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ON A DISTANCE FUNCTION BETWEEN

DIFFERENTIABLE STRUCTURES*

YOSHIHIRO SHIKATA*

Introduction

In this note, we investigate a relation between the connected sum

of manifolds and the distance of manifolds ([2]). Since the smoothing

of a piecewise linear equivalence is given by connected sum of exotic

spheres ([1]), we have a certain estimate of the smoothing obstruction

using the distance of manifolds (Proposition 3). In § 3, an application

is given to show the impossibility of the 0.64-pinching of an exotic

sphere.

1. Let M, N be smooth orientable manifolds with boundary so that the

boundaries dM, 3N are diff eomorphic each other through a diff eomorphism

/ . Denote by C(dM),C(dN) the collar neighbourhoods of 3M,dN, respec-

tively, and let

a:dM X [0,1) -> C(dM) , β: 3N x [0,1) -> C(dN)

be the diffeomorphisms. Then the map which sends a(x, t)(x e dM, t

e [0,1)) into β(f(x), 1 — t) defines a diff eomorphism F = F(J) between

C(ΘM),C(dN) and the identified space M{JFN turns out to be a smooth

manifold.

LEMMA 1. Let Mi9Ni (i — 1,2) be smooth manifolds with boundary

and let fx be a diff eomorphism between 3Mι and dN^ If homeomorphisms

g1: ilf j -> M2 and g2 N1-* N2 are diff eomorphic on some neighbourhoods

of the closures of collar neighbourhoods C{dM^), C(9A/Ί), then there are

collar neighbourhoods C(dM2),C(dN2) and a diff eomorphism F2 of C(dM2)

onto C(dN2) so that M2 [JF2 N2 is homeomorphic to M1 Uwi) ^1 by a

homeomorphism gλ U g2 defined by
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x) , if xeMx
U g2(x) = .

l&fa) if xeN,
PROPOSITION 1. Let Mί9 Ni9 gi (i = 1, 2), /i, be as m Lemma 1.

Suppose moreover that with respect to Riemannian metrics puai (i — 1,2)

on Mi9Ni respectively, the homeomorphisms gt (i = 1,2) satisfy that

,< p2(g1(x), gx(y)) < kφ^x, y) for x,yeMl9

σx(x, y)/k2 < σ2{g2{x), g2(y)) < k2σλ(x, y) for x, y e N, ,

then there exist Riemannian metrics τ< o^ M4 U^<^< (i = 1,2) ŝ c/z,

Tχ(ίc, 2/)/max (fci, fc2) < r2(flr! U #2O0> ̂ i U flr2(i/)) < max Qcu k2)(τλ(x, y)) .

Proof. Take a real valued smooth function φ such that

0 < φ(t) < 1 , φ(t) = 0 for t < 0, ̂ (t) = 1 for ί > 1 ,

0 < ^(ί) , ψ\t) = 0 for t < 0 or ί > 1 ,

p(l - t) = 1 -

and let

aι:Mιx [0,1) -> C{dMλ) , ft: Nt X [0,1)

be diffeomorphisms onto the collar neighbourhoods. Then

^2=^i°αiίίflTΊβjr,)* id) , j92 = ^2oftCC^UΛ id)

also are diίfeomorphism of dM2 x [0, l),9iV2 x [0,1) onto collar neighbour-

hoods C(dM2),C(dN2), respectively, moreover the identification map F2

obtained from α2,j92, and ( ^ k ) 0 / ! 0 ^ " 1 ^ ) satisfies that

g2 o Fλ = F2 o g, on COM,) .

Define quadratic forms ft on Mi \JFi Nt (i = 1,2) by

p i ) , xeMt- C(βMt) ,

W + (1 - ?>(ί(aj)))(F4*^)Λ , a? e COM,) ,

, xeNt- C(dNi)

where t(x) denotes the ί-coordinate of x in the collor neighbourhood and

O indicates the quadratic form of a metric ( ). Then it is easy to see that

the well defined quadratic forms r* (i = 1,2) give Riemannian metrics

n on Mi \JFi Nt. Since
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σ1{F1(x)9F1(y))/k2 < σ2ig2FMf9zF1(y)) < k2σ1(F1(x)9F1(y)) ,

it holds that

PιlK< 9ΐp2 < Kpi ,

Ffd1/k2 < g¥(F*σ2) = (g2Firσ2 < k2Ffd1 .

Therefore the metrics τt satisfy that

Γi/max (k19 k2) < g?τ2 < max (k19 k2)τ1

on C(3Mi), thus from the construction of gx U g2 we may conclude that

τ1(x,y)/max(k1,k2) < τ2{{gλ U g2)(x)9(g1 U g2)(y)) < (max (k19 k2))(τλ(x9 y)) .

Let Mi (i — 1,2) be smooth manifolds with metrics pt (i — 1,2) and

/ be a map of M1 into M29 then we define ί(J: pί9 p2) by

£(f:pi,P2) = inf {fc > 1/ p1(x,y)/k < p2(f{x),f(y)) < kPι(x9y)9

for any x,y eM}

DEFINITION. Let Σt (i = 1,2) be differential structures on a com-

binatorial manifold Z represented by smooth manifolds Mt (i = l,2)

with Riemannian metrics ρt (i = l,2). The distance d(Σ19Σ2) between

the differential structures is defined to be

where the infimum is taken over all the piecewise linear equivalences /

of Mx onto M2 and all the Riemannian metrics p19p2. It is known ([2])

that d is actually a distance function.

THEOREM 1. Let Σitj (i, j = 1,2, j = 1,2) be differential structures on

cominatorial manifolds Xi (i = 1,2), respectively, then it holds that

d(Σltl%Σ2Λ,ΣU2$Σ2i2) < max(d(Σltl,Σh2),d(Σ2Λ,Σ2>2))

where Σίtl%Σif2 denotes the differential structure obtained by the connected

sum.

Proof. Represent Σifj by smooth manifolds Mitj9 and for ε > 0

take piecewise diffeomorphisms gt of MiΛ into Mit2 and Riemannian

metrics pitJ on MitJ so that

log £(gt piΛ9 pit2) < d(Σitl9 Σi>2) + ε



56 YOSHIHIRO SHIKATA

Assume that gt are diffeomorphic on neighbourhoods of points

Pi e MiΛ. Let M'ifl (resp. M'if2) be the manifold obtained by cutting out

a small imbedded disk around pt (resp. QidPi)). Then M\ti and gt turns

out to satisfy the assumption of Proposition 1 with kt = S(Qi; piΛ9pit2).

Since identified manifolds Mί^ U M'2J represent the connected sum Σίtj

§Σ2>j, we have that

dίΣltl$Σw Σί>2%Σ2>2) < max (log kl9 log k2)

finishing the proof.

COROLLARY 1. Let Γk be the group of k-dίmensional homotopy

spheres, then it holds that

d(Σλ + Σ2yΣ2 + ΣJ

for any ΣiβΓk (ί = 1,2,3).

COROLLARY 2. The subset Γk(a) of Γk given by

turns out to be a subgroup of Γk, where Sk denotes the standard k-

sphere.

COROLLARY 3. Let Mi (i = 1, 2) be k-dίmensίonal manifolds such

that M2 « MX$Σ {diffeomorphic) with Σ eΓk(a), then

d(Mlf M2) < a .

COROLLARY 4. Let Diίf S^"1 denote the set of orientation preserving

diffeomorphisms onto itself and let π denote the projection of Diff Sk~ι

onto Γk, then taking the usual metric | | on S10'1 induced from that of

Rk D Sk-\ it holds that

d(Sk,π(f))<log£(f;\ |,| |) .

Proof. Extend / radially to a homeomorphism g of disk Dk onto

itself which bounds the sphere Sfc~x and apply Lemma 1 to disks Dk,g>

id and / :

D* D dDk - ^ > dDk c Dk

Dk D



DIFFERENTIATE STRUCTURES 57

to obtain a homeomorphism g U id and a diffeomorphism F2 of dDk onto
itself which can be chosen to be identity. Since it is obvious that

\ 1 , 1 I ) ,

Proposition 1 yields that

S*-1, *(/)) <\ogS(f;\ |, | |) .

2. The partial converse to Corollary 3 holds as in the following:

PROPOSITION 2. Let f be a homeomorphism between k-dimensional
manifolds Mί9 (i == 1,2) with Riemannian metrics pi (i = 1,2) and assume
that f is diffeomorphic except finite number of points Pί9 - — Pme Mx

then M2tt MX%Σ (diffeomorphic) with ΣeΓk (log £(f; p19p2)).

Proof. Imbed small &-disks Dt around Pί9 then the images
turn out to be submanifolds in M2. Apply Lemma 1 to manifolds
Di,f(Di), diffeomorphism f\dD. and homeomorphisms id,/"1

d(f(Dd) c

.d

3D, C Dt

to obtain homotopy sheres Σt = Dt \JFχ f(Dt) and a homeomorphism
id U f~ι between the homotopy sphere and the sphere Si. Because of
Proposition 1 there are Riemannian metrics σ\,σ\ on Σi9Sίf respectively,
so that

U f σlσξ)

Therefore we have that

ΣieΓk(log£(f;pl9P2)) .

On the other, since it is easy to see that

this finishes the proof.
In general, concerning the first obstruction of Munkres ([1]) to

smoothing /, we obtain the following:



58 YOSHIHIRO SHINATA

PROPOSITION 3. Let Mt (ί = 1,2) be smoothly triangulated manifolds
with Remannian metrics pt (ί = 1,2) and let L be an m-dimensional
sub complex of Mx. If a homeomorphism f of Mx onto M2 is diffeomor-
phic mod. L, and if £(f: plfp2) < £Q = 1.32 for the positive root £Q of
xs — x — 1 = 0, then the first obstruction chain λ(f) of Munkres to
smoothing f lies in

where £(f) = £(J\pl9pd

Proof. Munkres obstruction is obtained as follows: Take an m-
simplex σ e L and take trivializations of normal bundles as coordinate
systems around σ and f(σ) so that the tubular neighbourhoods of σ,f(σ)
are diffeomorphic to σ x Rk~m, f(σ) X Rk~m, respectively, then if ε > 0
is sufficiently small, πofoip is a homeomorphism of the ε-disk Dε

around 0 into Rk~m for the inclusion ip: Rk~m -»p x Rk-m and for the
projection π:f(σ) x Rk~m. Thus the obstruction λ(f)(σ) is defined to be
homotopy sphere obtained by glueing the boundaries of Dε and π o f o ip(Dε)
through πofoip. Hence it is sufficient for the proof of Proposition 3
to compute £(πofoip;pl9p^ (see Proposition 1) and because of the reg-
ularity of / at L ([1] p. 526 (4)) the computation is reduced to the
following Assertion;

Assertion. Let g be a map between manifolds Nt (i = 1, 2) with
Riemannian metrics σι (i = 1,2) satisfying that

then if g is differentiate along any vector of an m dimensional vector

space V c TpiNJ, the angle θ between the vector exp^o^oexpx (y), 0 and
the plane dg(7) is not too small, in fact θ satisfies that

cos θ < re3 — K < 1 ,

for any y in orthogonal linear subspace W to V, provided \y\ is suffi-
ciently small.

Proof of Assertion. Taking an ε-diskDe of 0 in TpiNJ, we may
assume that g — expj1 o g o expx also satisfies that

on Dε. Let x e V be such that \x\ = \y\, then it holds that



DIFFERENTIATE STRUCTURES 59

2<0(aθ,/(i/)> = I £0*012 + I / W - \S(χ) - f(y)\2

also it holds that

therefore we have that

|cos (£0*00, f(y)0)\ <κ3 -fc ,

finishing the proof of Assertion.
Thus taking the regularity of / into consideration, we may conclude

that by an application of Assertion to g = foίp,

fc~ι(l — (Λ:3 — fc)ψ2 < ρ2(πo f oip(χ),πo f oip(y))/Pl(χ,y) < κ

on a small disk around 0, completing the proof of Proposition 3.

3. The method in §1,2 applies to obtain a weak estimation of the pinch-
ing of an exotic sphere. Let MUM2 be combinatorially equivalent com-
pact manifolds, then according to the construction of Hirch-Munkres ([1]),
we may have a sequence of compact manifolds Li (i = 1 k) such that

i) Li are combinatorially equivalent to MUM2.
ii) Lλ = Ml9Ik = M2 (diffeomorphic).

iii) Lί+1 is obtained by attaching of Σj x In~j to Lt through a certain
attaching map, (ΣjeΓj).

Now suppose M19M2 have different (integral) Pontrjagin class, then
for some i, Lu Li+1 have also different Pontrjagin classes. Since we
know that manifolds having different Pontrjagin classes are of distance
^1/2 log 3/2 ([3]), we have that

( 1 ) ^ max (d(Lu L4), d(S^ x /»->, Σ' X In~j))

Here the last inequality follows from an easily proved Lemma below:

LEMMA 2. // Mi9 Nt denote a pair of combinatorially equivalent

compact manifolds (ί = 1,2) then

d(Mλ x M2,N1 x N2) ^
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On the other as is improved by Karcher (unpublished, see also ([4]))
<5-pinched Riemannian manifold Mδ (3 ̂  9/16) has distance <4(1 — VT)
from the standard sphere S, therefore if the exotic sphere Σj in (1) is
expressed as a ^-pinched manifold Mδ,δ must satisfy that

1/2 log 3/2 ^4(1 - V7) .

hence

δ ^ 0.64 ,

thus we may conclude that a certain exotic sphere of dimension <̂ 16
which appears in the obstruction chain to smoothing a combinatorial
equivalence can not be pinched by 0.64, because we know that there are
compact 16 manifolds having different Pontrjagin classes.
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