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ON THE HOPF FIBRATION OVER Z

TAKASHI ONO

§ 1. Statement of the result

Let h: R* -» R3 be a quadratic map defined by

h(x) = (x\ + x\ - x\ - xl,2(x2x2 - x&JΉx&s + x2x4))

For a natural number t, put

S\t) = {xe R\ xl + xl + xl + xl = t},

S2(t) = {yeR\yl + yl + yl = t}.

Then h induces a map

ht: SXt) - S2(t2) .

Since everything is defined over Z, ht induces the map

Because of the presence of 2 in the last two coordinates of h(x),httZ is
actually a map

where

S\t2)Tn = {ye S\?)z, y2, yz are even} .

To each y e £2(£2)|ven we shall associate two numbers as follows. First,
we denote by a(y) the number of x e S%t)z such that httZ(x) = y. Next,
we denote by Δy the greatest common divisor of the four integers
i(t + ydAtt — yJfiVzyiVz- On the other hand, for a natural number n,
denote by r(n) the number of integral solutions (Xy Y) of the equation
X2 + Y2 = n. It is well known that

r(ri) = 4(dχ(w) — dz(n))
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where d^ri) and dz(ri) are the numbers of divisors of n of the form

4m + 1 and 4m + 3 respectively.

The purpose of the present paper is to prove the relation:

(1.1) a(y) = r{Δv) , y e S\t2)Γn .

As the readers notice, (1.1) reflects the fact that each fibre of ht is

a circle.

§ 2 . Change of the fibration

Let H be the classical quaternion algebra over R with the quaternion

units l , i , j , k, with the relations i2 = f = — l,k = ίj= —ji. We shall

make the following natural identifications:

C=R + Ri^R2 , H = C + Cj = C2 = RA ,

Z[ί] = Z+ Zi = Z2 , tfz = ZM + ZM; = Z[i]2 = Z 4 .

As usual, for each z — x + yj eH,x,y e C, we write its conjugate, trace

and norm by z == x — yj,Ύr z = z + z and Nz — zz, respectively. In

working with H> we shall mean by R3 the subspace Rί + Rj + Rk

— Ri + Cj. This space is known as the space of pure quaternions and

is characterized as the set of all z e H such that Tr z = 0.

For zeH, put

(2.1) hiz) = ziz .

Since Tr (h(z)) = 0, h is a map: I?4 -* i?3. A simple calculation shows

that

2 )
i — Vl —

where « = x + i/j, a; = x0 + ^ i , y = y0 + yλί, x0, xly y0, yλ e R. Hence the

map (2.1) coincides with the map h introduced in § 1.

For t > 0, put

S3(ί) = {z e I?4,2Vz = t } , S2(ί) = {w e i?3,2Vw = t} .

Since N(h(z)) = (iV^)2 by (2.1), A induces a m a p

Λ4: S\t) -> S\t2) .

When t is a natural number, put
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sχt)z = sxt) n z 4 , s\t)z = s\t) n z 3 .

Then, ht induces a map

Our problem is to determine the image and the fibres of the map

httZ. To do this, it is convenient to replace the map ht by a map ft in

the following way. Namely, put

Σ (t) = {σ = (or,β,γ),a,βeR,γeC,a + β = t,Nγ = aβ} ,

and /ίO) = (Nx,Ny,ίxy) for 2 = a; + yj eS%t).

S2(f)<—Σit)
9t

Since Nx + Ny = Nz = t and N(i&2/) = (Nx)(Ny), ft is a map

Next, put

gt{a) = ( a - β)i + 2γj , for σ = (α, ]8, r) €

Since N(flrt(σ)) = (α - /3)2 + N(2r) = (α - β)2 + 4αj8 = (α + /S)2 - t\ gt is a

map Σ(t) -> S2(f). If ^(σ) = ^(σθ with ^ = {a',β',γ'), then a - β = a'

— β' and 71 = / . Since a + β = a' + β' = t, we see that gt is injective.

For any w = m + vy e S2(ί2), we have lί? = g^ir) with

(2.3) (T = (J(t + w), i(« - w), ̂ ) .

Hence gt is surjective, and so bijective. Finally, it follows from (2.2)

that gt(ft(z)) = ί̂(A^ ,̂ Ny, ixy) = (N^J - Nτ/)i + 2 i ^ = (iV» - Ny)i + 2xyk

= feί(^), the commutativity of the diagram.

Now, for a natural number t, put

= Σit) Π (Z2 + ZM) .

Then, fuQt induce maps

ft,z: S\t)z - J ( ί ) z , gttZ: ί ( t ) z -> S\t% ,

respectively such that gtiZ fttZ = feίfZ. If w = m + v; e S2(ί2)z is in the

image of gt>z, v must be a multiple of 2 in Z[ΐ] and, since Nw = u2 + Nv
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= t2, both t + u and t — u must be even. In view of (2.3), we see that

gt)Z is a bisection between Σ(t)z and the set S2(t2)e

z

en — {w = ui + vj

eS2(t2)z, 2\v}. Hence, to study the map httZ is equivalent to study the

map fttZ.

Kz/

9ttz

§ 3. Existence of solutions

Notation being as in §2, we shall determine for what σeΣ(t)z the

equation /«,z(2) = σ has a solution z e S\t)z. In the following, we shall

put σ = {a, β9 γ), a,βeZ, γ = γ0 + γxi e Z[ί], γ0, γx e Z. We shall first ex-

amine some special cases.

Case 1. γ = 0.

In this case, the relations a + β — t and 0 = Nγ = aβ imply that

either a = 0, β = £ or α = ί, /3 = 0, i.e. σ = (0, ί, 0) or (ί, 0,0). Hence

z = x + yj is 8, solution of /£,z(£) = σ if and only if either # = yj, Ny = ί

or 3 = a?, Λfa = t. Therefore it follows that

(3.1) fτMσ)Φ0^teN(Z[i]) .

Case 2. γ Φ 0 and (̂ 0, ft) = 1.

Assumptions imply that a, β ^ 1. Since α/ϊ = N^ = γl + y\, we have

(γ19a) — 1. Therefore, there are two integers τ,s such that γ0 — rγ1 + sa.

Put I = Za + Z(r + ϊ). We claim that I is an ideal. It is enough to

show that ia, i(r + i) e I. Firstly, ia = — ra + (r + i)a e I. Secondly, we

have

aβ = Nr = fo + ri = Oft + sa)2 + γl = (1 + r2)γx + 2rsTla + s2a2 ,

and so (1 + τ2)γx = a(β — 2rsγ1 — s2α). Since (γιyά) = 1, α must divide

1 + r 2: write 1 + r2 = αα7. Then, we have

i(r -f ΐ) = ir — 1 = r(r + i) — ̂ α7 e / ,

which shows that / is an ideal. Since Z[ί] is a principal ideal ring,

there is an x e Z[i] such that I = (x). Hence Nx = Nx — NI = α. Since

γ =z γQ + Yiί z=z (rγ1 + sα) + fri = (r + i)/x + sώ e /, we can find y e Z[i]

such that γ = î ?/. Then the relation iV̂  = aβ implies that Ny = j8. If
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we put z — x + yj, then we have ft,z(z) = (Nx, Ny, ixy) = (a, β, γ) = σ.

Hence f^z(σ) Φ 0 in this case.

Case 3. γ Φ 0 and (a, β, γQ, γx) = 1.

Put (7Ό,7Ί) = d0, (do,α) = cZp Hence we have γQ = d0^, ^ = d0^ with

(yj, γ'J = 1 and cZ0 = d^f.a = d^* with (α*,djf) = 1. From

aβ = Nr = γl + γ\ = dld*\γ? + γί2)

we get

(3.2) a*β - d^o*2^2 + rί
2) .

Since dx divides a,γ09γ1 and (or, /3, ̂ 0> ft) — h w e h a v e Wi>β) = 1 and hence

di divides a* : or* = dxa\ On the other hand, since (α:*, d?) = 1, df2 divides

β: β = dp*8^. Then (3.2) implies that

Hence, by the argument in Case 2 one can find x',y' eZ[ΐ\ such that

' = or', Ny' = /9r, / = i^Y. Put α; = d^', y = d0*/. Then, we have

^ N ^ ^ = dW = diίdiαO = di^* = a, Ny = d*2Ny' = cZ*2^7 = 0, isey =

idιdfx/y/ = djdf / = d0/ = p. Hence we still have ffflσ) φ 0 in this case.

We are now ready to prove the following criterion for the existence

of solutions. For σ = (a, β, γ) e Σ(t)z, put Δσ = (a, β, γ09 ft) where γ = γ0 + γxL

Then we have

(3.3) fιz(σ) Φ0&dσe N(Z[ΐ\) .

Proof. When γ = 0, we have J σ — (^, β) = t and the assertion is

nothing but (3.1). Hence, from now on, we shall assume that γ Φ 0.

(=» Take z = x + yj e Sz(t)z such that /t0s) = σ. Thus we have a = Λ x̂,

β = Ny,γ = ixy. Put or = J ^ , /5 = J./37, r0 = ^.r^ ft = ^ r ί τ h e n

?

 b y t h e

argument in Case 3, there are x', yf e Z[i] such that Nx' = α', iVi/7 = jS',

^ = iχ'y\ where f = f0 + γ[i. Since a = zf^, we have Λfa = Δ0Nx', i.e.

Δσ — N{xjxf). Then we have J σ = ]Vδ,δeZ[i], e.g. by the lemma of

Davenport-Cassels applied to the binary form X2 + Y2.*}

«=) Let a;',]/' be as in the proof of (Φ). By the assumption, there is

a number δ e Z[ί] such that Δa = N3. Put a = to', 2/ = by'. Then, iVα;

= J . N ^ 7 = Δaa! = a,Ny = ΔσNyr = Δaβ
f == j8, isea/ = iδz'δy' = Δσγ' = ^. Hence,,

we have /ίίZ(«) — σ with 2 = a; + yj, q.e.d.

Translating (3.3) in terms of ht>z, we obtain the following criterion.

*} See, e. g. J-P. Serre, Cours d'arithmetique, Paris, 1970, p. 80.
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Notation being as in § 2, for w = ui + vj e S2(t2)z, ueZ, v = v0 + vxi
eZ[ί]9 we have

(3.4) hΐ#w) Φ 0 & 2\v and Δw e N(Z[i]) ,

where Δw = (\(t + u), £(ί - u), %vQ, \vλ).

§4. Number of solutions

For a finite set F, we denote by Card F the number of elements in
it. Thus r(n) = Card {(x9 y) e Z\ x2 + y2 = n}. Using notations in § 2, § 3,
one restates the proposition (1.1) as

(4.1) Card (h^z{w)) = r(JJ for any w e S2(t2)Tn .

Translating (4.1) in terms of / t | Z, we are reduced to prove that

(4.2) Card (fϊ#σ)) = r{Δσ) for any σ e Σ{t)z .

Proof. Put, as before, σ = (<*, ̂ , ̂ ). In case r = 0, since Δσ = £,
(4.2) follows from the argument in §3, Case 1. Hence, from now on,
we shall assume that γ Φ 0. Since we already have the criterion (3.3),
it is enough to consider the case where fϊiZ(

σ) Φ 0 So, take a point
z = x + yj e f^z(σ) and call Iz the ideal in Z[i] generated by x and
y\lz — Z[ί]x + Z[ί]y. Let z' — xr + y'j be another point in the same
fibre as z. We want to compare Iz and Iz,. Since ft,z(z) = /ί,z(^0, we
have 2V# = IW, iV̂/ = iV?/7, 553/ = x'y'. From these relations, we see that
there is an element p e Q(i) with Np = 1 such that a/ = ^α;, /̂7 = py. It
then follows that lz, — plz and so NIg, = NIZ = nσ9 a, natural number
depending only on σ e Σ(t)z. For a natural number n, Put:

Θ{n) = {θeZ[i],Nθ = n} .

Hence we have Card (Θ(nσ)) = r(nσ). We shall show that there is a
bijection between / ^ W and ΘOO To do this, fix a point ζ = ξ + ηj
s ft,zM and, for any z = x + yj e ftfa)> denote by ^2 the element in

Qii) with N ^ = 1 such that x = pβf, 7/ = pzη. Since Z[il is a principal
ideal ring, there is an element ωeZ[i] such that Iζ = (ω). Put

= ωpz , « G /;•#*) .

We claim that T is the bijection we are looking for. First of all, write
ω = λξ + μη, λ,μe Z[ί]. Then, T(z) = ω^ = λξpz + μηpz = λx + μy e Z[ϊ]
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and N(T(z)) = Nω = NIZ = nα, which shows that Γ maps flz(σ) into

θ(ftj. Next, assume that T(z) = TO?'). Then, we have ρz = /v and hence

a; = χ\ y = #', i.e. 3 = «'. To see that Γ is surjective, take any θ e ©(ft,)

and put x = θω~ιξ9 y = tfύΓ1^, 2 = # + jy. Since 7C = (ω), we have f

= aω, η = 6ω with α,5e Z[ϊ]. It follows that x = θa and y — θb both

belong to Z[i]. Now, since No: = N(θ)n;1Nξ = Nξ = a, Ny = N^n^Nη

= Nη = β, we have Nz — Nx + Ny = a + β = t, i.e. s e S3(£)z. Further-

more, we have ίsej/ = iθω~ιξθω~ι = iN^n^ξη = if37 = 7, which shows that

zeffflσ). Finally, since a? = ^cy"1 ,̂ 7/ == ̂ ω"1^, we have ^ = ^ω"1 and so

T(z) = ô̂ω = ^, which completes the proof of the surjectivity of Γ. In

order to complete the proof of (4.2), we must show that

(4.3) nσ = Δσ whenever f^z(σ) Φ 0 .

First, observe that Iζϊζ = (nσ) and so nσ = (ξξ,ψj,ξη + ξη) — (α,j8,2^).

From the relation αβ = ^ + ^ϊ, one sees easily that ft, and J , contain

each odd prime p with the same exponent. Hence, it remains to examine

the exponent of 2. Denote by v2(ά) the exponent of 2 in an integer a.

Since we obviously have v2(Jσ) <Ξ v2(nσ), it is enough to show that v2(nσ)

^ υ2{Δσ). Hence, we may assume that v2(ftσ) ^ 1. Put e = ^2(ftσ) and

write or = 2βα*, /S = 2βj9*, r i = 2e"V* and r o = Wγt with (2,^*) = 1. We

have then 22ea*β* = 22f

r*
2 + 22(e-υ

rf
2, or 22fγ*2 = 22(e-υ(4α*^* - 7Ί*2). If

yf were odd, we must have / = e — 1, and then 4α*β* = γt2 + rf2, which

is impossible because both of γf,γf are odd. Therefore, γf must be

even and so we have e ^ inf (v2(γi)9 v2(ro))> which implies that v2(na)

^ v2(Aσ)9 q.e.d.
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