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SIEGEL DOMAINS OVER SELF-DUAL CONES

AND THEIR AUTOMORPHISMS

TADASHI TSUJI

Introduction

The Lie algebra gΛ of all infinitesimal automorphisms of a Siegel
domain in terms of polynomial vector fields was investigated by Kaup,
Matsushima and Ochiai [6]. It was proved in [6] that Qh is a graded
Lie algebra; gΛ = g_x + g_1/2 + g0 + 0i/2 + & and the Lie subalgebra gα of
all infinitesimal affine automorphisms is given by the graded subalgebra
Qa — g_x + g_1/2 + g0. Nakajima [9] proved without the assumption of
homogeneity that the non-affine parts g1/2 and & can be determined from
the affine part gα.

The main purpose of the present paper is to determine explicitly
the Lie algebras gΛ for Siegel domains over self-dual cones. In §2 we
will prove that if the adjoint representation p of g0 on g_x is irreducible,
then gΛ is simple or Qh = gα (Theorem 2.1). Moreover using Nakajima's
result we will give sufficient conditions of the vanishing of g1/2 (Proposi-
tion 2.3 and Corollary 2.7) and a method of calculating g1/2 and gx

(Propositions 2.6 and 2.8). Using the results in §2, we determine in
§ 3 (Theorems 3.3-3.6) infinitesimal automorphisms of most of the homo-
geneous Siegel domains over self-dual cones (other than circular cones)
which were constructed by Pjateckii-Sapiro [10].

The circular cone C(ri) of dimension n (n > 3) is defined to be the
set {*(#!> x2, , xn) e Rn xx > 0, xxx% — x\ — — x\ > 0}. Pjateckii-Sapiro
[10] found all the homogeneous Siegel domains over circular cones which
are constructed by using the representation theory of Clifford algebras.
But it was shown by Kaneyuki and Tsuji [5] that there exists a homo-
geneous Siegel domain over a circular cone which does not appear in
Pjateckii-Sapiro's construction. In view of this fact the purpose in §4
is to giwe a method of constructing all homogeneous Siegel domains over
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circular cones (Theorem 4.4) by making use of the considerations analo-
gous to [5].

Pjateekii-Sapiro [10] pointed out without proof that the exceptional
bounded symmetric domain in C16 is realized as a Siegel domain over
the cone C (8). In § 5 we consider a certain homogeneous Siegel domain
D over C (8), which is implicitly given in [10], and by means of results
in § 2 and § 4 we prove that D is isomorphic to the above exceptional
symmetric domain (Theorem 5.4).

Finally, in § 6 we determine infinitesimal automorphisms of homo-
geneous Siegel domains over circular cones (Theorem 6.1, Propositions
6.2 and 6.3).

Some of results of the present paper were announced in the note [15].
The author wishes to express his hearty thanks to Prof. S. Kaneyuki

for his helpful suggestions and encouragement during the preparation
of this paper.

§ l Preliminaries

In this section, after introducing notations which are used through-
out this paper, we recall some of results of [6] and [9].

1.1. Let R be a real vector space of dimension n and W be a
complex vector space of dimension m. Let D(V,F) denote a Siegel
domain of type I or type II in Rc x W associated with a convex cone
V in R and a V-hermitian form F on W, which is defined by Pjateekii-
Sapiro [10], where Rc is the complexification of R. Throughout this
paper we will employ the following notations;

$h (resp. Qa) the Lie algebra of all infinitesimal holomorphic (resp.
affine) automorphisms of D(V,F).

Q(V) the Lie algebra of the automorphism group G(V) = {g e GL(R)

gV = V} of the cone V.
K> > en} (resp. {f19 ,/m}) a base of R (resp. W).
(z19 - -9znfwu -,wm); the complex coordinate system of Rc x W

associated with the base {e19 ,en9fu ,/m}.
The following ranges of indices will be taken in each summation: 1 < j , k,
I, <n9 1 < a9 β9 γ9 < m.
For a positive integer p9U(p) (resp. O(p)) denotes the unitary (resp.-real
orthogonal) group of degree p and Ep denotes the unit matrix of degree
p. And for two positive integers p and q, we denote by M(p9q; F) the
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real (resp. complex) vector space of all real (resp. complex) p x q-

matrices and by gί(p,F) the real (resp. complex) general linear Lie

algebra of degree p, where F = R (resp. C).

1.2. Put d = Σ Zkd/dZk + j Σ wad/dw« and 3' = i Σ ^ad/dwa. Then

the following results (1.4)-(1.6) are known in [6].

(1.1) The vector field d belongs to §h and gΛ is a graded Lie algebra;

6h = fl-i + 3-i/2 + 9o + βi/2 + βi> where & is the Λ-eigenspace of ad(d)

(λ= ± 1 , ± i , 0 ) . Furthermore gα is the graded subalgebra; qa =

β-l + 9-1/2 + βo

(1.2) ί.i = {Σtt*3^;β'eJί}.

(1.3) 8-i/» = {2i Σ ^*(w, c)S/3«* + Σ cad/dwa ;c =

where F(w, c) = Σ Fk(w, c)ek.

(1.4) g0 = {Σ aklztdldzk + Σ baβwβd/dwa A = (α«) e g(V), β = (6ep e

ΛF(w, w) = F(Bu, u) + F(u, Bu) for each u e W}.

Let r be the radical of βΛ. Then

(1.5) x is a graded ideal of gΛ such that x = r_x + t_i/2 + *o>

where ΐ_2 = r ί l g_λ (Λ = 1,^,0).

(1.6) dim QX = dim g.^ — dim x_λ (λ = 1, \) .

Considering (1.1) we denote by /> (resp. σ) the adjoint representation

of the subalgebra q0 on g_j (resp. g_V2). Let us define real linear iso-

morphisms ψ_x and φ_1/2 as follows;

^_j : a = Σ αfcefc e i? ι-> ̂ )_i(α) = J] akd/dzk e g_x ,

P-IΛ : c = Σ ^αΛ 6 W ^ ^_1/2(c) = 2< Σ ί7"^, c)3/3«* + Σ oad/dwa e g.1/2 .

Then by easy computations we can see that the following (1.7) and (1.8)

are valid for a e R, c9c' eW and X = Σ aki^/dzk + Σ baβwβd/dwa e go>

(1.7) piXXφ.M)) = -p.i(Aα) and oQQiφ^ic))

where A = (α^O and Z? = (&α/8). In particular

(1.8) tp-i/,(c), p.1/a(c0] = ̂ ^ ( I m F(c', c)) .

By the facts stated above we can identify /o(g0) with a subalgebra of

The following results (1.9) and (1.10) are due to Nakajima (Prop-

osition 2.6 in [9]).
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(1.9) The subspace g1/2 of qh consists of all polynomial vector fields

X = Σ P* id/92* + Σ (Plo + PlddldWa satisfying the condition

[<ϊ-i/2>-Ώ c g0, where p\μ and p£μ are polynomials of homogeneous

degree λ in zlf ->zn and homogeneous degree μ in wu - -,wm.

(1.10) The subspace Q1 of Qh consists of all polynomial vector fields

Z = ΣPlβldZk + ΣPi,id/3wα satisfying the following conditions;

[g_1/2, Z] c g1/2, [β.,, Z] c g0 and Im Tr σ([Y, Z]) = 0 for each Y e g_x.

§ 2. Lie algebras of infinitesimal automorphisms

2.1. Kaneyuki and Sudo [4] proved that if D(V, F) is an irreducible

symmetric domain (or equivalently §h is simple), then the representation

p is irreducible. Conversely without the assumption of homogeneity of

D(V,F) we have

• THEOREM 2.1. // the representation p is irreducible, then $h is

simple or %h = gα.

Proof. By our assumption we have r_x = (0) or x_λ = g_j, since r - x

is a subspace of g_t invariant under (̂go). First we suppose x_λ — (0).

Then it follows from (1.5), (1.7) and (1.8) that r__1/2 = r0 = (0) and x = (0)

(this fact was proved more generally in [9]). So gft is semi-simple.

Suppose that gΛ is not simple. Then the Siegel domain D(F, F) is reduc-

ible and the cone V is decomposed into irreducible factors (cf. [9], Corol-

laries 4.8 and 4.9), which means that p is not irreducible. This con-

tradicts to our assumption. Thus gΛ is simple.

Now we consider the case x_x = g_j. It follows from (1.6) that Q1

= (0). We will show that g1/2 = (0). By (1.9) every Z e gV2 is represent-

ed as Z = Σ PΪ9ιd/dzk + Σ 0P?,O + Ph)d/dwa. Put Z = [Z, [a',Z]]. Then

from the direct verification it follows that Z is represented as

Z = 2ί E PU^-dldzk + 2< 5
dwβ dzk

By (1.1) and the fact 9' e g0, the vector field Z belongs to gx = (0). Hence

we have

(2.1) Σ VU^±- =0 (1 < k < n) .
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Since [g_i,X] c g_1/2, there exist cι = J^cjfaeW (X<l<n) such that
[d/dzl9 X] = 2< Σ F*(w, c2)3/3zfc + 2 c?3/3we (1 < Z < n). On the other

hand, [d/dzlf X] = Σ -Mi-3/32fc + Σ - ^ d/d™« tt<l< n), which implies
3^i 3^j

M L = 2iFk(w,cι) and -M°- = cf. Hence we have
dzt dzt

Pϊ,i = 2< Σ ^*(w, c,K and p?fβ = Σ <% d < *? < ^ 1 < α < m) .

In view of (2.1) we obtain Σ ^ ^ ^ M = 0 (1 < Λ; < w). So we get
F*(Cι, cz) = 0 (1 < fe, Z < ?i). Therefore ct = 0 and pjf$1 = pff0 = 0 (1 < fc
< 72,, 1 < a < m). Thus X is written as X = Σ Po^l^wa- ^ ^s e a s ϋ y
seen that [3',X] = iX. So both X and iX are contained in Qh. This
means X = 0 by the well-known theorem of H. Cartan. Consequently
we have g1/2 = (0) and by (1.1) we conclude that gΛ = gα. q.e.d.

The above theorem will be used to determine the Lie algebras gΛ of
certain Siegel domains in the following sections.

A Siegel domain D(V,F) in Rc x W is said to be non-degenerate if
the linear closure of the set {F(u,u);ue W} in R coincides with R (cf. [4]).
Otherwise D(V,F) is called degenerate.

Without the assumptions of irreducibility of p and homogeneity of
D(V,F), we have

PROPOSITION 2.2. // D(V,F) is non-degenerate and g1/2 = (0), then

6h = gα

Proof. From (1.7) and (1.8) it follows that D(V,F) is non-degenerate
if and only if [g_1/2, g_1/2] = g_le For X e &, we have [X, g_1/2] c g1/2 = (0)
and so [X,g_J = [X, [g_i/2, g_i/2]] = (0). On the other hand, the condition
[X,g_J = (0) implies X = 0 (see [9], Lemma 3.1). By (1.1) we have gΛ

= gα- q.e.d.

2.2. We now discuss sufficient conditions of the vanishing of g1/2 of
a Siegel domain D(V, F) of type II in Rc x W. Let X = Σ vlβl^u +
Σ (Pi,o + Vo^d/dWa be a polynomial vector field on Rc x W. Then it is
known in [9] that X is contained in g1/2 if and only if there exist ct =
Σ cΐfa eW (l<l<ri) and b% e C (ba

βr = ba

rβ, 1 < a, β, γ < m) satisfying
the following (2.2), (2.3) and (2.4) (see (3.2) and (3.5) in [9]);

(2.2) X is represented as

X = 2i Σ Fk(w, cdztd/dz* + Σ Φid/dw. + Σ ba

βrwβwrd/dwa .
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(2.3) Σ δ ^ \ = i Σ (Fι

βicίF% + F^lFD

for 1 < k < n, 1 < β,γ,d < m, where F*β = F\faJβ).

(2.4) For each deW, the matrix A(d) = (A(d)kl) belongs to Q(V),

where A(d)u = ImF^c^ίϋ).

PROPOSITION 2.3. // α vector field X e g1/2 satisfies the condition

= (0),

Proo/. By (2.2) there exist c% e W (1 < I < n) and 6£r 6 C (1 < or, β, γ < m)

such that X is represented as X = 2i 2] F*(w, Cι)ztdldzk + 2] c\Zιd\dwa +

Σba

βΐwβwrd/dwa. For each d e W , we can verify that the matrix

/>([¥>-.i/2W)>-3Π) coincides with (4 ImF f c(cz,d)). From our assumption it

follows that Fk(cu d) = 0 for every d e TF (1 < A, Z < w). Therefore ct =

0 (1 < i < ^) and X is written as Z = Σ Po,2^/^w«* By the same con-

sideration as in the proof of Theorem 2.1 we have X = 0. q.e.d.

Now we suppose that W is the direct sum of subspaces Wt (i = 1,2)

satisfying the condition F(WΊ, PF2) = (0). Let Ft denote the restriction

of the V-hermitian form F to Wi X Wt. Then F% is a 7-hermitian form

on W^ We denote by g£} = gί!l + g%2 + g?} + gίĵ  + gί° the Lie algebra

of all infinitesimal automorphisms of the Siegel domain D(V,Fi) in

Rc X Wi. We can assume that {f19 - , fmi} (resp. {/TOl+1, ,/«}) is a

base of WΊ (resp. W2), where mx = dim TF2.

We define a linear map Φ of the Lie algebra of all polynomial vector

fields on Rc x W into that of all polynomial vector fields on Rc x Wι by

Σ n,3/9w«) = Σ (PI,.

where ί is the injection (z, wj e Rc x ^ »-> (̂  , ̂  + 0) G β c x W.

For

X = 2< Σx Fk(w> cύztd/dzj, + Σ <%Zιd/dwa + Σ ba

βrwβwrd/dwa e g1/2

(cf. (2.2)), we define two vector fields Z ( 1 ) and Z ( 2 ) by

= 2< Σ Fϊ(v>i> ci Σ
<
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Σ
(2.6) « .ΛrS-i

x<2> = 2ί Σ FkΛw2, clt2)zιd/dzk + Σ
mχ<a<,m

+ Σ ba

βrwβwrd/dwa ,

where w = wx + w2, ct = c u + cί)2 e ΐ^ = W1 + W2. Then we get

LEMMA 2.4. For eαcfe Z e g 1 / 2 , Z ( ί ) δe ίo^s ίo gίj> (i = 1,2) and Φ(Z)

= Z(1>.

Proof. We will show that the polynomial vector field Z ( 1 ) (resp. Z (2))

on β c x Wλ (resp. β c x W2) satisfies the conditions (2.2), (2.3) and (2.4).

In fact, by (2.6) Z ( 1 ) (resp. Z (2)) satisfies the condition (2.2). By using

the equalities F(Wlf W2) = (0), Ff(/., fβ) = Fα% (1 < α, /3 < mx), F}(/β, /,)

= F*β {mι <a,β<m) and the fact X e g1/2, we have

= Σ

* Z Γ βδClΓ γa "T r r

= < Σ (Fι

βδcΐF% +

Z-l \Γ βδClΓ γa "T r rδOιΓ βa)l<

(1 < k < n, 1 < β, γ, δ < m,) ,

which implies that Xω satisfies the condition (2.3). For each dλ e W1 the

matrix (Im Fξ(clfl9 dj) belongs to g(F), since the matrix (ImF^c^eZi))

belongs to g(V) and Fk(cl9dJ = Fi(clΛ,dd. Thus we showed that Z ( 1 )

satisfies the condition (2.4). Therefore Xω is contained in g$. Analogously

we can see that X(2) belongs to &%. From (2.5), (2.6) and the condition

F(W19 W2) = (0) it follows immediately that Φ(X) = Z ( 1 ) . q.e.d.

LEMMA 2.5. For each XGQO,Φ(X) belongs to q^\

Proof. We put σ(Z) = ( σ i ( Z ) σ 3 ( Z ) V where σx(Z) is the submatrix
\σ2(Z) σ4(Z)/

of degree mx. Then it can be easily seen that Φ(X) is represented by

ΦiX) - Σ diciZid/dZic + Σ baβwβd/dwa ,

where the matrices (akl) and (&α/3) coincide with p(X) and ir^Z), respect-

ively. From the condition F ^ , W2) = (0) and (1.4) it follows that for

each ux e W19

p{X)F1{uuuι) = p{X)F{ul9uλ)
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, σί(X)uι + σ2(X)u1)

+ F^u^X))

So, by (1.4) Φ(X) belongs to $K q.e.d.

We now denote by Φλ the map Φ restricted to the subspace g; of gΛ

(λ = ± 1 , ± | , 0 ) . Then we have

PROPOSITION 2.6. // Q[% = (0), then the map Φ induces a grade-

preserving linear map of gΛ into g^ satisfying the following conditions:

(1) The subspace g_! of gΛ coincides with tfl\ and Φ_x is an identity.

Furthermore Φ_1/2 is a surjection of g_1/2 onto Q%2.

(2) The map Φ1/2 is an injection of g1/2 into g$.

(3) The subspace & of gΛ is contained in g{1} and Φ1 is an identity.

(4) The maps Φλ satisfy the condition; Φ0([X,Y]) — [Φ_λ(X),Φλ(Y)]

for

Proof. By (1.2) it is obvious that g-i = 8-1 and Φ^ι(β/dzk) =

Now we show Φ(g_i/2) = gΏ/2. In fact, from (1.3) and the condition

F(Wlf W2) = (0) it follows that Φ(φ.1/2(c)) = p.^fa) for c = cx + c2 e W =

Wι + W2. Thus we have Φ(g_1/2) = gΏ/2 and the assertion (1) was proved.

By Lemma 2.4 we have Φ(gV2) c g$. For Z e g1/2 we suppose that

Φι/2{X) = 0. Then from the assumption gί^ = (0) and Lemma 2.4 it

follows that Xω = Z ( 2 ) = 0 and X is represented as X = Σ Vhdldw«-

Therefore, (as we stated before,) X = 0. Thus the assertion (2) was

proved.

Now we show that Φi(X) = X for each Z e f t . In fact, let X =

Σ Afafrd/dzt + Σ Ba

lβztwβd/dwa e & (A$, = Afy, β?^ e C, cf. (1.10)). Then

from the condition [g_V2,Z] c g1/2 it follows that for each ce W,

l<P-v2(c), X] = 2iΣ (2F'(w, c)A)t - B"lβF«(fa, c)wβ)zιd/dzk

+ Σ c^Ba

lβzιd/dwtt + 2% Σ Ba

kβF
k(w> c)wβd/dwa

belongs to g1/2. On the other hand, by (2.2) there exist ct e W (1 < I < n)

and ba

βr eC (1 < a, β, γ < m) such that

[<p_1/2(c),X] = 2iΣFk(w,cι)zιd/dzk + Σ c"Zιd/dWa + Σ ba

βrwβwrdjdwa .

By the assumption g$ = (0) and Lemma 2.4 we have [^_V2(c),Z](2) = 0.

Therefore by (2.6) ct is contained in Wx (i.e., ci = 0 if mx < a < m).
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By (2.7) we have

Ba

lβ = 0 (1 < I < n, mλ<a<m9 l<β<m)

and

F«(w1,cι) = 2 Σ FKWfCiA^- Σ B«lβF«(fa,c)wβ.

By the condition F(Wl9 W2) = (0) we get

2 Σ FKw2fc2)Akjι- Σ Ba

lβF
k(fa9c1)wβ = 0 .

As c = Cj + c2 is an arbitrary element in TF = Wx + W2, so

By putting e,= Σ B°lβfa we have W Σ Bj,/., Σ βj,/.) = 0.
l<,a<,mι Vl^α^mi l^α^mi /

Therefore

Btβ = 0 (1 < ί < tι, 1 < a < m1 < β < m) ,

and X is written as

(OQΛ X = Σ Afazfi/dzt + Σ Ba

lβztwβd/dwa .

By (2.5) we conclude that Φ.iX) = X.

We want to show & c gίυ. It is enough to show that each element

X e gx considered as a polynomial vector field on Rc x Wx satisfies the

conditions in (1.10).

For each cλ e W19 by (2.7) and (2.8) we have

Φifldφ-πicd, X]) = iφ-ylLcd, X] .

From the facts [φ.y^), X] e g1/2 and Φ1/2(g1/2) c g{}2 it follows that [ψ-y2{c^9 X]

belongs to 9ί}2. We put Yk = [d/dzk9X] (1 < k < n). Then by (2.8) Φ0(Yk)

= Yk. From the fact [g_i,X] c g0 and Lemma 2.5 it follows that Yk is

contained in ffl By (2.8) we can see that

Thus, ImTr^ίYfc) = ImTrσίYfc) = 0. Therefore by (1.10) we conclude
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that X belongs to $ί1}. The assertion (3) was proved.

By (1) and (3) we have [X,Y]e$) for XGQ^YGQ^ Therefore we

get Φ0([X, YD = MUX), Φι(7)]. Let

X = 2i Σ Fk(w19 cjztd/dzu +
l<,k,l<.n

+ Σ ba

βrwβwrd/dwa e g1/2 (c, e

Then for each d =: dx + d2eW = W1 + W2 we have

We can verify that p([φ_y2{dd,Φι/2(X)λ = (&lraFk(cudJ) and the (a,β)-

component of the matrix (7i([^_i/2(di),^i/2(^)]) is

On the other hand, by the conditions ct e Wx and F(W19 W2) = (0) we have

+ 2 Σ (i Σ F*β/&<t + ba

βrdλwβd/dwa .

We can see that b% = 0 if 1 < a, β < mι < γ < m. In fact, by (2.3) and

the condition F(WU W2) = (0) it follows that Σ b«βΐF
k

δ = 0 (1 < δ < mx),

w h i c h i m p l i e s F*( Σ ba

βrfa,fδ\ = 0 (l<k<n, l<δ< m,). S o ,

Σ ba

βrfa = 0 and ba

βr = 0 (1 < a, β < m1 < γ < m). Therefore by (2.5)

we have

l^k^n

which implies that Φ0([<p_ι/2(d)9X]) = [ Φ - ^ ^ -

By (2) in the above proposition we get

COROLLARY 2.7. // g$ = (0) (i = 1,2), ίfeβ^ g1/2 = (0).

2.3. Let D(F, F) be a Siegel domain of type II in Rc x W, Let

D7 denote the associated tube domain with D(V,F), i.e.,

(2.9) D' = Z)(7,F) Π (i?c x {0}) ,
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which is isomorphic to the Siegel domain D(V) of type I in Rc. It was

proved by Kaup, Matsushima and Ochiai [6] that the subalgebra β-i +

So + 81 of gΛ is the Lie subalgebra corresponding to the subgroup of all

automorphisms of D(V, F) leaving the domain Ώf invariant. Let tfh = βί 1

+ 9o + βί be the Lie algebra of all infinitesimal automorphisms of D'.

Then there exists a grade-preserving Lie algebra homomorphism ξ of β-i

+ g0 + fl! into β'Λ = 9-i + βί + βί

(2.10) ξ: X e g-x + βo + βi -> £(*) 6 βί >

where £(X) is the vector field which is the restriction of X to D'.
As a corollary to Proposition 2.6 we have the following proposition

which will be used in order to determine the subspace βi of 8Λ

PROPOSITION 2.8. // cj1/2 = (0), then βi is a subspace of βί a>nd the
map ξ restricted to Q1 is an identity.

Proof. We put Wι = (0) and W2 = Ψ. Then the Siegel domains
DiVtFJ and D(V,F2) coincide with D' andί)(Ύ,F), respectively. There-
fore ffl = $'h and 0^ = 8Λ It is e a s y to see that the map Φ restricted
to β-i + 9o + βi coincides with the map ξ (cf. (2.5)). Thus our assertions
follow from (3) of Proposition 2.6. q.e.d.

§ 3. Automorphisms of Siegel domains over self-dual cones

In this section we calculate infinitesimal automorphisms of the homo-
geneous Siegel domains over self-dual cones (except circular cones) which
were constructed by Pjateckii-Sapiro [10].

3.1. We will use the following notations and well-known results

for irreducible self-dual cones.
1) The cone H+(p,R).
Let R = H(p,R) be the real vector space of all real symmetric

matrices of degree p. We denote by H+(p,R) the cone of all positive
definite matrices in R. Then dimR = %p(p + 1). Let EiS denote a square
matrix of degree p whose (i, /(-component is one and others are zero.
We define a base { 6 ^ ^ ^ of R by eu = Eu (l<i< p) and etj = EtJ

+ Eji (1 < i < j < p). (Zidizizjip denotes the coordinate system of Rc

associated with the base {e }̂i<^< p̂.
It is known in [17] that the Lie algebra &(H+(p,R)) consists of all

linear endomorphisms A of the form;
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(3.1) AiXeR^AX + XΆeR ,

where A is an element of QΪ(p,R).

2) The cone H+(p,C).

Let R = H(p,C) be the real vector space of all hermitian matrices

of degree p. We denote by H+(p,C) the cone of all positive definite

matrices in R. Then dim R = p2. We define a base {e^(l < i < p),eijtS

(l<ί<j<p, 8 = 1,2)} of R by e<4 = Eu (1 < i < p),eiJΛ = # „ + # „

a n d e ^ , 2 = ΐ ( £ ^ - Ej%) ( 1 < < < j < p ) . ( z u ( 1 < i < p ) , z t J § 8 ( l < i < j

<p9 s = 1,2)) denotes the coordinate system of Rc associated with the

base {eiifeiJt8}.

It is known in [17] that the Lie algebra Q(H+(P,C)) consists of all

linear endomorphisms A of the form;

(3.2) AiXeR^AX + X'AeR ,

where A is an element of

3) The cone H+(p,K).

Let R = H(p,K) be the real vector space of all hermitian matrices

X of degree 2p satisfying the condition XJ = JX, where

0

-(Λ i)
We denote by H+(p9K) the cone of all positive definite matrices in R.

Let X = (Zfcί) be a hermitian matrix of degree 2p, where Xkι is a 2 x 2-

minor matrix of X (1 < k, I < p). Then X belongs to R if and only if

Xkl is represented as follows;

Xkk = (x*« ° ) (1 < k < p) , Z f c ί = ( **' »«) (1 < k < I < p) ,
V 0 xkk/ \-V*ι ΰj

where xkkeR and xkuVki^C. Thus we have dimR = p(2p — 1). We

define a base {eiέ (1 <, i <p), eίj>s (1 < i < j < p, 1 < s < 4)} of R by

β« = ^2i-l 2ί-l + ^2ί 2i (1 < ί < ?>)> β< ,̂l = ^2ί-l 2 -̂1 + ^2i 2̂> î̂ ,2 = ^ ( ^ i - l 2i-l

- £72ί 2 i ) , e^,3 = £72ί_x 2j - EH 2j_19 eijΛ = i ί ^ . x 2y + ί72i 2j.x) (l<i<j< p),

where ΈiS is the square matrix of degree 2p whose (i,/)-component is

one and others are zero. (zu (1 < ί < p), zijtS (1 < i < j < p, 1 < s < 4))

denotes the coordinate system of Rc associated with the base {eu,eijtS}.

It is known in [17] that the Lie algebra $(H+(p,K)) consists of all
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linear endomorphisms A of the form;

(3.3) ΆiXeR^AX + XΉeR ,

where A is an element of gί(2p,C) satisfying the condition AJ = JA.

3.2. As an application of Theorem 2.1 we have

LEMMA 3.1. For each of the homogeneous Siegel domains D(V,F)

given in the following (1), (2) and (3), the Lie algebra gΛ coincides with

the subalgebra #a.

(1) V = H+(p, R), W = M(p, q C) (p> 2),

F(u, v) = $(ut7D + Ψv) for u,v eW .

(2) V = ί ί + (p, C), W = Λf(p, ^ 5 0 + Λ*(p, 2̂1 O Wΐrecί sum, p > 2),

/or tί = u(1) + u(2\ v = v(1) + ^(2) 6 W .

(3) 7 = H+(p, K), W = Λί(2p,« C) (p, g > 2),

F(w,v) = \{ut70 + JΨvfJ) for UyVβW .

Proof. First we show that for each Siegel domain .0(7,^) in (1),(2)

and (3), the subalgebra p($0) of g(V) coincides with g(F).

Case (1): For each A e g(V) (A e gl(p, Λ)) we define a complex linear

endomorphism B oί W bγ

B:ueW ^AueW ,

where Aw means a usual matrix multiplication of A and u. Then by

(3.1) we have

AF{u9 u) = F(J5^, u) + F{u, Bu)

for every ueW. Hence by (1.4) A is contained in p(g0). Therefore we

have P(Q0) = g(V).

Case (2): For each A e g(V) (A e gl(p, C)) we define a complex linear

endomorphism S of W by

J5: w = ua) + um eW*-+ Au{1) + A^(2) e W .

Then by using (3.2) we can verify

AF(u, u) = F(Bu, u) + F(u, Bu)
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for every ueW. It follows from (1.4) that A belongs to /o(g0). Thus,
we have p(q0) = g(7).

Case (3): For each Aeg(V) (A eql(2p,C),AJ = JA) we define a
complex linear endomorphism B of W by

B:ueW

Then by (3.3) we have

AF(u, u) =

for every ueW. Hence by (1.4) A belongs to (̂go) and ρ(q0) = g(V)
Each cone V in (1), (2) and (3) is an irreducible homogeneous self-

dual cone. On the other hand, it was proved by Rothaus [11] that for
an irreducible homogeneous self-dual cone V, the Lie algebra g(V) is
irreducible. Therefore the representation p is irreducible. Furthermore
each domain D(V,F) in (1), (2) and (3) is non-symmetric (cf. [10]). Thus,
from Theorem 2.1 we conclude that Qh = gα. q.e.d.

Now we consider degenerate Siegel domains over the cones V =
H+(p,F) (p > 2), where F is R or C or K. Let F be a F-hermitian
form on a complex vector space W of dimension m (m > 0). Then we
get

LEMMA 3.2. // there exists a positive integer q (q < p) such that
the linear closure of the set {F(u,u); ue W) in R coincides with the

proper subspace ( Q Λ) of R, then g1/2 = (0).

Proof. Case F = R: We show that if a linear endomorphism A e
g(V) belongs to ^(g0), then A must be of the form;

(S.4, A = (« "),

where αegί(g,j£), beM(q,p — q R) and cβQΪ(p — q,R). In fact, let

Ae^go), A = (J JV Then by (1.4) there exists Begί(TF) such that

(Ά,B) satisfies the condition; AF(u,u) = F(Bu,u) + F(u,Bu) for every
ueW. Therefore A must satisfy the following for each YeH(q,R),
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which implies d = 0.

Now we want to show g1/2 = 0. For each X e g1/2, by (2.2) and (2.4)

there .exist ckleW (1 < k < I < p) such that

for every d e W. From our assumption we can see that Fij = 0 if j > q.

Therefore, the linear endomorphism p([φ-1/2(d),X]) maps the space R =

H(p,R) into the proper subspace ί n Q) of # . On the other hand,

from (3.4) there exists Aegl(p,j?) of the form: A — (^ j satisfying

p([φ~ι/2(d),X]) = A. Thus, for each Yjeiϊίg,!?), Y2 eM(q,p — <?; I?) and

Vo J V Y 2 Y3/
 + VY2 y , / U W g V o o/ '

Hence we get αY2 + Y\c + bYz = 0 and cY3 + Y|c = 0, which implies

6 = 0. We can see that a = 0 and c = 0 by taking Y2 and Y3 suitably.

So, A = 0 and /o([9_1/2(d),Z]) = 0. By Proposition 2.3 we conclude that

fli/i = (0).

Case F = C: We proceed analogously as in the above case. Let

Aeg(F) belong to p($0). Then by (1.4) it can be easily verified that A

must be of the form;

(3.5, Λ = (« »),

where a e $(q, C), b e M(q, p — q C) and c e gί(p — g, C).

Now we show g1/2 = (0). Let X e g1/2. Then by (2.2) and (2.4) there

exist cfcfc (1 < k < p), ckUt (1 < k < I < p, t = 1,2) e W such that

for each deW, where we put Fu>s — Fu,ciitS = cu and F(u9v) =

2] Fίj>s(u,v)eijtS. From our assumption it follows that F ^ ' s = 0 if j > q.

Therefore the linear endomorphism p([φ-1/2(d),X]) maps the space R =

H(p,O into the proper subspace ί π n) °̂  ^ On the other hand,

there exists Ae$(p,C) of the form (3.5) such that p([φ-1/2(d),X]) = A.

Thus for each Yx e H(q, C), Y2 e M(q, p — q C) and Y3 e H(p — q, C),
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that is, αY2 + Y\c + bY3 = 0 and cY3 + Y\c = 0. Taking Y2 and Y3

suitably we have 6 = 0, a = iθEq and c = iθEp_q, where θ is a real

number. By considering (3.2) we get A = 0. Therefore /o([^_V2(cί),Z])

= 0 for every deW. So, by Proposition 2.3, g1/2 = (0).

Case F = K: By the same considerations as in the above, we can

see that if A e g(V) belongs to |o(g0), then A must be of the form

(3.6) A =

where a e gΓ(2g, C), b e M(2g, 2(p — q) C) and c e gl(2(p — g), C) satisfying

α^ = Λα, c/2 = /2c, 6/2 = Λ6, / = β1 fy (cf. (3.3)).

Now we want to show g1/2 = (0). For each Zeg 1 / 2 , by (2.2) and (2.4)

there exist ckk (1 < k < p), cklft (1 < k<l<p, 1 < ί < 4) eW such that

for every deW, where we put Fu>s = Fu, cίit$ = c w and F(u,v)—

J^Fij^iUyV)eij^ By our assumption, Fίj>s = Q if > g. Therefore the

linear endomorphism /o([^_i/2W),X]) maps the space R = H(p,K) into the

proper subspace ί Q' ^ QJ of β. On the other hand, there exists

Aep(q0) of the form (3.6) such that p([φ-ι/2(d),X]) = A. Thus, for each

Yx e H(q9 K)y Y2 e M(2q, 2(p -q);C) and Γ3 e H(p - q, K) satisfying Γ2/2

= J Y

Hence we have

αY2 + Γ*c + 6Y3 = 0 and cYz + Ylc = 0 .

Taking Y2 and Y3 suitably we get a = 0, ί> = 0 and c = 0. So, A = 0

and p([Q-i/2,XΊ) = (0). From Proposition 2.3 it follows that g1/2 = (0).

q.e.d.

3.3. In this paragraph we calculate infinitesimal automorphisms of

all homogeneous Siegel domains of type II over the cone V = H+(p,R)

(P > 2).
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Let s be a positive integer and r(t) be a non-decreasing integer
valued function defined on an interval [l,s] such that 1 < r(l), r(s) < p.
Let W be the complex vector space of all complex p x s-matrices u =
(Utj) such that ^ = 0 if i>r(j). We put F(u, v) = \{uιv + Ψu) for
u,veW. Then it is known in [10] that F is a 7-hermitian form on W
and the Siegel domain D(V, F) is homogeneous. We note that every
homogeneous Siegel domain of type II over the cone H+(p,R) (p > 2) is
isomorphic to the one given here (cf. [10], [13]). It was proved by
Kaneyuki and Sudo [4] that the Siegel domain D(V, F) is non-degenerate
if and only if r(s) = p.

THEOREM 3.3.υ For a Siegel domain D(V,F) mentioned above, the
subspaces g1/2 and & of Qh are given as follows;

βi/2 = (0),

& is isomorphic to the vector space H(p — r(s),R).

Proof. First we suppose that D(V, F) is degenerate. Then r(s) < p
and the linear closure of the set {F(u, u) u e W) in R coincides with the

proper subspace ί Q ^ Λ of R, where q = r(s) (cf. [4]). Hence, by

Lemma 3.2 we have g1/2 = (0).

Now we determine &.10 We consider the associated tube domain Ώf

with D(V,F) (cf. (2.9)). It is known in [10] that Ώ' is the classical
domain of type (III) and the Lie algebra q'h = tf^ + Q'O + Q{ of all infini-
tesimal automorphisms of Ώf can be identified with %${p,R) as follows
(cf. [10], Chap. 2, §7);

βί = δp(p, R) = {(^ _ ^ ) A e βr(p, R),B,Ce H(p,«

(p,jr>\ . _ / 0 0\

o r δl^Wi?) or

(J57 0\
CP E ) e e x p β " ^ a c t s o n

X) If 8=1, then this theorem was proved by Tanaka [14] and Murakami [8], Nakajima
[18] calculated the dimensions of Q1/2 and gi of this theorem by using different methods.

2) This idea of determining gi is due to Murakami [8].
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g:zeD'>-> z(Cz + EpY
ιeΏr .

The image f(g0) of g0 is given by

f (ββ) = {(£ _ J ) e flί A e pfa)} (cf. (2.10)) .

We want to show that ξfa) coincides with the following subspace of gj

Let Xeg^ Then, since f(X)eg(, there exists YeH(p,R) such that

J By the conditions f(g_i) = g'_x and [g_1?Z] c g0 we have

Therefore, for each BeH(p,R),BY belongs to
So, BY must be of the form (3.4) for each BeH(p>R)> which implies
that Y must be of the form (3.7). Conversely let Y be an element in
H(p,R) of the form (3.7). We define the map gt (teR) of D(V,F) into
Rc x W by

gt: (z, u) e D(V, F) ^ (z(tYz + Ep)~\ u)eRc xW .

Then we can easily verify (cf. [8]) that

Im (z(tYz + EpY
ι) = \tYz + EvY

ι Im z itYz + Ep)~ι

and

\tYz + Ep)-ψ(u,u)(tYz + EPY
1 = F(u,u)

for each ^ e W.
Thus, ^t is a one-parameter group of transformations of D(V, F) and gt

induces a vector field Xegx such that ξ(X) = (γ Λ. By the fact g1/2

= (0) and Proposition 2.8 we conclude that gx is isomorphic to the vector
space H(p — q,R).

Now we suppose that D(V, F) is non-degenerate. If r(l) = p, then
W coincides with M(p, s C) and the Siegel domain D(V, F) is the one
given in (1) of Lemma 3.1. So, we can assume that s > 2 and r(l)<p.
We put t0 = min {t e [1, s] ί is an integer such that r(t) = p} and define
the complex subspaces Wt (ΐ = 1,2) of W by

W1 = {u = {ui3) eW; uυ = 0 if j < t0}

and
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W2 = {u = (ui3) e W; uυ = 0 if > t0} .

Then it can be seen that

W = W1 + W2 (direct sum) and F(Wlf W2) = (0) .

We denote by Ft the restriction of F to the subspace Wt. Then the
vector space W1 is isomorphic to M(p, s — t0 + 1 C), and the Siegel
domain D(V, ί\) in i?c x PPΊ is isomorphic to the one given in (1) of
Lemma 3.1. Thus g$ = (0).
On the other hand, for the Siegel domain D(V, F2) in Rc x W2 we can
see that the linear closure of the set {F2(u, u); ue W2} in R coincides

with the proper subspace ί Q Λ of R, where q = r(t0 — 1). Hence

by Lemma 3.2 we have g$ = (0). From Corollary 2.7 it follows that g1/2

= (0). Therefore by Proposition 2.2 we get qh = gβ. q.e.d.

3 4 In this paragraph we consider the Siegel domains of type II

over the cone V = H+(p,C) (p > 2).
Let Si and s2 be two positive integers. Let r^t) be a non-decreasing

integer valued function defined on an interval [1, sj such that 0 < r^t)
and Ti(t) < p (i = 1,2). We denote by W{i) the complex vector space of
all complex p X srmatrices u(ί) = 04?) such that u$ = 0 if fe > r^Z).
Let W be the direct sum of the vector spaces Wa) and Wi2). We put
F(u, v) = K^(1)^(1) + ̂ (2)^(2)) for ^ = um + ̂ (2), v = v(1) + v(2) e TF = Wω

+ W(2). Then it is known in [10] that the map F is a F-hermitian form
on W and the Siegel domain D(V,F) is homogeneous. Furthermore it
was proved in [4] that the Siegel domain D(V,F) is non-degenerate if
and only if rfa) = p or r2(s2) = p.

THEOREM 3.4.3) (i) // a Siegel domain D(V,F) mentioned above is
degenerate, then the subspaces g1/2 and q1 of Qh are given by

9l/2 = (0),

g! is isomorphic to the vector space H(p — q, C),
where q = max(r1(s1),r2(s2)).

(ii) // nOO = r2(s2) = p,

Proof. First we consider the case (i). The linear closure of the

3) Nakajima [18] calculated the dimensions of 91/2 and gi of this theorem by using
different methods.
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set {F(u, u) u e W] in R coincides with the proper subspace ( Q ' Λ

of R (cf. [4]). Thus, by Lemma 3.2 it follows g1/2 = (0).
Now we determine gx. We consider the tube domain Ώ' associated

with D(V,F) (cf. (2.9)). Then it is known in [10] that Όf is the classical
domain of type (I). The Lie algebra %'h = gij + g£ + gί of all infinitesimal
automorphisms of Όf can be identified with 8u(p,p) as follows (cf. [10],
Chap. 2, §6);

= sufcp, P)

- t j ) ; A e g ί ( p ' c ) > B'ceH(p'c)} ( m o d { ί θ E*
H(p,C)\

o r 9l~W,o or
_ t®) A e gl(p, C)} (mod {t»S2p θ e «}) .

Each r̂ = ^ ^ ( e e x p g ί ) acts on Df by

g:zeD' .-> ̂ (Ca; + i^p)"1 eί?' .

The image f(g0) of g0 is the subalgebra of g£ given by

We want to show that the subspace $(&) of gί coincides with the follow-
ing subspace of gί;

In fact, let X e ^ . Then ξ(X) belongs to gί and ξ(X) is represented as

From the condition [g_!,Z]cg0 and the fact f(g_i) = g_i, we have
[g-i,fQQ]Cf(g0). Thus it can be seen that, for each BeH(p,C), BY
must be of the form (3.5). It follows that Y must be of the form (3.8).

Conversely let Y be an element in H(p9C) of the form (3.8). We
define the map gt (t e R) of D(V, F) into Rc x W by
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gt: (z, u) e D(V, F) »-> (z(tYz + EVY\ u)eRcχW .

Then we can easily verify that

Im (z(tYz + EpY
ι) = \tYz + EvY

ι Im z (tYz

and

KtYz + Ep)-ψ(u9u)(tYz + EvY
ι = F(u,u)

for each u e W. Therefore the map gt is a one-parameter group of
transformations of D(V, F) and the vector field X induced by gt belongs

to &. Furthermore we have ξ(X) — \γ Λ) Considering Proposition

2.8 we can identify & with the vector space H(p — q,C).
Now we consider the case (ii). If r^l) = r2(l) = p, then the Siegel

domain D(V,F) is the one given in (2) of Lemma 3.1. Thus we get
gfe = gα. We suppose that rλ(X) = p and r2(l) < p. We put t0 = min {ί
β [1, s2l * is an integer such that r2(t) = p} and define the subspaces Wx

and TF2 of W by

ψ x = {̂  = u™ + u™ e W; uf] = 0 if i < ί0} ,

W2 = {u=: u™ + u™ e W; uw = 0, wg> = 0 if j > t0} .

Then we can see that

W =W, + W2 (direct sum) and F(WU W2) = (0) .

The Siegel domain DiVyF^ in JBC X W1 is isomorphic to the one given
in (2) of Lemma 3.1. Thus we get g$ = (0).

For the Siegel domain D(V, F2) in Rc x W2, it can be seen that the
linear closure of the set {F2(u,u); ue W2} in R coincides with the proper

subspace ί Q ^ Q) of R, where q = r2(£0 — 1) (cf. [4]). From Lemma

3.2 it follows that g$ = (0). By Corollary 2.7 we have g1/2 = (0). Apply-
ing Proposition 2.2 to the non-degenerate Siegel domain D(V,F), we get

Qa-

If r^l) ^ p and r2(l) = p, then the fact qh = gα can be analogously
obtained.

Now we suppose that r^l) Φ p and r2(l) ψ p. We put tt =
min {ί e [1, s j t is an integer such that rt(f) = p} (i = 1,2) and define
the subspaces PF* (ί = 1,2) of W by
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W1 = {u = u™ + u™ e W; u$ = 0 if / < t19 u™ = 0 if j < t2)

and

W2 = {u = u™ + u™ e W; uf] = 0 if j > t19 uf] = 0 if j > t2} .

Then we have

W =Wί + WΛ (direct sum) and F(JVlf W2) = (0) .

It is easy to see that the Siegel domain D(V, Fλ) in Rc x Wx is isomorphic

to the one given in (2) of Lemma 3.1. Thus we have g$ = (0). And

for the Siegel domain D(V, F2) in Rc x W2, the linear closure of the set

{F2(u,u);ue W2} in R coincides with the proper subspace ί Q ^ Λ

of R, where q = max (r^ — 1), r2(t2 — 1)) (cf. [4]). Hence by Lemma

3.2 we get β$ = (0). From Corollary 2.7 it follows that g1/2 = (0). Using

Proposition 2.2 we conclude that qh = gβ. q.e.d.

THEOREM 3.5.4) // rfa) < p and r2(s2) = p, ίfce^ ίfce subspaces g1/2

8i o/ gΛ are ^ e n as follows;

g1/2 is isomorphic to the real vector space M(sQ9p — q; C),

gx is isomorphic to the vector space H(p — q, C),

where s0 = s2 — t0 + 1, q = max (rάsj, r2(t0 — 1)) and t0 = min {£ e [1, s2]

t is an integer such that r2(t) = p), and r2(ί0 — 1) means zero if t0 = 1.

Proof. We define the subspaces Ŵ  and W2 of TF by

ψ x = {u = ^(1> + ^<2) e Ψ ; ^ (1) = 0, uf] = 0 if j < £0},

W2 = {u = u^ + u™ e ΪΓ; wjj> = 0 if j > tQ} .

Then we can see that

W =W,+ W2 (direct sum) and F(WU W2) = (0) .

If W2 = (0), then £>(F,F) is the classical domain of type (I) (cf. [10],

Chap. 2).*) Therefore we consider the case W2 Φ (0).

The Siegel domain D(V, F2) in Rc x W2 is degenerate and the linear

closure of the set {F2(u9u);ue W2) in R coincides with the proper sub-

4) Nakajima [18] calculated the dimensions of gi/2 and gx of this theorem by using
different methods.

*> By the following decomposition of the Lie algebra gΛ

(1), we can see that the
theorem is valid for this case.
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space f ^ ^ O ^ of R (cf. [4]). Hence, by Lemma 3.2 we get g$ = (0).

On the other hand, the Siegel domain D(V9Fτ) in Rc x Wλ is the

classical domain of type (I). The Lie algebra ĝ υ can be identified with

$u(So + V,v) as follows (cf. [10], Chap. 2, §6);

g£> = 3u(s0 + P>P)

An A12 A13\ A33 = -*An e qί(pf C), A22 e u(s0) 1
\A2i A22 A23 A12 = i 4A23, A32 = -< *A21 e M(p, s0 O |
\A31 A32 AJ A13, A 3 1 e H ( p , O . J

(mod{iθE2p+So;θeR}) .

70 0 H(p,O\ ί/0 C 0.

β Ώ = 0 0 0 , gΏ / 2 = 0 0 i ' C ;CeAT(p,e 0 ;O[ ,
\0 0 0 / ί\0 0 0/

/ o o o\ r/o o o\
8<«= 0 0 0 , β ί 8 = j p 0 _ 0 ; I ) e I ( s 0 , p ; C ) | ,

\H(p,O 0 0/ l\0 -ί'D 0/
/A o o\
0 β 0 ;AegI(p,O, Beu(so)\

\0 0 ~̂ A/ J

First we note that for

I Ev 0 0\
g = \ D_ ESo_ 0 eexpgί;

\-tf*DD -i*D Ej

and

(Ep 0 0\
fc= 0 ESo 0 eexpgί1} ,

\Y 0 Ej

g and h act on D(F, FJ as follows (cf. [10])

g(z,Ui) = (z',vθ and h(z,u^ =

where

Λ./ Λf/ 1Λ tT)T)v Λ I

and
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for each (z, ux) e D(V, FJ.
Now we show that if A belongs to p(qo)(A e QΪ(p, C)), then A must

be of the form (3.5). In fact, there exists Be$(W) such that (Ά,B)
satisfies the condition: AF(u, u) = F(Bu, u) + F(u, Bu) for every u e W.
Putting u — u2eW2 we have

AF(u2,u2) = F(Bu2fu2) + F(u29Bu2) ,

which implies

AF2(u2,u2) + F2(u2,u2yA = F2((β^2)2,^2) + F2(u2y(Bu2)2) .

Therefore by the same considerations as in Lemma 3.2 it follows that
A must be of the form (3.5). By Proposition 2.6 we have

and

Now we want to show that

I/O 0 0\ ϊ

ID 0_ 0 eggi;D = (0 ,A) ,A6M(βo,p-g ;θ[ .
\0 -i'D 0/ j

Let X e g1/2. Then by (2) of Proposition 2.6 Φ1/2(X) belongs to g$. Thus,
there exists D e M(sQ, p C) such that

From (1) and (4) of Proposition 2.6 it follows that [gi1}^, Φ1/2(X)] belongs

to Φo(Qo) SO, for each CeM(p,s0; C),

/0 C 0\ /0 0 0\
0 0 i 'C , \D 0 0 belongs to ί»0(g0) .

L\θ 0 0/ \0 - i Φ 0/J

Therefore CD is contained in ,o(g0). Thus CD must be of the form (3.5),
which implies that D must be of the form (3.9).
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Conversely let D(eM(s09p; C)) be of the form (3.9). We define the
map gt (t e R) of D(V, F) into Rc x W by

gt\(z,ux + M2)eD(VfF)^(z/,ui + u'2)eRc xW ,

where

z' = z(-i#

- it Φ'u, + EJ-Kt'z'D + uλ) ,
u'2 = u2 .

Then, by elementary calculations we can verify that

Im zf - F(u', uf) = ^(Im z - F(u, u))Q ,

where Q = (—^iί2 ^D^; - iί ί 5 ί ^ 1 + Sp)"1, ^ = ux + u2 and v! = < + i^.
Therefore the map ^̂  is a one-parameter group of transformations of
D(V,F). Let X be the vector field induced by gt. Then it is obvious

/0 0 0\
that Z belongs to g1/2 and Φ1/2(Z) = \D 0 _ 0 . By (2) of Proposition

\0 -i'D 0/
2.6 we have proved that g1/2 is isomorphic to the real vector space
M(so,p - q C).

Now we determine glβ We can show

(3.10) ^(81) = ] 0 0 θ\e^;Y=(° °), y eH(p - q; C)\ .

[\Y 0 0/ Vθ yJ J

In fact, let Zeg x . Then by (3) of Proposition 2.6 ΦX(X) belongs to gίυ.
So, there exists Y e £Γ(p, C) such that

From the condition [Q-lfX] C g0 and (4) of Proposition 2.6 it follows that
for each B e H(p, C),

/0 0 B\ /0 0 0\
MO 0 0 , 0 0 0 1 belongs to Φ0(g0) .
L\θ 0 0/ \Γ 0 0/J

Hence, BY belongs to (̂̂ o), which implies that BY must be of the form
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(3.5). Therefore Y must be of the form (3.10). Conversely let Γ( e H(p, O)
be of the form (3.10). We define the map ht (teR) of D(V,F) into
Rc x W by

ht: (z9u, + u2) β D(V,F) ^ (z',^ + uQeR?χW ,

where s' = 2(£Γ2 + Ep)~\ u[ = ί(tϊr« + Ep)'1^ and ^ = ^2. Then we can
verify that

Im zf - F(u',uf) = f(ίYs + β^^dm a; - F(u,u))(tYz + J^)-1 ,

where u = ut + u2, uf = u[ + u'2e W. Therefore the map ht is a one-
parameter group of transformations of D(V,F) and ht induces a vector

/0 0 0\
field XeQ! such that ΦX(Z) = 0 0 0 . Thus, by (3) of Proposition 2.6

\Y 0 0/
we have proved that & is isomorphic to the vector space H(p — q,C).

q.e.d.
Remark. If r^) = p and r2(s2) < p, then the Siegel domain D(V, F)

is isomorphic to the one given in the above theorem. If s1 = s2 = 1,
rλ(l) = p — 1 and r2(l) = p, then the fact dim g1/2 = 2 was proved by
Sudo [12] by using different methods.

3.5. In this paragraph we treat the Siegel domains of type II over
the cone V = H(p,K) {p > 2).

Let s be a positive integer and r(t) be a non-decreasing integer
valued function defined on an interval [l,s] such that 1 < r(l),r(s) < 2p.
We denote by W the complex vector space of all complex 2p x s-matrices
u = (Uij) such that uiS — 0 if i > rφ. We put F(u, v) = %(u t7o + Jv %u%J)
for u,v eW. Then it is known in [10] that the map F is a F-hermitian
form on W and the Siegel domain D(V,F) is homogeneous. Further-
more it was proved in [4] that the domain D(V,F) is non-degenerate if
and only if r(s) = 2p or 2p — 1.

THEOREM 3.6.5) (i) // a Siegel domain D(V,F) mensioned above
is degenerate, then the subspaces g1/2 and & of $h are given by

Bi/2 = (0),

8x is isomorphic to the vector space H(p — #, 20,
where q = [(r(s) + l)/2].

5) Nakajima [18] calculated the dimensions of gi/2 and gi of this theorem by using
different methods.
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(ii) If s>2 and r(l) = 2p, or if s > 3 and there exists an integer ί0

such that 1 < ί0 < s — 1, r(ί0) = 2p and r(t0 — 1) < 2p — 2, ίftew gΛ = gα.

Proof. First we consider the case (i). The linear closure of the

set {F(u,u); ueW}inR coincides with the proper subspace (H^κ) jj\

of R, where q = [(r(s) + l)/2] (cf. [4]). Hence by Lemma 3.2 we have

βi/s = (0).

We determine g1# Now, we consider the tube domain ί?7 associated
with D(Y,F) (cf. (2.9)). Then it is known in [10] that Df is the classical
domain of type (II). The Lie algebra tfh = gij + gj + gj of all infinitesimal
automorphisms of Df can be identified with £o*(4p) as follows (cf. [10],
Chap. 2, §7);

o

Θ 9 ί ( 2 2 > > C ) > A J = / Z > β

,«\ , / 0 0\

o ) 9 qi~\H(p,κ) or
g/°= {(o* - t j ) ;

We note that g = ^y2p ^ ^ (eexpgί) acts on D7 by

It can be easily seen that the image £(g0) of g0 (cf. (2.10)) is the follow-
ing subalgebra of g£;

We want to show that £(gx) coincides with the following subspace of gj

In fact, let Zeft. Then f(X) belongs to gί and there exists Y eH(p,K)

such that f(Z) = (y Q) On the other hand, f(g_x) = gix. So, by the

condition [g_!,Z]cg0 we have [g!i,£CX)] c f(g0). Hence, for each B G

H(p>K), BY must be contained in (̂go). Therefore BY must be of the
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form (3.6). Thus, Y must be of the form (3.11). Conversely let Y be
an element in H(p,K) of the form (3.11). We define the map gt (teR)
of D(V,F) into Rc x W by

gt: (2, w) 6 £(F, F) .-> (z(tYz + E2VY\ u)eRcxW .

Then we can verify that

Im (z(tYz + E2p)-1) = '(tYs + S^)"1 Im z (fYz + E2pY
ι

and

\tYz + E2pYΨ(u,u)(tYz + E2py
ι = F(u,u) .

Therefore the map gt is a one-parameter group of transformations of

D(V,F), and gt induces a vector field Xe& such that ξ(X) = (y QJ.

Thus, by the fact g1/2 = (0) and Proposition 2.8 & can be identified with
the vector space H(p — q,K).

Now we consider the case (ii). If r(l) = 2p, then the complex vector
space W coincides with M(2p,s;C) and the Siegel domain D(V,F) is the
one given in (3) of Lemma 3.1. So, we have gΛ = gβ. We proceed to
the second case. We define the subspaces Wx and W2 of W by

Wλ = {u = (M^) 6 ψ ; ^ = 0if j < ίo}

and

W2 = {u = (uί3) e W; uu = 0 if j > ί0} .

Then we have

TF = Ψx + TF2 (direct sum) and F(Wlf W2) = (0) .

The vector space TF2 is isomorphic to M(2p,s — t0 + 1; C) and the Siegel
domain D(7, ί\) in Rc x WΊ is isomorphic to the one given in (3) of
Lemma 3.1. Thus, we have g$ = (0). For the Siegel domain D(V,F2)
in Rc x W29 by our assumption r(t0 — 1) < 2p — 2 the linear closure of
the set [F2{u, u);ue W2} in β coincides with the proper subspace

o f R> w h e r e 9 = [W*o - 1) + D/2] (cf. [4]). Thus, by

Lemma 3.2 we get gig = (0). It follows from Corollary 2.7 that g1/2 — (0).
Applying Proposition 2.2 to the non-degenerate Siegel domain D(V,F),
we conclude that gΛ = gα. q.e.d.



SIEGEL DOMAINS 61

§ 4. Homogeneous Siegel domains over circular cones

In this section, we will study how to construct all homogeneous
non-degenerate Siegel domains over circular cones and study their equiv-
alence. We omit the terminology "of type II of rank 2", since we con-
sider here exclusively 2V-algebras of type II of rank 2.

4.1. We will recall some of definitions and results about N-algebras
and skeletons due to Kaneyuki and Tsuji [5] in the case of rank 2.

Let iV be a finite dimensional algebra over the real number field.
Suppose that N is the direct sum of the bigraded subspaces Ntj (1 < i
< j < 3) and that N is equipped with a positive definite inner product
<, >. Let / be a linear endomorphism of the subspace Nu + N23 of N.
Then the triple (JV,< , >,£) is called an N-algebraβ) if the following con-
ditions are satisfied;

Nl3 Φ (0) or 2V23 Φ (0) ,

i V 1 2 2 V 2 3 c N l 3 9 N t j N u = ( 0 ) i t j Φ k ,

< N i j 9 N t ι > = 0 i t i φ k o r j Φ l ,

(4.1) ί N < 3 = N i s ( i = l , 2 ) , j 2 = - 1 ,

(4.2) <ja, jby = <α, &> for α, b e N1Z + N2Z ,

(4.3) jiβua2Z) = aJ(a2Z) ,

for every α 1 2,6 1 2 e iV12 and α 2 3,6 2 3 e 2V23 ,(4.4)
< α 1 2 α 2 3 , &i2&23> + <»i2&23. &i2»23> = 2 < d 1 2 , δ 1 2 > < α 2 3 , 6 2 3 > .

Remark. Let (JV, < , >, ") be an N-algebra with dim JV12 dim ΛΓ23 Φ 0.

Then the following condition is satisfied max (dim N12, dim 2V23) < dim N13

(cf. f5]).

A figure © in the plane is called a connected 2-skeleton (of type

II) if © is one of the following ®x or ©2;

6) This definition is slightly different from that of [5], but these are equivalent.
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where n and mx in ©x are positive integers, and n,mx,m2 in ©2 are

positive integers such that max(w,2ra2) < 2mx.

Let (JV, < , >, j) be an NΓalgebra. Then it is said that (N, < , >, j)

corresponds to ©x (resp. ©2) if dim JV12 = n, dim iV23 = 0 and dim NX3 =

2mx (resp. dimN1 2 = n, dim 2V23 = 2m2 and dimiV13 = 2m!). In this case,

©! (resp. ©2) is called the diagram of (2V, < , >, /).

Let (N9 < , >, j) and (2V7, < , >',;') be two iV-algebras which cor-

respond to the skeletons ©x or ©2. Then (2V, < , >, j) is said to be

isomorphic to (N;, < , y, /') if there exists a bigrade-preserving algebra

isomorphism φ oί N onto 2V' such that

<p(α), p(6)y = <α, 6>, α, & e 2V ,
(4.5)

φoj = j'oφ on ΛΓ13 + N23 .

It follows immediately from the above definition that if two ΛΓ-algebras

which correspond to the skeletons ©x or ©2 are isomorphic, then their

diagrams are the same one.

According to [5], [13], there is a one-to-one correspondence between

the set of all (holomorphic) isomorphism classes of homogeneous Siegel

domains of type II over circular cones and the set of all isomorphism

classes of Λf-algebras whose diagrams are ©x or ©2.

In what follows, for a Siegel domain D(C(n + 2),F) corresponding to

an N-algebra whose diagram is ©j (resp. ©2)> we say that D(C(n + 2),F)

corresponds to ©j (resp. ©2).

It is known in [5] that for given positive integers n, m19 there exists

a unique homogeneous Siegel domain which corresponds to ©lβ Further-

more the explicit forms of these domains are found in [5], [10].

4.2. By the facts stated above we will consider the case of ©2.

DEFINITION 4.1. Let {Tk}^k^n be a system of mx x m2-complex

matrices Tk (1 < k < n) satisfying the condition

(4.6) tTkTι + <T%Th = 2δklEm2 (1 < k, I < n) .

Let {Γί}î fĉ n be another system of mx x m2-complex matrices satisfying

(4.6). Then {Tk}x^k^n is said to be equivalent to {Tk}x^k^n if there exists

a triple (0^ U19 U2) e O(ri) x Ό(mx) x U(m2) such that

(4.7) (τu .., τn) = υx{T[,..., rnχox ® u2),
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for the mx x wm2-matrices (Tlf , Tn) and (Γ(, , TO.

From (4.7) it can be seen that the above "equivalence" is an equiv-

alence-relation in the set of all systems satisfying (4.6).

Let {T*}^*^ be a system of mί x m2-matrices satisfying (4.6). Let

N12 be the euclidean space Rn with the inner product ( , ) and Nk3 be

the complex euclidean space Cmk (fc = l,2) with the hermitian inner

product ( , ). Let N be the direct sum of real vector spaces NtJ (1 <i

< j < 3). Then for a fixed orthonormal base {e*}^^ of N12, we define

in N an inner product < , >, a multiplication and a complex structure

j as follows;

O12 + α23 + α13, b12 + b23 + 613>

(4.8) = (α12,612) + Re (α23,623) + Re (α13,61S) ,

aii9biSeNu (1 < i < / < 3) .

(4.9) eΛα23 = Γfcα23 holds in N13 (X < k <n) and α^α s ί = 0 if j Φ s .

(4.10) jakz = ίak, (fc = 1,2) .

LEMMA 4.2. Wiίfe respect to (4.8), (4.9) αmZ (4.10) ίfee vector space

N is an N-algebra which corresponds to <52. Every N-algebra which

corresponds to @2 can 6e obtained in this way by taking some system

satisfying (4.6).

Proof. It can be easily seen that (N, < , >, j) satisfies all the con-

ditions but (4.4). Using (4.6), (4.8) and (4.9), we obtain

, eta23}

= Re ( 2 > 2 3 , Ttb23) + Re (Tkb23, Tta23)

= Re iitTkTι + ιTtTk)a23, b23) = 2δkι Re (α23, &23)

which implies (4.4). By Remark in the paragraph 4.1 it is obvious that

(N, <( , >, j) corresponds to ©2. Hence the first assertion was proved.

Conversely let (N, < , >, j) be an ΛΓ-algebra which corresponds to

©2. Then by (4.1) and (4.2) we can identify 2V13 (resp. iV23) with Cmi

(resp. Cm2) as hermitian vector spaces. Let us identify N12 with Rn as

euclidean vector spaces and put {e*}^*^ be an orthonormal base of iV12

= Rn. Let Lk denote the left multiplication by ek in N (i.e., Lk(x) —

ekx for xeN) (1 < k <ri). Then Lk restricted to the subspace iV23
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induces a complex linear mapping of iV23 into N1Z (cf. (4.3)). Hence,

under the identification of Ni3 with Cmί (i = 1,2) Lk induces a complex

mι X m2-matrix Tk such that Tka2Z = eka2Z (1 < k < n). On the other

hand, (4.4) implies

LtU + LfLk = 2ί«l ,

where * is the adjoint with respect to the inner product < , >. Thus,

it follows that the system {T^}^^ satisfies the condition (4.6). q.e.d.

In view of the above lemma the system {2^}^^ is called the αd-

missible system of (N9 < , >, j) with respect to the orthonormal base

LEMMA 4.3. Let (N, < , >, j) and (N'9 < , >', /) be two N-algebras

which correspond to ©2. Let {eΛ}1̂ Λ^n {resp. {eίji^^j be an arbitrary

orthonormal base of N12 (resp. N'n) and let {T^^^ (resp. [T'^^ be

the admissible system of (N, < , >, j) (resp. (N'9 < , >', j1)) with respect to

{e*}i**£» (resp. {ek}^k^n). Then (iV,< , },j) is isomorphic to (iVr,< , y,; v) if

and only if {T^^^ is equivalent to

Proof. Suppose that (N,< , >,/) is isomorphic to (2V', < , >', j'O. Then

from (4.5) it follows that there exists a triple (/, g9 h) of linear isometries

f:N12-*N'129 g:N23-+N'239 h:Nu-*N'ls

satisfying

(4.11) f(ek)g(a23) = h(eka2Z)

and

(4.12) hoj = jΌh on N13 and goj = jOg on 2V23 .

Let O = (α:^) be the orthogonal matrix of degree n defined by f(ek) =

Σl aike'ι (1 < ^ < ^) Then (4.11) implies Σ ^ι^\g(a2Z) = h(eka23). Hence,

we have

(4.13) Σ aikLΊog — hoLk (1 < k < n) .

From (4.12) it follows that g (resp. h) induces a unitary matrix G (resp. H)

of degree m2 (resp. m^. Thus, (4.13) shows that Σ^ikTiG = HTk (1 <

k <ri). From this we have
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Hence, { T ^ ^ . i s equivalent to {Tiji^^n (cf. Definition 4.1).

The converse of our assertion is analogously proved. q.e.d.

4.-3. It was proved in [5] that homogeneous Siegel domains and

ΛΓ-algebras are in one-to-one correspondence. By considering the cor-

respondence in detail in the rank 2 case, we will prove that every

homogeneous non-degenerate Siegel domain D(C(n + 2),F) is constructed

directly in terms of the system {Tk}x^k^n.

Let (2V, < , >, j) be an iV-algebra whose diagram is ©2 and let {T*}^*^

be the admissible system of (N9<,>,;). Now we will construct the

Siegel domain D{C(n + 2),F) which corresponds to (JV, <>>,;/) in the

sense of Corollary 2.7 in [5]. By Theorem 2.6 in [5] we can construct

the T-algebra (2Ϊ = Σi^<f^8?t<i>*»Λ which corresponds to (N, < , >,/) as

follows

«« = R (1 < i < 3), « „ = #«„ α,, = Nΐj (1 < < < j < 3) ,

where * is an involutive linear endomorphism of NtJ such that *oj =

j o * on Λf13 + iV23. And the multiplications in 21 have the following

properties

(4.14)
<αi3^32> ek} = <α 1 3, efcα3*> = R e (α 1 3,

where aίά e 21^.

We denote by #(2ί) the direct sum 8tu + 2ί22 + 2Ii2 and denote by

TF(Sί) the direct sum 2T13 + 2ί23 ( = C m i + Cma). We define the subset V(N)

of B(80 as

V(N) = {α = α u + α22 + α12 e 22(21) α u > 0, ana22 - <α12, α12> > 0}*} .

Then we can see that V(N) is a homogeneous convex cone and actually

isomorphic to C(n + 2) under the following linear isomorphim / of i?(2ϊ)

onto Rn+2;

(4.15) / : a = an + a22 + a12 e R{%) >-> '(on, α 2 2, a\2, , α&) e ^T O + 2 ,

where a12 = 2] Λfjβ*

We define the map F: cmi+m* X C m i + m 2 >-> Cn+2 by putting F =

'(F1, . . . , F n + 2 ) , where

By αnα22 we mean a usual multiplication of real numbers aue%u=R(i=l,2).
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Fk+2(u, v) = ±{(ulf Tkv2) + {Tku29 vd) (l<k<n)

for u = ux + u2, v = v1 + v2e Cmi+m2 = Cmi + Cm\ Then we have

THEOREM 4.4.7) (i) For F above, the domain D(C(n + 2),F) is a
homogeneous non-degenerate Siegel domain.
(ii) Conversely every homogeneous non-degenerate Siegel domain D(C(n
+ 2),F) is constructed in the above way (4.16) by taking some system
{7*}i^» satisfying (4.6).

(iii) Furthermore suppose that D(C(n + 2),F0 is constructed by {Γi}^*^.
D(C(n + 2),F) is holomorphically isomorphic to D(C(n + 2),F0 i/

o^i?/ if {Γfc}i<;fc<;w is equivalent to {Γ

Proof. First we will show that the map F defined by (4.16) is a
C(n + 2)-hermitian form on Cmi + CW2 and the Siegel domain D(C(n + 2), F)
thus constructed is the one which corresponds to (iV,< , >,/) in the sense
of [5]. By Theorem A in [13], the homogeneous Siegel domain which
corresponds to the Γ-algebra (SI, *,/) is given by the following V(N)-
hermitian form F = Σ ^ ^ ^ 2 F f c l on Tf(Sί);

, v) = \{{ukzv% + vkzu%) + i(ukzj(v%)

for u = un + u23, v = vn + v2Z e
Hence, by (4.14) we have

F k k ( u 9 v ) = { < > >

= it<w*3^*3> + i<^*3»;(v*3)>} (by * o ; = /o

= %{Re(ukz,vk3) + iΈle(uk3,ivk3)} (by (4.8))

(A; = 1,2) .

And we have

<Fl2(u9u),ek> = \(uφ%yek^ + \i((unj(un)*, eky + <j(u^v&, ek})

= ΪRe(un,Tku2Z) (by (4.14)),

which implies

(̂ i3> Γ*v23) + (Tj Waa, vlz)}ek .

7) If mi=m2 in ©2> then this construction is reduced to Pjateckii-Sapiro's [10].
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We define the complex linear isomorphism g of W($ί) onto C m i + Cm2 by

9: u13 + un e TF(Sί) ̂  — J ^ i s + — ΐ r ^s 6 C m i + Cma .

Then we have

f(F(u, v)) = Ffafo), flr(v)) (M, v e TF(H), cf. (4.15)) .

Thus, it can be seen that the map F defined by (4.16) is a C(n + 2)-

hermitian form on C m i + Cm2 and the Siegel domain D(C(n + 2),F) in

Cn+2 χ £rmi+m2 j s i i n e a r ly isomorphic to the Siegel domain D(V(N),F) in

R(W)C X W{%). Hence, the homogeneous Siegel domain D(C(n + 2),F) is

the one which corresponds to (W,< , >,/) in the sense of Corollary 2.7

in [5]. From Lemma 4.2 it follows that every homogeneous Siegel

domain of type II over the cone C(n + 2) which corresponds to the

skeleton ©2 is constructed by (4.16) by taking some system {Tjji^^

satisfying (4.6).

Now we will show that a homogeneous Siegel domain D(C(n + 2),F)

is non-degenerate if and only if D(C(n + 2),F) corresponds to ©2. Suppose

that D(C(n + 2),F) corresponds to ©2. Then, as was proved above,

D(C(n + 2),F) is constructed by (4.16) by some system {2\}i<;fc<^ satisfy-

ing (4.6). The subset {F(u, u) u e Cmi + Cm*} of Rn+2 contains n + 2

linearly independent vectors in Rn+2. In fact, take unit vectors ut e Cmi

(ί = 1,2) and put

u1 = u, + 0 , u2 = 0 + u2 , w*+2 = Γ Λ + w 2 eC m i + Cm 2

(1 < fc < n) .

Then we can verify that {F{u\uι),F{u\u2), -,F(un+2,un+2)} spans Λw+2.

Suppose that D(C(n + 2),F) corresponds to ©lβ Then it was proved in

[5], [10] that the C(n + 2)-hermitian form F on C m i is given by

(4.17) F(u, v) = K{u, v), 0, . . . , 0) (u, v e Cmi) .

Hence D(C(n + 2),F) is degenerate.

Thus, the first and the second assertions of the theorem were proved.

The last assertion follows immediately from Lemma 4.3. q.e.d.

§ 5. The exceptional bounded symmetric domain of type (V)

5.1. Let {T19 T2} be a system satisfying the condition (4.6) and define
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an mλ x 2m2-matrix B as B = (Tlf Γ2). Then it follows from (4.6) that
tTιT2 is a skew-hermitian matrix of degree m2, and we have

(5.1)

LEMMA 5.1. Let {Tl9 T2) and {T[9 T2) be two systems satisfying (4.6).
Suppose that lTxT2 (resp. ιTiTζ) has eigenvalues {iλlf 9iλm%}9 λι < , ,
< λm2 (resp. {iX19 , iλ'm2\, λ[ <, , < %J. Then [T19 T2} is equivalent to
{T'UTQ if and only if (λlf. ,λm2) = « , . fXJ or «1, ,^m,) =
v ΛO T 2, , / i ) .

Proo/. Suppose that (λ19 , ̂ m2) = Wί, , λ'm) or (^, , λm) =
( - ^ - -, —ΛD- Then there exists U2eU(m2) such that

e<2\r2, ε = ± 1 . Putting j?" = B'((l °\ ® C/2), we have '

Hence, by an analogous consideration as in Lemma 4.3 in [5], there

exists U.eUim,) satisfying B=ϋxB", that is, B = Uβ'ίβ

Therefore {T19 T2) is equivalent to {ΓJ, T'2} (cf. Definition 4.1). By making
use of (5.1) we can easily prove the "only if" part. q.e.d.

The following proposition is stated without proof in Pjateckii-Sapiro
[10], but for the sake of completeness we prove it without using the
theory of Clifford algebras.

PROPOSITION 5.2. There exists a unique homogeneous Siegel domain
(up to holomorphic equivalence) which corresponds to ©2 with (n9m19m2)
= (6,4,4). Furthermore this Siegel domain is constructed by the follow-
ing system {T

(5.2)
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Proof. It can be easily seen that the above {Tk}x^k^ is a system

satisfying (4.6) with (n9m19m2) = (6,4,4). Conversely let {S*}^^ be a

system satisfying (4.6) with (n9ml9m2) = (6,4,4). Then, by (4.6) Sk

belongs to [7(4) (1 < k < 6).

Now we will prove that {S*}^*^ is equivalent to {T^^. Since

{Sj,S2} is a system satisfying (4.6) with (n9m19m2) = (2,4,4), it follows

from Lemma 5.1 that there exists a triple (O19 U19 U2) in 0(2) x [7(4) x [7(4)

such that

(5.3) U^Sv SOίO, ® [72) = (£74, SO ,

where S£ = iEi9 i ( ~ X ^ or i ( ~ ^ 2 ^j. Putting 0 2 = ( ^ £) e 0(6), by

(5.3) we have ϋ1(Sίf"'9Sύ(P2®U0 = (Ei9S
/

%9ϋ1SzU29'"fU1SΛU0. So,
without loss of generality we can assume that (S19 ,S6) = (E49S29 ,

S6), where S2 = £E4 or i ί " ^ 1 ^ or i{~^2

 £ ? ) The case S2 = iE4 or

Λ " O ί 7 ) ^ o e s n o * o c c u r ^ n ^ac*> suppose that S2 = iJ?4. Then it can

be seen that {Ei9iEi9S3} does not satisfy the condition (4.6). Further-

more suppose that S2 = i(~Q πj. Then it follows from the condition

%Sk + 'SjcS, = 0 (k = 1,2) that S, is represented as

(
0 zx z2 zz\

-zx 0 0 0
-z2 0 0 0 > ̂ G C d < f c < 3 ) .

-z3 0 0 0^

This contradicts to the condition ^jSg = ί74. Hence S2 must be T2 =

^ " o ^ 2 I?*)' F r o m ( 4 6 ) ^ follows that Sk (3 < fc < 6) is represented as

(5.4) Sk = ( f _ ^ f c), < M + β l A = 2 * ^ , (3 < k91 < 6) .
We will show that {S*}^*^ is equivalent to {Si'}^^, where S^ = TΊ,

Si7 = Γ2 and Si' = Γ3. In fact, let [73 = Γ^ 3 ^?V Then by (5.4) we have

ί73e[7(4) and

U3(S19 , S6)(S6 ® *UZ) = (17Λ *US, , [73Sβ * t ^

= (Γ1? Γ2, Γ3, [73S4 EΓS, [73Sf6«Cr
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Thus, without loss of generality we can assume that

where Sk (4 < k < 6) is represented as follows

(5.5) S* = (^ Γ * ) , *Ϋk=-YkeU(2), YkYt + YtYk = 0

In view of (5.5) there exists C74eϊ7(2) such that J74y4

ίCΓ4 = iE2 or

— iS 2 or Ϊ(Q —i) Furthermore from the condition Y4Yδ + Γ5Γ4 = 0 it

follows that (C74Γ4

ίtΓ4)(C74Γδ

ίϊ74) + (UJ^UXU.Y/U,) = 0. Therefore by

the fact C74Y5

ίϊr46C7(2), ϋAYA

%UA must be iβ _°Λ Putting Uδ =

{o* u ) e m)> w e h a v e

17,^, • • S6)(EQ ® ̂ 5 ) - (Γx, Γ2, Γ,, Γ4, Γί, Γβ ,

where Γ5 and Γg are represented as follows;

% = -Zk e 17(2) (fc = 5,6) , ZδZ6 + Z6Zδ = 0 .

On the other hand, by the condition %Tj!'h + ιTf

kT^ = 0 (fc = 5,6), ZΛ is

represented as

And by the condition ZδZQ + Z6Zδ = 0 we have eiiv"β) = εi, e= ± 1 . Now

we put

fl 0 0 0\
1 0 01
0 e« 0 e C / ( 4 ) a n d ° «=

V) 0 0 Γ

Then the direct verification shows that

'Γ.ίΓ,, Γ2, T3) Γ4, r,, n)(O 3 <g> C/β) = (T,, , T β).

Hence, {-S*},s*s6 is equivalent to {Tt}iS*se
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5.2. We will investigate infinitesimal automorphisms of homogeneous
Siegel domains over circular cones. The same notations as in the pre-
vious sections will be employed.

LEMMA 5.3. Let D{Cin + 2),F) be a homogeneous Siegel domain
which corresponds to the skeleton ©2. Then the representation p is ir-
reducible if and only if mx = m2 in ©2.

Proof. As is known in Theorem 4.4, the C(n + 2)-hermitian form
F = \F\ ,FW+2) is given by (4.16).

Suppose that mx = m2 in ©2. Then it was proved by Pjateckii-
Sapiro ([10], Chap. 5, § 18) that p(QQ) coincides with g(C(n + 2)). Since
C(n + 2) is an irreducible homogeneous self-dual cone (cf. Vinberg [17]),
q(C(n + 2)) is irreducible (cf. Rothaus [11]). Thus it follows that p is
irreducible.

Now we will show that if m1 Φ m2 in ©2, then p is not irreducible.
It is known in [17] that the Lie algebra §(C(n + 2)) consists of all
matrices A of the form;

(5.6) A =

λ
0

0

μ
ax

2«! 2αre

μ)En

where λ, μ, ak and bk are real numbers (1 < k < n) and a is a real skew-
symmetric matrix of degree n. Let A e g(C(n + 2)) and B e QΪ(W). Then
(A,B) satisfies the condition; AF(ufu) = F{Bu,u) + F(ufBu) (for every
u e W = Cmi + Cma) if and only if B is represented as follows

(5.7) __. (Bι
\ B2

Bί2

B2 + \μE
\

j

where B12 — 2 ] akTk, B2l = YΛbk

tTk and Bλ (resp. B2) is a skew-hermitian

matr ix of degree mι (resp. m2) satisfying the conditions

(5.8)

and

, Tn) = (T19 , Tn)(a En

(5.9) k < n) .
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Now we suppose that mxΦ m2. Then by (5.9) we have

From the fact ιTkΎk

satisfying UTk =

^ (cf. (4.6)) it follows that there exists V e V(ynd

By putting VTt = (£Λ (I Φ k), we have

Γ,

which implies that 6X = 6a = = δn = 0 From (1.7) we conclude that
if mx ψ m2, then the representation p is not irreducible. q.e.d.

The following theorem is stated implicitly in Pjateckii-Sapiro [10],
as we remarked in the introduction.

THEOREM 5.4. The exceptional bounded symmetric domain in C16 of
type (V) (in the sense of E. Cartan) is realized as D(C(8),F), where
F = t(F1

9 , F8) is the following C(Syhermitian form on C8

F\u,u)^ Σ \uk\\

F3(u, u) = Re iuxΰh +

F\u,u) = Im (—

(5.10) F5(^, u) = Re

9 u) = Im

) = Re

, U) = Im

/or ^ = l(ul9 , uQ) e C8.

Proof. We will show that the Lie algebra qh of all infinitesimal
automorphisms of D(C(8),F) is simple. It can be seen that D(C(8),F)
is constructed by the system {Tfe}i< 6̂ of (5.2) by using (4.16). Thus,
D(C(8),F) corresponds to the skeleton <δ2 with (n,ml9m2) = (6,4,4).
Therefore, by Lemma 5.3 the representation p is irreducible.

+ ^ 7 + ujS

- ^ 6 )

— u4u6)

Now we want to determine g0. We define A e g(C(8)) by putting
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A =

λ 0
0 μ 26X

2 α 6

2&6

a = (α?fcl) e βt(6, i?) , ιa= -a .

Then by direct computations making use of (5.7), (5.8) and (5.9) we can

verify that B e gϊ(8, C) satisfies the condition AF(u, u) = F(Bu, u) + F(u, Bu)

(for every ueC8) if and only if B is represented as follows;

IBX

(5.11)

where Θ e R, and Bx = (ααi3) and J?2 = (&e/i) are skew-hermitian matrices

of degree 4 given by

»12 = &12 = έ{( —«35 + «4β) — ί f c β + <*4δ)} 9

^13 = —524 = i { —0*13 + «24) ~ ί(«14 ~ ^23)} »

an = ia12 , α 2 2 = i(a12 + au + aδ6) , a33 = i α 3 4 , α 4 4 = iαrδ6 ,

bn = 0 , 622 = z*(α?34 + α:56) , 633 = i(α12 + α34) , 644 — ί(a12 + a5Q) .

Hence, from this fact and (1.4) it follows that dim g0 = dim g(C(8)) + 1

= 30.

We want to show that g1/2 Φ (0). We define a polynomial vector

field X = Σn<jc^Vί,i3/dzk + 2]i<;«<8(Pί,o + Vo^/dwa on C16 as follows;

i.i = —ίz1wδ + (iz3 + z4)wί + (—izδ + z6)w3 + (~iz7 + z8)w4 ,

pffl z= z{wΊ + (—z3 + izt)w3 + (zδ + iz^wγ + (z7 + iz8)w2 ,

Ϊ,i = i«iW7 + (-izz- Zt)w3 + (-izδ +

2>ϊ.i =

i-izΊ

and
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Pi.O = &1 » PΪ.O = PΪ.O = Pl.0 = 0 ,

Pl.0 = 0 , PΪ,0 = & 6 + *6 > Pl.0 =

pj f 2 = 2w? , plΛ = 2wxw2 , vlt2 =

Then by elementary calculations, for each c = *(cS , c8) e C8 we have

[φ-i,2(c),X] = Σ aίfrdldz* + Σ Kβwβd/dwa ,

where the matrices A(c) = (α«) and β(c) = (& .̂) are given by

2 Rec 1

0

Rec 5

Imc 5

Rec 7

- I m c 7

Rec 8

-—Imc8

B(c) =

0

0

0

C

0

0

0

0

2

c1

c2

c3

c4

c5

0

c7

c8

0

2 Rec5

Rec1

- I m c 1

- R e c 3

Imc 3

- R e c 4

Imc 4

-•?

"c"1

0

0

0

c5

-T8

T7

0

2 Imc 5

Imc 1

Rec1

- I m c 3

- R e c 3

— Imc 4

- R e c 4

-T3 -"?

0 0

~& 0

0 "c"1

— Ί ? -—~c®

c 8 - c 7

~& 0

o T5

0 0

2Rec 7 - 2 I m c 7

Rec3

Imc 3

Rec1

Imc 1

- R e c 2

Imc 2

0 0

0 0

0 0

0 0

0 -~c2

— Imc 3

Rec3

—Imc 1

Rec1

Imc 2

Rec2

0

0

0

0

0

c2 — 2 ΐ l m c 1 — c4

0 "c"4

0 -"?

0

0

0

2 Rec 8

Rec4

Imc 4

Rec2

- I m c 2

Rec1

Imc 1

0

0

0

0

0

c3

0

0

0

- 2 Imc 8

— Imc 4

Rec4

—Imc 2

- R e c 2

— Imc 1

Rec1 '

+ 4iImc1J£8 .

Hence by (5.6), A(c) belongs to g(C(8)). Considering (5.11) we can verify

that (A(c),B(c)) satisfies the condition; A(c)F(u, u) = F(B(c)u, u) +

F(u,B(c)u) for every w e C . Therefore, by (1.4) [p_1/2(c),Z] belongs to

go» and we have [g_i/2,.XΊ c g0. From (1.9), thus it follows that X belongs

to g1/2 and gI/2 Φ (0).

So, as a consequence of Theorem 2.1, we conclude that gft is simple.

By the well-known theorem of Borel-Koszul [1], [7], D(C(8),F) is holo-
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morphically isomorphic to an irreducible bounded symmetric domain in

Clβ.

This bounded symmetric domain is the exceptional domain of type

(F). In fact, by using (1.6) we have dim qh = 2(dim Q_λ + dim g_1/2) +

dim g0 = 78. And there is no classical irreducible bounded symmetric

domain in C16 whose Lie algebra of all infinitesimal automorphisms is of

dimension 78 (cf. e.g., Helgason [2]). q.e.d.

Remark. The form F given by (5.10) is different from that of the

note [15]. But it can be seen that this domain is isomorphic to that of

[15] under a linear transformation (cf. Proposition 5.2).

§ 6. Automorphisms of Siegel domains over circular cones

In this section, we calculate infinitesimal automorphisms of homo-

geneous Siegel domains over circular cones.

The Lie algebra Qh of a homogeneous non-degenerate Siegel domain

D(C(n + 2),F) for which the representation p is irreducible is determin-

ed completely by the following theorem.

THEOREM 6.1. The Lie algebra qh of all infinitesimal automorphisms

of a homogeneous Siegel domain D(C(n + 2),F) which corresponds to the

skeleton ©2 with mγ = m2(=m) is given as follows;

(n, w)

(2,w)

(4,2)

(6,4)

otherwise

(i) 9Λ=δu(m+2,2) provided that D(C(4), F) is constructed

by the system {T1} T2} {Tlf T2 e U(m)) such that £ΊΓiΓ2 has

{i, •••,%} or {—i, •" ,—i} as its eigenvalues.

(ϋ) Qh=Qa, otherwise.

gΛ=3o*(10)

9Λ=e6(-14)

Qh=Qa

Proof. Pjateckii-Sapiro ([10], Chap. 2) gave case by case the ex-

plicit realizations of all classical domains. From his realizations it

follows that if D(C(n + 2),F) is classical, then (n,m) = (2,ra) or (4,2).

Suppose that (n,m) = (2,m). Then it was proved in [10] that

2?(C(4),F) is a symmetric domain if and only if lTxT2 has {i, •• ,i} or
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{—i, , — i) as its eigenvalues and that in this case D(C(4),F) is the
classical domain in C4+2m of type (I).

Suppose that (n, m) = (4,2). Then there exists a unique homogeneous
Siegel domain which corresponds to the skeleton ©2 with (n,mum2) =
(4,2,2) (cf. [10], [16]). And it was proved in [10] that this domain is
the classical domain in C10 of type (II).

Suppose that (n,m) = (6,4). Then there exists a unique homogeneous
Siegel domain which corresponds to the skeleton ©2 with {n9mum^ =
(6,4,4) (Proposition 5.2) and this domain is the exceptional domain in
C16 of type (V) (Theorem 5.4).

By the uniqueness theorem of realization (cf. Kaneyuki [3]), there
exists no symmetric Siegel domain of type II over circular cones other
than the domains listed above (cf. [10], and for the exceptional domain
of type (VI), see e.g., Vinberg [17]). Thus, our assertion follows from
Theorem 2.1 and Lemma 5.3. q.e.d.

Now we determine infinitesimal automorphisms of homogeneous
degenerate Siegel domains of type II over C(n + 2). As we stated in
section 4, every homogeneous degenerate Siegel domain D(C(n + 2),F)
in Cn+2 X Cm (m > 0) can be constructed by the following C(n + 2)-
hermitian form F on Cm;

F(u, v) = ι{{u, v), 0, , 0) , u,veCm (cf. (4.17)) .

PROPOSITION 6.2. For the homogeneous degenerate Siegel domain
D(C(n + 2),F) in Cn+2 X Cm (m > 0), the subspaces g1/2 and & of Qh are
given by

βi/2 = (0) ,

Σ *ϊ+ι9/3«i + *S9/3*2 + Σ
^k< l<,k<,n

Proof. First we will determine g0. Let A e &(C(n + 2)) and B e gt(ra, C).
Then it can be easily verified that (A,B) satisfies the condition; AF(u,u)
= F(Bu,u) + F{UyBu) (for each ueCm) if and only if (A,B) is repre-
sented as

λ 0 2ax . . . 2αn'
0 μ 0 . . . 0
0 α i , B + Ή = λEn

• J(^ + ̂ )̂ TC + a

0̂ αn

(6.1) A =



SIEGEL DOMAINS 77

where λ, μ,ak (1 < k < n) are real numbers and a is a real skew-sym-

metric matrix of degree n (cf. (5.6)). Thus, by (1.4) we have determin-

ed go-

Now we show g1/2 = (0). In view of Corollary 2.7 we can assume

that m = 1. Let I e g 1 / 2 . Then by (2.2), (2.3) and (2.4), there exist

Cι, b e C (1 < I < n + 2) satisfying the following conditions;

(6.2) X is represented as X = 2i Σ cιzιwd/dz1 + Σ c^djdw + bw2d/dw ,

(6.3) b = 2ΐcx ,

(6.4) for each deC, the matrix

Im {cxd) Im (c2d) Im (cn+2d)
0 0 . . . 0

0 0 . . . 0

belongs to Q(C(n + 2)) .

Hence, by (5.6) and (6.4), Im(cz5) = 0 for each deC (1 < I < n + 2).

So, Cj = 0 (1 < I < n + 2). From (6.2) and (6.3) it follows that X = 0.

Thus, β1/2 = (0) was proved.

Now we determine &. By (1.3) we have

Σ cad/dwa ; c = C m } .

Let X = Σ vlod/dzk + Σ Pΐtι9/dwa e gx. Then by the condition [g_1/2,Z]

= (0), we get dplo/dz, = 0 (1 < fc < w + 2) and pί}1 = 0 (1 < a < m). We

write 2̂,o = Σ aijztzJ (aij = α ^) Then we have

(6.5) aij = αjx = 0 (1 < /, fc < n + 2) .

For each i (1 < i < n + 2), we define the (w + 2) x (n + 2)-matrix At by

(6.6)

Then we have

r»n+2 nn+2

$p(ld!dzt,X]) = Ai and ,X]) = 0 .
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By (1.10) and (1.4), (Au0) must be of the form (6.1). Comparing (6.6)

with (6.1), we can see that the real numbers αfy (1 < i,j, k < n + 2)

must satisfy the following relations;

(6.7) a\k+2 = 2αf2

+2 (1 < i < n + 2, 1 < k < n) ,

(6.8) a\2 = 0 (1 < i < n + 2) ,

(6.9) α2

2 = 2<4+

+

2

2 (1 < i < n + 2, 1 < k < n) ,

(6.10) a2

ik+2 = 0 (1 < i < n + 2, 1 < & < n) ,

(6.11) α̂ +

+

22 = —"αίίii ( l < ΐ < ^ + 2, l < f e ^ ί < n ) .

By (6.5) we have α}t = αi< = 0 (1 < i < n + 2). Applying (6.7) and (6.11)

for 1 < k ψ I < n, we get

ι + 2 onk+2 oΛfc+2 n i π i

2k + 2 — ^^21 + 2 — ώ α Ί + 22 — a l + 2k+2 — ^ + 21+2 >

which implies a\+2l+2 = 0. Therefore, considering (6.8) we showed

(6.12) a\j = 0 if 1 < i < 2 or 1 < j < 2 or 3 < i Φ j < n + 2 .

By (6.5) and (6.10) we get

(6.13) a*j = 0 if (i,j)Φ (2,2).

From (6.5) we have a&2 = ak

a

+2 = 0 (1 < i < n + 2) and by (6.7), (6.12)

w e c a n s e e α 2 γ 2 = ak

i2

+2 = 0 (i = 2 o r 3 < ί φ k + 2 < n + 2). F u r t h e r -

more if l<iΦjΦkΦi<n, then by (6.11) akϊξj+2 is skew-symmetric

with respect to the indices j , k and symmetric with respect to the indices

i,j. So, aktlj+2 = 0 if l < i φ j φ k φ i < n . Hence by (6.9), (6.11) we

have

(6.14) aψ = 0 if (i, j) Φ(29k + 2) and (i, i) ^ (fc + 2,2) (1 < k < n) .

On the other hand, we can see

(6.15) a\2 = 2a\ΐl2 (by (6.9))

= αi+J*+2 (by (6.7)) (1 < k < n) .

As a consequence of (6.12)-(6.15), it follows that X must be represented

by

(6.16) X =
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Conversely if X is a polynomial vector field of the form (6.16), then it

can be easily seen that X satisfies all the conditions in (1.10). Thus,

the subspace Q1 of qh consists of all polynomial vector fields of the form

(6.16). q.e.d.

Finally we consider the homogeneous non-degenerate Siegel domains

which correspond to the skeleton @2 with n < 2ra2 < 2mx. Let {Tr

fc}i<^<^

be a system of m2 X m2-matrices satisfying the condition (4.6). We put

Tk = ( J*\, where 0 means the (mx — m2) x m2-zero matrix. Then it is

easy to see that the system { T ^ ^ satisfies the condition (4.6) and

corresponds to this skeleton ©2. We denote by D(C(n + 2),F) the Siegel

domain in Cn+2 X c m i + m 2 which is constructed by the system {Tk}x^k^n.

Then, by (4.16) the C(n + 2)-hermitian form F is given by

F\u, v) = (uu vλ) + (u3, v3) , F2(u, v) = (u2, v2) ,

F«+Xu, v) = i{(u19 Tkv2) + (Tku2, v,)} (l<k<n)

for u = (u1 + u2) + u2y v = (vx + v,) + v2 e C m i + m 2 = (CW a + C m i " m 2 ) + Cm\

PROPOSITION 6.3. For the Siegel domain D(C(n + 2),F) given by

(6.17), if n Φ 2, (n,m2) Φ (4,2) and (n9m2) Φ (6,4), then $h = gα. // ^

= 2 cmeZ Γ̂xTg ^ί>e5 ^oί have {i, , i) and {—ΐ, , — i} as its eigenvalues,

then Qh = Qa.

Proof. We put the subspaces Wλ and W2 of c m i + m a = (Cm i + CW1"W2)

+ Cm a by W1 = Cm* + Cm2 and W2 = c m i " m a , respectively. Then we can

see that F(W19 W2) = (0). The Siegel domain Z>(C(w + 2),F2) in Cn+2 x W2

is the one given in Proposition 6.2. Therefore we have QΪ% = (0). On

the other hand, the Siegel domain D(C(n + 2),ί\) in Cw + 2 x W1 is the

one given in Theorem 6.1. Thus, by Theorem 6.1 we get g{/2 = (0).

From Corollary 2.7 it follows that g1/2 = (0). Applying Proposition 2.2

to the non-degenerate Siegel domain D(C(n + 2),F), we conclude that

Qu = βα q.e.d.
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