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SQUARE OF BROWNIAN MOTION

To Professor Kiyoshi Ito on the occasion of his 60th birthday

HISAO NOMOTO

1. Introduction.

Let Xt be a stochastic process and Yt be its square process. The
present note is concerned with the solution of the equation X\ = Yt as-
suming Yt is given. In [4], F. A. Grϋnbaum proved that certain sta-
tistics of Yt are enough to determine those of Xt when it is a centered,
nonvanishing, Gaussian process with continuous correlation function. In
connection with this result, we are interested in sample function-wise
inference, though it is far from generalities. A glance of the equation
X\ = Yt shows that the difficulty is related how to pick up a sign of
±VYt- Thus if we know that Xt has nice sample process such as the
zero crossings are finite, no tangencies, in any finite time interval, then
observations of these statistics will make it sure to find out sample
functions of Xt from those of Yt (see [2]). The purpose of this note is
to consider the above problem from this point of view.

In section 2, we shall construct a new standard random walk as an
explicit functional of the square process S2

n of the given standard random
walk Sn availing of sample functions properties, reflection at x = 0, of
VSl. In section 3, we shall consider the same problem to the previous
section for Brownian motion. In this case, we make use of the local
time at x = 0 of reflecting Brownian motion on [0, oo) to get a new
Brownian motion from an "inverse map" of the map Bt -* B\.

As to the terminology about Markov processes we refer to [1] and
[6].

2. Random walk.

Before to state theorems, we prepare two lemmas.
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LEMMA 1. Let [Xn n >̂ 0] be a Markov chain on all nonnegative

integers {0,1,2, •} with the transition probability p00 = poι = J and

ί>M±i — έ (ί ^ 1) Γ^βn ^(Zn — Xn-i) (n ^ 1) are independent with

common distribution P0{u(Xn — Xn-d = ± 1} = i Where u{x) = x or

u(x) = — 1 according as x = ±1 or x = 0.

Proof. 1°. Since

(1) /\{M(XI ~ Xo) = «Ί = i for a = ± 1 and i ^ 0 ,

we see

P0{u(Xn - Xn_x) = a} = E0[PZ

( 2 ) = Σ PΆ-vPtMXi - Xo) =

That is, each u(Xn — -3Γ«_i) has the same distribution with the fair coin-

tossing game.

Next we shall prove that the system [u(Xn — Xn_d n^l] is inde-

pendent with respect to Po.

2°. First we compute the probability

pn = Pι{u{Xι - Xϋ) = a19 -, u(Xn - Xn_λ) = an) , (aό = ± 1) .

Let τ = Min {k ^ 11 Z f t = 0} be the hitting time to x = 0. Since

Pfc{r < oo} = 1, we have

( 3 ) pn = ΣPι{viX1 - Xo) = Ox, . - .,M(Zn - Xn-i) = an, τ = £} .
£=1

For given α/s, consider the following two cases;

Case 1. There exists a k such that

1 fg k ^n9 1 + θχ + + α« ^ 1 ,
(4)

(j = 1, - -, fc — 1) and 1 + ax + + αfc = 0 ,

and

Case 2. 1 + αx + - + aά^ 1, 0" = h 2, . -., n) .

In the case 1, using the strong Markov property, we have

1) p$f denotes the transition probability in n steps.
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pn = Pι{u{Xι— Xo) = a19 - , w(X« - Z n_i) = α n , r = k)

= —Pi+aι{u(Xi - Xo) = α2, ,w(Zn_! - Xn-2) = a>n, τ = fc - 1}

^-Λ+o1+...+αfcM-XΊ — ^0) = ttfc+u ->u(Xn_k — XTO_fc_i) = an} ,

so that (4) implies

Pn = —P*{vίXι - Xo) = ak+1, . . .,tt(Xn_fc - Zπ_fc_i) = an} ,
( 5 ) ^

with Z_! = 0

In the case 2, by the same computations as above, we get

Pn = Σ P i W ~ *o) = Oi, , u(Xn - Xn_d = an, τ =

( 6 )

3°. Now we shall prove that the probability

7) qn = P0{^(^i

is equal to 1/2W by the induction for n together with (5) and (6). Since

qx = 1 by (1), assume that qk = l/2fc for any k <̂  n — 1 and {α^ •••,«!•}

with a,j = ± 1 . Then, it holds that

qn = E0[P

= P0{^i = 0, u{Xλ - Zo) = αJ

, - Zo) = aJPMXi ~ Xo) = <h, - MXn-i - Xn-2)

Therefore, by the assumption of the induction together with (1), (5) and

(6), we get

Ί = 0, u(Xι — Xo) = α j

', - Xo) = αΛ = — .

2) £/,;[/ A] = J^ f(w)Px(dw).
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That is

qn = Π P0{u(Xk - Xk_d = αΛ} .

This proves the lemma.
Consider a Markov chain on {0,1,2, •} determined by

(8) Poi = 1 and pjJ±1 = i 0" ̂  1)

Let

An = ± χN(Xk) , ( n ^ l ) , Ao = 0 ,3>
( 9 ) *-i

A;1 = Min {k^l\Ak^ri\ , A^1 = 0

be the additive functional of Xn and its inverse respectively.

Then we have the following lemma.

LEMMA 2. The time changed process Xn = X(A~λ) is the Markov
chain on {0,1,2, •••} with the transition probabilitiy

(10) p01 = 1, p10 = 0, p n = p12 = i and p M ± 1 = i (i ̂  2) .

Proof. Since it is known that the time changed process Xn is a
Markov chain, it remains only to check the relations of (10). For this,
suppose Xo — 1, then

Ar1 = 1 iff X1 = 2 and Af1 = 2 iff Zx = 0 .

By definition of An9 this implies

X1 = XiAr1) = Xx or Z2 according as Xt = 2 or Xx = 0 ,

so that we have

P ^ = 1} = P^X, = 0, Z2 = 1} = i ,

P ^ = 2} = P ^ = 2} = i .

The rests of (10) are obvious.

THEOREM 1. Le£ [Sn;n^> 0] 6e ίfee standard random walk on all
integers Z. Then we can construct a new standard random walk from
the square process [S2

n; n ̂  0].

3) XJV denotes the indicator function of the set N = {1,2,3, }
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Proof. Let Xn be the root process of S2

n: Xn = V§*" = [Sn|. Then

[Xn;n*t 0] is a Markov chain with the transition matrix (8). So, by

lemma 2, the time changed process Xn of Xn by the additive functional

An of (9) is a Markov chain on {0,1,2,3, •} with the transition matrix

(10). Because of p01 = 1, p10 = 0, we can apply lemma 1 to [Xn — 1 n >̂ 0]

to get the new standard random walk

This proves the theorem.

3. Brownian motion.

THEOREM 2. Le£ [^ t ^ 0] δe ίfee standard Brownian motion on

real line R. Then we can construct a new standard Brownian motion

from the square process [B2

t; t ^ 0].

In fact, it is known that the root Xt of B] is the reflecting Brownian

motion on [0, oo) and the local time Tt of Xt at x = 0 exists:

(11) Tt = lim —meas{s | s < t, Xs < ε} .
eio 2 ε

So, if we set

(12) Bt = Xt- Tt

then it will be seen that [Bt Pa] (a > 0) is a new standard Brownian

motion starting from α.

To prove Theorem 2, suppose we are given a Brownian motion Z .̂

Then it is known that, considering (12) as a stochastic equation—the

Skorohod's equation—with unknown Xt and Γt, it has the unique non-

anticipating solution Xt, the reflecting barrier Brownian motion and Tt,

the local time of Xt (see [5], [7]). Therefore, Theorem 2 is easily de-

rived by virtue of the above results.

Finally, we shall give a direct proof of Theorem 2 applying a theo-

rem of Doob ([3], Theorem 11.9). The proof will be given in several

steps as follows.

1°. As the first step, bring the well known formula ([5])

P0{Xtedx, Ttεdy}

( 1 3 ) = ( A Y 2 e x p {-{x + yfβt}{x + y)dxdy, x,y>0,
πtά J
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to obtain

(14) P0{βtεda} = (—ί—)V2 exp {-a2/2t}da , a e R ,

4-) exp{-
πt I

Ea{Xt) = (J-Y'fot exp (-α2/2ί) + 2a Γ exp (-u2/2t)du\ ,
\ 2πt / L Jo J

U
(16)

U = α2 + t .
Moreover, we need the folio wings

(Ea(.e-") = e~^a a > 0, σ = Min {«|Z t = 0} ,

\Pa{σedt} = (-Ί^τ) exp {-a*/2t}dt .

2°. With these formulas, we shall show that

(18) Ea(Bt) - a , α > 0 ,

(19) Ea(BΪ) = a2 + t, a > 0 ,

(20) [Bt, Ft, Pa] is a martingale with #α{(l?t - Bs)
2 \FS} = ί - s , t > s ,

where Fέ = σ{Xs | s <Ξ t} denotes the σ -algebra generated by Xs, s ^ t.

Proof of (18). Since

lΓ l . # w (^iι ;) , t > σ(w)

and

Pβ{σeώ, T£_sεdτ/} = Pa{σεds}P0{Tt_sεdy} ,

we see that

Ea{Bt) = Ea(Xt - Tt) = Ea(Xt) - Ea(Tt ;t>σ)

= Ea(Xt)- Γ EQ(Tt_s)P0(σεds) ,
Jo

Γ e-**Eaφt)dt = Γ e-^Ea{Xt)dt - Γ e-*Έ0(Tt)dt Γ β'^PoWs
Jo Jo Jo Jo

So, by the formulas in step 1°, the right hand side becomes

4) θt denotes the shift operator on the basic space W = {w}.
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V2pα / p V2p3

= α/p .

Consequently, we get #<*(£«) = α.

Proo/ 0/ (19). Observe that

Γ e-*Έa(XtTt)dt = Γ e-'ΈaiXtTt ί > <7>dί
Jo Jo

= f" e-*tdtEa{Xt_.{θ.w)Tt_£θ.w) t > σ)dt
Jo

= f" β-»*d*Γf f xy ΓP,{Xt.sεdx, Tt_sεdy}Pa{σεds}\
Jo UJχ,y>o Jo J

- Γ e-»dt\\\ xy(x + y)dxdy Γ ^ ^ ^ ~ α W

 / o ,? ,3Jo UJαί,»>o Jo V2τrs 3 V2τr(ί — s)3

χ

xye
J J χ,y>o

and

Γ e~ptEa(Tξ)dt =
Jo

imply

Γ e-*Έa(β!)dt - f°° β"^[ί7α(ZD - 2Ea(XtTt) + Ea(Tf)]dt
Jo Jo

= a2/p + 1/p

so that £7α(j§?) = α2 + ί.

Proo/ 0/ (20). Noting (18), we get

= Xs - Ts = Bs .

Thus we know that Bt is a martingale. Next, to show the latter part

of (20), it is enough to use (18) and (19) at before the last step in the

following computations
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Ea[(Bt+s-Bsγ\Fs]

= Ea[((Xt+s - Tt+S) - (Xs - TS)Y\FS]

= Ea[(Xt(θtw) - Tt(θsw) - XSY\FS]

= EXs(Xt - Tt)
2 - 2XsEZs(Xt - Tt) + XI

= EXs(Bl) - 2XsEXs(Bt) + XI

= t.

Therefore, [Bt: Pa] (a > 0) is a Brownian motion starting from a
by a Doob's theorem [3], Since it is easily seen [—Bt: Pa] (a < 0) is a
Brownian motion with — Bo = a, we conclude the proof of the theorem.
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