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SOME REMARKS ON ANGULAR RANGES AND SEQUENCES

OF /o-POINTS FOR HOLOMORPHIC FUNCTIONS

H. YOSHIDA

1. Introduction

In this paper, we will give examples of holomorphic functions in the
unit disc having singular connections between the growth of maximum
modulus and angular ranges (Theorem A) as well as singular connections
between the growth of spherical derivative and sequences of ^-points
(Theorem B).

Notation and preliminaries

In the following, we denote the unit disc {z: \z\ < 1} by D, the unit
circle {z: \z\ = 1} by C and the finite w-plane by W.

Let f(z) be holomorphic in D. The set of all values weW such that
the equation f(z) = w has infinitely many solutions in a Stolz angle Δ(Q
having the vertex at ζ e C is called the range of f(z) in J(ζ), and is
denoted by # i ( ζ )(/). The angular range A(f,Q of f(z) at ζe C is defined
to be

where the intersection is taken over all Stolz angle J(ζ) having the
vertex at ζeC.

For a number ε, 0 < ε < 1, and a point z' e D, we shall denote by
D(z',e) the open disc {z:\z- zf\ < ε(l — |^|)} and shall denote by D*(z', ε)
the open non-Euclidean disc with non-Euclidean center zf and non-
Euclidean radius

2 1 - e

Let f(z) be meromorphic in D. A sequence of points {zn} in D is called
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a sequence of p-points for f(z) if there are two strictly decreasing se-

quences {Ln},{εn} satisfying Ln-*0 (n—>oo),εw—>0 (w—>oo) and there exists

a sequence {Dn},Dn = D(zn,εn), of open discs in D, having the following

property: In each disc Dn, the function f(z) assumes all values of the

Riemann sphere with the possible exception of two sets of values En

and Fn whose chordal diameters do not exceed Ln. In the following,

because of the geometrical simplicity, we use this as a definition for a

sequence of ^-points.

Remark. This definition is equivalent to the usual definition of a

sequence of ^-points (e.g., see ([3], pp. 279)). This is evident from the

fact: Let z' be a point in D and e be a number satisfying 0 < ε < ^.

Then, we have

(1.1) D(z', iε) C D*(zf, e) C D(z', V&) .

Here, we shall give the proof of this fact.

Consider the linear transformation z = (ί + z')/(l + ?•*) from \t\ < 1

to \z\ < 1. Then, since D*(z',ε) is the image of the set {t: |ί| < ε} by z =

(t + zO/Q- + ?•*), any «, zeD*(z',ε), satisfies the inequality

\z - z'\ = -λn\£ϊ-\t\ < (1 - \z'\)
1 |1 + z'-t\ 1 - \t\

and

lϋϊi(1" i "" a fι - *''a l ϋ ϊ i ( 1 i " a f ( 1 I Ί>
From these inequalities, (1.1) immediately follows.

In the following, we denote the maximum modulus of fiz) by M(r9f),

M(r,f) = max l2|=r \f(z)\, and the spherical derivative of f(z) by /*(«),

2. Statements of results

A. Maximum modulus and angular ranges

THEOREM A. There exists a function f(z) holomorphic in D, whose

maximum modulus tends to infinity as slowly as one wishes, with the
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property: For every ζeC, Λ(f, ζ) = W.

This Theorem A is sharper than two results of Seidel ([7], Theorem
6 and Theorem 7) and a result of Yoshida ([8], Theorem 4). Further,
from (3.4) in the below and Remark in section 1, we see that this
Theorem A is sharper than two results of Lange ([6], Corollary V and
Corollary VII).

Let f(z) be holomorphic in D. By an angular Picard point of f(z)
we mean a point ζ e C at which the set W — Λ(f, ζ) contains at most
one value. Bagemihl ([1]) proved the existence of a holomorphic func-
tion γ(z) in D with the property: Almost every and nearly every point
of C is an angular Picard point of γ(z). But, from this Theorem A,
we obtain the sharper result: There exists a function f(z), holomorphic
in D, whose maximum modulus tends to infinity as slowly as one wishes,
with the property: Every point of C is an angular Picard point of f(z).

B. Spherical derivative and sequences of ^-points

Gauthier ([3], Theorem 3) proved the following property: A function
f(z) meromorphic in D is normal if and only if f(z) has no sequence of
^-points. Hence, we can say: For a function f(z) meromorphic in D,
(1 — \z\)f*(z) is bounded in D if and only if f(z) has no sequence of p-
points. In comparison with this fact, we ask the following question:
How many sequences of ^-points can appear by the unboundedness of
(1 — |2|)/*0s)? The following Theorem B answers this question in a di-
rection.

THEOREM B. There exists a function f(z), holomorphic in D, such
that (1 — \z\)f*(z) tends to infinity as slowly as one wishes, with the
property: For every ζ e C, every chord terminating at ζ contains a
sequence of p-points for f(z).

3. Proof of Theorem A

The proof of this Theorem A bases on the following Lemma 1 and
Lemma 2 which will be proved later.

LEMMA 1. Let nk ik = 1,2,3, •) be an increasing sequence of posi-
tive integers satisfying

(a) nk+1 ^ (2k - l)2nk (k = 1,2,3, •) , n2 > nλ > 1 .
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Then, the function

(3.1) /(*) = Π 1 - U ^ Π - Γ - )

is holomorphic in D and has the property: For every ζeC, Λ(f, ζ) = W.

LEMMA 2. Lei μ(r) be any real, positive, increasing function defined
in 0 <; r < 1,

lim μ(r) = oo .
r—1

Let nk (k = 1,2,3, •) &e em increasing sequence of positive integers
satisfying

(β) — — — ^ % (fc = 3,4,5, •) , n2 > ^i > 1 ,

and

( r )

TΛen, ίfee function

00 ( / 9 \(2j-l)nΛ

(3.2) /(*) = Π 1 ~ U %η-r)
j=i I \ 1 — (1/nj)/ J

is holomorphic in D and has the property: For every r, 1 — (l/n2) <Ξ r < 1,

Proo/ 0/ Theorem A. For any real, positive, increasing function
μ(r), liπir^μir) = 00, defined in 0 ^ r < 1, choose an increasing sequence
{nk} of positive integers satisfying (a) in Lemma 1 and (β), (γ) in Lemma
2. Then, we see from Lemma 1 and Lemma 2 that the function for
this sequence {nk}

has the required properties.

Proof of Lemma 1. This infinite product (3.1) converges absolutely
and uniformly in every disc {z: \z\ ^ r < 1}, and hence f(z) is holomorphic
in D.
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The zeros of f(z) are

exyU
nj V (2k - l)nk

(fc = 1,2,3, ...;>' = 0,1,2, ,(2fc - l)n t - 1) .

We denote the set {«*,„} (v = 0,1,2, , (2fc - ΐ)nk - 1) by Zk. We set

Γ,,v = {z: \z - zkj < l/(2fc - 1)X}

and denote by G the set

D-U U A.
k=l v=0

Now, we need the following Lemma 3 which will be verified later.

LEMMA 3. Let {εj} be a sequence of positive numbers satisfying

lim^oo ε3 = 0. Then, any sequence {4}, 4 e ^^ contains a subsequence

{4,} of {4} such that the image by f(z) in (3.1) of the disc Diz'^ej)

covers W with the possible exception of a set {w e W: χ(w, oo) < ε̂ }, where

χ(w,oo) denotes the chordal distance between w and oo.

We continue the proof of Lemma 1. Let ζ be any point on C. For

any chord χ terminating at ζ, we write

| |
nk

Then, for some sequence {4}> 4 e Z4, we have

\zk — zk\ < (1 _ _±_)
- \zk\ ~ \ nk/(2k-ΐ)

Here, we put

Then, by Lemma 3, for this {εj} and this sequence {z'k}, we can choose

a subsequence {zy of the sequence {z'k} such that the image by f(z) in

(3.1) of the disc D(z/

kj,ε}) covers W with the possible exception of a set

{w e W: χ(w, oo) < ε̂ }. Hence, if we note the fact
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we see that

the image by f(z) in (3.1) of the disc D(zkj,2 εj) covers W with

the possible exception of a set {w e W: χ(w, oo) < εj}.

(Here, we remark the following fact: This (3.3) shows that {zkj} is a
sequence of ^-points for this function f(z). Hence, we obtain the con-
clusion that

for every ζ e C, every chord terminating at ζ contains a sequence
(3.4)

of p-points for f(z) in (3.1).)

This fact (3.3) shows that for any Stolz angle Δ(Q having the vertex at
ζ, meeting with χ, RJ(0(f) = W. Thus we conclude that for any Stolz
angle J(ζ) having the vertex at ζ, RΔ{0(f) = W and hence Λ(f, ζ) = W.

Proof of Lemma 2. Let r be an arbitrary number satisfying
1 - (l/n2) ^ r < 1. Put

^ = 1(2 - -i- - -!-)

and choose k so that

Here, we need the following Lemma whose proof will be given later.

LEMMA 4. This function f(z) in (3.2) has the property: For any

(3.5) \f(z)\ ^ exp (A- + 42*+2) .

Now, from this Lemma 4 and (f), we have

M(r,f) ^ M(Pk+1) ^ exp ( ^ +

n2

Thus, we obtain the conclusion of Lemma 2.

Proof of Lemma 3. First of all, by the method analogous to
Bagemihl, Erdos and Seidel ([2], pp. 137-138), we shall prove a prelimi-
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nary fact:

(3.6) lim/(s) = oo .
Z-*l

zeG

For an arbitrary integer k >̂ 1, consider the annulus

Rk = ίz: 1 - — ^ \z\ < 1 - -^

and decompose the product (3.1) into four subproducts Pt(z) (i = 1,2,3,4)

composed, respectively, of the factors corresponding to 1 <£ j <; k — 1,

j = k, j = k + 1, j ^ k + 2, so that

(3.7) f(z) = Π Pi(z) .

Let zoeRk Γϊ G. Now, we shall determine lower bounds for Pi(z0) (ί = 1,

2,3,4).

First, we have

π (L1 ~ n

Here, from the inequality

(3.8) β < (l - -±-YnJ ^
\ nό /

and (α), we obtain that for k JΞ> 5

1 ~ 1 / ^ M > e^-Ml - — ) > β 4-(1/(2A;-3)) > 4-(1/7)β > 2 .

1-1/V V nfc/
Hence, we have for fc ^ 5

(3.9) |Λ(«o)l ^ (4~(1/7)β - I ) ' " 1

Next, the function |P2(^o)| * n the set obtained by deleting the discs

Γk>v (v = 0,1,2,3, ,(2fc — l)nfc — 1) from Z), attains its minimum at

some point η on the circumference of one of these disc. Hence, we have

1 -

where ^ is of the form
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1
- e " .

Thus, it follows easily that

(3.10) |P2(z0)| ^
(2fc - I) 2

where cx is a positive constant.

By the similar argument, we have

(3.11)
(2k + I)2

where c2 is a positive constant.

Finally, we have

AJI a π fi - O^h^

Here, from (3.8) and (a), we obtain that for j ^ fc + 2 and fc ^ 2,

( 1 — 1 /<W \(2j-l)7iy / 1

•*• -L/^fc+i \ < 4 2 / ~ 1 ( l —
1 — 1/n^ / "~ \ Wjfe+

^ exp [2(2/ - 1) - (2k)ι+2j-k-1] < —

and

Σ exp [2(2/ - 1) - (2fe)1+2y-";-1] = e4)b+2 Σ (e-»)<»>»'-*-I-«J-*-D/*

^ e4fc+2 Σ (e~2ky ^ 2 β2 .
.7=2

Hence, from the inequality

log (1 - x) > -2x (0 < x < i) ,

it follows that for k ^ 2

(3.12) |P4(z0)| ^ exp ( - 2 f; exp [2(2/ - 1) - (2ky+2j-k-1]) ^ e"1"462 > 0
I y=fc+2 J
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Thus, the relations (3.7), (3.9), (3.10), (3.11) and (3.12) yield

I/(So) I > c 3 — ^ e~ L) (k > 5) ,
UK ° ' - 3 (2fc - l)2(2fc + I)2 -

where c3 is a positive constant, and this shows (3.6).

Now, we proceed to the proof of Lemma 3.

Since any circle {z:\z- zkyV\ = l/(2fc — ϊ)2nk} lies in G and f(z) has

a zero only at zktV in the disc {z:\z- zkfV\ < l/(2k — l)2nk), the prelimi-

nary fact (3.6) and Rouche's theorem (e.g., see ([5], pp. 254)) shows that

any sequence {sQ, z'k e Zk, contains a subsequence {zkj} of {zk} such that the

image by f(z) of the disc {z:\ z — zkj\ < l/(2kj — l)2nk} covers W with

the possible exception of a set {w eW :χ(w,oo)<£j}. Here, we can sup-

pose that the subsequence {zfkJ} is chosen so that

- I ) 2

Hence, if we pay attention to the fact

the image by f(z) of the disc D(s/kJ,εj) covers W with the possible ex-

ception of a set {w e W: χiw, oo) < eό}. Thus, Lemma 3 is proved.

Proof of Lemma 4. Let k be an arbitrary positive integer. We

decompose the product (3.2) into two subproducts It(z) (ί — 1,2) composed,

respectively, of the factors corresponding to 1 ^ j ^ k + 1, j Ξ> k + 2, so

that

(3.13) f(z) = ft /,(«) .
i = l

Let 2;0 be a point satisfying |20| = pk. We shall determine the upper

bounds for Ii(z0) (ί = 1,2).

First of all, from (3.8) we have

17,(30)1 ^ Π 1 + ( Ί ^ 7 - γ )

( 3 Λ 4 ) - i ( / ^ f c + 1

^ Γ]1 {1 + 42-7'-1} ^ exp f Σ 42<7'"lN) ^ e χ P (42 f c + 2)

N e x t , w e h a v e
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Here, since

0 0 Γ / n

^ Π f l + ( Ί

 p

(\,
k+2 I VI — (X/nj)

+
- (Wft+1 + Wfc) (2^-1) wy/2 njcΠk +1]

by the fact analogous to (3.8), we have from (3.8) and (β)

\ nj /

^ 4 - ( 2 ^ υ (j^k + 2) .

Hence, we have

(3.15) |J2(s0)| < Π {1 + 4-(2^υ} < exp Γj] 4"(2>7"1)] e x p ( - L ) (fc > 1) .
"" *+2 i ~ YM J \960/ ""

Thus, we obtain the conclusion of Lemma 4 from (3.13), (3.14) and

(3.15).

4. Proof of Theorem B

The proof of this Theorem B bases on Lemma 1 which was already

proved and the following Lemma 5 which will be verified at the end of

this proof of Theorem B.

LEMMA 5. Let {nk} (k = 1,2,3, •) be an increasing sequence of

odd integers satisfying (β),(d cmd (Λ:), where

( O nk+l^n\ (fc = 1,2,3,.-.), nx > 1 ,

(fe ^ 2) .

Then, the function

is holomorphic in D and has the property: For any z, 1 — (1/X) S |z| < 1,

(1 - \z\)f*(z) £ (5 e 42* + c) exp
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where k is determined in such a way that

(4.1) 1 - — ^ |*| < 1 - -A-
sy) /yj
'Vk 'Vk .j-1

and c is a positive constant.

Proof of Theorem B. For any real, positive, increasing function

μ(r), limr^j/i(r) = oo, defined in 0 <* r < 1, choose an increasing sequence

{nk} of positive, odd integers satisfying (<x), (β), (0, (K) and (X), where

( λ ) μ(l-AΛ^ (5.e 42* + c) exp (-L + 42*
\ nk / \960

Then, we shall prove that the function

has the required properties.

First, since the sequence {nk} satisfies (a), we see from (3.4) that for

every ζ e C, any chord terminating at ζ contains a sequence of ^-points

for f(z).
Next, since the sequence {nk} also satisfies (β), (c), (K) and (X), we have

from Lemma 5, (X) and (4.1) that for any value z, 1 — (1/^) ^ |2| < 1,

s) ^ (5 e 42* + c) exp

where k is chosen as shown in (4.1).

These facts prove Theorem B.

Proof of Lemma 5. We shall prove this lemma by the method

analogous to Gavrilov ([4], Theorem 3). We put

Consider the derivative

Then, from (3.8) we have
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(1 - |z|)/*(z) ^ (1 -

(

Here, from the fact that Uj is an odd integer, we have

(4.2) (1 - \z\)f*(z) ̂  M(\z\,f).Σ (1 - \z\)-W-K2j -
3=1

Now, we shall estimate the sum in (4.2)

Let z, 1 — (1/^i) <̂  |«| < 1, be given arbitrarily in D, and k be chosen

as shown in (4.1). We decompose I(z) into three partial sums I^z)

(i = 1,2,3) composed, respectively, of the factors corresponding to

l U 3 ^ k - l 9 k ^ j ^ k + l,j^k + 2, so t h a t

(4.3) I(z) = Σ /,(«) ,
1 = 1

and we shall determine the upper bounds for liiz) (i = 1,2,3).

First of all, from (Λ;) we have

(4.4) 1/̂ )1 ^ -A-.g42^1(2i - l)nj ^ 1 .

nk i-i

Next, using the inequalities

(4.5) x < e~a~x) f o r 0 < # < l a n d x e~x < 1 f o r x > 0 ,

we have
\I2(z)\ ̂  e-4?*-\l - \z\){2k - l K exp [-(1 -

(4.6) + β 42fc+1(l - \z\){2k + D%+ 1 exp [-(1 - \z\)(2k

Next, using (4.1) and (4.5), we have

^ Σ β 2 ^- 1 ) (2;- l)w r e3φ[-(l
j k 2

[<3 Di - 2.n,+I) - 1] exp \_
L

.nk+1 - l]-exp [-
L

- 2 nk+1) - 11

k + 1 J

nk+
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+ 2- Σ

Here, from (ή, we obtain

[(2/ - l)(nj - 2 n4 + 1) - 1]* ^ n*+1 0' ̂  * + 2)

and

^ — 2-nk+1 :> wfc+2 — 2 w4+1 ̂  2 % + 1 0' ;> fc + 2) .

Hence, we have

^ Σ
y = fc + 2

• exp [-{(2? - 1)(% - 2 n*+1) - 1}*]

(4.7) + Σ [<2j-l) 2.n ί + 1-l].βxp[-{(2ί-l).2.» l t l-l}»]

+ 2- Σ β3φ[-{(2j-l)(w i-2 w»+I)-l}*]

/»oo Λoo

^ 2 x exp (—x*)-dx + 2 exp (—xty-dx = c7

Jo Jo

where </ is a positive constant.

Thus, from (4.3), (4.4), (4.6) and (4.7), we obtain

(4.8) \I(z)\ ^ 1 + 5 e 42fc + cf = 5 e.42fc + c ,

where c is a positive constant.

On the other hand, since {%} satisfies (/3), we have from (3.5) and

(4.1)

(4.9) M(\z\,f) ^ M(Pk+uf) ^ exp (^L

Thus, we obtain from (4.2), (4.8) and (4.9)

(1 - \z\)f*(z) ^ (5 β 42fc + c) exp
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