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STABLE VECTOR BUNDLES ON AN ALGEBRAIC SURFACE

MASAKI MARUYAMA^

Introduction.

Let Z b e a non-singular projective algebraic curve over an algebrai-
cally closed field k. D. Mumford introduced the notion of stable vector
bundles on X as follows;

DEFINITION ([7]). A vector bundle E on X is stable if and only if
for any non-trivial quotient bundle F of E,

deg (E)lr(JE) < deg (F)/r(F) ,

where deg ( ) denotes the degree of the first Chern class of a vector
bundles and r( ) denotes the rank of a vector bundle.

D. Mumford, M. S. Narasimhan and C. S. Seshadri showed that
the family of stable vector bundles on X with given degree and rank
has a coarse moduli scheme ([7], [11], [12], [13]). To prove this they
used some special facts which were provided by the assumption that X
was a curve. For instance, (1) a coherent ^-module is torsion free if
and only if it is locally free, (2) every vector bundle E has a filtration
0 = £Ό CJSΊ c . c E M c ί r = E such that Έ%\E^X is a locally free
d?x-module of rank 1, (3) the set of isomorphism classes of indecomposable
vector bundles on X with fixed degree (Chern class) and rank is bounded1*.

Let us consider higher dimensional cases. Assume that I is a non-
singular projective variety over k with dim X > 2. Since, at least, the
above three are not necessarily true, we have to overcome various dif-
ficulties to construct moduli of vector bundles on X. It is inevitable
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1) Let X be an algebraic scheme over an algebraically closed field k. We say a

set £ of coherent 0χ-modules is bounded if there exist an algebraic /b-scheme T and a
Γ-ίiat coherent 0χχ ̂ -module F such that every member of 5 is isomorphic to one of
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that, as the curve case, we have to restrict ourselves to a subfamily of
vector bundles which satisfy some suitable conditions. Then what kind
of properties should the conditions possess? First of all the family of
vector bundles satisfying the conditions with given Chern classes and
rank should be bounded. This is essential unlike the curve case because
(3) above is not necessarily true in this case. Secondarily the conditions
should be open conditions, that is, if T is an algebraic fc-scheme and
if F is a vector bundle on X x kT, then the set of fc-rational points t
of T such that Ft satisfy the conditions forms that of fc-rational points
of an open subset of T. Finally the subfamily should behave nicely
when one takes a quotient by some equivalence relation (cf. §4). Now
it seems to the author that the following condition is a hopeful candidate
to fulfill our requirement.

DEFINITION (Mumford-Takemoto [15]). Let us fix an ample linebundle
if on Z. A torsion free coherent 0x-module E is stable (or, semi-stable)
(with respect to H) if and only if for any non-trivial, non-torsion, quotient
coherent tf^-module F of E,

d(E,H)/r(E) < d(F,H)/r(F) (or, <, resp.) ,

where d( ,H) is the degree of the first Chern class of a coherent Θx-
module with respect to H.

The main purpose of this article is to show that if X is a surface,
then the family of stable vector bundles of rank 2 on I is a good one.

In § 1 we shall introduce the notion of vector bundles of type
a19 ,αr-i Though this notion itself contains some important geometric
meaning, we use it only to prove the main result of § 2. § 1 is devoted
to modifying the results in § 1 of [15] about stable vector bundles. In
§2 we shall show that the set of isomorphism classes of stable vector
bundles on an algebraic surface with fixed Chern classes and rank is
bounded. In rank 2 case this was proved by F. Takemoto [15] and
D. Mumford (unpublished). Though the basic idea of our proof is the
same as theirs, we need the notion of type a19 ---, ar_γ to prove it in
every rank and by our method we get more general results. In fact
the above result is a special case of our theorem (Theorem 2.5 and
corollaries to it). Openness of the stable vector bundle will be proved
in § 3 (Corollary 3.4.1). In § 4 we shall construct a coarse moduli scheme
of the family of stable vector bundles of rank 2 on a non-singular
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protective surface (Theorem 4.10). We use the assumption rank 2 only
in Lemma 4.1. If we can replace it by some suitable lemma, then the
restriction rank 2 can be omitted (see Remark 4.12). Our method is
essentially the same as what Seshadri used in his proof in the curve
case. But he used some facts which are peculiar to a curve. In our
case we have to analyze more deeply the action of the group PGL(N)
on some special schemes. We shall discuss a little bit about singularities
of the moduli in the final part of § 4.

Notation and convention.

Throughout this paper k denotes an algebraically closed field and
all varieties are reduced and irreducible algebraic fc-schemes. We use
the terms "vector bundles" and "locally free sheaves" interchangeablly.
Let X be a non-singular protective variety over k. If E is a coherent
0x-module of rank r, then we can define the Chern classes cλ(E), - , cr{E)
of E (see [1]). For a coherent 0x-module F, h%F) denotes dim* H%X,F)
and χ(F) denotes K-lYhKF). For a divisor D on X, ΘX(D) denotes the
linebundle defined by D. If L is a linebundle on X, then \L\ denotes
the complete linear system \D\ for a divisor D on X with ΘX(D) ^ L.
For S-schemes Z and T, Z(T) denotes the set of T-valued points of Z,
that is, Z(T) = Hom5 (T, Z) and in particular if Z is an algebraic k-
scheme, then Z(k) means the set of fc-rational points of Z. For a
scheme S and a coherent dVmodule E, V(E) denotes Proj (SΦs(E)), where
Sβs(E) is the ^^-symmetric algebra of E.

The main part of this work was done while the author stayed at
Mathematics Department, Harvard University in the academic year
1972-73. He wishes to thank all the people who made it possible. He
also wishes to thank Professors H. Hironaka and D. Mumford for their
encouragement and valuable suggestions.

§ 1. Vector bundles of type al9 , ar_1.

Let X be a non-singular protective variety over k and let us fix a
very ample linebundle H on X. For any coherent ^-module E, d(E, H)
denotes the degree of the first Chern class of E with respect to H and
r(E) denotes the rank of E, that is, the rank of E(x) = E ®^ k(x) as a
vector space over k(x) with the generic point x of X. Now let us extend
the notion of stable vector bundles.
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DEFINITION. Let ^i, •• ,α:?.-1bea sequence of r — 1 rational numbers.
A torsion free coherent (^-module E of rank r on X is called of type
#!>•••> <*r-i (with respect to H) if and only if for any non-trivial, non-
torsion, quotient coherent ^-module F of E, the following inequalities
are satisfied;

d(E,H)/r(E) -as< d(F,H)/r(F) ,

where s — r(F) (1 < s < r — 1).

Remark 1.1. i) E is semi-stable if and only if it is of type 0, , 0.
ii) Take a sequence of r — 1 rational numbers aί9 ,αr_i such that

— 1/rs < αs < 0. Then E is stable if and only if it is of type alf , ar_x.
iii) In the definition we may assume that F is torsion free (see [15]).
Let us show some lemmas which will be used often later.

LEMMA 1.2. A torsion free coherent Θx-module E of rank r on X
is of type «!,•••, ar_x if and only if for any non-trivial coherent Θx-
submodule G of E, the following inequalities are satisfied',

d(E,H)/r(E) + sar_s/(r - s) > d(G,H)/r(G) ,

where s = r{G) (1 < s < r — 1).

Proof. Put F = E/G, then by the definition E is of type al9 ,ar_x

if and only if for any G, we get

d(E,H)/r(E) - ar.s < d(F,H)/r(F)

because r(F) = r(E) - r(G) = r - s. Since d(E,H) = d(F,H) + d(G,H),
the above inequalities are equivalent to those in our lemma. q.e.d.

LEMMA 1.3. Let E be a torsion free (9x-module of rank r and let
L be a linebundle on X. Then E is of type al9 -,ar_λ if and only if
so is E (x)̂  L.

Proof. If one notes that the equality cλ(F ®ΰΣ L) = c^F) + riF^L)
holds for any coherent ^-module F, the proof is obvious.

LEMMA 1.4. Let Eί9E2 be two torsion free coherent Θx-modules of
rank r. Assume that there is an open subset U of X with codim (X — Z7, X)
> 2 and an isomorphism f\Ex\U -^^ E2 \ U. Then Ex is of type a19 , ar_λ

if and only if so is E2.
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Proof. It is clear that we have only to prove "if" part. Let G1

be a coherent ^-submodule of Ex of rank s (1 < s < r — 1). There is

a coherent 0x-submodule G2 of E2 such that G21 U = /(Gx | C7) (E. G. A.

Ch. I, 9.4.7). Since codim (X - U,X)>2, we know that c^EJ = cx(E2)

and cx{G^ = cλ(G2). On the other hand, G2 satisfies the inequality in

Lemma 1.2. Thus Gλ does it too, whence Eλ is of type a19 , ar_λ.

q.e.d.

For a coherent ^-module E of rank r, put Ev — M?om0Σ{E,Θx),

then Ev is a torsion free coherent ^-module of rank r.

LEMMA 1.5. Let E be a torsion free coherent ΘΣ-module of rank r.

Then E is of type a19 ,α r-i if and only if ^?v is of type ar_J(r — 1),

• , sar_s/(r - s), . , (r - 1)^.

Proof. Let F* be a torsion free, quotient coherent 0x-module of ί?

of rank s (1 < s < r —• 1). There exists an open subset U oί X such

that codim (Z - U,X) > 2 and that E\ U is locally free. Then (,E7V)V | f7

= E\U. On the other hand, there are natural inclusion i: E -> (ί7 v) v

and j:F = jeΌmβχ(F*,Θz)-+(EV)v. If we put F ' = i'KKF)), then we

know that F'\U^F\U. Thus we get that cx(F0 = cx(F) = — cx(F*) because

F* is torsion free and codim (X — U, X) > 2. Now assume that E is of

type a19 ->ar-i Then by virtue of Lemma 1.2 the following inequality

holds

d(F',H)/r(F') < d(E,H)/r(E) + sar_s/(r - s) .

Clearly this is equivalent to the following;

- sar.s/(r - s) < <KF*,H)/r(F*) .

We know therefore that Ey is of type ar_J(r — 1), -,sar_s/(r — s),

• • ,(r —1)^! (see Remark 1.1, (iii)). If we replace E by Ey in the

above argument, then we get the converse by virtue of Lemma 1.4

because E \ U ^ ( # v ) v | U. q.e.d.

LEMMA 1.6. Let E be the same as in Lemma 1.5. Then E is of type

a19 ,ar-ι with respect to H if and only if it is of type nau ,nar_ι

with respect to nH.

Proof. Obvious.

The following lemma is a key in the next section.
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LEMMA 1.7. // a torsion free (Px-module E of rank r is of type
oti> - ,<xr-ι and if d(E,H) < -rar_J(r - 1), then H%X,E) = 0.

Proof. Assume that H°(X, E) Φ 0 and pick a non-zero element s of
H\X,E). By the multiplication of s we get an inclusion j:ΘΣ->E.
We know that d(j(Θx), H) = 0. On the other hand, we have that
d(j(Θχ),H) < d(E,H)/r + ar_x\(r - 1)< 0 by virtue of Lemma 1.2 and
our assumption. This is a contradiction. Therefore we get that H°(X, E)
= 0. q.e.d.

§ 2. Boundedness of stable vector bundles on an algebraic surface.

Our main aim in this section is to prove the boundedness of stable
vector bundles with fixed Chern classes and rank on an algebraic surface.
In the sequel we assume that I is a non-singular protective surface.
We also fix a very ample linebundle H and if we say that a vector
bundle or a torsion free ^-module is of type a19 ,# r-i or (semi-)stable,
then it means that it is so with respect to H unless otherwise stated.
We shall use the notation E(n) instead of E®0ΣH®n. We denote d(H,H)
by h. Let Kx be the canonical bundle of X. If E is a torsion free
^-module, then there are only a finite number of points xu , xn such
that the rank of E <g)Θχ k(Xi) is greater than that of E. We call x19 , xn

pinch points of E. E is locally free on X — {x19 , xn).

Let S b e a coherent ̂ -module of rank r with Chern classes cx(E), c2(E).
Then we get the following formulae;

(2.1) c^Ein)) = cx(E) + rncλ{H) ,

(2.2) c2(E(ri)) = r(r - ΐ)n2h/2 + (r - l)nd(E,H) + c2(E) .

Thus Riemann-Roch theorem implies

(2.3) χ(E(n)) = rn2h/2 + (2d(E9 H) - rd(KZ9 H))nβ - (Cί(E), KΣ)/2

- c2(E) + rχ(Θz) .

Let Sr(tx19 , ar_x c19 c2) be the set of isomorphism classes of torsion
free 0 x-modules of type al9"'9ar_λ with Chern classes c19c2 (modulo
numerical equivalence).

LEMMA 2.1. There exists an integer n0 such that for any E e Sr(a19

• ,α r - i ; ci> C2), and for any integer n > n09 we get that H\X9E(n)) Φ 0.
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Proof. By the formula (2.3) there exists an integer nx such that
χ(E(n)) > 0 for any integer n > nv On the other hand, by Serre duality
h\E(n)) = fe°(Hom^ (E(ri), Kx)). Since d(E(n)v ®φχ Kx, H) = -d(E, H) - rnh
+ d(KZ9 H), there exists an integer n2 such that d(E(n)v (x)̂  Kx, H) < —rax

for any n > n2. Moreover, Hom^ (E(n),Kx) is of type ar_J(r — 1), ,
sar_s/(r — s), , (r — 1)^ by virtue of Lemma 1.3 and Lemma 1.5 because
Hom,x (#<>), i^) ^ #(rc)v ®φχKx. Thus if n > n2, then h\E(n)) - 0 by
virtue of Lemma 1.7. Now put n0 = max (nun2)f then 0 < χ(E(n))
- fco(#(n)) - ^(SCn)) < h\E(n)). q.e.d.

The preceding lemma and the following are special facts in the case
of a surface and they are fundamental tools for the induction process
in the proof of our main theorem.

LEMMA 2.2. // E is a torsion free Θx-module, then there exist a
unique vector bundle Er and an injective homomorphism f: E —> E/ such
that f induces an isomorphism on U, where X — U is the set of pinch
points of E.

Proof. Let {x19 , xm} be the set of pinch points of E. If the set
is empty, then there is nothing to prove. Put U = X — {xu , xm] and
let i: U —> X be the inclusion. If there exist Ef and /, then Ef ^ i*i*(E)
and / is defined by the natural homomorphism E -> i#i*(E), whence they
are unique. Let us prove that i^i*{E) is locally free ^-module. If Yό

— Spec (ΦχtXj) and if uό: Yj->X is the natural morphism, then uό is flat
and we get the following diagram;

,

4
Y j

Since i is of finite type and separated and since us is flat, we have an
isomorphism Uj*i*(i*(E)) = #;*(^/)*(**(#)) (E. G. A., Ch. Ill, 1. 4. 15).
Since i*ί*(E) is locally free if and only if uό*i^(i*(E)) is free, we have
only to prove that gj^(u/)*(i*(E)) is free. On the other hand, (u/)*(i*(E))
is locally free. Thus we can reduce our assertion to Corollary 4.1.1 of
[3]. Let / be the natural morphism of E to i*i*(E). Then Supp(ker (/))
c {xlf - , xm). Hence ker (/) is a torsion ^-module. Since E is torsion
free, we know that ker (/) = 0. q.e.d.
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Remark 2.3. i) As a matter of fact Ef in the above lemma is
isomorphic to (Ey)y and / is the natural inclusion E -> (£7V)V.

ii) Lemma 2.2 is not necessarily true if dimZ is greater than 2.

LEMMA 2.4. Let A be a noetherίan integral domain such that for
any p e Spec (A), Ap is a U. F. D. and let m be an element of a finitely
generated torsion free A-module M. Then the following are equivalent
to each other;

i) M/Am is a torsion free A-module.
ii) For any p e Spec (A) with ht (p) = 1, if m = amf for some a e A99

m'eM, then a is a unit in Ap.

Proof, (ii) π=ί> (i): First of all note that a finitely generated A-module
N is torsion free if and only if so is N®AAP for any maximal ideal p
of A. Thus replacing A by Ap9 we may assume that A is a U. F. D..
Assume that M/Am is not torsion free, then there are an element mr

in M and a non-unit element a in A such that mf is not contained in
Am and am' = bm for some b e A. We may assume that a and 6 contain
no common divisors. If a is a unit, then m' is contained in Am. Thus
there is a prime ideal p of A such that ht(p) — 1, αep and b e p. Then
this is a contradiction because a/b is not a unit in Ap and m = (a/b)m\

(i) cί> (ii): Assume that there are p e Spec (A) with ht (p) = 1, mr e M
and a non-unit element a in Ap such that m = am'. If m' is contained
in mAp, then mf — a'm — aa'm' for some a' e Ap, that is, aaf — 1 in Ap

because M is torsion free and Ap is an integral domain. Hence
mf έ̂ 0 mod. Â m and am' — 0 mod. A r̂a, which means that M/Am is not
torsion free. This is a contradiction. q.e.d.

Now we come to the main theorem in this section.

T H E O R E M 2.5. Let a be an integer and let Sr

a(a19 ,α?r_i; cx) be the

set \} Sr(a19 , ar_λ cx, c2). Tfoew ίfeere are ίwo constants 60, &! (independ-

ewί o/ e&cfo c2) s^cfe that for any E e Sr

a(a19 , a r _ i ; cx), feo(ί7) < 60 ami

h\E ®OχΘc) < bx for any curve C in an open set U(E) of \H\, where

U(E) may depend on E.

Proof. A) P u t VSr

a(aί9 ,a r _ x cλ) = {E e Sr

a(a19 ,a r _ x cx)\E is

locally free}. First of all let us show that if the theorem is true for
VSr

a(al9 , ar_λ cx)9 then so is for Sr

a(a19 , ar_x cx). F o r any
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E e Sr

a(cclf , ar_x c^, there exists the following exact sequence by virtue

of Lemma 2.2;

0 > E > Er > T • 0 ,

where E' is locally free and dim Supp (Γ) < 0. It is clear that cx(E) = cJE').

We claim that cλ(T) = 0 and c2(T) = -h\T) < 0. In fact, since dim Supp(Γ)

< 0 and dim X = 2, we know that c^Γ) = 0 and h\T) = h\T) = 0. This

and Riemann-Roch theorem imply that h\T) = χ(Γ) = — c2(T). Thus

c2(E') = ^(Z?) — &0(T) < α. On the other hand, by virtue of Lemma 1.4

Eι is of type <xlf •• ,α r-i We know therefore that Ef is contained in

VSr

a(a19 - ,α:r_r, Cj). By the assumption that our theorem is true for

VSS(αlf , αr_! cx) we get 60, &i, 17(SO such that h\E') < 60, fc0^7 ®.x0c)

< &x for any CeU(E'). Since h\E)<h\Ef) and since h\E®ΘχΘc)

= h°(E' (8)βχ ̂ σ ) if C goes through none of pinch points of Z?, 60, b1 and

?7(JE) = {Ce i7(£Ό | C goes through none of pinch points of E] are the

desired ones.

B) Let SKCι9c2) be the set of isomorphism classes of torsion free

0x-modules of rank 1 with Chern classes cί9 c2. Put Si(Cχ) = ]} S1^, c2).

Let us prove that for SKcJ, there exist constants &0, bι which satisfy

the consequence of our theorem. Let L(cλ) be the set of isomorphism

classes of invertible ^-modules with Chern class ct. Then L(Cj) is

bounded because it is parametrized by a finite number of connected

components of Pic(Z). Thus there is a constant bQ such that h°(L) < bQ

for any L e L{c^- Let C be a non-singular curve in |jff|. Then h\L ®ΰχΘc)

< max {d(c19 H) - (h + d(Kx, H))/2 - 1, d(c19 H)/2,0} = b, by Riemann-Roch

theorem and Clifford's theorem. Thus by the same argument in (A)

we know that the 60, bλ above are the desired constants.

C) Assume that the theorem is true in the case of rank r — 1.

Under this assumption we shall show that for VSr

a(a19 ,ar_x\ cλ) our

theorem holds. For any E e VSr

a(al9 , aΎ_x cx) we get the following by

virtue of the formula (2.3)

χ(E(ri)) = rn2h/2 + (2d(E,H) - rd(Kx,H))n/2

+ {cx{E)> cλ(E) - Kx)/2 - c2(E) + rχ(Θx)

> rn2h/2 + (2d(c19H) - rd(Kx,H))n/2

+ (clf cx - Kx)/2 -a + rχ(Θx) .

If n is sufficiently large, then the right hand side of the above is positive,
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whence so is the left hand side. Thus by a similar argument in the

proof of Lemma 2.1 we know that there is an integer n0 such that

h°(E(n)) > 0 for any n > n0 and any E e VSr

a(al9 ,αr_r, cj. Let us fix

an integer n > n0 and take an element E of VSr

a(al9 ,α r_i; cλ). Pick

a non-zero element s of H°(X,E(ri)). Assume that there is a positive

divisor D such that s can be written in the form of s = ^ (x) s2 with

S i e J Ϊ 0 ^ , ^ ^ ) ® ^ ^ — D ) ) , s 2 eiϊ o (X,0 x φ)). Then there is a maximal

element D in the set of such divisors because the degrees of them are

bounded above. For the maximal element D, if shx = utx with some

ueΘχtX9te(E(n)®βχΘx(—D))x, then u is a unit in ΘXiX. Hence in the

following exact sequence F' is torsion free by virtue of Lemma 2.3;

0 >ΘX > E(n) ®ΰz OA-D) > F' > 0 .

a i > asλ

This sequence yields the following exact sequence;

0 > ΘX(Ό) ®ΘΣ H®~n > E > F > 0 ,

where F is torsion free. Put if = {D \ D is obtained as above from some

E e VSr

a(alf , ar_λ cj}/(linear equivalence) and Jί — <£/(numerical equiv-

alence). Then we claime that %(JΓ) < oo. In fact since ΘX(D) is an Θx-

submodule of E(ri) for some locally free ^-module E of type a19 , αr_x

with CjίjE") = c19 we have by virtue of Lemma 1.2 that d(D, H) <

d(E(n),H)/r(E(n)) + ar_J(r - 1) = d(c19H)/r + nh + ar_J(r - 1). More-

over D is a positive divisor. Hence \{Jί) <oo (see p. 113 of [9]). On

the other hand, it is clear that c^F) = cx(E) — D + nc^H). We get

therefore that cz(F) = c2(E) - (ct(F)9 cx((9xφ) ®φχH®-n)) = c2(E) - (cx - D

+ nel(H)9D — nc^H)). Since (cx — D + nc^iϊ),!) — nc^H)) depends only

on the numerical equivalence class of D and since %{Jί) <oo,{ — (cx — D

+ nH, D — nH) \ D e &} is bounded above. Put β = max {—{cλ — i) + wίί, Z?

— nH)}, Then <?2(F) < α + β for any F obtained as above. Let us prove

that every F obtained from some E in VSr

a(aί9 , ar__x cx) is of type

<*ι9 " '9oίr-2 for some sequence of r — 2 rational numbers a/, ,<2r_2'.

Let p: F -* G be a surjective homomorphism of F to a coherent Θx-

module G of ranks s (1 < s < r — 2). Since the natural homomorphism

giί/ >F >G is surjective and since E is of type a19 ,αr_i, we

obtain the following inequality;
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d(E,H)/r -as< d(G,H)/s .

Meanwhile,

d(E,H)/r - a, = d(E,H)/(r - 1) - d(E,H)/r(r - 1) - α.

= d(F,H)/(r - 1) - [l/(r - l){wfe - d(D,fl)

+ d(c19H)/r} + as] .

If we put tfS)jD = [l/(r - l){rcft - d(D,H) + d(cuH)/r} + as], then aSiD

depends only on the numerical equivalence class of D. Since %{Jί) <oo,

aSjD ranges over a finite number of rational numbers. Take the number

a/ = max {aS)D}, then the above inequality implies

d(F,H)/(r - 1) - a/ < d(G,H)/s .

Hence F is of type a/y , αr_2'. If ^ is the set of isomorphism classes

of F'& which are obtained from some E in VSr

a(a19 , αr_j cx) as above,

then the above results imply

i c [| 0 S'-KaS, , α r_/ cx - λ + nλH, c2) ,

where λH is the numerical equivalence class of c^H). By the assumption

that the theorem is true in the case of rank r — 1, there are two con-

stants 60fi, δ M satisfying the conditions of our theorem for S^Cα/,

• -9(Xτ-2\ cx — λ + nλH). Thus if we put biA = max {&ί)A} (i = 0,1), then

for any F e i , h°(F) < 60jl and fe°(F ®.x ^ c ) < 6 l f l for C e U(F), where

C7(F) is a suitable open set of \H\. On the other hand, there are two

constants &0,2, &if2 such that h\Φxφ) ®ΰχH®-n) < b0j2 and h\Θx{D) ®€χH®-n

®oΣ @c) ^ δ1)2 for any D e <£, where C is contained in a suitable open

set U of | iϊ |, because #OO <° ° (see the proof in (B)). Thus we get

h\E) < h\Θx{D) ®ΘXH®~«) + h\F)

< &0,l + &0,2 >

h\E ®ΘX Oc) < h\Θx(D) ®φχ H®~n ®Θχ Θc) + h°(F ®βχ Θc)

where C is contained in the subset U(E) — [Ce U(F) Π U\C goes through

none of the pinch points of F}. It is clear that U(E) is open in \H\.

Consequently we obtain 60 = 60}1 + 60,2> &i — &i,i + &i,2 and [/(£/) which

satisfy the conditions of the theorem.
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(D) If the theorem holds in the case of rank r — 1, then we get

the theorem for locally free ^-modules of rank r by virtue of (C).

Then (A) implies that the theorem holds in the case of rank r. Com-

bining this and (B) we complete the proof of our theorem by induction

on r.

COROLLARY 2.5.1. Sr(a19 ,α r_χ; c19 c2) is bounded for every al9 ,

&r-ι> c19 c2. In particular the set of (semi-) stable vector bundles with

fixed Chern classes and rank on a non-singular projective surface is

bounded.

Proof. It is obvious by virtue of our theorem and Theorem 1.13

of [4].

COROLLARY 2.5.2. The set of second Chern classes of torsion free

Θx-modules of type a19 , ar_x with a fixed first Chern class cx (numerical

equivalence) is bounded below.

Proof. Fix an integer n such that d(E(n)v ®βz KXy H) = d(KΣ9 H)

— d(cu H) — nrh < —rax. Then h\E(n)) = 0 for any torsion free ^-module

of type «!,-••, cir-\ with the first Chern class cx (see the proof of

Lemma 2.1). Let us consider the set Sr

a(a19 ^ar_x; cx + nrλH) (the

notation is the same as in the proof of Theorem 2.5). For every Fe

Sr

a(a19 "9ar^; cx + nrλH), we get

c2(F(-ri)) = c2(F) - r(r - l)hn2/2 - (r - l)d(c19H)n .

Theorem 2.5 implies that there is an constant b0 such that h°(F) < b0.

On the other hand, h°(F) > χ(F) = rχ(Θx) + (cx + nrcx(H), c, + nrcx(H)

— Kx)/2 — ̂ 2^) by Riemann-Roch theorem because F = E(n) with some

torsion free 0z-module E of type al9 ,α r_i with the first Chern class

cx. Thus b0 > h°(F) > A — c2(F) with some constant A, whence {c2(F)\F

is a torsion free dVmodule of type «i, ,α r-i w ^ h the first Chern class

cj is bounded below. Hence by virtue of the relation between the

second Chern classes of F and F(—n) this implies our assertion q.e.d.

COROLLARY 2.5.3. Sr

a(a19 -9ar_x\ cx) in Theorem 2.5 is bounded for

any a19 , ar_lf clf a.

COROLLARY 2.5.4. For a vector bundle E of rank r on X, put

Δ(E) = (r - I)(c1(£ r), cx(E)) - 2rc2(E) (Δ(E) = ~ c 2 ( E n d ^ (#))). There is a
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constant C such that Δ(E) < C for any vector bundle E of type a19 >> -, α r - 1

on X.

Proof. For any linebundle L, Δ(E) = Δ(E ®βz L) and Δ(E) depends

only on the numerical equivalence classes of c^E), c2(E). Thus we may

assume that cx(E) ranges a finite number of numerical equivalence classes

because Pic(J£)/PicΓ(X) is a finitely generated abelian group. Then by

virtue of Corollary 2.5.2 the set of the numerical equivalence classes of

c2(E)'s is bounded below, whence the set of Δ(E)'s is bounded above.
q.e.d.

§ 3. Openness of stable vector bundles on an algebraic surface.

In this section we shall show that if there is a family of vector

bundles F on X, that is, F is a locally free 0Xx;r-module with some

locally of finite type fc-scheme Γ, then the set S = {t e T(k) \ Ft is stable}

is that of fc-rational points of an open set of T.

LEMMA 3.1. Let E be a torsion free coherent Θx-module of rank r

generated by its global sections. Then there is a filtration 0 = Eo c Ex

c c £>_! aEr = E such that Et/Et^ s Θx for 1 < i < r — 1 and

Er\Er_x is a torsion free coherent Θx-module of rank 1.

Proof. Let x19 , xn be the pinch points of E and put U — X

— {x19 ,xn}. If π: Y = V(E\ U) —> U is the protective bundle associated

with E\U, then we get a natural map θ: H°(X,E)->H°(U,E\U)

= H\U, τr*(0r(l))) = H°(Y, 0F(1)), where 0 r(l) is the tautological linebundle

of EI U. Let Jδf be the linear system defined by the image of θ. We

claim that ££ has no base points. In fact, if y e Y is a base point of

J£? and π(y) = a;, then {s(α ) | s e H°(X, E)} is a proper linear subspace of

E(x) because if one regards s(x) as a linear form on P(HomfcU) (E(x), k(x))),

then s(x)(y) == 0 for any seH°(X,E). This contradicts that H°(X,E)

generates E^. Then Bertini's theorem and the fact that Dx (D e <=£?) is

a hyperplane of P(£7)̂  for an x e X(k) imply that general members of

if are irreducible. We know therefore that there is an element s of

H\X, E) such that F = {x\ s(x) = 0} is a closed set of X with codim (F, X)

> 2 because if codim (F, X) = 1, then the divisor D in if corresponding

to s is reducible. Such an s gives rise to the following exact sequence;

0 > 0X > E -?-> E' > 0 ,
α> ω
a i > as
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where Ef is a torsion free (^-module of rank r — 1 by virtue of Lemma

2.3. Assume that there is a filtration 0 = E/ c E/ c . c Er_λ' = £7'

such that Et'/Et^' ^ 0*, 1 < i < r - 2 and Er_{\ErJ is torsion free. Put

# 0 = 0, # f = p-KEi-i*), then we know that E^E^ ^ E^'/EiJ ^ 0 X

and Er\Er_x = Er_1

//Er_2 is torsion free. Thus we complete our proof

by induction on r.

COROLLARY 3.1.1. // E is as above, then cλ(E) > 02) and c2{E) > 0.

Proof. Take a filtration as in the above lemma. Then cγ(E)

= cx(E/E>_i), CgCK) = c2(£r/J5r

r_1) and E\Er_x is generated by its global

sections because so is 2?. Thus we have only to prove our assertion in

the case of rank 1. By virtue of Lemma 2.2 there is an imbedding of

E to a linebundle L on X;

0 >E >L > T >0 ,

where dim Supp (T) < 0. Since H\X, L) D H\X, E) Φ 0, we know that

Ci(ί') > 0. Moreover c^T) = 0 and c2(T) < 0 as was shown in the proof

of Theorem 2.5. Hence we know that cx(E) = c^L) > 0 and c2(E)

= -c2{T) > 0. q.e.d.

For convenience sake let us introduce the notion of cotype.

DEFINITION. Let X be a non-singular protective variety defined

over k and let H be a very ample linebundle on X. Let β19 , βr_γ be

a sequence of r — 1 rational numbers. Then a torsion free ^-module

E of rank r is called of cotype β19 •• ,β r_ 1 (with respect to H) if and

only if for any coherent 0x-submodule G of rank s (1 < s < r — 1), the

following inequalities are satisfied;

d(E,H)/r(E) + βs> d(G,H)/r(G) .

By virtue of Lemma 1.2 E is of cotype βl9 •• ,j8r_1 if and only if

it is of type βr-J(r - 1), , sβr_s/(r - s), , (r - l)ft.

Let us come back to the surface case.

LEMMA 3.2. // a vector bundle E of rank r on X is not of cotype

β\> ' - - 9 βr-ι> then there exists a locally free Θx-submodule G of rank s

for some 1 < s < r — 1 such that G is of cotype βλ — β8, , βs_! — β8, E/G

2) This means that for the rational equivalence class Ci(E), the complete linear
system | Ci(E) \ is not empty.
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is torsion free and that d(G,H)/r(G) > d(E,H)/r(E) + ft. (// s = 1,

then the condition about the cotype of G is automatically satisfied).

Proof. Since E is not of cotype ft, , βr_λ, there is an 0x-submodule

F of E of rank s (1 < 3s < r - 1) such that d(F,H)/r(F) > d(E9H)/r(E)

+ ft. If Er = £7/F, T is the torsion part of Ef and if E" = F'/T, then

there are two exact sequences;

P u t F' = p-\T). Since cλ(F') = c,(F) + cλ(T) and since cλ(T) > 0, we get

d(F/,H)/r(F/) > d(F,H)/r(F) > d(E,H)/r(E) + ft. Let x19- 9xn be the

pinch points of F' and i: U = X — {x19 , xn) —> X be the natural in-

clusion. Then Fπ = i*ΐ*(F0 is a locally free ^x-submodule of £; = i*ί*(E).

Look at the following diagram;

0

ί
0 > Fff > E > E/Ffr > 0

ί II ί
0 > F' > E > E/Fr = E" > 0 .

Since E" is torsion free and since {E/F") U -̂ =-> E" U, we know that

Supp (ker (a)) c {xλ, , xn}, whence ker (a) = 0. Thus a is an isomorphism,

which means that Fr — F". If F' is of cotype ft — ft, ,ft_i — ft,

then it is one of the desired submodules. Assume that Ff is not of

cotype ft — ft, ,ft_i — ft. Then by induction on r(E) we obtain a

locally free tf^-submodule G of Ff of rank t such that G is of cotype

ypi — ps) — ψ ί — ps) — pi — ptf ' ' ' 9 vpί-i — Ps) — \Pt — Ps) — pt-i — Pί> F / KJΓ

is torsion free and that d(G, H)/r(G) > d(F', H)/r(Ff) + ft - ft > d(Ef H)/r(E)

+ ft. Since F'/G and S/F' are torsion free, so is E/G. Thus G is

one of the desired submodules. q.e.d.

LEMMA 3.3. Let R be a complete discrete valuation ring over a

field K(K D k), L (or, M) be the quotient field (or, the residue field,

resp.) of R and let g (or, s) be the generic point (or, the closed point,

resp.) of Spec (R). If F is a vector bundle of rank r on Y' = Xκ x κ Spec (R)

and if Fg = F®βγL is not of type al9 ,α r_i on Xτ with respect to Hτ>
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then so is Fs = F ®eγ M on XΈ with respect to HM> where L (or, M) is

the algebraic closure of L {or, M, resp.).

Proof. By the assumption there is a coherent quotient

E of Fg of rank t (1 < H < r - 1) such that d(Fg,Hτ)/r(Fg) - at

> d(E,Hτ)/r(E). Then there exist a finite algebraic extension U of L

and a coherent quotient 0Xi/-module Ef of Fg' = F (g)βr U such that

E = E' <g)L, L. Take a discrete valuation ring # ' with Q(/20 = Lf which

extends i?. Then the residue field of Rf is a finite algebraic extension

U of L and a coherent quotient 0^,-module Er of FJ — F ®Θr U such

that E = E' <g)L, L. Take a discrete valuation ring R' with QGRO = L'

which extends R. Then the residue field of R' is a finite algebraic

extension W of M. Put Y; = Xκ x ^Spec (BO and F'= Fγ,. Then

there is a coherent quotient tfV'-module G of F' such that G is β'-flat

and G, = Er ([2], Lemma 3.7). Since G is B'-flat, d(E,Hτ) = d(Gg,HL,)

= d(Gs, HM,) = d(Gs ®M, M, HΈ) and t = r(E) = r(Gs ®M, M). Thus

d(F s, HΈ)/r(Fs) -at> d(Gs ®M, M, HΈ)/r(Gs ®M, M). q.e.d.

Now let us prove our main theorem in this section.

THEOREM 3.4. Let X be a non-singular projective surface with a

very ample linebundle H, T be a scheme locally of finite type over k

and let F be a coherent ΘZXkT-module. If as — sβr_s/(r — s) with an

ascending sequence of rational numbers βly , βr_λ and if F is T-flat,

then the set S{β} = {t e T(k)\Ft is locally free and of type a19 , ar_γ with

respect to H} is that of k-ratίonal points of an open set of T.

Proof. Since the problem is a local property with respect to T, we

may assume that T is of finite type. Since T = {ί e T \ Ft is locally free}

is open, we may assume that F is locally free ([12], p. 320). There is

an integer n such that Ft(ri) is generated by its global sections for any

teT. Hence replacing F by F ® p1*(jffΘn), we may assume that Ft is

generated by its global sections for any teT. We may assume also

that T is connected, whence c^Ft), c2(Ft), r(Ft) are invariable (numerical

equivalence). Let us prove our theorem by induction on r(Ft). First

of all note that a torsion free 0x-module is of type «!,•••, ar_x if and

only if it is of cotype β19 ,/9r_1 (Lemma 1.2). Now if r(Ft) = 1, then

there is nothing to prove. Assume that r = r(Ft) > 2. If we put

a = d(Ft9H)/r, then a is independent of t and a > 0 by virtue of Corol-
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lary 3.1.1. Let Bs be the set of locally free 0x-modules E of rank s

such that 1) s < r, 2) for some t e T(k), E is an 0x-submodule of Ft

and Fί/£7 is torsion free, 3) E is of cotype f19 - ,f8-i (γl — ft — βs),

4) d(E,H)/s>a + ft. Let us show that B = (J ί=ί# 5 is bounded. By

virtue of Corollary 2.5.1 we have only to prove that c1(E),c2(E),E e B

range over a finite number of numerical equivalence classes. For any

EeB take a point teT(k) such that EaFt and Ft/E is torsion free.

Since Ft is generated by its global sections, so is G = Ft/E. Then by

virtue of Corollary 3.1.1 we get that cx(G) > 0, c2(G) > 0. On the other

hand, since min(a + ft, (r - l)(α + ft)) < d ( # , # ) = d(Ft,H) - dfoίG), ff),

d(cί(G)9H) is smaller than some constant α. Hence the set of numerical

equivalence classes of c^GYs is finite, whence so is the set Jf = {c^E)

= Ci(Fί) — Cj(G) IE e B}/(numerical equivalence). As for the second Chern

classes since c2(E) = c2(Ft) - c2(G) - (^(£0, c^F,) - cx(E)) < c2(Ft) -

(c1(E)9c1(Ft) — c^E)) and since #(^Γ)<oo, there is a constant α/ such

that c2(E) < a1 for any E in B. Moreover, since every E in B$ is of

cotype γ{9' '9γ
8g-i and #CΛO<oo, there is a constant α" such that for

any E in B, a" < c2(E) by virtue of Corollary 2.5.2. Therefore there

are an algebraic fc-scheme P and a locally free sheaf Ff on X x fcP such

that J? c {F'p\p e P(fc)}. Since we may assume that r(F t) > r(F'p) for any

p e P , the set Uί=ί {Q e P(h) \ F\ is of cotype f19 , rU and d(F ;,, H)/r(F'q)

> a + βs} is that of fc-rational points of an open set Q of P by virtue

of the induction assumption. Put F" = F'\Q. Let S' be the set {te

T(k)\'Komΰχ{F"q,Ft) Φ 0 for some qeQ(k)}. For a teT(k), if F f is not
of cotype ft, , βr_19 then FtΌ E with some E e B by virtue of Lemma

3.2. This implies that Hom^CF"^/^) =£ 0 for a qeQ(k) because B e

{F"β |ge Q(fc)}. Thus we get that T{k) - S{β} c S7. Conversely, suppose

that there is a non-zero homomorphism μ: F / ;

Q —> F £ for some q e Q(fc)

and teΓ(fc). If we put £7 = μ(F"β)> then £7 is torsion free with r(E)

<r(Ft). Since Ff\ is of cotype γl, - -, γl-!, we have that d(E,H)/r(E)

> d{F"q9 H)/s - u(βs_u - βs)/(s -U)>a + βs- u(βs_u - βs)/(s -u)>a + βu

because of the condition (4) on B. We know therefore that Ft is not

of cotype ft, -,βr-ι, whence Sf c T(k) — S{β}. Consequently S' = Γ(fc)

-S{β}. Now let us consider the locally free sheaf F = p12*(F) <8> Pi3*(F//v)

o n l x j x ΛQ. For a fc-rational point (t, g) of T X 4Q, F ( ί ϊ ί ) ^ F« ®ΰzF"χ

^^o^x(F\,F^. Hence H\X9F{tΛ)) s H o m ^ ί F ^ , ^ ) . By virtue of

upper semi-continuity of h\F{tΛ)), Γ =^ {xeT x kQ\h\Fx) Φ 0} is closed
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in T x kQ. Then π(Γ) is a constructible set of T, where π is the natural

projection of T x kQ to T. By virtue of the above argument we know

that π(Γ)(k) = T(k) — S{β}. On the other hand, π(Γ) is closed under

specializations by virtue of Lemma 3.3. Therefore π(Γ) is closed in Γ,

whence U = T — π(Γ) is open in T. Moreover U(k) = S{i9}. q.e.d.

COROLLARY 3.4.1. Let F and T be the same as in Theorem 3.4. Put

SQ == {teT(k)\Ft is locally free and semi-stable} and S = {te T(k)\Ft is

locally free and stable). Then So and S are sets of k-rational points of

open sets of T.

§ 4. Moduli of stable vector bundles of rank 2 on an algebraic surface*

Our aim of this section is to construct coarse moduli schemes of

stable vector bundles of rank 2 on a non-singular projective surface.

We shall maintain the notation in the preceding two sections (X, H, h, KΣ

etc.).

LEMMA 4.1. Let ^ be a family of vector bundles of rank 2 on X

with fixed Chern classes c19 c2. Assume that for any E e &, (i) d(E, H)

— d(Kx, H) > 0, (ii) h\E(n)) = h\E(n)) = 0 for any non-negative integer

n. Then there exists an integer m0 such that h\L(m)) < h°(E(m))/2 for

any integer m > m0, E e IF and for any invertible Θx-submodule L of E

with d(L,H) < d(E,H)/2.

Proof. 1) Assume that d(L, H) < 0. Let us consider the following

exact sequence;

0 L > L(m) > L(m) ®ΘΣ Θc > 0 ,

where C is a non-singular member of \H®m\. Since the genus of C is

(m2h + md(Kz, H))/2 + 1, we get h\L(m) ®ΘΣΘC) < Aim) = max {m2h/2

+ m(d(L,H) - d(Kx,H)/2),(m2h + md(L,H))/2,0} by Riemann-Roch the-

orem and Cliford's theorem. Moreover h\L{m)) < h°(L(m) ®OzOc) because

the assumption d(L, H) < 0 implies that h°(L) = 0. Thus we have that

h°(L(m)) < A(m). On the other hand, our assumption (ii) and Riemann-

Roch theorem imply

h°(E(m))/2 = m2h/2 + m(d(clyH) - d(Kx,H))/2

+ {cλ - KX9 Cl)/4 - c2/2

= Bim) .
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Thus we obtain

h°(E(m))/2 - h\L(m)) > min [m{d(c19H)/2 - d(L9H)}

+ (c, - KX9 Cl)/4 - c2/2 + x(Θx)9m{d(c19H)

- d(KX9H) - d(L,H)}/2 + (cx - KX9 c,)/4

Since d(L, H)< 0, d(c19 H) - d(KX9 H) > 0 and since d(c19H)/2 - d(L,H)

> 0, there exists an integer mι (independent of L and E) such that the

right hand side of the above inequality is positive for any m > m19

whence h\L(m)) < h°(E(m))/2 for any m>mλ.
2) Assume that d(L9 H) > 0. Let us consider the following exact

sequence

0 > L(m — 1) > L(m) > L(m) ®ex ΘΌ > 0 ,

where D is a non-singular member of \H\. Since the genus g of D is

(h + d(KX9 H))/2 + 1, there exists a positive integer m2 such that

deg (L(ra) ®,x 0^) > 2g - 1 for any L with d(L9 H) > 0 and for any

m > m2. On the other hand, since d(c19H)/2 > d(L9H)9 there exists an

integer m3 such that d(L(m)9H) < 0 for any m < m3 and L, whence

h°(L(m)) = 0 for any m < ra3 and L. Moreover the assumption that

d(L9H) < d(c19H)/2 implies that there is a constant c such that h°(L(m)

®βz ®D) < o for any m3 < m <m2 and L. If m > m2, then h\L{m) ®ΰΣ ΘD)

= mh + d(L9H) — (h + d(KX9H))/2 because L{m)®0zΘD is not special.

On the other hand, we have that h°(L(m)) < h\L(m - 1)) + h\L(m) ®ΰΣ ΘD).

Thus for any m > m2,

h\Um)) < ΣΓ=m3+t

< (m2 - m3)c - m2

2hβ - m2d(L,H) + m2d(Kx,H)/2

+ m2fe/2 + m{d(L,H) - d(Kz,H)/2}

< (m2 — m3)c + m2d(KΣ,H)/2 + m2h/2

+ m{d(L,H)-d(Kz,H)/2}

= m2/ι/2 + m{d(L,H) - d(Kx,H)/2} + c',

where c' = (w2 — m^c + m2d(Kx,H)/2. We get therefore

h\E(m))/2 - fe°(L(m)) > m{d(cuiϊ)/2 - d(L,iϊ)}

+ (Cl - KΣ, Cl)/4 - c2/2 + χ(6Σ) - c' .

Since d(c1,H)/2 — d(L,H)>0, we obtain an integer ra4 > m2 such that
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the right hand side of the above inequality is positive for any m > m4

and L.

Now if one puts m0 = max (m19rn4)9 then it satisfies the condition

in the lemma. q.e.d.

LEMMA 4.2. Let E be a vector bundle of rank r on a non-singular

protective variety Y. Assume that E is generated by its global sections.

Let s19 -,steH°(Y,E) be independent at the generic point of Y. Then

the set Z = {y eY\(s1 A- - - A st)(y) = 0} is contained in Supp (D) for some

Proof. Since E is generated by its global sections, there are elements

St+u '-ySr of H°(Y,E) such that s19 •• ,s r form a basis of E at the

generic point of Y. Obviously Z d {y eY\(sί A- - A sr)(y) = 0} and hence

we may assume that t — r. Then sx A Λ sr is a global section of the
r

linebundle /\ E. On the other hand, sλ A Λ sr Φ 0 because s19 , sr

are independent at the generic point of Y. Thus sv A Λ sr defines a
r r

divisor D in |Ci(/\ £?)|, which completes the proof because Cj(/\ Z?) = ĉ Z?)

and {» e Y | {sι A Λ sr)(τ/) = 0} = Supp (D). q.e.d.

Let B(c19 c2) be the set of isomorphism classes of stable vector

bundles of rank 2 on a non-singular protective surface X with Chern

classes c19 c2 (modulo numerical equivalence class). As was shown (Corol-

lary 2.5.1), B(c19c2) is a bounded family. Hence there is an integer n0

such that B(c19c2)(ri) = {E(n)\E e B(c19 c2)} satisfies the conditions (i), (ii)

in Lemma 4.1 for any n > n0. Then by virtue of Lemma 4.1 we get

an integer m0 such that for any m > m0, B(c19 c2)(m) satisfies the follow-

ing conditions (a), (b);

a) For any E β B(cl9 c2)(m), E is generated by its global sections

and hι(E) = h\E) = 0.

b) For any E e B(cί9 c2)(m) and any invertible ^-submodule L of

E,h%L)<h%E)/2.
Let us fix an integer m > m0. Since h°(E) = p is constant for any

i? e β(Ci, c2)(m) and since £7 is generated by its global sections, every

vector bundle in B(cί9 c2)(m) is a quotient of Θψ. Meanwhile if F is the

universal quotient sheaf on X x kQutφ®p^9 then Q = {qe Qut̂ ©*/* | r(Fq) =

2, c^Fqi—m)) = Cj, c2(Fq(—m)) = c2} is a union of a finite number of con-

nected components of Qutφθw* and hence Q is protective over k. Ob-

viously B(c19 c2){m) is contained in the set of fc-rational points of Q (that



STABLE VECTOR BUNDLES 45

is, for any E e B(c19 c2)(m), there is a fc-rational point q of Q such that

the isomorphism class of Fq is E). Moreover Aut x (Θψ) = GL(p, k)

naturally acts on Q and the center of GL(p9 k) stabilizes every point of

Q. Thus G = PGL(p, k) = GL(p, fc)/Gm acts on Q. Now Ro = {q e Q \Fq

is locally free} is a G-stable open subset of Q and F = F\XXkRo is a

locally free (PXXkBo-module of rank 2 ([12]) Proposition 6.1). Let n be an

ordered set of N distinct points x19 -- 9xN on X. Then as in [12] we

obtain a morphism r(n) of i?0 to i2"̂ 2> where H^2 is the product of N-

copies of the Grassmann variety H^2 of 2-dimensional linear quotient

spaces of a p-dimensional linear space over k (i-th coordinate of τ(n)(q)

is the quotient vector space of H\X,Θψ) represented by the fibre of Fq

at xi9 then r(n) is a morphism because of the universality of Grassmann

variety). Clearly r(n) is a G-morphism with respect to the natural action

of G on Hpi2. If N is sufficiently large and if x19* ,xN are in suf-

ciently general position, then τ(n) is injective ([12] p 326). If R is the

subset of RQ consisting of the points q e Ro such that the canonical map

H\X x kkφ),ΘΣXhkf») -* H\X x kk{q),Fq) is bijective, then it is G-stable

open subset of Ro. Moreover for q19 q2 e R, FQl and Fq2 are isomorphic to

each other if and only if qλ can be transformed to q2 by the action of

G ([12] Proposition 6.2). The set {qeR(k)\Fq is a stable vector bundle}

is that of /^-rational points of a G-stable open subset Rs of R by virtue

of Corollary 3.4.1. Then the above argument implies that the set of

isomorphism classes of Fq, q e Rs(k) is just B(cu c2)(m).

Now the proof of the following proposition is essentially same as

that in [12].

PROPOSITION 4.3. // iV is sufficiently large and if x19 ->xN are in

sufficiently general position, then τ(n)(Rs) is contained in the set of prop-

erly stable points (see [8] and [12]) of H%i2 with respect to the canonical

action of G = PGL(p, k) on H^2 and the linebundle which defines the

Plucker coordinates.

Proof. Take a fc-rational point q of Rs and put E = Fq. Let F

be a proper linear subspace of V = H°(X, Θψ) and let Ft be the linear

subspace of E(xd — E®Ozk{Xi) generated by {s(Xi)\seF}. We set

r(F)
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where r(F) (or, r(ί\)) is the rank of F (or, Fi9 resp.) over k. What

we have to prove is that v(F) > 0 for any proper subspace F of V (see

[13] p. 328 or [8] Proposition 4.3). Let Lx be the ίPx-submodule of E

generated by F. Then there is a unique locally free ^-submodule L(F)

of E such that L(F) is isomorphic to Lλ on an open set U of X with

codim (X — U, X) > 2 by virtue of Lemma 2.2. Let us set

p

Then v(L(F)) > W because r(F) < h\L(F)) < p/2 or p according to

r(L(F)) — 1 or 2 by virtue of the condition (b) on B(cl9 c2)(m). On the

other hand, there is a positive constant λ such that for every positive

integer N, there exist ^-independent 0-cycles on X of degree N (see [9]

Lecture 20, Proposition 1 and note that if x19 , xN are in sufficiently

general position, then 2 f = i ^ * s ^-independent). Take a ^-independent

cycle 2]f=i χi of degree ΛΓ and put n = (a^, ,xN). Since r(F^) < r(L{F))

if and only if {s(Xi)\seF} generates a vector subspace of E(Xi) with

rank less than r(L(F)), we know that r(F<) < r(L(F)) only if

1) in the case of r(L(F)) = l,s(#i) = 0 for a fixed non-zero element

s of F,

2) in the case of r(L(F)) = 2, (s1 A s2)(Xi) = 0 for fixed general two

elements s19s2 of F (satisfying the condition of Lemma 4.2).

In both cases, r(Fi) < r(L(F)) only if xt is contained in Supp (D) for some

fixed De 1 (̂2?)! by virtue of Lemma 4.2. Thus we know that [number

of x/s with r(Fi) < r(L(F))] < [number of x€'s contained in Supp (D)]
< λd(D,H)2 = λd(c19H)2. We get therefore

0 < KL(F)) - ,(F) = (Σli(KL(F))-r(F,)))/N 2λd(c19Hy ^
r(F) Nr(F)

Thus if 2V > 2p2λd(c19 H)\ then 0 < p(L(F)) - KF) < 1/p2 for any F. Hence

for any proper linear subspace F of V9 we get that y(F) > 0 because

v{L(F)) > 1/p2. q.e.d.

Fix a fe-rational point x of X and let i* be the closed immersion

Q -+ X X kQ defined by x. Put G = ix*(F)9 then we get an exact sequence

0 > K > Θf> > G > 0 .

Let V be a 2-dimensional quotient vector space of H°(X,Θψ) and let
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v z= (viu...tip_J be the Plucker coordinates of V with respect to a system

of coordinates e19 , ep of H°{X, Θψ) which can be regarded as a free

basis of Θψ. For a point q of Q and an affine open neighborhood U of

q in Q, take a set of generator {kt = 2 &«jfy} of Γ{U,K), then 7 is a

quotient space of the quotient vector space of H°{X9Θψ) represented by

the fibre of Ft91 e U at x if and only if kt Λ 2 /^i1,...,ίp_2

ei1 Λ Λ ei2l_a

ΞΞ 0 mod mt, that is, Σ?-ί fc^(^v Λ ,^-i = 0 for any i and any (p - 1)-

ple OΊ, , y .̂O with 1 < Λ < < j v _ λ < p. Thus the set Γx = {(<?, 7)

eQ X icHp,217 is a quotient space of the quotient vector space of

H%X,Θψ) represented by the fibre of Fq at x) is a closed subset of

Q x kHp%2. Similarly for n = fo, , xN), Γn = {(g, 7X, , VN) e Q X fciϊ^2

I Vi is a quotient space of the quotient vector space of H°(X, Θψ) represented

by the fibre of Fq at x% for every %} is also a closed subset of Q x fciϊ^2.

LEMMA 4.4. Let Φπ 6β ί/̂ β correspondence of Q to H%i2 defined by

the above Γn witn n = (xl9 - , xN). If N is sufficiently large and if

xlf , xN are in sufficiently general position, then for any q e Q — Ro,

Φn(q) n r(n)(β0) = φ.

Proof. Take some N and xl9 9xN. Let pι (or, p2) be the projec-

tion of Γn (n = (x19 - —, xN)) to Q (or, 2ϊ£a, resp.). For the diagonal

scheme Δ of i ϊ£ 2 x fciϊ^2, we set Bn = [(p1 x p^ίfe X P2)-1(4)}] Π {β0 x (Q

— Bo)}. Then since H^a is projective over fc, {px x 2>i){(p2 X 2>2)"
1(^)} is

closed in Q x kQ and hence Bn is closed in Ro x Λ(Q — RQ). It is suffi-

cient to prove that Bn = φ iί N is sufficiently large and if x19 , xN are

in sufficiently general position. We claim

SUBLEMMA 4.5. Let S be a non-singular projective variety of

dimension n and let E19E2 be two distinct quotient coherent Θs-modules

of a locally free Θs-module EQ with the same Chern classes cιy-- 9cn

{numerical equivalence) and the same rank r. // Eλ is locally free, then

there exists a non-empty open set U of S such that for any point s of

U, £Ί(s) = E1 ®Θs k{s) and E2{s) = E2 (x)^ k{s) are different to each other

as quotient vector spaces of E0{s) = Eo ®Φs k{s) and that E2 is locally

free on U.

Proof. Since S is reduced, it is clear that there exists an open set

Uλ on which E2 is locally free. Let us consider Y = P{EQ), Wγ = P ^ )

and W2 = 1*{E2), where Wt can be regarded as closed subschemes of Γ.
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If F is the scheme theoretic intersection of Wι\Ul and W2\ui i*1 Y\u1>

then Z ~ {se U^E^s) = E2(s) as quotient vector spaces of E0(s)} is just

{se U^dimFs = r — 1}. Thus Z is closed in U1 by virtue of a theorem

of Chevalley (E. G. A. Ch. IV, 13.1.3). Hence we have only to prove

that Z ΦUλ. Assume that Z = U19 then Wι\Πl is contained in W2\Vl

 a s

sets. On the other hand, Wλ is reduced and irreducible because Ex is

locally free. Thus Wλ is contained in W2 as schemes. Therefore if (9Y(1)

is the tautological linebundle of Eo and if π is the natural projection of

of Y to X, then we get homomorphisms aλ: π*(Φγ(l)) = Eo -» 7r*(0y(l)

®,Γ tfVx) = #i, cε2-Eo-* π*(Oγ(l) ®ΰγ ΦWl) = # / and β:E2'-+ E, with ^ 2 = αlβ

On the other hand, there is a natural homomorphism γ:E2-*E2' (E. G.

A. Ch. II, 3.3). If δt: E0->Ei (i = 1,2) are given homomorphisms, then

clearly δλ = αx and ̂ 2 = α2. Since βγδ2 = j8α2 = αx = ̂  is surjective, we

know

δ1=a1

that ε = βγ is surjective. If T is the torsion part of E2, then T — ker (ε)

because Eλ is torsion free, r(£Ί) = r(S2) and ε is surjective. Thus we

get the following exact sequence;

0 > T > E2 —
ε-> Ex > 0 .

This sequence provides the equality χ(E2(a)) — χ(Eλ(a)) + χ(T(a)) for every

integer a. On the other hand, our assumption that c*(Z?i) = Ci(E2) = c<

(numerical equivalence) implies that for every α, χiE^a)) = χ(£72(α)). We

have therefore that for every a, χ(T(a)) = 0. Take an integer b such

that h\T(b)) = 0 (X<i<ri) and that Γ(6) is generated by its global

sections. Then χ(Γ(6)) = 0 implies that H°(S, Γ(6)) = 0 and hence Γ(6)

= 0. Therefore ε is an isomorphism. Moreover since ε£2 == δι,Eι is

isomorphic to E2 as quotient d?5-modules of Eo, which is a contradiction.

Thus we get Z Φ T]x. Then U = U1 — Z is one of the desired open sets.

q.e.d.

Let us come back to the proof of Lemma 4.4. Assume that BnΦ φ

and let Bn

a), ,-Bn

(ί) be irreducible components of Bn. Take a fc-rational
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point (qί9 qΊ) in each Bn

(ί) and take an open set Ut of X satisfying the

conditions in Sublemma 4.5 for S = X,E0 = Θψ,Έι = Fqi and E2 = Fqi,

(note that Fqt φ. Fqi, because Fq. is locally free but Fqί, is not so and

hence there exists such a Ui). If y is a fc-rational point ofU = Π*=i Ui9

then Fqi(y) ψ Fqi,(y) as quotient vector spaces of H%X, Θψ) for every i.

Now put n' = {xl9 , xN,y). Then the above result implies that Bn,

contains none of (q19 qί), , (g£, g£), whence it does none of Bn

(1), , Bn

(t).

Thus dimi?n, < dim Z?n. Applying the above argument repeatedly we get

#i> > VN* such that for t^ = (x19 ., xN, yu , ̂ ,)> dim S n i = — 1, that

is, Bni = ̂ . q.e.d.

Our present aim is to prove that τ(n) is an immersion and there is

a G-stable open set Us of Hζ2 such that τ(n)(Rs) is closed in Z7S for

n =: (χ1? . . . , χN) with a sufficiently large N and #1? , xN in sufficiently

general position.

L E M M A 4.6. / / N is sufficiently large and if %u --9xN are in

sufficiently general position, then there exist G-stable open subschemes

Us, U and Uo of H%t2 such that for n = (x19 , xN),

i) r(n)(B.) c Us, r(π)CR) c U and τ(n)(R0) c UQ,

ii) the morphisms τ(n)\Rs: Rs -+ US9 τ(yι)\R : R —> Z7 α^d r(n) : i?0 —> Z70

are proper.

Proof. Take n such that τ(n) is an injective G-morphism and the

conclusion of Lemma 4.4 holds. Let f:R0-+R0xkH%y2 be the graph

morphism of τ(n). Then there exists a closed subscheme Γ of Q XkH$t%

such that / induces an open immersion f : Ro-^> Γ and that the base

space \Γ\ of Γ is contained in ΓΠ. Since the projection p2: Γ -> H%y2 is

proper, Ϊ7O = £Γ£2 — p 2 (^ Π ((Q — i?0) X % ί ^ ) ) is an open subscheme of

Ή%t2> Moreover Uo is G-stable because G acts naturally on Γ, Γ Π ((Q

— Ro) xkH*f2) is a G-stable closed subset of Γ and because p2 is a G-

morphism. Lemma 4.4 implies that /'(/?<,) c ^σ0 — Γ XH$2UQ, whence

/'(βo) = ̂ o τ h u s τ(n) = p2,u0'f'
: Ro-* UQ is proper because p2?Z7o is

proper and / 7 : i20 —> ΓUo is an isomorphism. Put Us — H%t2 — p2(Γ ΓΊ ((Q

- Rs) XkHl2)), U - HJ a - p2(Γ Π ((Q - R) XtHζJ), then by a similar

argument as above we know that they satisfy the conditions (i), (ii)

because τ(n) is injective. q.e.d.

PROPOSITION 4.7. / / N is sufficiently large and if x19 -,xN are in

sufficiently general position, then τ(n) is an immersion for n = (x19 , %r).
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Proof. Take n = (xlf , xN) such that the conclusion of Lemma 4.6

holds for n. Then there exists a G-stable open subscheme Uo of Hζ2

such that r(n)(β0)
 c Uo and τ(n): Ro-+ Uo is proper. Thus τ(n)+((PΛβ) is

a coherent 0^-module. Let g be a fc-rational point of RQ and let t = τ(n)(g).

Since r(n) is injective, we get that (τ(n)#(0Λo))t — 0Λo,β. 0Λo,β is therefore

a finite 0^ r module. Thus we have only to show that the dτ(n)q of

TRoA to ΓJBΓJ,,,* is injective, where ΓΛ θ ί ί (or, THζ^t) is the Zariski tangent

space of Ro at g (or, i ϊ£ 2 at t, resp.). For if dτ(n)q is injective, that

is, trtί/mj -* mβ/mj is surjective, then by virtue of Nakayama's lemma

on ΘBθiQ we know that mtΘRQA = ntβ. Then the facts that ΦUθtt/mt ^

@R0,q/mq ̂  fc and that ΘRQA is a finite ^^0>rmodule imply that ΘUθit -* ίPΛβίff

is surjective by Nakayama's lemma on ΘUQit. Now let us recall the

results of Grothendieck on the Zariski tangent space of Ro at q. Take

the infinitesimal scheme / = Spec(fc[ε]),ε2 — 0 and consider T(q) = {f e

Homfc (/, R0)\f'i = q}9 where i is the fc-rational point of /. Then T(q)

can be naturally identified with TBθtq. For a given feT(q) we get a

locally free quotient (PXXAj-module Ef of ΘXxf/ such that for the natural

morphism g: X-+X χkl, g*(Ef) = Ef/εEf = F e . Let us consider the

following exact commutative diagram;

o — • χ β _ % 0fp -A> # β — > o

For a special element fo = Q P of 2\(?) (p is the structure morphism

—* Spec (&))> we get

Pick an element u of if9, then there is an element v of ΘXXkf

α(%) = π(v). Since πf βf(y) = πfo-βfo(y) = j8 α(w) = 0,j9/(v) and ̂ ( v ) can

be written in the forms ew and εw0 respectively with some w e Ef, w^

e Efo. Hence we obtain an element wf = πf(w) — πfo(w0) of Fq from u.

It is easy to see that wf is uniquely determined by u (i.e. independent
f)( ΨΛ

of the choice of v) and that the map u \—> wr is an ̂ -homomorphism.
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By this way we get a map θ: ΓΛθtβ = T(q)sf\ >θ(f) eΈLomφχ(Kq9Fq).

θ is an isomorphism as ά-vector spaces (see [2] Proposition 5.1, Corollary

5.3). Let 0 > Wt. > k®p > Vt. > 0 be the exact sequence of

vector spaces corresponding to UeHVtJiK) with t = (tl9 -,tN), then we

get the following exact commutative diagram;

0 >Wtt > k®*> > Vti > 0

T T T residue at the point xteX(k).

0 > Kq >Φψ >Fq > 0

By a similar reason as above we know that THptΛM is isomorphic to

Horn*; (Wti, Vt). Thus for an fe Hom^ (Kq,Fq) = ΓΛθϊβ, we obtain an

element f(xz) of Homfc (Wti, Vt.) = THpt%M by taking the residue class of

/ at xt. The map f\ • (f(xj, - ,f(xN)) of TR^q to THζ^t is just

dτ(n)q. Then put Z(n) = {q e Ro \ dτ(n)q is not injective} and Z(n)' =

Supp (coker ( ^ 2 -^ τίn)^^,,))), then Z(n) = τ(n)-ι(Z(nY) because dτ(n)q is

injective if and only if 0H*ι%tt —> (τ(ή)*((9Bo))t is surjective with t = τ(n)(g)

as was shown in the first part of this proof. Since Z(n)' is closed in

H%t2>
 s o is ^(^) i n ^o For irreducible components EΊ, « , Z m of Z(n),

take a fe-rational point zt of each Z<. Let Sh0 c Hom^ (if2l, # β l ) be the

kernel of the map dτ(n)Zl. Since for a non-zero element / e S M , the set

{#eX|/(#) = 0} is closed, there exists a fe-rational point y1 of X such

that f(Vi)φO. Then for tii = (x19 , xN,Vi), the kernel S1}1 of dτ(n)Zl

is a proper subspace of S M . By induction on dim (ker (dτ(n)2l)) we get

a sequence of /^-rational points y19 , yri such that for nri = (x19 ,xN, yx,

- - 'yVr1),dτ(nri)Zl is injective. For the kernel S2>0 of dτ(nri)Z2 we obtain

a sequence of fc-rational points yri+1, - -,yr2 such that dτ(nr2)Z2 is injective

with n r 2 = (x19 - -9xN9y19 ,j/rβ) by the same argument. Applying this

argument to all z/s repeatedly we get n' such that dτ(n')Zi is injective

for any i. Since Z(nO contains none of ^x, , zm9 we know that dimZ(nO

< dimZ(n). By induction on the dimension of Z(n) we get ft such that

Z(n) = ̂ . q.e.d.

Let (ffptr)o (or, (iϊp,r)g) be the set of points with 0-dimensional sta-

bilizer group (or, properly stable points ([14] Definition 1.1), resp.) of

H*r with respect to the action of PGL(p) and the linebundle which

defines the Plucker coordinates. Then they are PGL(p)-stable open subsets

of H^r ([8] p. 10, [14] Theorem 3.1). By virtue of Proposition 4.3 and
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Proposition 4.7 we may assume that Ro (or, Rs) is a subscheme of H%2

(or, (HJj)ϊ, resp.). Hence from now on we shall disregard τ(n).

The following lemma is a general remark which seems well-known.

LEMMA 4.8. Let us consider the canonical action σ of PGL(p) on

(Hpjr)
s

0. Then σ is a free action ([8] Definition 0.8, (ίv)).

Proof. Put ψ = (σ, p 2): PGL(p) x » # £ r -> # £ r x t ff£ r, where σ is the

canonical action of PGL(p) on ίf£ r and p2 is the projection PGL{p)

X fc # £ r -> H»r. We have to prove that ψ0 = (σ, p 2): PGL(p) x fc (ff£r) -+

(H^r)
s

0 x k (H^r)
s

0 is a closed immersion. Take fc-rational points g, t —

(ti,'- ,tN) of PGL(p),(H^r)0 respectively. Then t is represented by

iV-ple of r xp matrices M{t) = (M^ί), .,M^(i)) with rank (M^Q) = r

(Mί(0 is not unique) and the action of g = (#^ ) is given by the multi-

plication of matrices (M^ί), , M^(0) ι—> ( M ^ X ^ ), , MN(t)(gi3)).

Let y be the vector space over k which consists of row vectors with

length p, let a[e\ , a{

r

e) be the row vectors of Mt(t) and let ga[&\ , # 0 ^

be those of Mβit){gί3). Let β1? , ep_r, - - -,ep be a basis of y such that

eγ A - Λ ep_r Λ α^ Λ Λ α ^ O and et Λ Λ ev_r A ga[e) A Λ ga?

Φ 0 for any 1 < & < N. Put U£ — {s e H^r\s is represented by a matrix

with row vectors blf , δ r (&i e y X fc fc(s)) such that ex A Λ ep_r Λ bλ

A - - Λ br Φ 0}. Then [/̂  is an aίϊine open neighborhood of t and Z7̂

= Spec (fct^l), 1 < i < r, 1 < j < p - r, that is, U4 ̂ + Ar

k^-r\ In fact

if seUe is represented by row vectors bγ, , br and if bt = Σ?=i^ β ^>

then the r x (p — r) matrix ^ ^ " ^ ( s ) defines a point s' in Ar

k

(p-r) and

/(/)(s) = s', where B(s) = (a^ ;l<i < r, p - r + l < y < p ) and A(s)

— (α<i 1 < i < τ9 1 < y < p — r) (note that det B(s) ^ 0 because of ex

A - Λ βp_r Λ6i Λ 6 f = ( d e t B ^ β j Λ — ΛepΦΰ). Similarly we get

an affine open neighborhood V£ of σ(g, t) which is also isomorphic to

Ar(P-r) = S p e c (jc[v(f])f l<i<r,l<j<p-r. P u t Σ7 = Vλ xk- . χk VN

Xfc Z7i X* Xk UN, then U is an affine open neighborhood of (σ(g,t),t)

in H^ r χkH^r. Let # — (xί7) be the system of homogeneous coordinates

of PGL(p) (PGL(p) is the affine open set of P ^ - ^ defined by det (xί3) Φ 0).

For u{i) eUe,xePGL(p),σ(x,u{&)) is contained in V£ if and only if

det (B(σ(x, u™)) = h,{x, uw) Φ 0. Thus ψ'\U) = W is the affine open

neighborhood of (g, t) in PGL(p) x k Uι X k X k UN defined by h^x, ua))

Φ 0, , h.N(x, u{N)) Φ 0. We may assume that gn Φ 0 without loss of
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any generality. Take the affine open neighborhood W of (g, t) in W
defined by xn Φ 0 and the system of inhomogeneous coordinates (wυ), wn

= 1 of PGL(p). Let us put

%-r,0,1,0,

( / ) . . . O/W 0 0 . . . 0 1

and write C(e)(u,w) = (CP CP), where C^ is an r x (p — r) matrix and
C^} is an r x r matrix. Then for ( C ^ ) " 1 ^ = (d#(^, w)), the map
p: Γ(ί7, ΘΌ) -> Γ(W',ΘW,) induced by ψ is given by φ(v$) = d$(u,w) and
φ(u$) =. u$. Consider the following equation;

Ciα)\ IC?

: - •

The equation p(*) obtained from (*) by replacing v$ by φ(v$) is a linear
equation with respect to (Wij) over the ring φ(Γ(U, Θπ)) and the assump-
tion that t is contained in (H$tr)Q(k) implies that the solution of the
equation (*) is unique at the point (σ(g, t),t). Thus there is a (p2 — 1)
X (p2 — 1) submatrix L of the matrix of the linear equation (*) such
that for detL = F(u,v),F(u,v) is not zero at (σ(g,t),t). Let U' be the
affine open neighborhood of (&(g, t), t) in U defined by F(u, v) Φ 0. Then
Λve get that wi} — (p'(Fij(u,v)) with some Fij(u,v) e Γ(JJ',Θυϊ) and
<pf: r{Uf

y0u,) -+ r(ty-\Ό'),Θw) induced by ψ. Let Uo be the affine open
neighborhood of (σ(g, ί), ί) in U defined by

F(u, v) Φ 0 , H/tt, v) = hUFijiu, v), uw) Φ 0 ,

D(u, v) = det (Ft/w, v)) ^ 0 .

Then Wo — ψ~\UQ) is an affine open neighborhood of (g, t) in W. More-
over, since F(u,v) is invertible on J70, a fortiori so is φ(F(u,v)) on T ô,
we know that xn Φ 0 on Wo (if »u = 0 at some point in Wo, then the
constant terms of the equation (*) is zero at that point and hence we
have no solusions) and ψ~\y) is one point for any fc-rational point
V - (Vuyύ of Ψ(WQ). Thus Wo is contained in W Π (PGL(p) xk(H%r)J
because dim ψ'Kv) = dimension of the stabilizer group of y2. Now we
get
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R, = Γ(U0, ΘUQ) = k[u, v, F(u, v)~\ H£u, v)~\ D(u, v)-1]

R2 = Γ(WQ, ΘWQ) = fc[w, w, p(F(M, v))-1, φ{He{u, v))-\ φ{D{uy

As was shown in the above argument, if φ": Rι-* R2 is the map induced

by ψ, then wij9u!$ are contained in the image of φ'\ whence φ" is

surjective. Thus we get the following diagram;

Wo = Spec (R2)

Since ψ\Wo is a closed immersion and since the family of open sets such

as Uo covers ψ(PGL(p) χk(ff£r)0)>Ψ is an immersion on PGL(p) χk(H^r\.

Hence ψ0 is also an immersion because (Hζtί)l is an open subscheme of

(H^ r)0 O n the other hand, we know that ψ0 is a proper morphism by

virtue of Proposition 3.2 of [14]. ψ0 is therefore a closed immersion.

q.e.d.

The following lemma is an essential part in the proof of our main

theorem.

LEMMA 4.9. Let Rs and G be as above. Then there exist a quasi-

projective kscheme U and a morphism φ:Rs-^U such that (U,φ) is a

geometric quotient with respect to the above action σ of G on Rs. More-

over φ: i?s —> U is a principal fibre bundle with group G ([8] Proposition

0.9), in particular, φ is faithfully flat.

Proofs Since Hζ^2 is protective and normal, (ff^2)o has a geometric

quotient (F, ψ) in the sense of Seshadri4) ([14] Theorem 7.2). Moreover

V is quasi-projective. Since V is normal and since ψ is equidimensional

(dim G = dim ψ~\v) for every v e V), ψ is universally open, a fortiori

universally submersive by a criterion of Chevalley (E. G. A. Ch. IV, 14.4.4).

Then ψ: CH 2̂)o —> V is a principal fibre bundle with group G ([8] Prop-

osition 0.9). Now if we take n = (x19 9xN) for which Lemma 4.6 and

Proposition 4.7 hold, then there exists a Cr-stable open set Us of H^2

3) Proposition 7.1 of [8], which made our proof of this lemma clear, was noticed
the author by Professor T. Oda.

4) Seshadri assumed, in his definition of geometric quotients, only submersive.
On the other hand, D. Mumford did "universally" submersive.
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in which Rs is a closed subscheme. We may assume that Us is contained

in (ff£2)o because so is Rs. Then ψ(E7β) = Vs is an open subscheme and

Ψ\us Us —• Vs is a principal fibre bundle with group G. In this situation

we can apply Proposition 7.1 of [8] to S = Spec (k), X = Rs, Y = Us,

Q = Vt, π = ψ\ϋs and to L = 0 Λ t and we get the required scheme U = P.

q.e.d.

Now we come to our main theorem of this section which implies

the existence of coarse moduli schemes of stable vector bundles of rank

2 on a non-singular protective surface.

THEOREM 4.10. Let X be a non-singular projectίve surface over k

and let B(cl9 c2) be the set of isomorphism classes of stable vector bundles

on X (with respect to a fixed very ample linebundle H) of rank 2 with

fixed Chern classes c19 c2 (numerical equivalence). Then there exists a

quasί-projective algebraic k-scheme M(c19 c2) satisfying the following con-

ditions

( i ) There exists a bijective map φ of B(cl9 c2) to M(c19 c2)(k).

(ii) Given an algebraic k-scheme T and a locally free &XxT-module

E such that Et is contained in B(c19 c2) for any t e T(k), there exists a

morphism fE of T to M(cl9c2) with fE(t) = φ(Et) for any te T(k). More-

over, the correspondence E\ >fE is functorial, that is, for a morphism

g\Tf -*T of algebraic k-schemes, fE-g = f^wiEy

(iii) // an algebraic k-scheme V and a map φ': B(cl9 c2) —> V(k)

satisfy the above condition (ii), then there exists a unique morphism

ψ: M(c19 c2) —• V with ψ(k) φ — ψ\ ψ fE = fΈ,, where fE, is the morphism

given by the condition (ii) for V.

Proof. We may assume that B(cl9 c2) satisfies the conditions (a), (b)

before Proposition 4.3 for any m > 0 because the map F i > F(m) of

B(c19 c2) to B(cί9 c2)(m) is bijective and because if E is a locally free (9XxT-

module such that Et e B(c19 c2) for any t e T(k)9 then for E(m)

=E®P^(H®m),E(m)t is contained in B(c19c2)(m) for any teT(k), where

pλ is the projection X χkT -* T. Then we obtain a subscheme Rs of

Hζ^9 a locally free ^X X j B Γmodule F and a surjective homomorphism

(x' ®xxiιfv —• F. Moreover, F has the following universal property For

any algebraic fc-scheme T and any surjective homomorphism of locally
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free 0XxΓ-modules β:ΘψxT-+E such that Ete B(cl9c2) and βt induces an

isomorphism H°(X9 Θψ) ^ H°(X, Et) for any t e T(k)9 there exists a unique

morphism hβ:T -+Rs such t h a t (lz x hβ)*(F) ^ E and ( l x x hβ)*(a) = β.

Now Rs has a natural action σ of G = PGL(p) and by virtue of Lemma

4.9 there exists a geometric quotient (M(cί9c2)9π) of Rs by G. We shall

show that M(cl9 c2) is the desired algebraic fc-scheme. As was shown in

Lemma 4.9, ikf^, c2) is an algebraic fc-scheme. M(c19 c2) is quasi-projec-

tive. Since the set of orbits of ^-rational points of Rs is in bijective

correspondence with B(c19 c2) and since M(cl9 c2) is a geometric quotient of

Rs by G9 we get a bijective map φ of iBC ,̂ c2) to M(cl9 c2)(k). Assume

that T and E satisfy the assumptions of (ii). Let p2 be the projection

of X x k T to Γ and let (p2)*(E) = E'. Since p2 is proper and flat and since

H\X (x)& k(t)9Et) = 0 for any t e T by our assumption (α) put on β(cx, c2)9

the natural map ^ f : E
r ®0τ k(t) -* H°(X <S)k k(t)9 Et) is an isomorphism for any

t e T ([10] p. 53, Corollary 3) and Ef is a coherent 0Γ-module. For a given

teT(k)9 take an affine open neighborhood Wo and put M — Γ{WQ9E
f).

Let ml9 - - -9mp be elements of Λf such that their images by M -+ E'

®ΰτk(t) -^> H\X9Et) form a basis of H°(X9Et). Then by Nakayama's

lemma mx, , mp generate Er at t. Thus there is an affine open neigh-

borhood ^ of ί such that the map Θψ> —>E'\W given by (β19-"9ap)

»-» Σ?-i aimi i s surjective. Then a natural map β^: Θψ^w = P2*(^fp)

-•^(•^ΊTΓ)-*^lzxτr is surjective because ^ is generated by its global

sections for any qe T (assumption (α)) and the map H\X®kk(q)9Θ%Uq))

—>H\X®ick(q)9E^) induced by βw is bijective. Thus by the universal

property of (RS9F) mentioned above we get a unique morphism hw(m19

•• ,mp) of W to Rs with (lz X hw(mlf --,mp))*(F) ^ E\XxW and (lx

X hw(m19 , m,p))*(tf) = /V Put / w = π-hw(m19 , mp). Then we claim

that /nr is independent of the choice of m19 ,m p . For let m[9 ,mj

be another generators of £"1^, then we get that mj = 2]?=imiαij with

some dijeΓiWtΦw). Then at any point g of W, det (α^) mod (mq) is not

zero. Thus det {atj) is an invertible element of Γ(W9 Θw)9 whence (α^)

is contained in GL(p9 Γ(W9 Θw)). Hence we get a T^-valued point a of

PGL(p, k). Then by the definition of the action of G on Rs we know

that σ(W)(a9 hw(m[, ,mp) = hw(mί9 ,mp) as T^-valued points of J?s.

On the other hand, by the definition of a geometric quotient the follow-

ing diagram is commutative;
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Horn, (W, G) X Horn, (W, Rs) - ^ > Horn, (W9 Rs)

Horn, (W, Rs) ^ > Horn, (W9 M(cί9 c2)) .

We get therefore that π-hw(mf

19 -9mp) = (π(W)-p2(W))(a9 hw(m{9 ,m'p))

= (π(W) σ(W))(a9hw(m'19- -9mp)) — π(W)(hw(m19 ,mp)) = π hw(ml9> ,mp),

which proves our claim. Let us cover T by a family of such open sets

{Wλ} as TF above. Then there exists a family of morphisms fλ of ^

to M(c19 c2). The above claim implies that fλ coincides with fμ on Wλ

Π W ,̂ whence we obtain a morphism fE of Γ to M(c1? c2) such that

/^lτri = fλ- It is clear that fE(t) = φ(Et) for any t e T(fc). Next assume

that a morphism of algebraic fc-schemes g\Tr -> ϊ7 is given. For a /ir-

rational point V of 7", take an affine open neighborhood W of g(f) and

mx, . , mp as above. We have a natural map δ: g*(E') —> (PD^CIJΓ X g)*(E)

— E"9 where P2 is the projection X χkT' -> T'. δ(q') is surjective for

any qf e T'(k) because for q = g(q')9 the map Ϊ77 ®ΰτ k(q) = g*(E;) ®0τ, k(q;)

—̂ -> £7" (g) ,̂ fe(^0 ̂ > iϊo(Z, ( l x x g)*(E)q,) = ίίo(Z, £7α) is equal to pβ and ^

is an isomorphism. Thus δ is surjective, whence δ(g*(mύ)9 ,<K#*(mp))

generate J^7/ on ^""^T^). Hence if βw : ^15^ -» £ Ί X x T F is the homomorphism

defined by m19 , m p , then ( l z x ^)*(/Sτr): (9Xxg-X{W)®
p-^(lx X g)*(E)\Xxg-HW)

is that defined by δ(g*(mj)9 , ^ * ( m ί ) ) ) . Then we know that hw(m19

- ,nip)-g = hg-1{W)(δ(g*(mJ), ,δ(g*(mp))), that is, fw-g = fg-HW). By

the construction of /# we get that /^-^ = faxχg)*w ^ n order to prove

(iii) let us consider the following diagram;

GL(p9 k) xkRs -^-> GxkRs -^-> JBS

G'XtB, Rs ^+V.

Let e1? , ep be the fixed basis of ΘψXRs and let e'l9 , ep be the free

basis of ΘψXG>XRs corresponding to el9 , ep. The map e'ά •-> 2?=i βίffϋ °f

^®x(gij)xRs to itself induces an automorphism 0 of ΘψxG>XRs and 0 does an

isomorphism of (p2-p)*(F) to (σ ^)*(F). Thus we get that / ^ σ />

= /<*.,)•(*)' = / ( p , 7 w = Λ ' P2 p Since /? is an epimorphism, we obtain

that /p/ ff =/p/ p2 Since M(c1? c2) is a geometric quotient (a fortiori
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categorical quotient) of Rs by G, there exists a unique morphism

ψ: M(c19 c2) —> V with ψ fF = /*»/. It is clear that ψ(k)-φ = φ'. Assume

that an algebraic ^-scheme T and a locally free 0X x Γ-module E satisfy-

ing the assumptions of (ii) are given. Let us cover T by such a family

of open sets {Wλ} as in the above proof of (ii). Then there exists a

family of morphisms hλ of Wλ to Rs such that hλ*(F) = E\Wi. Then by

the functoriality of fE and fE we get

Ψ'fislwi = Ψ'fhϊiF) = Ψ'/F'^X = fίr-hχ = fΈ\wλ -

Thus we obtain that Ψ /E = /*'. q.e.d.

Remark 4.12. Let Γ be an algebraic Zε-scheme. Let J ^ Γ ) be the

set of isomorphism classes of locally free 0Xx!Γ-modules E of rank r

such that for any t e T(k), Et is a stable vector bundle of rank r with

Chern classes clf c2. Consider an equivalence relation on J^(T) E is

equivalent to E/ if and only if E ^ Er (g) p2*(L) for some linebundle L on

Γ. Let "T^xir, clf c2)(Γ) be the quotient set of S^(T) by this equivalence

relation. For a morphism of algebraic fc-schemes / : Ύr —> T, if E is

contained in J^(Γ), then f*(E) is a member of ^(Ύf) and if £7 and Ef

are equivalent to each other, then so are f*(E) and /*(£")• Thus we

get a map / * : r@x(r, cί9 c2)(T) -> T T ^ ( r , c1? c2)(Γ0 By this way y # ( r , c1? c2)

is a contravariant functor from the category of algebraic fc-schemes to

the category of sets. Then the above theorem means that M(cu c2) is a

coarse moduli scheme ([8] Definition 5.6) of rr@z(2, c19 c2) (note that fE

Remark 4.12. Consider the following property (*) of a vector

bundle E on a non-singular protective surface X;

(*) If a locally free ^-submodule F of E is generated by its global

sections outside a finite set of points of X, then

h°(F)/r(F) < h\E)/r(E) .

Let Bir, c19 c2) be the set of isomorphism classes of stable vector bundles

of rank r on X with Chern classes c19 c2. Suppose the following is true;

(**) There exists an integer m0 such that for any m >m0 and any

E eB(ryC19c2)fE(m) possesses the property (*). Then replacing Lemma

4.1 by (**), we can eliminate the assumption "rank 2" in Theorem 4.10.

The following is a corollary to the proof of Theorem 4.10.
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COROLLARY 4.10.1. M(clf c2) is non-singular (normal or Cohen-Macaulay)

if and only if so is Rs.

Proof. Since π: Rs —> M(c19 c2) is a principal fibre bundle with group

PGL(p), π is a smooth morphism. Then our assertion is clear by virtue

of E. G. A. Ch IV, 6.3.4, 6.5.2 and 6.5.4. q.e.d.

Remark 4.13. If I is a non-singular protective curve, then the

scheme corresponding to our Rs is non-singular ([12] p. 324). Thus by

the same reason as above we can prove that the coarse moduli schemes

of stable vector bundles on X are nonsingular (see [12] and the remark

after Theorem 5 of [13]).

In general M(c19c2) is not necessary non-singular. In fact,

EXAMPLE 4.14. Let us construct such an example as M(cu c2) has

singularities.

We shall begin with some general facts. Let E be a simple vector

bundle of rank r on a non-singular projective surface X, let E be

generated by its global sections and let N = h°(E). Then we get an

exact sequence

0 > F > ΘΨ > E > 0

with some locally free 0^-module F. By tensoring E the dual sequence

of the above, we get

*) 0 > E <g),x E
y > E®N > E <g),x F

v > 0 .

Assume that hι(E) = h\E) = 0. Then we get the following exact sequence

0 • H%X, E ®. x #
v ) • H°(X, E)®N > H°(X, E ®Θz F

v )

\\l
k > H\X, E ®ox #

v ) > 0

and H\X, E ®0Σ F v ) => H\X, E ®, x E
y). Let x be the fc-rational point of

Q = Q,\itΘ®χ/k which corresponds to the above surjective homomorphism

Θ®N —> E. Then the Zariski tangent space TQjX of Q at x is isomorphic

to H°(X,E (S)ΰχF
v) (see the proof of Proposition 4.7). Now the above

exact sequence implies

1) dim TQiX = h°(E ®βz F
v ) = h\E ®Θχ S v ) + N2 - 1 .
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On the other hand, by virtue of Riemann-Roch theorem

2) h\E ®ΘΣ # v ) = 1 + h\E ®ΰΣ # v ) + (r - l)(Cl(£7), cx{E)) - 2rc2(E)

Thus in order to compute h°(E ®(Pχ F
v ) we have only to do h\E ®ΦΣ E

v)

— h°(E ®ΰΣE
y ®OzKx)9 where Kz is the canonical bundle on X. Next

assume in addition to the above that rank of E is 2.

Then we get a canonical exact sequence

0 xp.ΛB^r > S2(E) ® , x det ( S v ) > 0 ,

Hi

where Θx is contained in £nJίΦz(E) as scalar multiplications. Moreover

if the characteristic p of k is not equal to 2, then we get that (Tr/2)-i

= id, where Tr is the trace map of indez (E) to Θx, The above sequence

therefore splits under the assumption p Φ 2. Let ΘF{E)(1) be the tauto-

logical linebundle of E, then S2(E) = π#(ΦF(JB)(2)), where π is the natural

projection of P(£7) to X. Thus

3) h\E ®, x J57V ®, x K x ) = pg + h\S2(E) ®, x det (ί7v) ® ^ Z x )

under the assumption that p Φ 2 or h\Kz) = 0.

Now let us construct an irreducible algebraic fc-scheme [7 and a

vector bundle F of rank 2 on Z x f c i 7 such that h\Fx ®0ΣF
y

x ®ΰχ Kx), x

e U(k) is not constant and that Fx is stable for any x e U(k). Note

first of all that M = Mic^F^, c2(Fx)) (x e U(k)) has singularities. For by

virtue of Theorem 4.10, (ii) there exists a morphism fF: U —* M such

that fF(x) — ψ{Fx) for any x e U(k). We may assume that for all m > 0,

B(Cι(Fx), c2(Fx))(m) satisfies the conditions (a) and (b) before Proposition

4.3 (see remarks at the beginning of the proof of Theorem 4.10). Then

we get a principal fibre bundle ψ: Rs-+ M with group G = PGL(N)

(N = h°(Fx)). The above argument shows that for x e U(k), y e

ψ-X/pίaOXΛO, TBsiV ^ H°(X,F'V ®ΰΣFx), where F' is the kernel of a canon-

ical homomorphism Θψ —> Fx. Thus dim TMJF(X) = dim 3ΓΛfty — dim G

= h\Ffv®ΘχFx)-N2 + l = h\Fx®ΘΣFx

/) by formula (1). Since h\Fx

®ΘχFx'®ΘΣKx) = h\Fx®0ΣFx

/) is not constant, so is hKFx®βΣF
y) by

formula (2). Thus dim TMtfr(x) is not constant. On the other hand,
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since U is irreducible, so is fF{U), whence fF(U) is contained in a

conected component of M. We know therefore that M has singularities.

To construct (U,F), assume that (i) Pic(X) = Z a s a group, (ii) the

complete linear system \KZ\ of the canonical bundle Kx of X has no

base points, (iii) there exists a non-singular irreducible curve T on X

with {K, T) > (Γ, T) + 5, where if is a member of \KX\. Pick a curve

T of genus g on X satisfying the condition (iii). Let D be a divisor on

T with deg Z) = (K, T) = ί. Take a regular vector bundle E in J?2(X, Γ, 2?)

([6] p. 109, p. 112). Let E be defined by Y and let Y' be the center of

(elmjr)-1. We have to compute the dimension of the linear system <£ =

l̂ p(js?)(2)(8)<pp(JP)Λ:*(det(jSv) ( 8 ) ^ ^ ) 1 . Pick a member Zf of L and write

Z' = A' + αw-XΓ) (A7 73 ^ ( T ) , * > 0), A'>π-KT) = rcΓ' + J?' (£ ' 73 Y')

Let A be the proper transform of A/ by elm^,,iϊ be the divisor (0) x X

of P1 x k X, π0 be the projection P1 x k X -> X and let C = H T^XT). Then

by virtue of Appendix II we get the following cases;

I) The case where w = 0: Then A~2H + (1 - a)πo\T) + πό\K)

and A πϊKT) 3 2Y. Thus A. ̂ ( T ) - 2 C + (1 - a)(πo)ϊ\T. T) + (πJ KK Γ)

and A-πoKT) = 2Γ + (πo)ϊ1(B)~2C + (πo)?1(2D + B) with some positive

divisor £ on Γ. Hence we have that 2D - X Γ~(1 - α)(T T) - # .

Comparing the degrees of both sides, we get that t = (1 — α)(Γ, T)

— deg J5 < (1 — αr)(Γ, T), which is impossible because of the assumptions

(i) and (iii).

II) The case where n = l: Then A~2H - CΠΓO^T) + πϊ\K), A ̂ KΓ)

D Y and A . ^ ( Γ ) ?3 2Y. Thus A - ^ ( T ) - 2C - α ί ^ K Z 1 . T) + W ? 1 ^ . T)

and A-TΓo-^JO-y + C + (τro)r1(β)-2C + (πo)ϊ\D + B) with some positive

divisor B on T. Hence we have that D - I f .Γ a(T>T) - β. Since

the degree of the left hand side is zero, we know that B = 0 and a — 0.

Thus A .TΓO-'CΓ) = Γ + C7 with some C7 = P x Γ, P e Pi and A is a member

of |2ίf + TΓQ"1^)!- Therefore choosing a suitable system of homogeneous

coordinates XQ, Xλ of P^ , C is defined by -XΊ = 0 with the restriction Xt

of Xt to Py and A is defined by sxXl + s2X0Xι + s3X
2

λ = 0 with some

s19s2,s3 in iϊ°(Z,K z). Since A TΓO'KΪ1) = Y + C, we know that s3 = 0,sr

and s2 have no common zeros on T and Γ is defined by sxXQ + s2X1 — 0,

where g< is the restriction of st to T. Conversely pick three elements

Sj, s2, s3 of H\X,KX) such that sλ and s2 have no common zeros on T

and s3 — 0 (such s19 s2, s3 exist because of the assumption (ii)) and define

A (or, Y) by s.Xl + s^X, + szX\ = 0 (or, s A + s2Xx = 0, resp.). Then
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A~2H + πo\K),A z> Y and A 7$ 2Y. Hence the regular vector bundle

E defined by Y is contained in R2(X,T,K T), the proper transform of

A by elm r̂ is a member of =£? for 2*7 and n = 1. We know therefore

that this case occurs if and only if 2? is defined by (s19 s2) with some

s19s2eH%X,Kx) (see [6] Principle 2.6).

III) The case where n = 2 and Sing (A7) D Y7: Then A + a ^ T )

~2H - πϊ\T) + πϊ\K) and A - T ^ C D 73 Y. Let Z be a member of

|2ίf - TΓQ-'CΓ) + πo\K)\ and assume that Z contains Y. Then Z-πόKT)

~2C + (πJ;KK-T)-(πo)ϊ\T-T) and Z . ^ m - Y + C + (πo)ϊ\B)~2C +
(πo)ί\D + B) with some positive divisor B on T. Thus O^degCK T)

— degD = deg B + deg(Γ T) > 0, which is a contradiction. Hence the

set of members Zf of L satisfying n = 2 and Sing (Z7) Z) Y7 is just that

of total transforms of members of \2H — UQ\T) + πo\K)\ by elm^.

IV) The case where n = 2 and Sing (A7) 73 Y7: Then A ~ 2 # - ^"KΓ)

+ TΓo'XίC) and A-TΓQ^CΓ) 3 2Y. We know by the same reason as in (I)

that this case can not occur either.

Combining the results from (I) to (IV), we know

(A) if De\K-T\ and if E is defined by (sus2) with some s19s2

e H°(X, Kx), then h\E ®Θz # v ®ΰz Kx) = h\Kx) + h\S\E) ®ΰz det ( # v )

®*ZKX) >pg + dim \2H + πϊ\K) - πϊ\T)\ + 2 = pg + Sh°((Px(-T) ®ΰΣKx)

+ 1,
(B) otherwise h\E ®ΰχ £7V ®βχ Kx) = pg + Sh°(d)x(-T) ®σχ Kx), under

the assumption that p Φ 2 or h\Kx) = 0 by virtue of formula (3).

Next put V = {Y|Y is a section of (πo)τ: V\ -> T such that Ye \C

+ Mτ\D)\ with some divisor D on T whose degree is t}, then V is an

open subscheme of a union of finite number of connected components of

Hilbpi/fc. Let Ϋ be the universal family on P^ XkV induced from that

on Py χfcHilbpi/A;. Let slfs2 be elements of H%X,KX) such that they have

no common zeros on T (see the assumption (ii)) and define Yo by s ^

+ s2Xi = 0, then Yo corresponds to a fc-rational point y0 of V. Since

for the normal bundle NYo/Fi of Yo in PX

Γ, deg (NF o / Pi) = 2(K, T) = 2ί

> 2(((Γ, Γ) + (X, Γ))/2 + 2) = 2(flr + 1), we have that H\Y0, NYo/n) = 0,

whence V is smooth at Yo and dim V = h0(NYo/Pi) = 2t — g + 1 at 2/0

(see [2] Corollary 5.4). On the other hand, for the natural morphism

h of V to the Jacobian variety J of T, since h~\D) is an open subset

of \C + πo\D)\9 we get that dim h~KK T) = 2h\Kz®βzΦτ) <t + 2 by
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Clifford's theorem (note that K T is a special divisor on T). Thus if

U is the irreducible component of V containing y09 then dim U = 2ί — g

+ 1 > t + 2 > dim h~\K-T), which implies that U 2 h-χK T). More-

over we can construct a vector bundle F on X χkU such that for any

ye U(k),Fv is the regular vector bundle defined by Ϋy ([6] Theorem 2.9).

For any y e U(k)9 c^Fy) = T and c2(Fy) = t and F y is simple because

(T9 T)<t ([6] Corollary 3.10.1). By virtue of Proposition A.I and the

assumption (i), we know that for every y eU(k),Fy is a stable vector

bundle. On the other hand, h\Fyo ®ΦzF^ ®Θz Kx) >pg + 3h\d)x(- T) ®Θz Kx)

+ 1 = β + 1 by virtue of (A) and if a ^-rational point y of U is not

contained in hrι(K-T)(k), then h\Fy®0ΣFy

/®ΰzKx) = β by virtue of (B).

Finally we have to show that there exist X and T which satisfy

the conditions (i), (ii) and (iii). For instance let X be a general hyper-

surface of degree n (n > 6) in P|, and let T = S -X", where S is a general

hypersurface of degree m (1 < m < w — 5) in P|. Then it is well-known

that X and T satisfy the conditions (i), (ii) and (iii) (note that h\Kx)

- 0 ) .

All the moduli schemes are smooth under a suitable assumption on

their base space. In fact

PROPOSITION 4.15. Let X be a non-singular protective surface such

that for the canonical bundle Kx of X, Kx φ. Θx and \—Kx\ Φ φ. Then

M(cί9 c2) on X is smooth for any numerical equivalence classes c19 c2.

Proof. We may assume that for any m > 0, B(c19 c2)(m) satisfies

the conditions (a) and (b) before Proposition 4.3. Then we can construct

the subscheme Rs of Hr

N2 for B(c19 c2). By virtue of Corollary 4.11.1 we

have only to show that Rs is smooth. Take an arbitrary fe-rational

point x of Rs, then x corresponds to an exact sequence

**) o > F > ΘfN > E > 0

with some E e B(cί9 c2). Since B(cl9 c2) satisfies the condition (α), H\X9 E

<8),XFV) ^ H\X9E®σzE
y) as in Example 4.14. If H\X9E®ΦzE^) Φ 0,

then H\X9 E ®Oz Ev ®Φz Kx) Φ 0 by Serre duality. On the other hand,

our assumption on Kx implies that a global section of E ®ΰz Ev ®Φz Kx

provides that of E®ΰzE
y ®ΘzKx®ΘzKx ^ E®ΘzE

y which has zeros.

But this is impossible because H°(X9 E ®Φz Ev) = E n d ^ (E) consists of

multiplications of constants (i.e. E is simple). Thus we know that
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H\X, E ®,x #
v ) = 0, whence H\X9 E ®eχ F

v) = 0. Let S = Spec (A),

S = Spec(A/7) with some finite dimensional local fc-algebra A and an

ideal / of A and let j: X-* X xkS = X-§, h: Xs-*X xkS = Xs be

natural closed immersions. Assume that there exists an exact sequence

of locally free ^-modules

***) 0 > F(S) > Θψs > EiS) > 0

whose inverse image by j is (**). We have to lift this sequence to Xs.

In order to do this, using an induction on dimΛ A, we can reduce to

the case where dim^ 1 = 1 because there exists an ideal J of A with

dim*; J = 1 and J c I. Since £7(5) is locally free, we can lift locally (***)

to X8. Thus there exists a class of obstruction for lifting in Hι(X9 E(S)

®^_ F(S)V 0,3 /) (see [2] Corollary 5.2). From the assumption that

diml 7 = 1, we know that E(S) ®.χ_ F(S)V ®O-SI = E ®ΦzF
v. Since

H\X9 E ®ΘX F v ) = 0, Hι(X, E(S) Θ ^ F(8y ®,5 7) = 0, which implies that

there exists an exact sequence of locally free (^-modules

0 > F(S) > Θψs > E(S) > 0

whose inverse image by h is (***). Therefore Rs is smooth at x (see

[9] Lecture 22). q.e.d.

Appendix.

I. Let us prove the following proposition which is a corollary to

Theorem 1.12 and Theorem 3.10 of [6].

PROPOSITION A.I. Let X be a non-singular protective variety over

k with dim X = 2 or 3 and Pic (X) = Z as an abstract group. Then a

vector bundle E of rank 2 on X is stable if and only if E is simple.

Proof. The "only if" part was shown in [15]. Let us prove that

if E is not stable, then E is not simple. Let H be a linebundle on X

which is a generator of Pic(Z) (we may assume that H is ample).

Since E(n) = E ®φχ H®n is simple (or stable) if and only if so is E9 we

may assume that E is regular (see Proposition 2.3 or Theorem 1.12 of

[6]). Let E be defined by Y (see [6] p. 109) and let Yr be the center of

(elm^)"1. Assume that E is not stable, then there is a torsion free

coherent 0x-module L of rank 1 such that L is a quotient module of E

and that d(E9H) > 2d(L9H). Then the surjective homomorphism E —• L



STABLE VECTOR BUNDLES 65

provides a closed subscheme Z of V(E). Since we need only the inequality
d(E, H) > 2d(L, H) in our proof below, we may assume that Z is ir-
reducible. Then Z gives us a positive divisor Zf on F(E) such that

0p(i?)(l) ®*p(*) π*(0x(D)) with some divisor D on X, where
is the tautological linebundle of E and π: PCS') —» X is the natural

projection. Now the inequality d(E, H) > 2d(L, H) means that d(π*((Z'
- π-\D)). (Zf - π-\D)),H) > 2d(π*((Z' - π~\D)) -Z;), H), that is, d(π*(Z'-
Z'),H) < 0. Let Zo be the proper transform of Z' by elm^, and let πQ

be the projection of P^ to X. Since Zo is a positive divisor and since
Pic(X) ^ Z, we have that Z r ( 0 ) χ I + π~\Hm) with some positive
integer m and # m e |#®m |. If £' D Y', then (πo)*(ZQ ZQ) = π*(Z.Z), whence
d((7ro)*(Zo ^o), H) = d(π*(Z -Z),H). But this is impossible because d(π*(Z Z),H)
< 0 and d((πo)*(ZQ Zo),H) = 2md(H,H) > 0. Next assume that Zf ;z3 Y'.
Then (^^(Zo Zo) = π*(Z Z) + T, where T = ττo(Y) and Y is a section of
PJr. If Γ is contained in |iϊΘ r |, then the inequality d(π*(Z Z),H) < 0
implies that 2m < r. By this and the fact that ZQZ) Y we know that
E is not simple ([6] Theorem 3.10 or p. 128 (4)). q.e.d.

Remark A.2. 1) Let X be a non-singular projective variety over
k with Pic (X) = Z as an abstract group and let H be an ample line-
bundle which is a generator of Pic (X). If for all n > n0, H°(X, H®n) Φ 0,
then every simple vector bundle of rank 2 is of type nod(H, H') — e
(0 < vε < | ) with respect to a very ample linebundle H' on X.

2) Proposition A.I does not hold unless rank of E is 2. In fact
we can show the following: For every non-singular projective surface
X, there exists a simple but not stable vector bundle of rank 3 on X.

II. Let X be a non-singular variety over k and let (Y, T) be a pair
of sub varieties of a P^bundle π: P —• X and X respectively. Assume
that (Y, T) satisfies the condition (Eo) ([6] p. 105). Put F = elm°r(P) and
let π' be the projection of P7 to X. Let Y7 be the center of (elm^)"1.
Assume that Z is a positive divisor on P such that Θj>{Z) ^ 0P(2) (g)^ π*(Z/)
with some tautological linebundle 0P(1) on P and some linebundle L on
X and that Z 73 π -^Γ). Let Z' (or, Z") be the proper (or, total, resp.) trans-
form of Z by elm°F. Set n = max {r\Z π~ι(T) 3 rY}, nf = max {τf \Zf.TΓ'-^T)
D r'Y7} and m == max{s\Z" 3 s^-^Γ)}. Then we get the following table;
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n

0

1

2
Sing(Z)ZDY

Sing(Z)z>F

n'

2

1

0

2

m

0

1

2

1

where Sing (Z) denotes the singular locus of Z.

Proof. Since the problem is a local property with respect to X,

we may assume that X = Spec (A), P = Proj (A[λ0, λj) and that the

defining ideal Iτ for T in A (or, / F for Y in A[Λ0, ΛJ) is generated by

t e A (or, Mi, resp.). Then P' = Proj (A[ro,rj) with Λo = λ'0,λx = «J and

the defining ideal lγ, for Y' in AUί,ϋί] is generated by t,λ'Q (see [6]

Lemma 1.4). Shrinking X if necessary, we may assume that Z is defined

by a0λ
2

0 + cMoΛ + a2λ\ = 0 with (α0, α^ α2)A ^ tA.

1) Assume that α0A ςt tA, then Z' = Z" and they are defined by

ajtf + aMK + a2t%
2 = 0. Since Z-π'\T) (or, Z'^'\T)) is defined by

αo3? + α^0Λ + α23J = 0 (or, α0^
2 = 0, resp.), we have that n = 0, ^ = 2,

m = 0, where ~ denotes the homomorphic image by the natural homomor-

phism of AUoyλJ (or, A[λί,λί]) to the homogeneous ring (A/tA)[λ0, λj of

π'\T) (or, (A/tA)[%,3Q of ^^(T), resp.).

2) Assume that α0A c tA,axA ς£ tA, then Z' (or, Z7/) is defined by

aW + α^yj + a2tλ[2 = 0 (or, αί«Sa + axtλΆ + a2t%
2 = 0, resp.), where a0 =

αίt. SinceZ π~\T) (or, ^ .^"XT) is defined by (SΛ + a2\)\ = 0 (or, (δJJJ +

ά̂ QΛo = 0, resp.) and since ax Φ 0, we have that n = 1, w/ = 1 and m = 1.

3) Assume that α0A c £A,α0A ζί ί2A and axA c ίA. Then by the

assumption that Z 73 π~\T), we know that α2A qt tA. In this case Z7

(or, Z") is defined by αtf? + oί«yί + α2^ί2 = 0 (or, oί«ί2 + a[t%λ[ + a2t%
2

= 0, resp.), where a0 = αjί,^ = αί*. Since Z-TΓ^CΓ) (or, Z'-tf-^T)) is

defined by α23J = 0 (or, αJJJ2 = 0, resp.) and since α2 Φ 0, sj ^ 0, we have

that n = 2, nf = 2 and m = 1. Moreover if # is the generic point of

Y, then 0Pflf is a regular local ring whose maximal ideal my is generated

by ί,Λ = λjλo and the defining ideal for Z at 2/ is generated by 2X = α^

+ a[tλ + α2^
2. Since αj is a unit in ί?Pflf, ̂ x is contained in my but not in

m2,, whence Z is simple at y.

4) Assume that α0A c t2A and αxA c tA. In this case we know

also that α2A ςt tA. Then Zf (or, Z") is defined by < # + β^^lί + α2^ί2
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= 0 (or, α'oWo

2 + a'JXλi + a2t%
2 = 0, resp.), where a0 = a'0't

2, a, = a[L

Since Z π~XT) (or, Z' πf-\T)) is defined by a2λ\ = 0 (or, a'0%* + άί^ί
+ α2lf = 0, resp.), we have that n = 2, n' = 0 and m = 2. Moreover
the defining ideal for Z at the generic point y of Y is generated by
z2 = αjί2 + αίU + a2λ

2 and 22 e mj. Thus # is a singular point of Z.
Combining all the above results we get the desired table. q.e.d.

III. To show that the main theorem of § 4 is not trivial let us
prove the following proposition.

PROPOSITION A.3. Let X be a non-singular protective surface over
k and let H be a very ample linebundle on X. For a given divisor D
on X, there exists an integer n0 such that for any n > n0, there exists
a stable vector bundle E of rank 2 on X with respect to H with cλ(E)
= the class of D and c2(E) = n.

Proof. Replacing D by D + Hm with a suitable Hm in |iϊΘm |, we
may assume that \D\ contains a non-singular irreducible curve. Pick a
non-singular irreducible member T in \D\. Let s/ be the set of positive
divisors C with d(T, H)/2 > d(C, H) and put Jf = ^/(numerical equivalence).
Then JΓ is a finite set. Set nx = max {(Γ, C) \ C e ^} + 1. Since JΓ is a
finite set and since (T, C) depends only on the numerical equivalence
class of C, nλ is finite. Now let us show that n0 = max {n19 genus of T)
is one of the desired integers. Take an integer n > nQ9 then there exists
a divisor B on T such that degi? = n and \B\ is free from base points
because n > genus of T. Then R\X, T, B) is not empty (see [6] p. 112).
Let us take a member E of R2(X, T, B) which is defined by Y. Since
cλ(E) = the class of D and c2(E) = deg B = n, we have only to prove
that E is stable. Assume that E is not stable and take a torsion free
coherent ^-module L and divisors Z', Zo on P(Z?),P^ respectively as in
the proof of Proposition A.I. If Zo does not contain Y, then d(L,H)
> d(T, H) > d(E9 H)β. Thus ZQ has to contain Y. Moreover Z0~(0) X x

+ πo\C) with some positive divisor C on X. The inequality d(E9H)/2
>d(L9H) implies that d(T9H)/2 > d(C9H). On the other hand, since
(0) X T + (πώϊ\C -T)~Zfπϊ\T)~Y + (π,)τ\B') with some positive divisor
Br

9 we get that (T, C) = deg (B + B') > n > nQ. This is impossible
because C is contained in s/. Thus E is stable. q.e.d.
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