T. Ono Nagoya Math. J. Vol. 56 (1974) 201-207

# ON THE HOPF FIBRATION OVER Z

# TAKASHI ONO

### §1. Statement of the result

Let  $h: \mathbb{R}^4 \to \mathbb{R}^3$  be a quadratic map defined by

$$h(x) = (x_1^2 + x_2^2 - x_3^2 - x_4^2, 2(x_2x_3 - x_1x_4), 2(x_1x_3 + x_2x_4))$$

For a natural number t, put

$$egin{array}{ll} S^3(t) = \{x \in {old R}^4, x_1^2 + x_2^2 + x_3^2 + x_4^2 = t\} \ , \ S^2(t) = \{y \in {old R}^3, y_1^2 + y_2^2 + y_3^2 = t\} \ . \end{array}$$

Then h induces a map

$$h_t: S^3(t) \to S^2(t^2)$$
.

Since everything is defined over  $Z, h_t$  induces the map

$$h_{t,\mathbf{Z}}: S^{3}(t)_{\mathbf{Z}} \rightarrow S^{2}(t^{2})_{\mathbf{Z}}$$
.

Because of the presence of 2 in the last two coordinates of h(x),  $h_{t,z}$  is actually a map

$$h_{t,\mathbf{Z}} \colon S^{\scriptscriptstyle 3}(t)_{\mathbf{Z}} o S^{\scriptscriptstyle 2}(t^2)_{\mathbf{Z}}^{\scriptscriptstyle \operatorname{even}}$$
 ,

where

$$S^{2}(t^{2})_{Z}^{\text{even}} = \{y \in S^{2}(t^{2})_{Z}, y_{2}, y_{3} \text{ are even}\}$$

To each  $y \in S^2(t^2)_Z^{\text{even}}$  we shall associate two numbers as follows. First, we denote by a(y) the number of  $x \in S^3(t)_Z$  such that  $h_{t,Z}(x) = y$ . Next, we denote by  $\Delta_y$  the greatest common divisor of the four integers  $\frac{1}{2}(t + y_1), \frac{1}{2}(t - y_1), \frac{1}{2}y_2, \frac{1}{2}y_3$ . On the other hand, for a natural number n, denote by r(n) the number of integral solutions (X, Y) of the equation  $X^2 + Y^2 = n$ . It is well known that

$$r(n) = 4(d_1(n) - d_3(n))$$

Received June 11, 1974.

#### TAKASHI ONO

where  $d_1(n)$  and  $d_3(n)$  are the numbers of divisors of n of the form 4m + 1 and 4m + 3 respectively.

The purpose of the present paper is to prove the relation:

(1.1) 
$$a(y) = r(\varDelta_y)$$
,  $y \in S^2(t^2)_{Z}^{\text{even}}$ .

As the readers notice, (1.1) reflects the fact that each fibre of  $h_t$  is a circle.

### § 2. Change of the fibration

Let *H* be the classical quaternion algebra over *R* with the quaternion units 1, i, j, k, with the relations  $i^2 = j^2 = -1, k = ij = -ji$ . We shall make the following natural identifications:

$$egin{aligned} C &= R + Ri = R^2 \;, & H = C + Cj = C^2 = R^4 \;, \ Z[i] &= Z + Zi = Z^2 \;, & H_Z = Z[i] + Z[i]j = Z[i]^2 = Z^4 \;. \end{aligned}$$

As usual, for each  $z = x + yj \in H$ ,  $x, y \in C$ , we write its conjugate, trace and norm by  $\overline{z} = \overline{x} - yj$ ,  $\operatorname{Tr} z = \overline{z} + z$  and  $Nz = \overline{z}z$ , respectively. In working with H, we shall mean by  $\mathbb{R}^3$  the subspace  $\mathbb{R}i + \mathbb{R}j + \mathbb{R}k$  $= \mathbb{R}i + \mathbb{C}j$ . This space is known as the space of pure quaternions and is characterized as the set of all  $z \in H$  such that  $\operatorname{Tr} z = 0$ .

For  $z \in H$ , put

$$h(z) = \bar{z}iz \; .$$

Since Tr (h(z)) = 0, h is a map:  $\mathbb{R}^4 \to \mathbb{R}^3$ . A simple calculation shows that

(2.2) 
$$\begin{aligned} h(z) &= (Nx - Ny)i + 2\bar{x}yk \\ &= (x_0^2 + x_1^2 - y_0^2 - y_1^2)i + 2(x_1y_0 - x_0y_1)j + 2(x_0y_0 + x_1y_1)k , \end{aligned}$$

where z = x + yj,  $x = x_0 + x_1i$ ,  $y = y_0 + y_1i$ ,  $x_0, x_1, y_0, y_1 \in \mathbf{R}$ . Hence the map (2.1) coincides with the map h introduced in §1.

For t > 0, put

$$S^{3}(t) = \{z \in \mathbf{R}^{4}, Nz = t\}, \qquad S^{2}(t) = \{w \in \mathbf{R}^{3}, Nw = t\}.$$

Since  $N(h(z)) = (Nz)^2$  by (2.1), h induces a map

$$h_t: S^3(t) \rightarrow S^2(t^2)$$
.

When t is a natural number, put

202

$$S^{\scriptscriptstyle 3}(t)_{oldsymbol{Z}}=S^{\scriptscriptstyle 3}(t)\,\cap\,oldsymbol{Z}^{\scriptscriptstyle 4}$$
 ,  $S^{\scriptscriptstyle 2}(t)_{oldsymbol{Z}}=S^{\scriptscriptstyle 2}(t)\,\cap\,oldsymbol{Z}^{\scriptscriptstyle 3}$  .

Then,  $h_t$  induces a map

$$h_{t,\mathbf{Z}}: S^{3}(t)_{\mathbf{Z}} \rightarrow S^{2}(t^{2})_{\mathbf{Z}}$$
.

Our problem is to determine the image and the fibres of the map  $h_{t,z}$ . To do this, it is convenient to replace the map  $h_t$  by a map  $f_t$  in the following way. Namely, put

$$\sum (t) = \{ \sigma = (\alpha, \beta, \gamma), \alpha, \beta \in \mathbf{R}, \gamma \in \mathbf{C}, \alpha + \beta = t, N\gamma = \alpha\beta \},\$$

and  $f_t(z) = (Nx, Ny, i\bar{x}y)$  for  $z = x + yj \in S^3(t)$ .



Since Nx + Ny = Nz = t and  $N(i\bar{x}y) = (Nx)(Ny)$ ,  $f_t$  is a map  $S^3(t) \rightarrow \Sigma(t)$ . Next, put

$$g_t(\sigma) = (\alpha - \beta)i + 2\gamma j$$
, for  $\sigma = (\alpha, \beta, \gamma) \in \Sigma(t)$ .

Since  $N(g_t(\sigma)) = (\alpha - \beta)^2 + N(2\gamma) = (\alpha - \beta)^2 + 4\alpha\beta = (\alpha + \beta)^2 = t^2$ ,  $g_t$  is a map  $\Sigma(t) \to S^2(t^2)$ . If  $g_t(\sigma) = g_t(\sigma')$  with  $\sigma' = (\alpha', \beta', \gamma')$ , then  $\alpha - \beta = \alpha' - \beta'$  and  $\gamma = \gamma'$ . Since  $\alpha + \beta = \alpha' + \beta' = t$ , we see that  $g_t$  is injective. For any  $w = ui + vj \in S^2(t^2)$ , we have  $w = g_t(\sigma)$  with

(2.3) 
$$\sigma = (\frac{1}{2}(t+u), \frac{1}{2}(t-u), \frac{1}{2}v) .$$

Hence  $g_t$  is surjective, and so bijective. Finally, it follows from (2.2) that  $g_t(f_t(z)) = g_t(Nx, Ny, i\bar{x}y) = (Nx - Ny)i + 2i\bar{x}yj = (Nx - Ny)i + 2\bar{x}yk = h_t(z)$ , the commutativity of the diagram.

Now, for a natural number t, put

$$\Sigma(t)_{\mathbf{Z}} = \Sigma(t) \cap (\mathbf{Z}^2 + \mathbf{Z}[i]) \; .$$

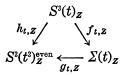
Then,  $f_t, g_t$  induce maps

$$f_{t,\mathbf{Z}}: S^{\mathfrak{Z}}(t)_{\mathbf{Z}} \to \Sigma(t)_{\mathbf{Z}}, \qquad g_{t,\mathbf{Z}}: \Sigma(t)_{\mathbf{Z}} \to S^{\mathfrak{Z}}(t^{\mathfrak{Z}})_{\mathbf{Z}},$$

respectively such that  $g_{t,Z} f_{t,Z} = h_{t,Z}$ . If  $w = ui + vj \in S^2(t^2)_Z$  is in the image of  $g_{t,Z}$ , v must be a multiple of 2 in Z[i] and, since  $Nw = u^2 + Nv$ 

203

 $= t^2$ , both t + u and t - u must be even. In view of (2.3), we see that  $g_{t,Z}$  is a bijection between  $\Sigma(t)_Z$  and the set  $S^2(t^2)_Z^{even} = \{w = ui + vj \in S^2(t^2)_Z, 2|v\}$ . Hence, to study the map  $h_{t,Z}$  is equivalent to study the map  $f_{t,Z}$ .



## § 3. Existence of solutions

Notation being as in §2, we shall determine for what  $\sigma \in \Sigma(t)_Z$  the equation  $f_{t,Z}(z) = \sigma$  has a solution  $z \in S^3(t)_Z$ . In the following, we shall put  $\sigma = (\alpha, \beta, \gamma), \ \alpha, \beta \in Z, \ \gamma = \gamma_0 + \gamma_1 i \in \mathbb{Z}[i], \ \gamma_0, \gamma_1 \in \mathbb{Z}$ . We shall first examine some special cases.

Case 1.  $\gamma = 0$ .

In this case, the relations  $\alpha + \beta = t$  and  $0 = N\gamma = \alpha\beta$  imply that either  $\alpha = 0$ ,  $\beta = t$  or  $\alpha = t$ ,  $\beta = 0$ , i.e.  $\sigma = (0, t, 0)$  or (t, 0, 0). Hence z = x + yj is a solution of  $f_{t,z}(z) = \sigma$  if and only if either z = yj, Ny = tor z = x, Nx = t. Therefore it follows that

(3.1) 
$$f_{t,\mathbf{Z}}^{-1}(\sigma) \neq \emptyset \Leftrightarrow t \in N(\mathbf{Z}[i]) .$$

Case 2.  $\gamma \neq 0$  and  $(\gamma_0, \gamma_1) = 1$ .

Assumptions imply that  $\alpha, \beta \geq 1$ . Since  $\alpha\beta = N\gamma = \gamma_0^2 + \gamma_1^2$ , we have  $(\gamma_1, \alpha) = 1$ . Therefore, there are two integers r, s such that  $\gamma_0 = r\gamma_1 + s\alpha$ . Put  $I = Z\alpha + Z(r + i)$ . We claim that I is an ideal. It is enough to show that  $i\alpha, i(r + i) \in I$ . Firstly,  $i\alpha = -r\alpha + (r + i)\alpha \in I$ . Secondly, we have

$$lphaeta = N\gamma = \gamma_0^2 + \gamma_1^2 = (r\gamma_1 + slpha)^2 + \gamma_1^2 = (1 + r^2)\gamma_1 + 2rs\gamma_1lpha + s^2lpha^2$$
 ,

and so  $(1 + r^2)\gamma_1 = \alpha(\beta - 2rs\gamma_1 - s^2\alpha)$ . Since  $(\gamma_1, \alpha) = 1$ ,  $\alpha$  must divide  $1 + r^2$ : write  $1 + r^2 = \alpha \alpha'$ . Then, we have

$$i(r+i) = ir - 1 = r(r+i) - \alpha \alpha' \in I,$$

which shows that I is an ideal. Since Z[i] is a principal ideal ring, there is an  $x \in Z[i]$  such that  $I = (\bar{x})$ . Hence  $Nx = N\bar{x} = NI = \alpha$ . Since  $\gamma = \gamma_0 + \gamma_1 i = (r\gamma_1 + s\alpha) + \gamma_1 i = (r + i)\gamma_1 + si\alpha \in I$ , we can find  $y \in Z[i]$ such that  $\gamma = i\bar{x}y$ . Then the relation  $N\gamma = \alpha\beta$  implies that  $Ny = \beta$ . If

204

we put z = x + yj, then we have  $f_{i,Z}(z) = (Nx, Ny, i\bar{x}y) = (\alpha, \beta, \gamma) = \sigma$ . Hence  $f_{i,Z}^{-1}(\sigma) \neq \emptyset$  in this case.

Case 3.  $\gamma \neq 0$  and  $(\alpha, \beta, \gamma_0, \gamma_1) = 1$ .

Put  $(\gamma_0, \gamma_1) = d_0, (d_0, \alpha) = d_1$ . Hence we have  $\gamma_0 = d_0\gamma'_0, \gamma_1 = d_0\gamma'_1$  with  $(\gamma'_0, \gamma'_1) = 1$  and  $d_0 = d_1d_0^*, \alpha = d_1\alpha^*$  with  $(\alpha^*, d_0^*) = 1$ . From

$$d_1 \alpha^* \beta = \alpha \beta = N \gamma = \gamma_0^2 + \gamma_1^2 = d_1^2 d_0^{*2} (\gamma_0'^2 + \gamma_1'^2)$$

we get

(3.2) 
$$\alpha^*\beta = d_1 d_0^{*2} (\gamma_0'^2 + \gamma_1'^2) .$$

Since  $d_1$  divides  $\alpha, \gamma_0, \gamma_1$  and  $(\alpha, \beta, \gamma_0, \gamma_1) = 1$ , we have  $(d_1, \beta) = 1$  and hence  $d_1$  divides  $\alpha^* : \alpha^* = d_1 \alpha'$ . On the other hand, since  $(\alpha^*, d_0^*) = 1, d_0^{*2}$  divides  $\beta : \beta = d_0^{*2}\beta'$ . Then (3.2) implies that

$$lpha'eta'=N\gamma'$$
 ,  $\gamma'=\gamma_0'+\gamma_1'i$  ,  $(\gamma_0',\gamma_1')=1$  .

Hence, by the argument in Case 2 one can find  $x', y' \in \mathbb{Z}[i]$  such that  $Nx' = \alpha', Ny' = \beta', \gamma' = i\bar{x}'y'$ . Put  $x = d_1x', y = d_0^*y'$ . Then, we have  $Nx = d_1^2Nx' = d_1^2\alpha' = d_1(d_1\alpha') = d_1\alpha^* = \alpha$ ,  $Ny = d_0^{*2}Ny' = d_0^{*2}\beta' = \beta$ ,  $i\bar{x}y = id_1d_0^*\bar{x}'y' = d_1d_0^*\gamma' = d_0\gamma' = \gamma$ . Hence we still have  $f_{i,\mathbf{Z}}(\sigma) \neq \emptyset$  in this case.

We are now ready to prove the following criterion for the existence of solutions. For  $\sigma = (\alpha, \beta, \gamma) \in \Sigma(t)_Z$ , put  $\Delta_{\sigma} = (\alpha, \beta, \gamma_0, \gamma_1)$  where  $\gamma = \gamma_0 + \gamma_1 i$ . Then we have

(3.3) 
$$f_{t,\mathbf{Z}}^{-1}(\sigma) \neq \emptyset \Leftrightarrow \mathcal{A}_{\sigma} \in \mathcal{N}(\mathbf{Z}[i]) .$$

*Proof.* When  $\gamma = 0$ , we have  $\Delta_{\sigma} = (\alpha, \beta) = t$  and the assertion is nothing but (3.1). Hence, from now on, we shall assume that  $\gamma \neq 0$ . ( $\Rightarrow$ ) Take  $z = x + yj \in S^3(t)_Z$  such that  $f_t(z) = \sigma$ . Thus we have  $\alpha = Nx$ ,  $\beta = Ny, \gamma = i\bar{x}y$ . Put  $\alpha = \Delta_{\sigma}\alpha', \beta = \Delta_{\sigma}\beta', \gamma_0 = \Delta_{\sigma}\gamma'_0, \gamma_1 = \Delta_{\sigma}\gamma'_1$ . Then, by the argument in Case 3, there are  $x', y' \in \mathbb{Z}[i]$  such that  $Nx' = \alpha', Ny' = \beta',$  $\gamma' = i\bar{x}'y'$ , where  $\gamma' = \gamma'_0 + \gamma'_1 i$ . Since  $\alpha = \Delta_{\sigma}\alpha'$ , we have  $Nx = \Delta_{\sigma}Nx'$ , i.e.  $\Delta_{\sigma} = N(x/x')$ . Then we have  $\Delta_{\sigma} = N\delta, \delta \in \mathbb{Z}[i]$ , e.g. by the lemma of Davenport-Cassels applied to the binary form  $X^2 + Y^2$ .\*)

( $\Leftarrow$ ) Let x', y' be as in the proof of ( $\Rightarrow$ ). By the assumption, there is a number  $\delta \in \mathbb{Z}[i]$  such that  $\Delta_{\sigma} = N\delta$ . Put  $x = \delta x', y = \delta y'$ . Then,  $Nx = \Delta_{\sigma}Nx' = \Delta_{\sigma}\alpha' = \alpha$ ,  $Ny = \Delta_{\sigma}Ny' = \Delta_{\sigma}\beta' = \beta$ ,  $i\bar{x}y = i\bar{\delta}\bar{x}'\delta y' = \Delta_{\sigma}\gamma' = \gamma$ . Hence, we have  $f_{t,z}(z) = \sigma$  with z = x + yj, q.e.d.

Translating (3.3) in terms of  $h_{t,z}$ , we obtain the following criterion.

<sup>\*&#</sup>x27; See, e. g. J-P. Serre, Cours d'arithmétique, Paris, 1970, p. 80.

#### TAKASHI ONO

Notation being as in §2, for  $w = ui + vj \in S^2(t^2)_Z$ ,  $u \in Z$ ,  $v = v_0 + v_1i \in Z[i]$ , we have

(3.4) 
$$h_{t,\mathbf{Z}}^{-1}(w) \neq \emptyset \Leftrightarrow 2|v \text{ and } \Delta_w \in N(\mathbf{Z}[i]),$$

where  $\Delta_w = (\frac{1}{2}(t+u), \frac{1}{2}(t-u), \frac{1}{2}v_0, \frac{1}{2}v_1).$ 

## § 4. Number of solutions

For a finite set F, we denote by Card F the number of elements in it. Thus  $r(n) = \text{Card} \{(x, y) \in \mathbb{Z}^2, x^2 + y^2 = n\}$ . Using notations in § 2, § 3, one restates the proposition (1.1) as

(4.1) Card 
$$(h_{t,\mathbf{Z}}^{-1}(w)) = r(\mathcal{A}_w)$$
 for any  $w \in S^2(t^2)_{\mathbf{Z}}^{\text{even}}$ .

Translating (4.1) in terms of  $f_{t,z}$ , we are reduced to prove that

(4.2) Card 
$$(f_{t,\mathbf{Z}}^{-1}(\sigma)) = r(\Delta_{\sigma})$$
 for any  $\sigma \in \Sigma(t)_{\mathbf{Z}}$ .

Proof. Put, as before,  $\sigma = (\alpha, \beta, \gamma)$ . In case  $\gamma = 0$ , since  $\Delta_{\sigma} = t$ , (4.2) follows from the argument in §3, Case 1. Hence, from now on, we shall assume that  $\gamma \neq 0$ . Since we already have the criterion (3.3), it is enough to consider the case where  $f_{i,Z}^{-1}(\sigma) \neq \emptyset$ . So, take a point  $z = x + yj \in f_{i,Z}^{-1}(\sigma)$  and call  $I_z$  the ideal in Z[i] generated by x and  $y: I_z = Z[i]x + Z[i]y$ . Let z' = x' + y'j be another point in the same fibre as z. We want to compare  $I_z$  and  $I_{z'}$ . Since  $f_{i,Z}(z) = f_{i,Z}(z')$ , we have Nx = Nx', Ny = Ny',  $\bar{x}y = \bar{x}'y'$ . From these relations, we see that there is an element  $\rho \in Q(i)$  with  $N\rho = 1$  such that  $x' = \rho x$ ,  $y' = \rho y$ . It then follows that  $I_{z'} = \rho I_z$  and so  $NI_{z'} = NI_z = n_\sigma$ , a natural number depending only on  $\sigma \in \Sigma(t)_Z$ . For a natural number n, Put:

$$\Theta(n) = \{\theta \in \mathbf{Z}[i], N\theta = n\}.$$

Hence we have  $\operatorname{Card}(\Theta(n_{\sigma})) = r(n_{\sigma})$ . We shall show that there is a bijection between  $f_{i,Z}^{-1}(\sigma)$  and  $\Theta(n_{\sigma})$ . To do this, fix a point  $\zeta = \xi + \eta j$  $\in f_{i,Z}^{-1}(\sigma)$  and, for any  $z = x + yj \in f_{i,Z}^{-1}(\sigma)$ , denote by  $\rho_z$  the element in Q(i) with  $N\rho_z = 1$  such that  $x = \rho_z \xi$ ,  $y = \rho_z \eta$ . Since Z[i] is a principal ideal ring, there is an element  $\omega \in Z[i]$  such that  $I_{\zeta} = (\omega)$ . Put

$$T(z) = \omega 
ho_z$$
 ,  $z \in f_{t,Z}^{-1}(\sigma)$  .

We claim that T is the bijection we are looking for. First of all, write  $\omega = \lambda \xi + \mu \eta$ ,  $\lambda, \mu \in \mathbb{Z}[i]$ . Then,  $T(z) = \omega \rho_z = \lambda \xi \rho_z + \mu \eta \rho_z = \lambda x + \mu y \in \mathbb{Z}[i]$ 

#### HOPF FIBRATION

and  $N(T(z)) = N\omega = NI_{\zeta} = n_{\sigma}$ , which shows that T maps  $f_{i,z}^{-1}(\sigma)$  into  $\Theta(n_{\sigma})$ . Next, assume that T(z) = T(z'). Then, we have  $\rho_z = \rho_{z'}$  and hence x = x', y = y', i.e. z = z'. To see that T is surjective, take any  $\theta \in \Theta(n_{\sigma})$  and put  $x = \theta \omega^{-1} \xi$ ,  $y = \theta \omega^{-1} \eta$ , z = x + jy. Since  $I_{\zeta} = (\omega)$ , we have  $\xi = a\omega, \eta = b\omega$  with  $a, b \in \mathbb{Z}[i]$ . It follows that  $x = \theta a$  and  $y = \theta b$  both belong to  $\mathbb{Z}[i]$ . Now, since  $Nx = N(\theta)n_{\sigma}^{-1}N\xi = N\xi = \alpha$ ,  $Ny = N(\theta)n_{\sigma}^{-1}N\eta = N\eta = \beta$ , we have  $Nz = Nx + Ny = \alpha + \beta = t$ , i.e.  $z \in S^{3}(t)_{Z}$ . Furthermore, we have  $i\bar{x}y = i\bar{\theta}\bar{\omega}^{-1}\bar{\xi}\theta\omega^{-1} = iN(\theta)n_{\sigma}^{-1}\bar{\xi}\eta = i\bar{\xi}\eta = \gamma$ , which shows that  $z \in f_{i,Z}^{-1}(\sigma)$ . Finally, since  $x = \theta \omega^{-1}\xi$ ,  $y = \theta \omega^{-1}\eta$ , we have  $\rho_{z} = \theta \omega^{-1}$  and so  $T(z) = \rho_{z}\omega = \theta$ , which completes the proof of the surjectivity of T. In order to complete the proof of (4.2), we must show that

(4.3) 
$$n_{\sigma} = \Delta_{\sigma}$$
 whenever  $f_{t,\mathbf{Z}}^{-1}(\sigma) \neq \emptyset$ .

First, observe that  $I_{\zeta}\bar{I}_{\zeta} = (n_{\sigma})$  and so  $n_{\sigma} = (\xi\bar{\xi},\eta\bar{\eta},\xi\bar{\eta}+\bar{\xi}\eta) = (\alpha,\beta,2\gamma_1)$ . From the relation  $\alpha\beta = \gamma_0^2 + \gamma_1^2$ , one sees easily that  $n_{\sigma}$  and  $\Delta_{\sigma}$  contain each odd prime p with the same exponent. Hence, it remains to examine the exponent of 2. Denote by  $\nu_2(a)$  the exponent of 2 in an integer a. Since we obviously have  $\nu_2(\Delta_{\sigma}) \leq \nu_2(n_{\sigma})$ , it is enough to show that  $\nu_2(n_{\sigma})$   $\leq \nu_2(\Delta_{\sigma})$ . Hence, we may assume that  $\nu_2(n_{\sigma}) \geq 1$ . Put  $e = \nu_2(n_{\sigma})$  and write  $\alpha = 2^e \alpha^*$ ,  $\beta = 2^e \beta^*$ ,  $\gamma_1 = 2^{e-1} \gamma_1^*$  and  $\gamma_0 = 2^f \gamma_0^*$  with  $(2, \gamma_0^*) = 1$ . We have then  $2^{2e} \alpha^* \beta^* = 2^{2f} \gamma_0^{*2} + 2^{2(e-1)} \gamma_1^{*2}$ , or  $2^{2f} \gamma_0^{*2} = 2^{2(e-1)} (4\alpha^* \beta^* - \gamma_1^{*2})$ . If  $\gamma_1^*$  were odd, we must have f = e - 1, and then  $4\alpha^* \beta^* = \gamma_0^{*2} + \gamma_1^{*2}$ , which is impossible because both of  $\gamma_0^*, \gamma_1^*$  are odd. Therefore,  $\gamma_1^*$  must be even and so we have  $e \leq \inf(\nu_2(\gamma_1), \nu_2(\gamma_0))$ , which implies that  $\nu_2(n_{\sigma})$  $\leq \nu_2(\Delta_{\sigma})$ , q.e.d.

The Johns Hopkins University