for each u,v eY. In fact, for the

symmetric map Φ associated to C we have

2(eA,Φ(u,v)) = (eA,ύy + vu) = (y*,ύ) + (ϋ*,φ)

= (Λ, t)) + (^, v) = (u, v) .

Furthermore we have

, v) = (xu + ttίc, ̂ ) = (u, x*v) + (u, vx*)

= (^, a t; + vx) = (w, ψ^a?)!;) for # G X^, tί, i; e Y ,

and hence ψ"(x) is self-adjoint with respect to the hermitian inner pro-

duct < , >. This implies the required assertion.

The last assertion of the Lemma is clear from the above arguments.

q.e.d.

LEMMA 2. Let ¥ = (S {mβ}lsSβJδ2) &e an S-system of rank μ = 1.

T/̂ e^ 5^ is associated to an S-algebra if and only if it satίsfiies the

following conditions 1) —8):

1) εauaβ = uaβ.

2) Γfeere exist £a > 0 (1 ̂  α ̂  ^ + 1) such that

£a Me (UaβVβa) = £β &e (VβaUaβ) .

3) Stt (uaβu*β) > 0 if uaβ Φ 0.

4) 91* (uaβ(vβrwra)) = me ((uaβvβr)wΐa).

5) naβ(jvβjμ+1) = Kuaβvβtμ+1) if l^a^β^μ.

6) i « , + i ) = Owβi^+i)* if l^a^μ.

7) ^ 0X,^+i0X,«+i)*) = ^ (w β , , + i<,J if l^a^μ.

8) 8-1) ^ ( ^ ) = (^)w /or ^, ̂  e Slί9 u e S12,

8-2) λ(uv) — (λu)v for λ e S1U u e S129 v e S2ί.

Remark 1. For a general S-system ^ — (S; {mα}1̂ α̂ //+1) of rank μ,

the conditions in order that Sf is associated to an S-algebra, are given

by the above conditions 1) — 7) for general μ, together with the follow-

ing associativity conditions:
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8) If a Φ β or β Φ γ,

uaa(vaβwβΐ) = (uaavaβ)wβr ,

uaβ(yββwβΐ) = (uaβvββ)wβr .

9) uaβ(vβΐwγδ) = (uaβvβr)wγδ if a < β < γ and β < δ.

10) uaβ^(vβrwΐβ) = (uaβvβr)wγβ if a < β < γ and mβ ;> 2,

uaβ(vβrv%) = (uaβvβγ)v*γ if α < β < r and m^ = 1.

Proof of Lemma 2. Let ^ be associated as in Theorem 2.1, (B) to

an S-algebra of the grading adapted to the relation ~ . Then 1) follows

from the axiom (II) of S-algebras. In virtue of Remark of § 1, we may

assume that nt = nk if a(i) = a(k). Put £aW = nt. Then 2) follows from

the axiom (III) and the equality (λ, μ) = (λ, fl) for the standard inner

product ( , ) of Fv

m, seeing that Fv

m is generated by &Fv

m. We get 3)

making use of the axiom (IV). Theorem 2.1, (B), (b) implies 8-1), 8-2)

and

8-3) u(λv) = (uλ)v for u e S219 v e S12, λ e Sn .

Applying the involution u^u* on 8-2), we get

8-2)7 (uv)λ = u(vλ) for u e S12, v e S21, λeSn.

Now 4) follows from 8-3), 8-2)r and the equality (λμ, v) = (μ, h) for the

standard inner product of Fv

m. 5) follows from the axiom (VIII), seeing

also that Fv

m is generated by 0>Fυ

m. 6) and 7) follow from the axioms

(IX) and (X) respectively.

Conversely assume that Sf satisfies the conditions 1)~8). Let

be the matrix algebra with involution a ι-> α* and partial complex

structure j , constructed from if as in (C) of Theorem 2.1. We shall

prove axioms (I) — (X) for C.

(I) Put 0 = 0": Cu -» Rεa{ί) = R. Then

implies that θ is an algebra isomorphism.

(II) The unit element e^eC^ satisfies 0^(e*) = eβ(i). It follows from

1)
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9ik(aik) = θik(aik) if a{%) Φ a(k)

PίPKeWiβit)) = &θik(aίk) if a(i) = α(fc), i ^ fc
:(β^ ΐ f c(α ί Λ ;)) = ^ β θik{aik) if i = fc

This implies e4αίλ: = aik.

(Ill) Put Πi = £am. Then from 2) it follows

= nkθ(bkialk) .

(IV) If α« * 0,

= gte (θik(a{k)θik(aik)*) > 0

in virtue of 3).

(V): a,ik(bkecei) = (aikbke)cH. We may assume that i, k, ί are mutu-

ally distinct, in virtue of (II). Then

cH)) = 3tt (θik(aik)θki(bkecH))

JθιKcM if a(k) φ a(i)

bke)θei(cu))] if aϋje) = a(i)

= Me ίθtk(aik)(.θkί(bkι)θei(ceι))] ,

since Me (λμ) = 0tz {I0>n) for A 6 &F*m, μ e F^. In the same way we get

θu((alkbke)cu) = ^^ [ ( ^ ^ ^ ^ " ( δ ^ ^ ί C r t ) ] .

Now (V) follows from 4).

(VI): aik(bkectp) = (aikbkι)cep if i < k < t, k < p. In virtue of (II),

we may consider the following three cases:

(a) a(i) = a(k) = a(ί) = 1 < <x(p) = 2, m ^ 3,

(b) α(ΐ) = aW) = α(p) = 1 < α(4) = 2, m ^ 3,

(c) α(ΐ) = am = oc(£) = a(p) = 1, £ Φ p, m ^ 4.

In case (a), we have

c<ll) by 8-1)

= θu(aikbk()θep(cίp) since m =£ 2
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This implies (VI). In case (b), making use of 8-2) and m Φ 2, we have

which implies (VI). In case (c), making use of m Φ 2, we have

Oίp(aik(bk£c£p)) =

θHaikbk£)c£p) =

Since Fv

m is an associative algebra for m ;> 4, we get (VI).

(VII): aik{bkebti) = {aikbke)b% if i < k < £. We may consider follow-

ing two cases:

(a) α(i) = a(k) = 1 < α(4) = 2, m ^ 2,

(b) <*(i) = αr(fc) = a(£) = 1, m ^ 3.

In case (a), we have

since ^ ϋ ^ e / / ) = ^ ( ^ ) for λ e&Fv

m and //e/ 7; with μ = μ. On the other

hand

(α«)(βw(6 f c l)^(δ^*)] by 8-2) .

These imply (VII). In case (b), we have

θίk((aίkbk£)b*t) - (θίk(aίk)θ*'(bk£))θk<(bk£)* .

Together with the equality λ(μμ) = (λμ)μ in Fv

m, we get (VII).

(VIII) follows from 5) and 8-1).

(IX) and (X) are immediate consequences of 6) and 7) respectively.

q.e.d.

Remark 2. For an S-system (S {mα}) of rank μ satisfying 2) and

3), we put

t r u = Σi !>« ®< u«« f o r u = (uaβ) e S ,

(u,v) = tr tίv* for u,v eS .
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Then ( , ) is an inner product on S satisfying

(tt*, 1;*) = (u,v) for u,veS ,

and the condition 4) is equivalent to

(uv, w) = (v, u*w) for u,v,w e S ,

or

(uv> w) = (u, wv*) for M9v9w eS .

Let SK(F̂ ) be the set of all equivalence classes of (finite dimensional
and unital) F^-modules over C, and Wl*(FvJ, Aut*(F^,^) and 3K(ra,i/)
be as in Introduction. Then the natural map from 2K*(F )̂ into 9K(F̂ )
is a bijection. This can be proved in the same way as Lemma 21 in
Ozeki-Takeuchi [4]. Since the natural map is equivariant with respect
to the action of Aut* (F£, 9s), we have the identification

m(m,v) = Aut* (Fi,^)\SW*(Fi) = Aut* (Fi,^)\2R(Fi)

of orbit spaces. The point of SK(m,y) represented by an F^-module W
will be denoted by [W\.

In virtue of Lemma 1 and Cor. of Theorem 2.2, the classification
of affine isomorphism classes of those Siegel domains D(V,F) such that
V is an indecomposable self-dual homogeneous convex cone and it
satisfies the condition (ii), is equivalent to the classification of isomor-
phism classes of those S-algebras such that the rank of an associated
S-system is 1. Thus, in virtue of Theorem 2.1 and Lemma 2, our
Theorem A in Introduction is equivalent to the following

THEOREM 3.1. The set @(m,ι/) of equivalence classes of those S-
systems (S; {ma}) of rank 1 satisfying m1 = m, 1)~8) and &: Sn = Fv

m,
is in a bίjective correspondence with the orbit space

Proof. Let £f = (S {mα}^^2) be an S-system of rank 1 satisfying
m1 = m, 1)~8) and Sn = F«. We define

(u, v) = &e uv* for u,ve S12 .

Then 3) and 7) show that ( , ) is an inner product on S12 satisfying
(JUyjv) = (u,v) for u,veSί2. Put T7 = (S12,j) and

<ΐί, ^> = (u, v) + Λ/^Λ(U, jv) for u,v e S12 .
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Then < , > is a hermitian inner product on W. 1), 5) and 8-1) show
that W is an F^-module over C. Furthermore Remark 2 implies (λu,v)
— (u,λv) for λeFv

m,u,v e S129 and hence

( *) ζλu, Vs) = (u, λv} for λeF^, u,v eW .

Now the correspondence ^ — - > W induces the map "©(m, v) s {&*} (-> [W]

Conversely let W be an F^-module with a hermitian inner product
y satisfying the condition (*), and WR the scalar restriction to R of

We define an inner product ( , ) on WR by

It

(3.

satisfies

1)

(u,v)

(λu, v) — (u, λv)

,vy

for

for

λel

uy

7v >

V

u

eW

,ve

•

W .

The natural complex structure on WR (defined by the multiplication V ^ ϊ
on W) will be denoted by j . Making use of the standard inner product
U, μ) = &e λμ of Fv

m, we define a bilinear map WR x WR s (u, v) ι-> uv e
Fί by

It satisfies

(3.2)

(3.3)

(3.4)

(3.5)

for u,v eW and .

(uv, X)

λ(uv)

Λ e r m .

= (u, λv)

= (λu)v ,

a<uv =

wo =

(ju)(jv)

for each

Now we put

( ief;, ξe.

' u,v e WR

• I . -

λeF;

u(λv) ,

^ = m

and define on S a product ss', an involution s ι-> s* and a partial com-
plex structure j by

Λ̂/Λ' ^Λ (M + uv' λu' + ξ'u

ξ)\v'
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'λ u\* __ n v
ξ) ~[u

0 u\ /O jίi

\υ 0/ \jv 0,

Then y = (S {mβ}1£<,S2) becomes an S-system of rank 1 with Su =

We define

trs — Meλ + ξ for s =

(s, s') = tr ss'* for s, s' e S ,

and hence

(s, s) = (χ X) + (^, ^) + (t;, v) + ξ2 for s =

We can show

(ssr, s") = (s, s^s7*) for s, s7, s7/ e S ,

making use of (3.1), (3.2) and (3.3). It follows from Remark 2 that &

satisfies 2), 3) and 4). 1), 5), 6) and 8-1) follow from the definition.

7) and 8-2) follow from (3.5) and (3.2) respectively. Thus we get an

S-system Sf of rank 1 satisfying mx = m, 1) —8) and Sn = Fυ

m. It is

easy to see that the correspondence W -^-> S? induces the map 3K(m, v)

3 [W] ι-> {&*} e @(m, v), and that it is the inverse of the former map

©(m, v) —> 2K(m, v). This proves Theorem 3.1. q.e.d.

Next we shall describe explicitly the hermitian map of the Siegel

domain corresponding to [W] e Ίfiim, v). The C-linear extension to (Pv

m)c

of the involutive linear automorphism λ ^ λ of Pv

m, will be also denoted

by λ *-> λ. Then (X^)0 is identified with the space

of all hermitian matrices in Mm((Pv

m)c). The (i, fc)-th component of ^ G

Hm((Pv

m)c) will be denoted by zifc. Denoting the C-linear extension to

(Pv

m)c of the standard inner product ( , ) on Pv

m by the same notation

( , ), and the complex conjugation of (Pv

m)c with respect to Pv

m by λ H-> λ,

we define a hermitian inner product < , > on (Pv

m)c by
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<J,/ι> = α / 0 for λ,μe(P»m)c .

We define a map H:W xW-> (P"m)c by

> for each λePv

m .

It is sesqui-linear (i.e., C-linear with respect to u and conjugate linear

with respect to v) and satisfies

H(u, v) = H(v, u) for u, v e W .

In terms of the standard units cQ,c19 •,£„_! of P^, i ϊ is given by

) = 2 </̂> c ^ > c * for ^, i; e W .

T H E O R E M 3.2. Tfte Vv

m-positive hermitian map F:Y x Y -• Hm((PvJc)

of the Siegel domain D(Vv

m, F) corresponding to [W] e 2K(m, ι;) i s described

as follows: P ^ ί Y = W + + W . Γfee ί-tfe component of ueY will

be denoted by uteW (1 <Ξ i ^ m). Γ/^e^ F is #iww 61/

ίXw, v)<fc = i{H(ut, vk) l(uky Vi)} for 1 <£ i, fc^m, i Φk 9

for 1 ^ i ^ m .

Proof. Let ^ be an S-system constructed from W as in Theorem

3.1, and C an S-algebra constructed from 5* as in Theorem 2.1, (C).

We may assume that the Γ-algebra A associated to C is Av

m and Y =

fα e B α* = α} is identified with the totality of "matrices" of the form

u =

0

e PF̂ K (1 ^ i ^ m) ,

with the natural complex structure j . The associated symmetric map Φ

is given by

(3.6)
Φ(u, v)ί1c = +

[Φ(u9 v)u = ^ (t

in the notation in Theorem 3.1, and hence

for l ^ i , k <Lm9 ί Φ k ,

for 1 ^ i ^ m ,

(Φ(u,jv)ik = ϊ&dUiU'

\φ{u, jv)u == fe, vO

for 1 ^ i, yfc ^ m,

for 1 < ΐ < m .
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We define an i?-bilinear map H: WR x WR -» (Pv

m)c by

H(u, v) — 0>(uv + V — lu(jv)) for u, v e W ,

denoting the C-linear extension of 0>: Fv

m -» Pυ

m by the same 0>: (Fv

m)c ->

(P^)c. Then it is characterized by

<Λ, H(u, v)} = < ^ , ^> for each λePv

m ,

and hence it coincides with the formerly defined sesqui-linear map H.

In fact,

= (λ,uv + *T=lu(jv)y = (λ,uv) - <S^

= (λ, uv) + <f-ϊ(λ, (ju)v)

= (λv,u)

Now, by (3.6), (3.6y, the associated hermitian map F(u,v) — \{Φ(u,v) +

, jv)} is described as

2F(u,v)ik = i{fT(^€, vfc) + ffίWfc,̂ )} for 1 <Ξ i, fc ^ m, i ^ fc ,

2F(u, v)u = <w€, v̂ > for 1 ^ i ^ m .

This implies the Theorem. q.e.d.

Remark 3. Let D(Vv
m, F) c Z c x Y be the Siegel domain constructed

from [TF] G SK(m, ιθ in the Theorem. As we have seen in the proof of

Theorem 2.2, Cor., we have the direct sum decomposition

where g0 is the kernel of the projection πz. The ideal g0 is described as

follows: Let S)o denote the real subalgebra of $(W) consisting of those

linear endomorphisms of W, leaving invariant the hermitian inner pro-

duct < , > of W, and commuting with the action of Fv

m on W. We de-

fine ψD e qί(Xc X Y) for D e ©0 by

for zeXc, u, e W (1 ^ < ̂  m) .

Then the correspondence D >-> ψD gives an isomorphism of S)o onto g0.

This follows from the Theorem or from the detailed description of g0 in

terms of derivations of C, given in Takeuchi [7], The subalgebra gc is

also described explicitly by means of the F^-module structure of W [7].

It is easy to determine Tl(m9v)9 since the set SK(F )̂ is well known.
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In the following we will give ϊΰl(m9v) for each (m, v).

Case m = 2, v ^> 1.

F^ = Cv_i. Note that the action of each σeθ(v — 1) on Rvl = (C^X

is uniquely extended to an automorphism σ of Cv_l9 and that Aut* (F^,^)

coincides with the totality of σ for σ e O(v — 1).

(a) v = 2ί + 1 (£ ^ 0).

2R(m,ιO = {[WM r e Z , r ^ 0} , άimWr = 2'r .

(b) v = 2S + 2 U ^ 0).

2K(m, v) = {[TFr,s] ; r , s e Z , r ^ s ^ O } , dim T^ r ? s = 2^(r + s) .

ΐ ^ r j S = Ww Φ - . Θ TF(1) Θ W(2) Θ Θ TF(2), where T7(1) and ίF ( 2 ) a re
r s

inequivalent irreducible C2m-modules over C

Case m Φ 2, p = 1, 2, 4 or 8.

(a) p = 1 (m ^ 2). F^ = i? is isomorphic to Co as an algebra with

involution and projection &.

9K(m, v) = {[T r̂] r e Z, r ^ 0} , dim TFr = r .

(b) y = 2 (m ^ 3). Fv

m = C (as a real algebra) is isomorphic to Cλ

as an algebra with involution and &.

, v) = {[Tf r,J r, s e Z, r ^ s ^ 0} , dim FFr)S = r + s .

Θ Θ W™ Θ TF(2) Θ Θ TF(2), where TF(1) and W™ are

inequivalent irreducible Crmodules over C.

(c) v = 4 (m ^ 3). Έv

m — H (real quaternion algebra) is isomorphic

to C2 as an involutive algebra.

= {[Wr] r e Z, r ^ 0} , dim PFr = 2r .

(d) y = 8 (m = 3). Fv

m = K (real Cayley algebra).

dim VΓo - 0 .

4. Symmetric Siegel domains

Let C be an S-algebra corresponding to [W] e ΈSl{my v) as in the pre-

vious section, and F: (Y, j) x (Γ, y) -> Z01, Z = Z^, be the 7^-positive
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hermitian map associated to C. We want to describe the Satake's
third condition (iii) for D(Vv

m,F) in terms of the S-algebra C. The re-
lations cited in Lemma of §2 will be used consistently throughout the
following computations. Recall

F(u, v) = \{(ύy + vu) + V^Λ(ύ(jy) + (jv)u)} for u, v e Y ,

R(x)u = %ψ"(x)u = \(xu + ux) — \(xu + ux) for xeX, ueY ,

and hence

R(x)u = \ x u , E{x)u = J ^ α ; f o r x e l , u e Y ,

R(x + V^ϊy)u = i{(xύ + ux) + j(yύ + uy)} f o r x,yeX, u e Y .

We have

16R(F(u, v))R{x)u = (uy + ϋu)(xύ) + (wa?)(% + vu)

(β)u)(xύ) +

(xv)u

(xv)u)ύ + u(ύ(yx) + (xv)u)

u[ύ(j(yx))

and hence the condition (iii) is equivalent to

(ύy + vu)(xύ) + j{(u(jy) + (jv)u)(xύ)}

= (Myx) + (χv)u)ύ + j{[ύ(j(yx)) + (Kχv))u]ύ}

for each u, v e Y, x e X .

Comparing the Ci?m+1-components, we get the equivalent conditions

for each 1 ^ ΐ ^ m, w = ( f̂c^), v = (vk£) eY, x = (xk£) e X .

In the following, the general element of Cik (1 <Li,k <L m) and Cit7ϊl+1

(1 ^ i ^ m) will be denoted by xik and w<, i?<, te?<, respectively. If we
write the above conditions for
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X — Xfcΰ ~ι X}c£ f ι~ w ~f~ ^ y

X == Xiic ~Γ %ik 9 rC φ 1 9

X = Xti , X% = XU ,

we have the following three conditions:

if k Φ i, £ Φ i .

+

(iii—3)

= {u

+

){xφ

+

ΛVfx

k) +

Σ

a))Uk + (*

«))^ί + 2
l ^ f c

k\^tXik))Ui +

OM + [(̂ ίfcO'̂ /

[j ((xuVi)ut)uk

((XiiJVi)U*)jUk

Σ ((^α^J^f)^

c))uf\jUi if fc

^ί) + (O'vJufXxuUi)

for each 1 <̂  £ <g m .

Thus the condition (iii) is equivalent to the conditions (iii-1), (iii-2),

(iii-3) as a whole. In the equality (iii-1), (UiVf)(xk£M£) = ((UiVf)xk£)u£ =

(Ui(vtxu))u£. In the same way, (UiVf)(xt£uk) = (Ui(vfxte))uk, (Uijvt)(xktju4)

= [Ui((jv*)xk£)]ju£ and (Uijvf)(xtJuk) = [UiiO'v^xf^ju^ Furthermore

(ViW?)(aj&Wfc) = ((ViUf)xte)uk = (Vi(ufxte))uk = (vt(xkiut)*)uk. In the same

way, ((jVi)uf)(xtJuk) = (jVi(xk£u£)*)juk. Thus (iii-1) is equivalent to

+ ( ( j V i ) ( x k i u J * ) j u k = 0 if k Φ i , £ Φ i .

In the lefthand side of the equality (iii-2), (UiVf)(xikuk) + (ViUf)(xikuk)

= (iUiVt)xik)uk + ((VίOSifc)^ = (tti(tft*α<*))tt* + (vt«a?<fc))ίίfc. In the same

way, (ujvf)(xίkjuk) + (ίjvι)uf)(xίkjuk) = [^(O
In the righthand side of (iii-2), (wί(ι;?ίcffc))w< +
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i) + xik((vkuf)Ui). In the same way, [

X xfJlJUi + (ixikjvk)uf)jUi = (uJviXxfjJUi) + xik[({jvk)uf)jUi]. Thus (iii-2)

is equivalent to

+ Σ {d^ikVk)uf)u4 + ί(j(XijcVk))uf]JM£} if i Φ k .

Furthermore (iii-3) is equivalent to

(iii-3)' Σ {{ViUf)uk + ((jVi)ut)juk} = 0 for each 1 <: i ^ m .

Now, if m = 1, the conditions (iii-1)7, (iii-2)', (iii-3)7 are always satisfied.

If m ^ 2, the condition (iii-iy for k = £ Φ i implies

(4.1) (vιuf)uk + ((jvάuf)juk = 0 if i Φ k ,

or equivalently

(4.1)7 (ViU*)wk + (ViWf)uk + (ίjvάuf)jwk + {{jv^wt)juk = 0 if i Φ k .

Actually the condition (4.1) is equivalent to three conditions (iii-1)7,

(iii-2)7, (iii-3)7. In fact; assume (4.1), then replacing wk = xkeue in (4.1)7,

we get (iii-1)7. Replacing uk = x%Uι and wk = uk in (4.1)7, we know

that the lefthand side of (iii-2)7 is 0. The righthand side of (iii-2)7 is

also 0 by (4.1). (iii-3)7 follows from (4.1). These prove the required

assertion.

Now we are in a position to prove Theorem B in Introduction.

Proof of Theorem B. Passing to the /^-module W, the condition

(4.1) is equivalent to

(4.2) (&(yu))u + [&((jv)u)]ju = 0 for u, v e WB .

Recalling that (0>(uv),X) = (uv,X) = (u,λv) for λePv

m, we get

Thus (4.2) is equivalent to

Σ {(v, CιV)(CiU9 w) — (jv, CiU)(CiU, jw)} = 0 for w, v, w e WR ,
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or equivalently

2 {(v, CiU)(CiU, jw) + (jv, CiU)(CiU9 w)} = 0 for u, v, w e WR .

Thus the condition (4.2) is equivalent to

( # ) 2] (CiU, v}(CiU, w} = 0 for u,v,w eW .

This proves Theorem B. q.e.d.

Let 9Ks(m, v) denote the set of those [W] e 9K(ra, v) defining sym-

metric Siegel domains.

LEMMA. Let [W] e 2Ks(m, y), 2V = dim W and p:Fυ

m-* End W be the

representation defined by the F^-module structure on W.

1) If m^ 2, then

2) // * ^ 3, then Tr ^(cj = 0 for each 1 ^ k ^ v - 1.

3) If m^2 and v Φ 2, ίfeew ]V = 0 or iV = v - 2.

4) // m ^ 2 αmZ y = 2, ί/̂ βn [FF] = [^^,0], i.e., TF is the direct

sum of N-copies of an irreducible CΓmodule over C.

Proof. 1) Let m >̂ 2. Take an orthonormal basis {u19 •• ,uN} of

TF, and put

Then ααiSfc = —aβa]c and |θ(cfc) (1 ^ k ^ y — 1) has the matricial representa-

tion (aaβk)lύat β£N. From the polarized form

v — 1

2] {\CiUy vy(c{a! y wy + ζCiV!', vy{CiU> wy\ = 0 for u, u', v,w eW

of the condition (#), we have

^α^^rδ + δΐβδaδ + 2 ϋ iββak^δγΊC + &βrk&δ«k) = 0

for each 1 <£ α, /3, p, 3 <£ N. Putt ing /3 = α and 3 = p, we get

1 + 3«r + Σ (aea*a r r 4 + ααrfcαrαfc) = 0 .
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Taking the sum over a and γy we get

N2 + N + Σ (Tr P(ck)y + Σ Tr (p(cky) = 0 .
k k

Since p(ck)
2 = ^(c|) = —lw and hence Tr (p(cA)2) = — N, we have

N(N + 1) + Σ (Tr p(ck)y - (v - l)iV - 0 .

Hence

v + 2) = ~ Σ (Tr p(ck)Y = Σ |Tr

2) We may asume F^ =̂  K, since ϋΓ has no modules other than the

trivial one. Let (F£j° denote the orthogonal complement in F^ of the

center of F£, with respect to the standard inner product on F£. Then

(Fi)° is closed under the bracket product [λ, μ\ — λμ — μλ and coincides

with the commutator subalgebra [(F^)°, (F^)0]. The assertion follows from

the fact that each ck (1 ^ & ̂  v — 1) belongs to (Fi)° for x; ̂  3.

3) is an immediate consequence of 1) and 2).

4) As we have seen in § 3, if m ^ 2 and v = 2, then 2ft(m, r̂ ) =

J ; r , s e Z , r ^ s ^ 0 } , dim ψ Γ f t = r + β, TFr,s = TF(1) Θ Θ W(1) Θ

Θ - Θ W(2\ where W(1) and PF(2) are inequivalent irreducible Cr

s

modules over C. Let W = WTtS and [W] eWls(m,v). We may assume

that p(c^ has the matricial representation

and hence | Tr (̂Cj) |2 = (r — s)2. Now the assertion 1) implies

(r + s)2 = (r - s)2 ,

and hence r ^ s = 0. q.e.d.

The set SKs(m,p) can be determined by the above Lemma. For

example, let m = 2, p = 2^ + 2 (^ ^ 1). Recall that F^ = C 2 m and

) = {[WrJ r, seZ, r ^ s ^ 0}, dim Wr,s = 2^(r + s) .

If [Wr>s] e 3Jίs(m, i>), from Lemma 3) it follows
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r + s = 0 or 2e(r + s) = 26 ,

and hence the possibilities are one of

1) i ^ 1, r = s = 0,

2) ^ = 1, r = 1, s = 0 (v = 4, dim WltQ = 2),

3) I = 2, r = 1, s == 0 0 = 6, dim Tf 1)0 = 4).

We shall show that for each of the above (r, s), W = Wr>s satisfies the

condition (#).

Case 1). The condition (#) is clearly satisfied, since W = {0}.

Case 2). Note first that in terms of the sesqui-linear map H, the

condition (#) is written equivalently as

(H(u, v)u, wy = 2(u, v)>(u, wy for u, v, w e W .

Let W = C2 with the hermitian inner product <w, τ;> = ^v. The Λ-

linear map p: Pv

m^> M2(C) defined by

0\ /ΛΛ^Ί 0

J * ) (
o) "fe) ( - / = ! 0

gives rise to an irreducible F^-module structure on W satisfying (λu,v}

— (u, λvy. Through the injective map p, we identify Pv

m with a real

subspace of M2(C), and thus (Pv

m)c with M2(C). Then the hermitian

inner product < , > on (Pv

m)c is given by

<J,/ι> = iTrα^) for ^,//eM2(C) .

Now the sesqui-linear map H: C2 x C2 —> M2(C) is given by

for u,v eC2 .

In fact, < ,̂ 2^ί;y> = Tr ̂ (v'ίϊ) = Tr (λvYΰ = < ^ , iί> for each ^ e M2(C).

Hence we have

, v)u, wy = <2(^ί;y)^, w> = 2(u(t7ϋu), wy

= 2<^,vX^,w> for M,t;,ίi;eC2 .

This shows the condition (#) for Tf.

Case 3). Let W = C4 with the hermitian inner product <w, i;)> = ιuv.

The homomorphism p: Fv

m-+ MA(C) defined by
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1 0

0 1

0

0

1 0

0 1-

^ ϊ 0
0 Λ ^

0
0

p(c2) =

0

1 0

-0 1

- 1 0

0 - 1

0

0 -V^ΐJ

^ 1 0 1

0 - v ^

ί>(c4) =
0

1

0

- 1

0

0

1

- Γ

0

0

0

0 -<f=\

0

0 - ^ 3

o

0

0 -<f^

0

gives rise to an irreducible F^-module structure on W satisfying (λu, v~y

= (u, λv}. It can be checked that the F^-module W satisfies the con-

dition (#).

It is verified that the above [Wr,s] defines actually the symmetric domain

of type (IV)u+2, (Π)6 and (EIII) respectively.

The set ίΰts(m,v) for each (m,v) is given as follows.

Case m = 1. v = 1, Fζ, = R.

ms(m,v) = {[Wr reZ, r ^ 0} , dim Wr = r .

[Wr] defines the symmetric domain of type (I)i,1+r.

Case m = 2.

(a) v = l. F°m = Ca = R.

[Wo] defines the symmetric domain of type (IΠ)2.

(b) x» = 2. F^^C^C.

SK,(m, v) = {[Wr,J r e Z, r ^ 0} , dim W

[TFri0] defines the symmetric domain of type (I)2,2+)-

(c) v = 2£ + 1 (ί ^ 1). F^ = C«.

3Ks(w, v) = {[ΐF0]} , dim Wo = 0 .

[WJ defines the symmetric domain of type (IV)v+2.

(d) v = 2£ + 2 (^ ^ 1). F ; = CM+1.

= r
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[WOtO\ defines the symmetric domain of type (IVX+2.

v = 4 ms{m, υ) = {[W0>0], [Wh0]} , dim W0>0 = 0 , dim W1>0 = 2 .

[W0)0], [Wh0] define symmetric domains of type (IV)6, (II)5 respectively.

v = 6 ms(m,v) = {[W0,0],[W1>Q]}, dimTF0,0 = 0 , dim Wuo = 4 .

[Wo>o\, [Wuo\ define symmetric domains of type (IV)8, (EΠI) respectively.

Case m ^ 3.

(a) * = 1. F»m = R.

ms(m, v) = {[Wo]} , dim Wo = 0 .

[T ôl defines the symmetric domain of type (IΠ)m.

(b) v = 2. F^ = C.

Wls(m, v) = {[Wr,0] r e Z, r ^ 0} , dim Wr>0 = r .

[Wr>0] defines the symmetric domain of type (I)m,T O + r.

(c) y = 4. F^ = /7.

aK,(m,v) = {[T70],[Ψ1]}, d i m Ψ 0 - 0 , dim W2 = 2 .

[W ÔIJ [WJ define symmetric domains of type (II)2m> (Π) 2 m + 1 respectively.

(d) p = 8. Fϊι = K.

[Wo] defines the symmetric domain of type (EVII).
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