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ON CONSTRUCTION OF HOLOMORPHIC CUSP FORMS

OF HALF INTEGRAL WEIGHT

TAKURO SHINTANI*

Introduction

In [10], G.Shimura gave a method of constructing holomorphic cusp
forms of even integral weight from given forms of half integral weight.
In this paper, we try to present an inverse construction. To state our
main result, some notational preliminaries are necessary. We denote by
φ the complex upper half plane. Let x(u, v) = xxu

2 + x2uv + x3v
2 be an

integral binary quadratic form with positive discriminant dx = x2

2 — 4aj1#3.
If dx — m2 (m> 0) is a square, we denote by C(x) the geodesic line with
respect to the Poincare metric on ξ> from (x2 + m)/2x3 to (x2 — m)/2x3

(if xz = 0, we understand C(x) to be the geodesic line from +ioo (resp.
x1/x2) to xλ/x2 (resp. +ioo) for x2 > 0 (resp. x2 < 0)). If dx is not a square
and if x19 x2 and x3 have no non-trivial common divisor, let tx + uxVdx > 1
be the smallest half-integer solution of the Pell-equation t2 — u2dx — 1

and set γx = (tχS2χ*u t*+%ϊ) e S L z ( Z ) W e d e n o t e b y C(x) a n y r e C "
tifiable curve in § from w to γx w> where w is any point on !Q. Finally
if x19 x2 and x3 have the greatest common divisor t > 1, we put C(x) =
C(x/t).

Now, let f(z) be a holomorphic cusp form on the upper half plane
which satisfies

for any γ = y A e Γ0(N), where χ is a character modulo N and Γ0(N)

= ίίc dl GSL2(Z)\C = ° ( m o d N)} T w o integral binary quadratic
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forms x1 and x2 are said to be /^AO-equivalent if xι(u, v) = x\{u, v)γ)
for a suitable γeΓ0(N).

For simplicity we assume N to be odd and put

(o.i)
X f(w)(%ι — %2W + XzW2)k~ιdw ,

J C(x)

where the summation is taken over all Γ0(2V>equivalence classes of inte-
gral binary quadratic forms x(u, v) = xxu

2 + x2uv + x3v
2 with positive

discriminant dx = x\ — kxxxz and with x2 and x% both divisible by N and
with xx prime to N. Then our Theorem 2 asserts that θ(f9z) is a
holomorphic cusp form of weight k + 1/2 which satisfies

for any p = (a °Λe Γ0(4N), where j(γ, z) is an automorphic factor given

by (1.9b) of [10] and χ' is a character modulo AN given by χ'(e£) =

χ(d)(—l/d)fc( — ) . Moreover, the mapping f *-+θ(z9f) commutes with the
\ d/

action of Hecke operators. It should also be mentioned that the inte-
gral representation (0.1) gives geometric interpretation of the Fourier
coefficients of cusp forms of half-integral weight (cf. the question (B) in
p. 478 of [10], and the discussion of §3).

The series which appear in the right hand side of (0.1) is a kind
of theta series. Theta series of similar nature were previously studied
in Siegel [12], Maass [7], [8], Weil [13] and in Shalika-Tanaka [9].

This paper consists of three sections. In the first section, which is
of expository nature, we derive certain transformation formulas for
theta series by means of Weil theory [13]. We prove our main theorem
in the second section and discuss a few numerical examples in the last
section. The author wishes to express his hearty thanks to Professor
G. Shimura, for his valuable suggestions and warm encouragement.

Notations

1. We denote, as usual, by Z, Q, R and C the ring of rational inte-

gers, the rational number field, the real number field, and the complex

number field. Also we put T = {zeC\\z\ = 1}. For zeC, we put e[z]

= exp27rV — Is and define ^~z = z1/2 so that — (ττ/2) < argz1/2 < π/2. Further
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we put zkn — (z1/2)k for every feeZ. For a non zero real number x, we
set sgnx = x/\x\. For a finite dimensional real vector space 7, we de-
note by Sf(V) the space of rapidly decreasing functions on 7. For a
symmetric matrix Q of size n we put Q(x) —

2. In this paper "quadratic residue symbol" ί — j has the same

meaning as in [10].

§ 1. Theta series

1. In the following three paragraphs, we summarize some results
of Weil [13], in a form convenient for later applications. Let 7 be an
^-dimensional real vector space and let 7* be the vector space dual to
7. Denote by B a bilinear form on (7 x 7*) X ( 7 x 7*) given by B(z19z2)
= (̂ 1,̂ *) for z1 = (v19vf) and z2 = (v29v}). Let A(V) be a Lie group
with underlying manifold 7 x 7* x Γ whose law of composition is given
by

( M ' e F x P , t,t'eT).

We fix a Euclidean measure eZ# on 7 and denote by eta* the Euclidean
measure which is dual to dx. Namely, the Fourier transform /*(#*) •->

/*(α;*)β[(^, ̂ *)]dαj* gives an isometric mapping from L2(V*,dx*) onto
Jv*
L\V,dx). We denote by U a unitary representation of A(V) on L2(7)
given by {U(z, t)f}(x) = ίβ[(a?, v*)]/(a? + v) (a? e 7, z = (v, ̂ e F x 7*, t e T).
Then i7 is irreducible and £?(V), the space of rapidly decreasing func-
tions on 7, is a dense invariant subspace of L\V). A linear transfor-
mation of 7 x 7* is said to be symplectic if it leaves the alternating
form A(z19 z2) = B(z19 z2) — B(z29 zj invariant. We denote by Sp (7 x 7*)
the group of symplectic linear transformations of 7 x 7*. We write,
for σ e Sp (7, 7*) and for z = (v, v*) e V x 7*,

zσ = (v,v*)\ ) = (vα + v*c,vb + v*d)
\c d)

where α, b, c and d are linear mappings from 7 to 7, from 7 to 7*,
from 7* to 7 and from 7* to 7* respectively. In the following we

often identify σ with the matrix ft h\ For σ e S p ( 7 x 7 * ) and
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zeV x V*, set

Fσ(z) = exp πV — lB(2σ, zσ)/exp 7rV^Ti?(2, 2) .

It is easy to see that

(1.1)

These equalities show that the group Sp(F x F*) acts on A(V) as a group
of automorphisms via the mapping:

w •-• wσ = (zσ, tF0(z)) (w = (z, t) e A(V)) .

Set Uσ(w) = £7(w") (σ e Sp (F x 7*), w e A(V))9 then C7σ is an irreducible
unitary representation of A(V) which is equivalent to U. Namely, there
exists a unitary operator r(σ) on L\V) which satisfies

(1.2) U(w°) = r(σYιU(w)r(σ) for every weA(V) .

The operator r(σ) is unique up to a multiplication by a complex number
of modulus 1. Furthermore, the mapping σ >-» r(σ) gives rise to a pro-
jective unitary representation of Sp(F x F*) on L2(F). In other words,
for each pair (σ, τ) (σ, τ e Sp (F X F*)), there exists a constant c(σ, τ) which
satisfies

(1.3) r(στ) =. c(σ, r)r(σ)r(r) .

This protective unitary representation is called the Weil representation
of Sp(F x V*). If the left lower entry of the matrix form of σ is either
non-singular or zero, we may normalize r(σ) as follows:

*

FX(y,v*))f(ya + v*c)dv* (c is non-singular),

(1.4) r(σ)f(v) =
av

for σ = ί ̂  ^ j , where we set d(x*c) = \c\ d*x* and d(xά) = \a\ dx.

2. Let L be a lattice in F and L* be the lattice dual to L in 7*.
Take a sublattice ikf* of L* and let M be the dual lattice of ikf* in F.
For any character χ of L x M*, we denote by the same letter χ the
character of a subgroup L x M* x Γ of A(V) given by
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*,t)) = tχ(z) FzeLx M*) .

There exists a (vχ9 vf) e 7 x F * which satisfies

(1.5) χU,μ*) = e[(vχ,μ*) - Q,v*)] O U μ * ) e L x M *) .

The mapping χ —> (vχ9 vf) establishes an isomorphism between the char-

acter group of LxM* and the additive group 7 / 1 x 7 * / ! * . For each

μ G M/L, we denote by χ(μ) the character of L x L* which corresponds

to (vχ + μ,vf) of V/L x V/L*. Any extension of χ to a character of

L x L* coincides with χ(μ) for a suitable μ e M/L. We denote by

TX(L x M*) a unitary representation of A(V) induced from the character

χ of L x M* x Γ. The representation space Θχ(L x M*) of Tχ(L x M*) is

the Hubert space of measurable functions on 7 x 7* which satisfy the

following conditions (1.6)

(e[B(λ, z)]θ(λ + z) = χ(X)θ(z) (*λ e L x M*, z e V x 7*) ,

(1.6) < r
| | 0 | | 2 =

J V
| ( , ) | oo

V/LXV*/M*

The representation Tχ(L x M*) is given by

(1.7) Tχ(L, M*)((w, t))θ(z) = ίetB^,

It is easy to see that the space θχ(μ)(L x L*) is, for each μ e M/L, a closed

invariant subspace of θχ(L x M*). Moreover, we have the following

orthogonal direct sum decomposition of Θχ(L x M*).

Θ / L X F ) = 0

For abbreviation, we write

θχ = 0χ(L x AT*) , θz(#0 - ΘZ(#O(L X L*) and Tχ - Γχ(L x M*) .

We will show that the unitary representation (Tχ, Θχ(μ)) of A(V) is equiv-

alent to (tf,L2(7))(VμeM/L). For that purpose, set, for an f

(1 8) θ

X Σ eld + μ + tfz,3*) + α,V*)]/(» + Z + μ + Vχ) ,
ιeL

where vol(F*/M*) = f dx*.
J V*/M*

We note that θχ{μ)(f) depends upon the choice of a representative for

(vx + μ) e V/L in 7. If we replace (vx + μ) by (vx + μ + V)Qf e L), θziμ)(J)
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is multiplied by e[—(l',v*)]. In the following we choose representatives

for (vχ + μ) (μeM/L) and fix them once and for all. Then it is easy to

see that 0z(μ)(J) is a smooth function in θx(μ) and that

f z ( , ) { W } - Tχ(g)θχ(μ)(f) Pg e A(V)) ,
(1.9)

Conversely, for a smooth function θ in Θχ00, set

(1.10) fθ(x) = VvoUW/W)'1 [ θ(x-μ- vv x*)e[-(μ + vx, x*)]dx* .
J V*/M*

Then it is easy to see that fθ is a rapidly decreasing function on V and

that θχ{μ)(fθ) = θ. Hence, θχ{μ) gives a norm preserving linear mapping

from £f(V) onto the space of smooth functions in Θxiμ) which commutes

with the action of A(V).

Furthermore, the inverse of θz(μ) is given by (1.10). Therefore, θx(μ)

is extended to a linear isometric mapping from L2(V) onto θx(u) which

establishes the equivalence of two unitary representations (U, L2(V)) and

(Γx»θz</.)) s ί n c e (U,L2(V)) is irreducible and (Tx,θx) is a direct sum of

(Tχ9Θx(μ))(μeM/L), any bounded linear mapping of L2(V) into θx is a

linear combinations of θx(μ) (μeM/L) if it commutes with the action of

Λ(7). Put

(1.11) θ(f,χ(μ)) = θxW(f)(0,0).

3. Denote by Sp (L x M*) the subgroup of Sp (V x 7*) consisting

of linear transformations which leave the lattice L X M* invariant. For

a character χ of L x M* and for a σ e Sp (L x M*), we set

Then χσ is again a character of L x M* and χσr = (χσ)τ.

PROPOSITION 1.1. (Generalized Poίsson summation formula).

(i) Let r(σ) (σ e Sp (L x Λf*)) δe a unitary operator in L2(V) which

satisfies (1.2). There exist constants Cx

σ(μ,v) (μ> v e MjL) which satisfy

θ(r(σ)f9 χ(μ)) = Σ υ Θ ^ / L CϊOi, v)ί(/, ^ M ) ( v / e ^ ( 7 ) ) .

(ii) Denote by Cχ

σ the matrix of size [M L] whose (μ,v)-entry

(μ,veM/L) is Cχ

σ(μ9v). Then Cχ

σ is a unitary matrix and Cχ

στ — c(σ,t)

Cχ

aClσ, where c(σ, τ) is a complex number of modulus 1 given in (1.3).
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(iii) Set a = ( Λ and assume c is non-singular and r(σ) is nor-

malized by the formula (1.4). Then the constant C*Xμ,v) is given by

+ μ', (I + μ')ac") - (Z + /Λi/e-1)= Σ
IGL/M*c*

(where μr = μ + vχ and 1/ = v + vχσ).

Proof. ( i ) Denote by Mσ (σ e Sp (L x M*)) an isometric linear

m a p p i n g f r o m Θχ o n t o Θχσ g i v e n b y (Maθ)(z) = θ{zσ~ι)F β-x(z) ( z e V x y * ) .

By (1.7), it is easy to see that

MσTx(w) = Tχσ(w°)Mσ <?w e A(V), σ e Sp (L X ilf *)) .

Hence, it follows from (1.2) and (1.9) that

Mσθx(μ)r(σ)U(w) - Γχ.(w)MΛ(,)Kσ) (vw e A(T0, // e M/L) .

Thus, Mσθχ{μ)r(σ) is a norm preserving linear mapping from L2(V) into

0Z, which commutes with the action of A(V). Therefore, for suitable

complex numbers Cx

σ(μ, v) (v e M/L),

{ M } = Σ C*(μ,v)θx.M(f)(x,x*)
(1.12) veM/L

) , v(x, x*) e V x 7*) .

Evaluating both sides of the above equality for (x9 x*) = (0,0), we obtain

the first part of our proposition.

(ii) The linear mappings Mβ, r(σ), θx(μ) and θχσ(v) are all norm pre-

serving. Furthermore, θχ{μι)f (resp. θtσMf) and βx(μ2)f (resp. βxσ(V2)f) are

mutually orthogonal if μ1 Φ μ2 (resp. vx Φ v2). Hence, the matrix Cx

σ =

(cx

a(μ9v)) is unitary. The equality (1.12), together with relations r(στ) =

c(σ, τ)r(σ)r(τ) and M,, = MτMσ, implies that Cjτ = c(σ, τ)C*C*'.

( d* — &*\
_ ^ ^ j , where α*, &* etc. are

adjoint linear mappings of a, b etc.

It follows easily from Lemma 11 of Chap. 1 of Igusa [5], that r(σ)r(σ~ι)

= 1 if c is non-singular. Put v" = v + vzσ-i. Then, by (1.10), we have
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wo\(y*/M*)Cl-t(μ,v){r(σ)f}{x + v")

= f Fσ(x, x*) Σ βίtf + μ'> a* + x*d) + (Z, v*) - (?", x*)]

X f(xa + x*c + 1 + μ')dx* .

If c is non-singular, it follows from (1.1),

F£x, x*)e[(l + μf, ^ + %*d) - (»", &*)]

= Fσ(x + x/', x* + {-v"a + I + /IOC-^F;V, (-^'α + Z + ^c" 1

Hence, the above integral is equal to

Σ F ; V , (-v/7α + I + μ*)c-ι)ell, v*]
IGL/M*c

X f Fσ(x + v"> x*)f((x + v")a + x*c)dx* .
Jv*

By (1.4), we see

CU(μ,v) = vol (P7M*)-1 [c|-^ 2 F; 1 ^' 7 , (-i/'α + Z

= vol (F*/^*)- 1 |c|-1/2 Σ e[-i(l + μ', (I +
IGL/M*c

Remark 1.1. Identify V with Rn and set f(x) = exp πV^
where ζ is a complex symmetric matrix with positive definite imaginary
part. Then the equality (1.12) is a classical transformation formula for
theta functions.

4 In the following, we set V = Rn. Take a non-degenerate sym-
metric nxn matrix Q and identify V with its dual by setting (x,y) =
ιyQx. We put dx = da?! ctan. Then the dual measure dx* is given
by dx* = |detQ|cte. We denote by r( ,Q) the Weil representation of
Sp (7 X 7*) on L2(V), to emphasize its dependence on Q. Identify the
group SL(2, R) with a subgroup of Sp (7 X 7*) by setting

(x, y)σ = (aw + 2/c, aj6 + yd) (x,yeV,σ = ( α ^ e SL(2, JfΛ .

By (1.4), we have the following expression for r(σ, Q)(σ = ίa ,j e
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r(σ, Q)f(x) = «

2c

The group GL(n,R) acts on L2(V), as a group of unitary operators if

one puts

(1.13) (Tf)(x) = V|det T\~ι f{T~ιx) .

It is easy to see that

(1.14) r(p, ιT-ιQT~ι). T = Trip, Q) (vσ e SL(2, #) , Γ e GL(^, Λ)) .

We are going to determine the constant c(σ, τ) introduced in (1.3) for

<x,τeSL(2,J?).

Denote by ξ> the complex upper half plane ίg = {z e C Im z > Q}. For a

a = ( α ,) e SL(2, i?) and « e § , we write
\C CLJ

(1.15) J(σ>z) = cz + d and σ z = (α^ + 6)(c2 + d)"1 .

We define a function ε(<x) on SL(2,R) as follows:

IVT c > 0 ,

iCl-βgmO/l c = 0 ,

Λ/^"1 c < 0 .

Take a positive definite symmetric matrix R which satisfies

RQ-iR = Q .

For z = u + iv e ©, set

Let Pv(x) be a homogeneous polynomial of degree v which has the fol-

lowing expression:

I
I for v = 0

(r, x), (r e Cn, Qr = # r ) for v = 1

Σ c r(r, a?)% (cr e C, r e Cw, Qr = Rr, (r, r) = 0) , for p > 2 ,
(if rank (Q — B) = 1, we assume y < 1).
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LEMMA 1.2. Assume Q has p positive and q negative eigenvalues

(p + q = n,p > 0). Set

Fz(x) = β[|Q,(α?)]Py(αj) .

z)q~P \J(σ, z)\-* J{σ, z)-ψσ.z(x)

for every σ e SL(2, R).

Proof. There exists a T e GL{n, R) which satisfies ιTQT = (lp __Λ

and ιTRT — 1TO. By (1.14), it is sufficient to prove the lemma under the

additional assumption that

Q =
-i«-

Set σ = ί a Λ. If c = 0, the lemma is immediate. If c Φ 0, we have,

by a straightforward computation,

= \c\~n/2 Vv - iu - id/c PVv + iu + id/c QJ(σ,z)~vFσ.z(x) .

Now lemma follows from a simple observation.

By Lemma 1.2, we have

For a σeSL(2,R), set

(1.170 ro(σ, Q) = e(σ)«-M*, Q) .

Let ©! be a Lie group with the underlying manifold SL(2,R) x Γ and

with the law of composition given by

Then a subgroup {(<7, ± 1) σ e SL(2, R)} of ©j is isomorphic to the two-

fold covering group of SL(2,R) (see p. 444 of [10]). For a a = (σ,t)e ®l9

set ro(d,Q) = t
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The following lemma is now immediate to see.

LEMMA 1.3. (i) The mapping: σ^ro(σ,Q) gives a unitary repre-
sentation of ©! on L2(V). The space S?(V) is a dense invariant subspace,

(ii) For any f e £f(V), the mapping σ H-> ro(σ, Q)f is a smooth map-
ping from @! into ^(Rn).

5. The mapping σ >-> (σ, 1) gives a locally isomorphic imbedding of
SL(2,R) into ©lβ So, for any element u of the universal enveloping
algebra of the Lie algebra of SL(2,R), ro(u,Q) has an obvious meaning
as a differential operator on V. In particular set

CQ = ro(C, Q) , where C = 2XY + 2YX + H2 ,

α.18) Σ_ζ ; ) 7 _ G o} 8 n d , _

Then Cρ commutes with ro(σ, Q) for any σ e ©x.

For,6f i, we write *. = (_•#, S J )
Set S = p f f,ε);<?ei?,£=: ±1}. Then S is a compact abelian subgroup
of ©!. For an integer m, we put

χm((^,e)) = (Vβ = i Γ )- 1 Λ e w .

Then χm is a character of ®. Take an feS?(V) which satisfies

(1.19) ro(*, Q)/ = χ w ω / (VA: e ft) .

If it does not vanish identically, m has the same parity as p — q.ω

For the proof of the next lemma, see §4 of chap. 1 of [2].

LEMMA 1.4. For a z = u + iv e φ, set

U

Then

ro(σ2, Q)CQf = M^-2 + 4 Ί ) ~ 2m*J-W, Q)f .
I \du2 dv2/ dui

Denote by G the connected component of the identity element of the
group O(Q) of real linear transformations which leave the quadratic form

(1) For the definition of p and q, see Lemma 1.2.
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Q invariant. Then (1.13) gives a unitary representation of G on L\V)

which commutes with r(σ, Q) for any σe ©^ Take a T e GL(n,R) which

satisfies ιTQT = (lp __.,) and set

Xij = T{eis - eμ)T-1 ( U ί < j < p o r p < i < ί < w ) ,

^ - T(ekι + eιk)T~ι (1 < k < p < ί < tι)(2) .

Then Z ^ and Yke form a base of the Lie algebra of G. Set

(1.20) L g = -Σ *ϊ;+ Σ yϊ..
l<i<j< or p<ί<j<,n l<k<<

Then LQ is the Casimir operator on (?. The representation (1.13) of G

maps LQ to a second order differential operator on Rn which we denote

by the same symbol LQ.

LEMMA 1.5. For any F

CQF = (LQ + n(n - 4)/4)F .

Proof. By (1.14), we may assume that Q = ( p _ i ) In this

case, it is a simple calculation to show that

r(X, Q)F = π^Λ{x, x)F

and

Thus

CQF = — (x, a O ί Σ — i — Σ —2

(n - 1) Σ »*|̂ - + (~ -n)F
4

On the other hand,

(2) We denote by e^ the n X n matrix whose (fci)-entry is
(3) For the definition of H, X and of F, see (1.18).
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= -(x, x)(Σ J ^ - Σ χ η^)F + 2 Σ. dΨ

Hence, Cβ = LQ + n(n — 4)/4.

6. In the remaining part of this section, we assume Q to be a
rational symmetric matrix with p > 0 positive and q = n — p negative
eigenvalues. Take a lattice L in V and denote by L* the lattice dual
to L in 7 :L* = {xG7;fei/) = ^QT/eZ n\ y fyeL}. We always assume
that L* z> L. We denote by v(L) the volume of the fundamental paral-
lelotop of L in V:

v(L) = f

For an fe^(V) and heL*/L, set 0(/,Λ) = H^/O +

PROPOSITION 1.6. Let σ = fr ^) e SL(2, Z) satisfy the following con-

dition (1.21).

(1.21) ab(x, x) = cd(y, y) = 0 (mod 2) Qfχ9 yeL) .

Tfeβn the following assertions (i) α̂ cZ (ii) hold.

(i) θ(r(σ, Q)f, h) = Σ*eL*/L cQi, k)jθ{f, k) (v/ e ST<y)), where

c(h, k)σ

e\a(h + r,h + r)~ 2(fe, h + r)
L 2

, fe)Ί
J

(c Φ 0)

(ii) Further assume that c is even, cL* a L, cd Φ 0 and c(x, x) = 0
(mod. 2) /or ei er?/ ίceL*. Let {λlf-"9λn} be a Z-base of L and set
D = detdλuλj)). Then
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0)

where εd = 1 or £ according as d = 1 or d = 3 (mod. 4).

Proof. (i) We note that the group SL(2, Z) is mapped into a sub-
group of Sp(L x L) by our embedding of SL(2,R) into Sp(7 X 7*).
Thus, the first half of our proposition is an immediate consequence of
Proposition 1.1.

(ii) Let e0 be the index of L in L*. Denote by Cσ the matrix of
size e0 whose (h, k) entry is c(h,k)σ (h,keL*/L). If σ,σ' and σσf all
satisfy the condition (1.21), it follows from the second half of Proposi-
tion 1.1 that

Cσσ,= c(σ,σ')CσCσ, .

Now set σf = \Z_^ ^) and ω = L ~~ J. Then σ',ω and σ = σ'ω all

satisfy the condition (1.21). By (1.17), we have

, , v r-.ίp-q)sgn(cd)

c(σ , ω) — V %

Hence

V ^ " ^ 8 ^ ^ |det Ql"1 t (L)"2 \d\-"

J
X Σ Σ J-&(fe + r, fc + r) - 2q, h + r) + cq, OT

rβL/dL ieL*/L

Since cL* c L, the mapping l^>dl induces an automorphism of L*/L.
Taking into account the assumption that c(x, x) e 2Z (v# e L*), we have,

y e\ ~~k(fo + r, h + r) — 2(?, h + r) + c(£, Q 1 r ,,

2d 1 IΘLVL L 2d J

On tne other hand, the Poisson summation formula implies that
|det QΓ1 v(L)-2e0 = 1. Furthermore,
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r, h + r)] _ ^ Yb(adh + r, adh + r)1
eL/dL L 2d J rβL/dL \_rβL/dL L 2d J reL/dL L 2d

δ(r, r)
rάtdL" L 2 J r

Thus, we have,

CΛΛ, fc) = δftfdfcV % e\ —(ft> Λ)

Now the argument used in the proof of Proposition 2.1 of [10] is ap-
plicable with a slight modification to show that

2d

ej»(sgn (c}i)»(^)n(JL) (d < 0) ,
\a / \ —a

Remark 1.2. Proposition 1.1 appears in many literatures. Here, we
refer only to Hilfssatz 1 of [12] and Proposition 2.1 of [10].

7. The group G is, as in 5, the connected component of the identity
of the real orthogonal group of Q. Let Γ be the subgroup of G formed
by all elements which leave the lattice L invariant and leave L* jL point-
wise fixed. Then, as a function on G,θ(g-f, h)w (/ e y(V),geG,he L*/L)
is left /"-invariant and slowly increasing on Γ\Giδ). Take a rapidly
decreasing function Φ on Γ\G and put

θ(f,Φ;h)= f θ(g.f,h)Φ(g)dg ,
J Γ\G

where dg is a Haar measure on G. Now assume that / satisfies (1.19)
and set

(1.22) θ(z, f,Φ;h) = v-m'*θ(φz, Q)f, Φ h)

for z = u + iv G £>.(6)

(4) For the definition of g-f, see (1.13).
(5) For the definitions of slowly increasing functions and rapidly decreasing func-

tions on Γ\G see [3].
(6) The notation σz is introduced in Lemma 1.4.
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If no confusion is likely, we write simply

Θ(z,h) = Θ(z,f,Φ;h) .

PROSITION 1.7. Assume f satisfies (1.19).

(i) // γ = (& b\eSL(2,Z) satisfies the condition (1.21), then

l i P q ) s s n c V 7 m

9 h ) = Σ c(h,k\Θ(z,k) (c Φ 0) .

(ii) Assume t/i-αt Φ satisfies the differential equation LQΦ = λΦ on

G.<7) Then

(1.23)

Proof, ( i ) It follows easily from (1.17) that

,, Q) = r(σ(r.z), Q)r(kβ, Q) ,

where e-*° = J(r,z)/\J(r,z)\ and kβ = (™s?£θ ^Jj). Since / satisfies

(1.19),

(see (1.17')) So, by Proposition 1.6, we have

S?'9>"α'V7ϊT",h)= Σ c(h, k)β(z, k).

(ii) By Lemma 1.4, we have

ί— + —) - 2imv(— + ilΛ\θ{z,f,Φ\ h)
\du2 dv2/ \du dv/ί

z, h) + θ(z, CQf, Φ h) .

Applying Lemma 1.3, Lemma 1.5 and integration by part, we have

(1.23).

Remark 1.3. For Proposition 1.7, we refer to [7], [8], [9] and [12].

(7) Differential operator LQ is given by (1.20).
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§ 2. Construction of modular forms of half integral weight from given forms

of even integral weight.

1. Let Q be a 3 x 3 rational symmetric matrix which has 2 positive

and one negative eigen-values. We assume that the rational quadratic

form associated with Q is a zero form. In other words, the equation

(x, x) = ιxQx = 0 has a non-zero solution in Q3. Then there exists a

T e GL(3, Q) which satisfies (Tx, Tx) = ιxιTQTx = M(x\ - 4α1a3), where

M is a positive rational number.

Without loss of generality, we may put

(2.1) (x, y) = ιyQx = M(#2?/2 - 2^% - 2x3y1) (x, y e Rz) .

We identify 7?3 with the vector space of real binary quadratic forms in

indeterminates X and Y via the mapping

x -> χ(X, Y) =, XlX> + x2XY + x3Y
2 .

We denote by dx the discriminant of x(X, Y). Namely, dx = x\ — kxxxz.

Let p be a representation of SL(2,R) on R* given by

, Y) = x(aX + cY, bX + dY)(g = (^ b^j .

a2

%b
¥

2ac
ad + be

2bd

c2

cd
d2

Then we have

(2.2)

It is well-known that p gives an isomorphic mapping from SL(2,R)/±l

onto the connected component of the neutral element of the orthogonal

group of Q.

2. Let Γ be a congruence subgroup of SL(2,Z) and let ξ be a

character of Γ. In this paper we always assume that — leΓ and that

the kernel of ξ is also a congruence subgroup of &L(2, Z). A holomorphic

function ψ on the upper half-plane φ is said to be a holomorphic cusp

form of weight 2k (k is a positive integer) and of character ξ with re-

spect to Γ if ψ satisfies the following two conditions (2.3) and (2.4).

(2.3) φiγ.z) = ξ(γ)J(γ, z)2kφ(z) (Vr e Γ) (see (1.15)).
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(2.4) φ vanishes at each cusp of Γ .

We denote by S2k(Γ, ξ) the space of all such cusp forms. For a φ e S2k(Γ, ξ),
set

(2.5) Φ(g) = J(g, i)-™Ψ{g ϊ) (g e SL(2, R)) .

Then Φ(g) is a function on SL(2, Λ)/ ± 1 which satisfies Φ(γgkθ) = f(γ)e2kUΦ(g)
for y e Γ and for

/coβ* sin<Λ
\ —sin# cos0/

Since ^ imbeds SL(29R)/±1 into the orthogonal group of Q, we can
regard Φ as a function on the connected component of the identity of
the orthogonal group of Q. We have

LQΦ = \p{C)Φ = fc(fc -

(definitions of LQ and C are given in (1.20) and (1.18)). Let L be a lattice
in Q3 on which the bilinear form (x, y) given by (2.1) is integral valued.
Denote by L* the lattice dual to L with respect to this bilinear form.
The group Γ operates on if?3 through the representation p. Assume that
Γ leaves the lattice L invariant. Then Γ induces a permutation on L*/L.
We further assume that there exists a function v on L*/L which satis-
fies

(2.6) v{p{γ) x) - ξ~KγMx) (?x 6 L* /L, v r e f ) .

We fix a Haar measure dg on SL(2yR) by setting dg — dx2dx3dxj\x4\ for

g = = /&i «2\ W e a l s o w r i t e Q = SL(2,R).

\XZ XJ

Take an / e ̂ (i?3) which satisfies (1.19) f or m = 2fc + 1 and put

V™

(2.7)
= J Σ]/(^)Mσ2, Q)f}(p(g-1)'X)Φ(g)dg ,

where z = u + iv e $ and σ2 is as Lemma 1.4. If no confusion is likely,
we write

θ(z,f9φ,L,v) =

It follows from Proposition 1.7 that
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Uv2(— + —) - 2ί(2k + l)v(— + i—))θ(z,φ) = 0 .
I \d2u dv2) \du dv/i Ψ

So, it would be natural to expect that Θ(z,φ) is a holomorphic function

of z on φ. In the next paragraph we will compute the coefficients of

Fourier expansion of Θ(z,φ) with respect to u and show that it is actu-

ally a holomorphic function of z.

3. To state our next proposition, we are going to associate an ori-

ented curve C(x, Γ) on the upper half-plane to a rational binary quadratic

form x with positive discriminant. Take a g e SL(2, R) which satisfies

{p(g)-x}(X, Y) = Vd^XY (dx = x\ — 4a?1α53). Denote by Γx the isotropy sub-

group of x in Γ. Then if ΓXΦ ± 1 , it is known that Γx/±1 is an

infinite cyclic group. If Γx = ± 1 , we denote by C(x,Γ) the geodesic

(with respect to the Poincare metric) from ωι — g~ι^c^ to ω2 = βr^O.

We note that ωx and ω2 are two roots of the equation x(lf — X) = 0 in

X. If Γx/±1 is infinitely cyclic, we take a generator γx of Γx/±1 so

that gγxg~ι is a diagonal matrix whose left upper entry is positive and

smaller than 1. In this case we denote by C(x,Γ) any rectifiable curve

in $ from z to γx-z (z is an arbitrary point in @. Two points of Q3

(= the space of rational binary quadratic forms) are said to be .Γ-equiv-

alent if one is transformed into another by a suitable element of Γ.

PROPOSITION 2.1. The notation being as above, we have

Θ(z,f,φ,L,v) = c(f)Σ»(x)e[z(x,x)/2] f φ(z)x(l, -z)k~ιdz ,
Jc(x,Γ)

where the summation is taken over all Γ-equivalence classes in L* with

positive discriminant and x(l, —z) and c(f) is given by the following

formula.

x(l, — z) = xx — x2z + xzz
2

c(f) = 2-1 exp (Mπ) ί f(x){xx - ix2 - xz

J Xl-Axxx^l
\X2\

Proof. The function v{2k+ί)/iΘ(z,f,φ,L,v) is given by the integral in

the right hand side of (2.7). Since φ is a cusp from, it is easy to see

that the integral is absolutely convergent even if each term of the sum-

mation in the integrand is replaced by its absolute value. Hence, we

can change the order of summation and integration freely. Denote by
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{x} the complete set of representatives of Γ'-equivalence classes in L*.
For each x> Γx (resp. Gx) is the isotropy subgroup of x in Γ (resp. G).
We choose invariant measures dμ]. and dμx on Gx and on GX\G respec-
tively which satisfy

(2.8) ί F(g)dg = f dμl(g) f F(hg)dμx(h)
JG J GX\G J Gx

for any integrable function F on G. Then we have

&) f {r(σ,, Q)f}(p(g~1)

X (f Φ(hg)dμl(h))dμl(g) .

It follows from (2.6) that ξ is trivial on Γx if y(») Φ 0. The proof of
Proposition 2.1 has now been reduced to the proof of the following sub-
lemma.

SUBLEMMA. Assume that ξ is trivial on Γx (x e L*).
(i) // (x9x) = ιxQx = Mdx < 0, then

(2.9) f Φ(hg)dμx(h) = 0
J ΓX\GX

(ii) // (x, x) > 0,

v - ( 2 * + »/4 f

(2.10) r Ί f

L2 AJc(χ,

Proof of Sublemma. (i) Assume (x, x) < 0, then Γx is a finite group
and Gx is conjugate to SO(2) in G. Denote by w the order of the finite
group Γx. Then the left side of (2.9) is equal to w~ιJ(g,i)-2kΨ(z), where
we put z — g i and

ψ(Z) = f J{h,

Now it is easy too see that Ψ(z) is a holomorphic function on φ which
satisfies W(hz) = /(fe, z)2kW(z) for any heGx. It is well-known that such
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a function vanishes identically (we are assuming that k is a positive
integer). Next, assume (x, x) = 0, xφO. There exists a γ e SL(2, Z)
which satisfies p(γ)-x = (s,0,0) (s e Q — {0}). For any ueR, set n(u)

= ί1 f ) e G . Then, we have γGxγ~ι = {±n(u); ue R} and γΓxγ~ι =

{±n(mN) m e Z} for a suitable positive number N > 0. Thus the left
side of (2.9) is equal to, up to a positive constant factor,

J(γ~ιn(u)γg, iY2kφ(γ-ιn(u)γg i)du
Jo

J(r\z + ̂ "Xr1-^ + v))du ,

where we put z — γg-ί.
We note that f̂  oo is a cusp of Γ and Γx is the subgroup of Γ which
leaves γ~ι-oo fixed. Since φ is a cusp form, the above integral is zero.
Finally assume x — 0. In this case Gx — G and Γx = Γ. Let «f be a
fundamental domain in the upper half plane $ with respect to the ac-
tion of Γ. Then a fundamental domain in G with respect to the left ac-
tion of Γ is given by

cos0« 'Vv Λpv~

Thus, the left side of (2.9) is, up to a positive constant factor, equal to

f vk~2φ(u + iv)dudv Γ e2Uθdθ = 0 .
J & Jo

The proof of the first half of the sublemma is now complete.
(ii) Assume (x, x) > 0. Set dx = x\ — kxλxz (~M~\x9 x)). There exists

a gλeG which satisfies pigj x = Vdx (0,1,0). Set St = g^( /-iWi

(ί > 0). Then the group Gx is given by {±St; t > 0}. If Γx ψ ±1, Γx

is generated by ±Sh for a suitable ί0 < 1. We may assume that the
invariant measure dμl on Gx is given by

(2.11) dμl(St) = ^ .

We are going to show that d(St-w) = — 2Vc£aT
1#(l, —SfW)dt/t for any
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w e φ, where x(X, Y) is a binary quadratic form given by x(X, Y) =

^X2 + #2XΓ + #3Y
2. First, we note the following equality.

(2.12) 3(1, -*) = J(g, z)\p(9) «)(1, - # z) FgeG.ze®.

Since g^iSt-w) = t2(gl-w),J(g1,Srw)-2d(St-w) = 2t(gί-w)dt. Replacing z

by iSί w and # by ^ in (2.12), we have x(l, —St-w) = J(glfSt-w)Wch

Vfc w). Thus, dφ w) = -

In (2.12), replace a; by p(Srg)~ι x,g by S t flr and-z by i, then we have

(tfflO-^Xl, - 0 = J(Stg,i)*x<X, -Stg i) .

Hence,

f Φ(hg)dμl(h) = f J(Stg,i)-™φ(Stg.i)
J ΓX\GX J I

J »(1, - S t w)*-

where w — g i and / = (0, oo) or (ί0,1) according as Γ^ = + 1 or not.

We note that the integral

- f a!(l, - S t wγ-ιψ{St • w)d(St w)

= ί a<l, - 2 ) *
J(7(a;,Γ)

is independent of w.

Set fz(x) = {ro(σ

To prove (2.10) it remains to show that

(2.13) 2-1V3>-(2*+1)/4 ί / M r 1

JGX\G

where dμj. is the invariant measure on G^\G which satisfies (2.8) for

dμl given by (2.11).

As a function of z = w + iv, the left side of (2.13) is equal to e[(x9 x)u/2]

•F(v) for a suitable smooth function F oί v, since
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By a straightforward computation one can see that

LQ-x(l, -iYk = k(Je -

where LQ is a differential operator on R3 given by (1.20). As / satisfies

(1.19), for m = 2k + 1, it follows from Lemma 1.3 and Lemma 1.4 that

^ + ̂ )- 2ί(2k + l)v(4- + i4-))nv)e\^(x, s)l = 0 .
du2 dv2/ \du dv/i L2 J

Hence F(v) is a linear combination of e[v(x, x)ί/2] and

9 χ)]t~(2k+1)/2dt .

However, the left side of (2.13) is bounded as v—> + oo. Thus, we obtain

F(v)e[u(x, x)/2] = ce[z(x, x)j2], where c is a constant independent of z.

On the other hand, it is easy to see that the left side of (2.13) is equal

to

2 ΛJ2 ΛJoXQ\σ

where x0 = (0,1,0).

Hence,

c - 2"1 exp TΓM f / W " 1 ) ^ W " 1 ) ^ ! , -i)~kdμ2M
J GXo\G

= 2"1 exp πM f ! - ix2 - x%)-"^p^ .

| # 2 |

Thus the proof of the second part of Proposition 2.1 is now complete.

Remark 2.1. Set

f(x) = (^ - ix2 - x3)
k exp - {Mπ{2x\ + x\ + 2aJ)} .

It follows from Lemma 1.2 that / satisfies (1.19) for m = 2k + 1.

Moreover, it is easy to see that

c(/) = 2"1 exp (TΓM) f exp {-πM{2x\ + x\ + 2x1)}^^
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2V2M

Hence, there exists an / e ^(R3) which satisfies (1.19) and c(/) Φ 0. In

the following we write, for ψ e S2k(Γ, £),

θ(z, ψ, L, v) = cifY'θiz,/, Ψ, L, v)

( 2 1 4 ) = ΣKίc)f φ(w)x(l, -w)k

x J C(x,Γ)

where the summation is taken over all Γ-equivalence classes of L with

positive discriminant.

4. For a positive integer N, put

Γt(N) = {[* ^] e SL2(Z) c Ξ 0 (mod.

5 !
= d = 1 (mod.

Further, put

(2.15)a tf(«) - Σ e[na«] ,
7 1 = — o o

(2.15)b j(h z) = θ(γ • z)/θ(z) for γ e Γ,(4) .

It is known (see (1.10) of [10]) that

C
A holomorphic function ψ on the upper half plane is said to be a

holomorphic cusp form of weight (2k + l)/2 and of level 2V (,where JV

is a positive integer divisible by 4,) if it satisfies the following condi-

tions (2.17)! and (2.17)2.

(2.17)2 At each cusp of Γ(N),ψ(z) vanishes.

As in 2 let Γ be a congruence subgroup of SL(2,Z) and £ be a char-

acter of Γ whose kernel is also a congruence subgroup. Let L be a

lattice in Q3 and L* be the lattice dual to L with respect to the bilinear

form (2.1). We assume that L* D L, — l e Γ ' and that L is invariant
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under the action of Γ. Take a function v on L*/L which satisfies (2.6).
Take a Z-base {λί9λ29λ3} of L and set D = det((λίfλj)).

THEOREM 1. Notations being as above, if <peS2k(Γ,ξ), the function
Θ(z,φ) = Θ(z,φ,L,v) given by (2.14) is a holomorphic cusp form of weight
(2k + l)/2 and of level N, if N is divisible by SD.

Proof. Take an /e£%ff3) which satisfies (1.19) for m = 2k + 1 and
c(f) = 1. Then we have Θ(z,φ) = θ(z,f,φ,L,v) (see 2.7). Denote by Γo

the kernel of the character ξ of Γ. By the assumption, Γo is a con-
gruence subgroup of SL2(Z). There is a congruence subgroup Γx of Γo

which leaves each point of L*/L fixed. Let e0 be the index of Γ1 in Γ.
We have,

, φ) = Σ »G

(cf. (1.22)), where we put

v™+Mθ(z,f, Φ, χ*)=[ Σ fz(p(g~ι){χ + χ*))Φ(g)dg

Take a γ — (® λe Γ(8D). It is easy to see that γ satisfies the condi-

tion (1.21), (c/2)L* c L and dx* = x* modulo L. Hence, by Proposition 1.6,

*/JM-™™Q(r z9f,Φ,x*) = Crθ(z,f,Φ,x*) ,

where

(c ^ 0, d < 0) ,

Now it is easy to check that Cγ = (c/d)ε^1 for ^eΓ(8D). To prove that
0(2,0 vanishes at each cusp of Γ(8JD), it is sufficient to show that
J(γ,z)-(2k+1)Θ(γ'Z,<p) vanishes at +ioo for every γeSL2(Z). This follows
easily from Proposition 1.7 and Proposition 2.1.

5. Let JV be a positive integer and χ be a character modulo N. For

γ = (* h\ e Γ0(N), set χ(γ) = χ(d). Then χ is a character of Γ0(N). Set



108 TAKURO SHINTANI

S2k(N,χ) = S2k(ΓQ(N),χ). (The definition of S2k(Γ0(N),χ) is given in 2).

For a rational prime p, the Hecke operator Tξk(p,χ) is a linear trans-

formation on S2k(N,χ) given by

{Tξk(p,χ)φ}(z)

(see (3.5.7) of [11]).

For an N divisible by 4, we denote by ©2&+1CZV, χ) the space of holomorphic

cusp forms ψ of weight k + | and level N which satisfy

Ψ(γ s) = χ(γ)Kγ, z)2*+1Ψ(z) (vr e Γ0(iV)) .

For a rational prime p, the Hecke operator Tξk+ltχ(p2) is a linear trans-

formation on &2k+i(N,χ) given as follows: If

= Σ
l

©2*+i(ΛΓ, χ) ,
w = l

(2.18), {n+i,z(P2)Ψ}(z) = Σ M
l

= a(p2n) + χ(p)( ~1 Yf-^λp^ain) +
\ p I \ p /

where 6(w) = a(p2n) + χ(p)( ~1 Yf-^λp^ain) + χipW^ain/p2), (see

\ I \
Theorem 1.7 of [10]).

Let Sβ be the lattice of integral binary quadratic forms and <=£?' be the

sublattice of & consisting of all forms with even second coefficients. For

a positive integer N, we set

((2/N)(x2y2 — 2xιyz — 2xzy^ for N odd ,

](-—)(&22/2 ~ 2̂ 7/3 - 2^7/0 for N even .

Put

for iV odd ,
N = \NSe' for N even .

Then L%, the lattice dual to LN with respect to the bilinear form (, )N

is given by

(TV odd) ,

* W (JV even) .

Let χ be a character modulo N. Denote by vx

N the function on 3? given



HOLOMORPHIC CUSP FORMS OF HALF INTEGRAL WEIGHT 109

as follows:

For N odd,

For N even,

[χ(xx) if N\x2 and N\x3 ,

(0 otherwise .

χ(xλ) if 22VI x2 and N\ x3 ,

0 otherwise .

For N odd, we extend vχ

N to a function on L% by setting it to be zero

outside if. It is easy to see that v% is a function on L%jLN which

satisfies

Vπipiϊ) χ) = Z~2(^)^^(χ) ί ° r a n y f e Γ0(N) .

For a 9 e S2k(N, χ2), set

0Z(#, Ĵ) = θ(^, φ, LN, vN)

(2.19) _ „ ,

where the summation is taken over all Γoί^-equivalence classes of inte-

gral binary quadratic forms with positive discriminant (the definition

of C(x, ΓQ(N)) is given at the beginning of paragraph 3 of this section).

Denote by χf a character modulo 42V given by

χ'(m) = χ(m)(—)( —
\m/\ m

Now we state the main theorem in this paper.

THEOREM 2. / /

φ e S2k(N, χ2) , then Θz(z, φ) e ©2A+1(42V, χθ .

Moreover, if p is an odd prime, then

Θχ(z,T»k(P,χ2)φ) = Tlζ+hχ,(Θχ(z,<p))

(this equality holds even for p = 2, if N is even).

The first part of the theorem is an easy consequence of Theorem 1

Proposition 1.6 and Proposition 1.7. We will devote the remaining part
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of this section to the proof of the second part of the theorem.

6. To prove the second half of Theorem 2, we prepare a few lemmata

on lattices in quadratic fields. Let K = Q(Vd) be the real quadratic field

with discriminant d. Put ω = (d + Vd)/2. Then 1 and ω form a Z-base

of the maximal order £) of K. A rank 2 Z-module in K is called a

lattice if it contains a β-base of K. For a lattice 2ί in ft, denote by

£)(2I) the order of 21: ©(21) = {k e K; fcSl c 81}. There exists a unique

positive integer c such that D(2ί) = Oc = Z + cωZ. We call c the con-

ductor of 21. For each finite rational prime p, put

Then Sip is a Zp-lattice in Kp and 2ΪP = β p for almost all p. Conversely,

if a Zp-lattice 2ϊp in Kp is given for each p and if 2ίp = €)p for almost
all p, there exists a unique lattice 2ί in K such that (8QP = 2ίp for all p.

Set # 5 = {ft e UP KP fcP e O^ for almost all p}.

For a lattice 21 in K and a keK%, denote by KΆ the lattice given by

the equalities (M)p - kpUpVp).

Thus, K% operates on the set of lattices in K. For a positive integer

c, denote by £f(c) the set of lattices in K with conductor c. It is known

(see Proposition 5.4.2. of [11]) that

(2.20) JSf(c) = K* €)c = {fc Oc fc e K*} .

We call two lattices in if equivalent if one is transformed into the other
by a multiplication of a suitable element in K with positive norm. Let
21 be a lattice in K. Take a Z-base {ĉ , <w2} of SI which satisfies ω ^ —

ω2ωί > 0 C means the conjugation with respect to Q). Denote by a the

positive generator of the Z-ideal {ωxω[, ωλω^ + ω[ω2,ω2ω
f^) in Q and put

2ί(X, Y) = a-'iω.X + ω2Y)(ω[X + ω'2Y) .

Then 2l(X, Y) is a primitive integral binary quadratic form (an integral

binary quadratic form is said to be primitive if its coefficients have no

non-trivial common divisor).

The SL(2, Z)-equivalence class of 2ί(Z, Y) is uniquely determined by the

equivalence class of 21. Now the following lemma is known (see Satz

154 of [4]).

LEMMA 2.2. The mapping 21 «-• 21 (X, Y) establishes a one to one
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correspondence between the set of equivalence classes of lattices with

conductor c in K and the set of SL(2, Z)-equivalence classes of primitive

integral binary quadratic forms with discriminant dc2.

LEMMA 2.3. Let 2ί be a lattice in K with conductor c and let p be

a rational prime. Among p + 1 sublattices of 21 with index p, there

are p — (—) (resp. p) with conductor cp and 1 + (—) (resp. 1) with
\p/ \pJ

conductor c (resp. c/p) if c is prime to (resp. divisible by) p.

Proof. By (2.20), it is sufficient to prove the lemma under the as-

sumption that 21 = Oc. In this case, the sublattices 2Iα) (0 < i < p) of 21

with index p are given by

2ί(0) = Zp + Zcω , 2ία) = (1 + cίω)Z + pcωZ (1 < i < p) .

We have

2ί«)(X, Y) = (a,X2 + βiXY + nY2)/(ai9βi9ri) ,

where

(Xo = V2 > βo = Pcd , γ0 = c2d(d - l )/4 αr< = 1 + icd + %2&d(d — l )/4 ,

βi = pcd + pίc2d(d - l )/2 and Ti = p2c2d(d - l )/4 (1 < i < p) .

If c is divisible by p, it is easy to see that

(aQ, β09 γ0) = P2 and (aif βu γd = 1 for 1 < i < p .

If c is not divisible by p, we see, by a straightforward computation,

that among p + 1 integers (α ,̂ jS<, γt) (0 < i < p), there are exactly

V — \ —) which are equal to one and 1 + (—) which are equal to p.
\pJ \p)

The lemma now follows from the previous lemma.

Put Oc

x = {xeK; x€)c = Oc, xxf > 0}. It is known that Oc
x/±1 is

an infinite cyclic group. The next lemma is well-known in the classical
theory of binary quadratic forms (see e.g. [1]).

LEMMA 2.4. Let edc2 = t + ucVd > 1 be a generator of O c
x /±1. Let

x(X, Y) = xλX
2 + x2XY + xzY

2 be a primitive integral binary quadratic

form with discriminant dc2 and set

(2.21) ϊχ (
\ —2x3u t + x2u

Then the mapping: ±ε^c2—> ±γ%9 establishes an isomorphism between Oc

x

and the isotropy subgroup of x in SL2(Z).
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It is known that the number of equivalence classes of lattices with
conductor c in K is finite. Let Si1, , SP be a complete set of repre-
sentatives of these classes. For a rational prime p, let Stj, 8β, , StJ be
the p + 1 sublattices of %ι with index p. By Lemma 2.3, the conductors
of (p + l)h lattices {SI} 1 < i < h, 0 < j < p) are either cp or c/(c, p).

LEMMA 2.5. ( i ) For an arbitrarily given lattice with conductor
cp, there are precisely, [©*,£)£>] number of lattices among h(p + 1)
lattices {81} 1 < i < h, 0 < < p) which are equivalent to the given one.

(ii) Assume c is prime to p. For an arbitrarily given lattice with

conductor c there are exactly 1 + ί — j number of lattices among {81}}

which are equivalent to the given one.
(iii) Assume c is divisible by p. For an arbitrarily given lattice with

conductor c/p, there are exactly p/[Ox/p,£)x] ίresp. Ip — ί— \\ /[OC

X

/P,OC

X]]

number of lattices among {SI}} which are equivalent to the given one
if c is divisible (resp. not divisible) by p2.

Proof. Set K+ = {keK;kk'> 0}. We have

= U U fc Sϊ* (disjoint union) ,

where J£(c) is the set of lattices with conductor c. Hence, if c is prime
to p, it follows from Lemma 2.3 that

(2.22) U LJ fc «J = ̂ P ) + ί 1 + (-

Namely, each lattice with conductor cp (resp. c) appears exactly once

(resp. 1 + (—\ times) among {fc SIJ; keK+/£)?, 1 < i < h,0 < < p).

Let «2f*, , S£h{cv) be a complete set of representatiΛes of lattices with
conductor cp. Then

( p )

= U U Λ ̂ ( ί ) (disjoint union) .

Thus, lemma is now obvious for c prime to p. If c is divisible by py

it follows from Lemma 2.3 that the left hand side of (2.22) is equal to
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+ p<£{c\p) or <£(cp) + ip — (—)\<£f(c/p) according as c is divisible

by p2 or not. Hence the lemma is checked in a similar manner.
For a positive integer N, we denote by L(N) the subset of primi-

tive integral binary quadratic forms given as follows:

*> N 1 ^3 \ G&l, X2, «s) = 1} W θdd) ,

[{x 2NI x29 N | x3 (#!, x29 x3) — 1} (ΛΓ even) .

It is obvious that L(N) is invariant under the action of Γ0(N).

LEMMA 2.6. Two SL(2, Z)~equivalent points in L(N) are Γ0(N)-equiv-
alent. For N odd (resp. even), each primitive integral binary quadratic
form with discriminant divisible by N (resp. 4N) is SL(2, Z)-equivalent
to a form in L(N).

Proof. The first half of the lemma follows easily from (2.2). To
prove the second half, we may assume that N = pm (m > 1) is a power
of a prime number p. We will prove the lemma for p — 2. For odd p,
the proof is similar but simpler. Let x = xxX

2 + x2XY + x3Y
2 be a

primitive integral quadratic form with discriminant divisible by 2m+2.
Transforming x by a suitable element of SL(2,Z) if necessary, we may
assume that x1 is odd and x2 is a multiple of 4. Then xz is even. Thus,
for m = 1, the lemma is valid. Next we assume (making use of the
induction with respect to m) that m > 2 and there exists a form
sXX", Y) = #ίX2 + a£2ΓΓ + a^ 2 which is SL(2, Z)-equivalent to x and has
a second coefficient ccj divisible by 2m and has a third coefficient xf

z

divisible by 2m~ι.
For a suitable integer c, #£ + 2m cx[ is divisible by 2m+1. Then

The next lemma is an easy consequence of Lemma 2.4 and the definition
of C(x,ΓQ(N)) given at the beginning of paragraph 3 of this section.

LEMMA 2.7. Take an integral binary quadratic form xeL(N).
( i ) // the discriminant of x is not a square, C(x, ΓQ(N)) is a rec-

tifiable curve in S$ from w to γx w, where w is any point of φ, and γx

is given by (2.21).
(ii) // the discriminant of x is the square of a positive number
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m, C(x,ΓQ(N)) is the geodesic line from (x2 + m)/2xz to (x2 — m)/2xz (if

x3 — 0, we understand that C(x,Γ0(N)) is the geodesic line from +ioo

(resp. xjx2) to xjx2 (resp. +ioo) for x2 > 0 (resp. x2 < 0)).

(iii) // I is a positive integer prime to N, C(lx, Γ0(N)) = C(x, ΓQ(N))

for any x e L(N).

For a φ e S2k(N, X2) and a positive integer n, set

(2.24) aN(n, φ) = Σ ^ ) J p(«)»d, -z)k~ldz ,

where v^(x) = χ(xd, C(x, N) — C(x, Γ0(N)) and the summation is taken over

all /VAO-equivalence classes of forms in L(N) with discriminant Nn

(resp. ANn) for N odd (resp. even). For N odd (resp. even) denote by

dn the discriminant of the number field Q(^nN) (resp. Q(V^nN)) and put

nN = cZn4(resp. 4nN = dncζ). Then cn is a positive integer or a positive

half-integer. In the latter case (which can occur only for N odd),

aN(n,φ) = 0 for every φe S2k(N, χ2). Now we assume that cn is an inte-

ger.

LEMMA 2.8. Notations being as above, one has

aN(np2,φ) + p f c -^l + (^jχ(p)aN(n,φ) if (p,cn) =

= " aN(np2, φ) + p™-2(p - (^jχ(p2)aN(njp2, φ) if (p\ cn) = p ,

aN(np2, φ) + P2k-ιχ(p2)aN(nlp2, φ) if (p2, cn) = p2 ,

where we put aN(n/p2, φ) — 0 for n not divisible by p2.

Proof. Assume dn > 1 and put K = Q(Vdn). Let a?1, ί̂ 2, , xh be a

complete set of representatives of .Γ0(iV)-equivalence classes of forms in

L(N) with discriminant dnc\. Set

x%X, Y) = α ϊZ2 + x\XY + x\Y2 (1 < i < Λ) .

Set ft = ft.« (1 < i < fe) (see (2.21)). Then we have, by Lemma 2.7 and

(2.24),

aN(n,Tξk(p,χ2)φ)
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Put ω\ = (x\ + cnVdn)/2 and ω\ = x\ and denote by Ψ the lattice in K

generated by ω\ and ω\. It is easy to see that Ψ(X, Y) = x*(X9 Y)

(1 < i < h). It follows from Lemma 2.2 and Lemma 2.6 that {Si1,»2, 2P}

forms a complete set of representatives of equivalence classes of lattices

with conductor cn in K.

Put

Further, set βx = [DC

X,OC

XJ and e2 = [Oc

x

/(CjP),Oc

x]. We note that

M and ^ ( ^ Ό = v%{xι) (1 < i < p). It follows from (2.18)! that

Jw

= er1 Σ
0

Set

and

Then Sί*'0,?!*'1, . . .,a*»p are mutually distinct sublattices of 2Ii with index

p. Put 2/*'J'(X Y) = a*^(Z, Γ). Then α*»' = i/*^ or p ^ " 7 or pψ>j accord-

ing as the conductor of WJ is cp or c or c/p. It is easy to check that

γl) is γ(yiJ) or y%.}) or ^J?i} according as the conductor of Ψj is cp or c

or c/p. Lemma 2.8 is now an easy consequence of Lemma 2.5, Lemma

2.7 and Lemma 2.2. If dn = 1, the proof is similar and much simpler.

Set Θ(z, φ) = Σn>\ a(ri)e[nz] and

= Σb(n)e[nz]

(Θ(z,φ) is given by (2.19)).

LEMMA 2.9. Let dn be the discriminant of Q(VNή). Set Nn — dnc
2

n

{resp. 4:Nn = dnc
2

n) for N odd (resp. even). If cn is not an integer,

a(ri) = b(ri) — 0. // cn is an integer.

b(n) = a(np2) + p * " ^ ) ^ ) α ( w ) + p™-ιχ(p2)a(n/p2) ,
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where we understand that ain/p2) — 0 if n/p2 is not an integer.

Proof. If follows from (2.19) and (2.24) that

Φ ) = Σ χim)mk-ιaN{nlm\ 0

and bin) = Σ %{m)mk-ιaN{nlm\ Tξk{p,

where the summation is taken over all positive divisors of cn which are

prime to N. If cn is not an integer, it is clear that a(n) = bin) = 0.

Assume that cn is an integer. If p is a factor of N, we have, by Lemma

2.8,

bin) = Σ χOn)mk~1aNinp2/m2

9 φ) = ainp2) .

Next we assume that p is prime to both N and cn. Then Lemma 2.6

implies

b(n) = Σ zWm^^L^Vm 2 ^) + p*~ι(l + (^))χip)aNin/m2, φ)\
m\cn I \ \p / / )

= a(np2) + pk
p

Finally assume that p is prime to N but is a factor of cn. Set cn =

c'np\ where c'n is prime to p. We have

b{n) = Σ χ ί m W m O ^ W ί w / m Y , 2 ϊ ( p , χ » ,

where the summation is taken over all positive divisors mf of cf

n and

over all non-negative integers i not exceeding I.

Now Lemma 2.8 shows that

<χNinlm'2p2\T»kip,χ2)φ)
faNinp2/m/2p2\ ψ) + p2k-ιχip2)aNinlm'2p2i+2

y ψ) (0 < i < I - 2) ,

« = Z - 1) ,

aNinp2/m/2p2l,φ) + pk~'(l + (^)χip)aNinlmf2p2\φ) 0 = Z) .

Thus, 6(n) = α(ti392) + p2k~ιχip2)ainlp2).

Lemma 2.9 has been proved.

The second half of Theorem 2 now follows immediately from Lemma

2.7 and the definition of T\ξ+h
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§ 3 Numerical examples

In this section, we present three numerical examples of Theorem 2.

1. Set k — 6, N — l,χ = 1. In this case, the space S12(l,χ2) is one

dimensional and spanned by the function

(3.1) Δ{z) = e[z] Π (1 - e[nz])u = fj τ(n)e[nz] .
71 = 1 71 = 1

Set θ(s, J) = θ(«, l , l , Δ) = Σ ^ bne[nz]. (see (2.19)). Then, we have

(3.2) &» = Σ f 4(*)G*i - z^2 + x3z
2)5dz ,

where the summation is taken over all SL(29 Z)-equivalence classes of

integral binary quadratic forms with discriminant n. We note that any

integral binary quadratic form with discriminant one is £L(2, Z)-equiv-

alent to the form XY. Hence, it follows from Lemma 2.7 that

&! = - Γ A(ίt)(-ίtyd(it) = -D(6) ,
Jo

where D(s) = (2π)~sΓ(s) 2]»-i τ(ri)n~s.

Since D(s) does not vanish on the real line, bx Φ 0. By Theorem 2

0(z, J) e ©1S(4,1). Since βfe) - Π?-i d - α2w)d + g2""1)2 to = βM), «(«) has

not a zero on the upper half plane. Hence, ψ(z) = (9(2, Δ)jθ{z) is a

holomorphic function on the upper half plane which satisfies ψ(γ z) —

(cz + d)6ψ(z) for every γ e Γo(4). Now, Γo(4) has three inequivalent cusps,

ΐoo,0 and J. It follows from the transformation formula for θ(z) that

it is finite and does not vanish at ioo and 0, and that it has a zero

of order 1/4 at \ with respect to a uniformizing parameter t =

e[(—s + l)/(—2z + 1)]. Furthermore, θ(z,Δ) vanishes at all the cusps of

Γo(4) and the order of zero at 1/2 with respect to t is not smaller than

1/4. Thus, ψ(z) is a holomorphic integral form of weight 6 with respect

to Γo(4) which vanishes at ioo and at 0. It is known that the space of

such forms is spanned by

and by

Π ( 1 - q2n)12 = q - 12qz

71 = 1

E(z) = Σ m 5 (-l) m g m ( 2 m i - 1 } = —q + S2q2 +
m,mi=l
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Hence Θ(z,J) is expressed as a linear combination of θ(z)V J(2z) — 2 +

2q2 + and of θ((z)E(z) = -q + 30g2 + . Since bλ = -D(6) and

b2 = 0 (see (3.2)), we have

(3.3) θ(z, Δ) -

Combining (3.2) and (3.3) we obtain series of identities which may be

of some interest. For example, let d be a discriminant of a real quad-

ratic field with class number 1 and let e > 1 be the fundamental unit of

Q(Vd). Set t + u\ld = ε or ε2 according as the norm of ε is 1 or — 1 .

Assume d is divisible by 4 and set

{E(z) - 15W)}β(z) = Σ βnQn

n = l

Then

rz=(t/2u) + i

(3.4)
Jz=ί/2M

4 - z2) dz = -^jrD(6) or - -
4 16
4 z) dz ^jrD(6) or ££
4 / 16 32

according as the norm of ε is —1 or 1. In fact, under our assump-

tions, a complete set of representatives of Γ0(l)-equivalence classes of

integral binary quadratic forms with discriminant d is given by

{±((d/4)X2 - Y2)} or {(eZ/4)X2 - Y2} according as the norm of ε is 1 or

- 1 . Furthermore, for x(X9 Y) = (d/4)X2 - Y2, the integral path C(x, Γ0(l))

in (3.2) is any rectifiable curve from w to (tw + (d/2)u)/(2uw + t), where

w is any point on the upper half plane. Letting w—• +ioo in (3.2) and

making use of (3.3), we obtain (3.4) (Cf. Manin [14]).

2. In the following two examples, we are interested in the case

where k = 1 and χ is a quadratic character modulo N (χ2 = 1). Take a

<peS2(Γ0(N),χ2). For N odd, we have, by (2.19),

(3.5) θχ(z,φ) = Σ X ι ^ ψ ] ] ^ ΓQ{N))

where the summation is taken over all positive integers m and over all

Γ0(N)-eq\iivalence classes of primitive integral binary quadratic forms

x(X, Y) = xxX
2 + x2XY + x3Y

2 with positive discriminant and with x2 and

x3 divisible by N.

For N even,



HOLOMORPHIC CUSP FORMS OF HALF INTEGRAL WEIGHT 119

(3.6) Θχ(z, φ) = Σ X(^i)e\^r(xl - 4^3)1 f
L AN ΛJ

f

where the summation is taken over all positive integers m and over all

^(^-equivalence classes of primitive integral binary quadratic forms

with positive discriminant and with x2 divisible by 2N and with x3 divis-

ible by N.

In both cases, it follows from Theorem 2 that

(3.7) θz(z, ψ) e ©3(4iV, χθ , where χ\d) =

Assume that the discriminant of x (x e L(N)) is not a square. Then

C(x,Γ0(N)) is a rectifiable curve from z to γx z(ze!Q), where γx is given

by (2.21).

Denote by X(N) the Riemann surface Γ0(N)\% U (ioo) U Q.

The image of C(x,ΓQ(N)) by the natural projection of φ into X(N) is a

cycle on X(N) which we denote by fx. The integral φ(z)dz is

the period of the holomorphic differential form φ(z)dz on X(N) along the

cycle fx. Hence, it is expressed by a linear combination of fundamental

periods of φ{z)dz on X(N) with coefficients in Z. A description of

Hλ(X(N),Z) after Manin [6], which we will recall in the next paragraph,

enables us to compute these coefficients in finite steps.

3. The set of inequivalent cusps of Γ0(N) is, by definition, the set

of ,Γ0(Λ0-orbits in Q U ioo. Denote by Π(N) the set which consists of

pairs of the form [δ a mod. (δ, Nδ'1)], here δ runs through all positive

divisors of N and the second coordinate of the pair runs through all

invertible classes of residues modulo the greatest common divisor of δ

and iV^"1. If (δ, Nδ~ι) = 1, we sometimes put simply 1 in place of the

second coordinate. For r = (u/vδ) e Q, where δ\N, u, v e Z, (u, vδ) =

(VyNδ-1) = 1, set c(r) = [δ;uv mod (δyNδ-1)]. Further set c(ΐoo) = [N; 1].

Then the mapping c establishes one to one correspondence between the

set of inequivalent cusps of Γ0(N) and the set Π(N). We identify these

two sets. For each pair (r19r2) of two elements of Q U ioo, we denote

by {r19r2}N the image, by the natural projection from Q U Q U ioo into

X(N), of the geodesic from rx to r2. Let c = c mod. N,d = d mod. N be

two residue classes mod. N which are represented by relatively prime



120 TAKURO SHINTANI

integers c and d. We call two such pairs equivalent if one goes to the

other by multiplication of an invertible residue class modulo N. The

set of these classes c: d is P\Z/(N))9 the projective line over Z/(N).

For c:dePKZ/(N)), set

(3.9) ξ

where a, b, c, d are integers with the conditions ad — be = 1, δ = c mod. N

and c£ = c£ mod. N. Then ξ is a well-defined map from P\Z/(N)) into

the set of chains on X(N). Further, set

d(c : d) = I ίx —d"1, mod. (δί9 -

(3.10)

where δλ = (c, iV), ^2 = (cϋ, N) (the right hand side is understood to be an

element of free abelian group generated by elements of Π(N)).

LEMMA 3.1. (See Theorem 2.7 of Manin [6]). a) Construct the

maximal torsion-free abelian group H(N) generated by the symbols

(c: d), one for each c: de P\Z/(N)) with the relations (c: d) + (—d: c) = 0,

(c : d) + ((c - d): δ) + (-d: (c — d)) = 0. Further let H(N) designate the

subgroup in it which is the kernel of the boundary homomorphism

(3.10). Then the map ξ, given by (3.9), induces an isomorphism ξ: H(N)

b) For a g = (^ ^ e ΓQ(N), let

d Vι + P2 + + Vn

(Po e Z,Pi, ,pn positive integers) be the expansion of b/d into finite

continued fractions. Set d_λ = 0, d0 — 1 and dk — P J A - I + dk_2 (k = 1,

• •-,%). Γ/2,ê  2*-i (( — ̂ Y~ιdk: dk.d eH(N) is mapped, by ξ, into the

integral 1-homology of H^XiN)^) represented by the cycle {0,^-0}^.

EXAMPLES OF LEMMA 3. (i) For # = 11, the following relations

betweeen elements of £Γ(11) hold.
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ί θ : ϊ = ϊ : ϊ = O, ϊ : 0 = - ( 6 : ϊ ) , 2: ϊ = - ( 6 : ΐ) = -(5:1) = 9: ϊ ,

3: ϊ = - ( 7 : ϊ) , 8: ϊ = - ( 4 : ϊ) = (2: ΐ) - (3: ϊ) .

Thus, H(lΐ) is a free abelian group generated by ( ϊ : 0), (2: ϊ) and(3: ϊ) .

By (3.10), 9(1: 0) = [1 1] - [11 1], 3(2: ϊ) = 9(3: ϊ) = 0. Hence, #(11) is

a free abelian group generated by 2: ϊ and by 3: ϊ . It follows that

ξ(2: ϊ) = {0,|}u and f(3: ΐ) = {0,£}u form a base of HάXQ.1), Z).

(ii) For N = 14, relations between elements of #(14) are as fol-

lows:

ΐ : ϊ = 13:1 = 0 , 0: ΐ = —(ΐ: 0) ,

2: ϊ = - ( ϊ : 2) = - ( 1 3 : 2) = 12: ΐ , 3 : ϊ = - ( § : ϊ) ,

2 : ϊ = - ( 3 : 2 ) , B:ϊ = - ( ί ϊ : ϊ) = (4: ϊ) - (2: ϊ) ,

6 : ϊ = - ( 9 : 2 ) = ( 4 : ϊ ) - ( 3 : ϊ ) , ( 7 : ϊ ) = - ( ϊ : 7 ) ,

8 : ΐ = - ( 5 : 2) = ( 4 : 1 ) - (3: ϊ) ,

ί θ : ϊ = - ( ί ϊ : 2 ) = ( 2 : ϊ ) - ( 3 : ϊ ) ,

7: 2 = - ( 2 : 7) = (7: ϊ) - (4: ΐ) + (3: ΐ) .

Hence, #(14) is generated by 0: ϊ , 2 : ΐ , 3 : ϊ , 4 : ϊ and by 7: ΐ . Further-

more, 3(9: ϊ) = [14 1] - [1,1], 9(2: ϊ) = [2 1] - [1 1], 9(3: ϊ) = 0, 3(2: ϊ)

= [2 1] - [1 1], 9(7: ϊ) = [7 1] - [1 1]. Thus, iϊ(14) is a free abelian

group generated by 3: ϊ and by (2: ΐ) - (4: ΐ). It follows that f(3: ϊ) =

{l,i}u and ί (2 : ϊ) - f(4: ϊ) = {1,1}U - {1,±}14 form a base of ff.^U), Z).

4. In the following tables the line

N (N = 11 or 14)

±(xlfX2,xύ

±(yi,V2,yύ

t + uVd

n

Vo+ [Pi, ,Pfc]

Qo + [qi," ,qi\

means that ±{x,X2 + x2XY + x,Y2) and ±{yxX
2 + y2XY + yzY

2) form a

complete set of representatives of binary quadratic forms in L(N)(9) with

discriminant d = Nn (resp. d = 4niV) for JV = 11 (resp. 14) that εd which

was introduced in Lemma 2.4 is t + uVd; that {2x{u)j{t + x2u) (resp.

(2y1u)/(t + y2u)) is equal to

J^ J_ 1 / „ , 1
+ V* +

Vo
Vi

JL_ (resp. qQ

+ Pk \ + +
(9) For the definition of L(N), see (2.23).
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n

3

4

7

8

±(1,11,22)

±(1,0,-11)

±(1,11,11)

±(1,0.-22)

23

10

( 9 -

197

+ 4V33

+ 3Λ/ΪT

\- V77)/2

+ 21V88

[8,2,1

[3,3]

[10]

[4,1,2

,2]

,4,3]

TABLE II

N = 14

n

1

2

i

i
7

±(1,0,-14)

±(1,0,-28)

±(1,0,-42)

±(3,0,-14)

±(1,0,-70)

±(3,28,42)

±(1,0,-84)

±(5,56,140)

±(1,0,-98)

±(1,0,-140)

±(13,-168,532)

±(1,0,-154)

±(3,28,14)

15 + 2V56

127 + 12VΪΪ2

13+ VΪ68

//

251 + 30V70

//

55 + 3V336

//

99 + 5V392

71 + 3V560

//

21295 + 858V6Ϊ6

//

[3,1,3]

[5,3,2,3]

[6,2]

[2,6]

[8,2,1,2,1,2]

[7,2,5,8]

[9,6]

[7,2,3,4]

[9,1,9]

[11,1,5]

- 1 +[1,4,1,1,4.2,1,2]

[12,2,2,3,1,2,1,3,2,2]

[8,1,4,12,4,1,7,2]

4. LEMMA 3.2. Let χ' be a character modulo 4/V which satisfies

χ'4 = 1 and let v^ be the number of inequivalent cusps of Γ0(4:N). Take

a ψ e ©3(4N, χθ and set ψ = Σζ=1 ane[nz]. Assume ax = a2 = = ano = 0

for an integer n0 and assume 4n0 is larger than 3 J^δ Nφ((δ, N/δ))/δ(δ, N/δ) —

v^ + 1, where ψ is the Euler function and the summation is taken over

all positive odd divisors of N. Then ψ vanishes identically.
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Proof. A set of representatives for all the inequivalent cusps of

Γ0(4ΛΓ) is given by {u/δ; 0 < δ\4N,(u,δ) = 1, u modulo (δ,4Nδ-% For

each u/δ, take integers u/,δ/ which satisfy uδf — u'δ = 1. A uniformizing

parameter for Γ0(4ΛΓ)\$ U ioo U Q at u/δ is given by

t = exp %*(δ'z - M ' \ w h e r e e =

e V—δz + u/—δz + u/

The function Θ12(z) is a regular holomorphic form of weight 6 with respect

to Γ0(4:N). It has no zeros on φ. The cusp u/δ is not a zero of 012 if

δ is either odd or divisible by 4. If δ is even but is not divisible by 4,

θl2(z) has a zero of order 3e at u/δ, with respect to the parameter t.

Hence, a meromorphic function ψ\z)/θl2{z) on X(4ΛΓ) is regular except

at cusps u/δ with δ even but not divisible by 4. At ^/2£0 (δ0 odd, £0|ΛΓ),

t4(z)/012(z) has a pole of order at most 3β - 1 = 3N/δQ (δo,Nδϊι)-l.

Since ψ4(z) vanishes at all cusps and has a zero of order at least 4n0 at

l/4iV, we have

4n0 + ^ - 1 < 3 Σ {iV/^fe,Nδoι)}φ(δOfNδό1)
δ0oddtδ0]N

if ψ dose not vanish identically. The lemma is now proved.

5. Set N = 11, χ(x) = ( — ) • In this case, S2(Γ0(ll),l) is one-

dimensional and is spanned by φ(z) = 12V^(z)^(llz), where J(^) is given

by (3,1). Further θx(z9φ) e ©3(44,1). Let D be the maximal order of

Q(V-l l ) . For each x e O, let y(aθ be 0 or p = ( - 1 + V :=3)/2 or <o2 or

1 according as x is congruent modulo 2 to 0 or (1 + V —ll)/2 or

(-1 + -J^-iDβ or 1. Set

f(z) = 2"1 2 î (aj)e[«ΛΓ(ίc)] (iV(α ) is the norm of x)

( —44 \V

Further, set

θ(llz)f(z) = q - q3 -q* + q11 + 2q12 - 2qu + qlb - 2g16 + 2g22

(3.11) - q2Z + 2^ 2 6 + q27 - qzι - g33 +

= Σ
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We have θ(llz)f(z) e ©3(44,1). Hence, by Theorem 1.7 of [10],

©3(44,1) 9 (/| T£(

Set 7Ί = {0, J}u and γ2 = {0, J }u (for notations, see 3). We have seen, in

(i) of examples of Lemma 3, that γx and γ2 form a base of J3Ί(X(11), Z).

Put a>! = φ(z)dz and <y2 = φ(z)dz. Then, α̂  and ω2 are linearly in-

dependent over R.

PROPOSITION 3.3.

(3.12) θx(z, φ) = (ω, - 2ω2) Σ aAne[nz] ,
2 1

Σ is given by (3.11).

Proof. Set βχ(2,£>) = Σw^iδ ne[n^]. Making use of (3.5), Lemma 3.1

and Table I, we have after straightforward computations bx — b2 = 0,

δ3 = 2(α)! — 2ω2), 64 = 2(2ω2 — ωj), δ5 = δ6 = b7 = δ8 = 0. Hence, θχ(z, 9) —

(ωx — 2ω2) 2 ^ i CLιne\nz~\ has a zero at ioo of order at least eight. Since

both sides of (3.12) belong to ©3(44,1), it follows from Lemma 3.2 that

both sides of (3.12) coincide.

Remark 3.1. We have,

1 1 / J i°°

where

D>(β) = (2W)-Γ(β) Σ (^-) ft) to = Σ α.
nil \ns / Ml/ \ nai

6. Set iV = 14, χ(a ) = (—) (we understand that χ is a character

modulo 14). In this case S2(Γ0(14), 1) is one-dimensional and is spanned

by

ψ{z) = 24VΔ{z)Δ{2z)Δ{Ίz)Δ{lAz)

(3.13) = q Π (1 - 9«)(l - <f«)(l _ ^»)(1 _ g"»)
71 = 1

= 9 - g2 - 2Q3 (ςr = βt«]) .

By (3.7), θ,(z, 0 e ©3 (56, χ'), where χ' is a character modulo 56 given by
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^ {e[z(x2 + Uy2)] - e[z(2x2 + 7y2)]}

Then f(z) e £^(56, χ"), where χ" is a character modulo 56 given by χ"(d)

- 5 6 '-( . Put
d

θ(Ίz)f(z) = g ^ f

= q - <f + ^4 - Q7 + (f - 3<f + 2qn

Then θ(7z)f(z) e ©3(56, χO Furthermore

(3.14) 2] α4TO^ = g + q2 - q* - q1 - q* - 3g9 + 2qn + .. •

is also a member of ©3(56, χ7). Set ^ = {l,i}i4 and γ2 = {l,i}M — {l>i}u
(for notations see 3°). We have seen, in (ii) of examples of Lemma 3.1,

that γ1 and γ2 form a base of £Γ1(Z(14), Z). Put a*! = ψ{z)dz, ω2 =

£>(2)ίfe. Then ωj and ^ are linearly independent over R.
JT2

PROPOSITION 3.4.

Θχ(z, φ) = 2(ίf>! — ot>2) 2
 ainQn

Proo/. Set

Making use of (3.6), Lemma 3.1 and Table II, we have, after some com-

putations, &! = 2{ωx — ω2), b2 = 2{ωλ — ω2), &3 = bδ — &6 = 0, 67 = 2(ω2 — ω^>

610 = 0 and 6 n = 4(ωi — ω2).

Since S2CΓ0(14), 1) is one-dimensional, it follows from (2.18) and (3.13)

that Tl\29χ
2)φ= —φ and T\\39χ

2)φ= -2<p. Hence, by Theorem 2, &4 =

— &i, 68 = —&2 and — 26X = &9 + &2. Thus, we see, by (3.14) that

Θχ(£, p) — 2{ωx — ω2) Σw^i α<m#w has a zero at ioo of order at least 11.

Since θx(z, φ) and 2{ωλ — ω2)2]w^i α4ng
n both belong to ©3(56, χθ, we have

θx(z, φ) = 2(ωx - ω2) 2],,^! α47lg
w, by Lemma 3.2.

Remark (i) If χ(—1) = + 1 , then the integral (3.5) and (3.6) vanish

identically. Since χ(—1) = 1 for any quadratic character modulo 17>

(3.5) vanishes if N = 17.
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