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SIEGEL DOMAINS OVER SELF-DUAL CONES
AND THEIR AUTOMORPHISMS

TADASHI TSUJI

Introduction

The Lie algebra g, of all infinitesimal automorphisms of a Siegel
domain in terms of polynomial vector fields was investigated by Kaup,
Matsushima and Ochiai [6]. It was proved in [6] that g, is a graded
Lie algebra; g, = g_; + g_12 + @ + 812 + & and the Lie subalgebra g, of
all infinitesimal affine automorphisms is given by the graded subalgebra ;
8o = G_; + g_12 + G- Nakajima [9] proved without the assumption of
homogeneity that the non-affine parts g,, and g, can be determined from
the affine part g,.

The main purpose of the present paper is to determine explicitly
the Lie algebras g, for Siegel domains over self-dual cones. In §2 we
will prove that if the adjoint representation p of g, on g_, is irreducible,
then g, is simple or g, = g, (Theorem 2.1). Moreover using Nakajima’s
result we will give sufficient conditions of the vanishing of g,, (Proposi-
tion 2.3 and Corollary 2.7) and a method of calculating g,, and g,
(Propositions 2.6 and 2.8). Using the results in §2, we determine in
§ 3 (Theorems 3.3-3.6) infinitesimal automorphisms of most of the homo-
geneous Siegel domaing over self-dual cones (other than circular cones)
which were constructed by Pjateckii-Sapiro [10].

The circular cone C(n) of dimension # (n > 3) is defined to be the
set {!(x, 2, -+, %) eR™; 2, > 0, 0,20, — 23 — - -+ — a3 > 0}. Pjateckii-Sapiro
[10] found all the homogeneous Siegel domains over circular cones which
are constructed by using the representation theory of Clifford algebras.
But it was shown by Kaneyuki and Tsuji [5] that there exists a homo-
geneous Siegel domain over a circular cone which does not appear in
Pjateckii-Sapiro’s construction. In view of this fact the purpose in §4
is to give a method of constructing all homogeneous Siegel domains over
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circular cones (Theorem 4.4) by making use of the considerations analo-
gous to [5].

Pjateckii-Sapiro [10] pointed out without proof that the exceptional
bounded symmetric domain in C' is realized as a Siegel domain over
the cone C (8). In §5 we consider a certain homogeneous Siegel domain
D over C (8), which is implicitly given in [10], and by means of results
in §2 and §4 we prove that D is isomorphic to the above exceptional
symmetric domain (Theorem 5.4).

Finally, in §6 we determine infinitesimal automorphisms of homo-
geneous Siegel domains over circular cones (Theorem 6.1, Propositions
6.2 and 6.3).

Some of results of the present paper were announced in the note [15].

The author wishes to express his hearty thanks to Prof. S. Kaneyuki
for his helpful suggestions and encouragement during the preparation
of this paper.

§ 1. Preliminaries

In this section, after introducing notations which are used through-
out this paper, we recall some of results of [6] and [9].

1.1. Let R be a real vector space of dimension » and W be a
complex vector space of dimension m. Let D(V,F) denote a Siegel
domain of type I or type II in R¢ X W associated with a convex cone
V in R and a V-hermitian form F on W, which is defined by Pjateckii-
Sapiro [10], where RC is the complexification of R. Throughout this
paper we will employ the following notations;

g, (resp. g,); the Lie algebra of all infinitesimal holomorphic (resp.
affine) automorphisms of D(V,F).

g(V); the Lie algebra of the automorphism group G(V) = {g € GL(R);
gV = V} of the cone V.

{ey, -+ -, e,} (resp. {f1, -+, fn}); a base of R (resp. W).

(Riy o+ vy 2y, Wy, -, Wy); the complex coordinate system of RC x W
associated with the base {e,, : - -, e, f1, * - +» [}

The following ranges of indices will be taken in each summation: 1< 7, k,
I, -+ <m, 1§,“’}9:7’"" < m.

For a positive integer p, U(p) (resp. O(®)) denotes the unitary (resp.-real
orthogonal) group of degree p and E, denotes the unit matrix of degree
p. And for two positive integers » and g, we denote by M(p, q; F) the
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real (resp. complex) vector space of all real (resp. complex) p X ¢-
matrices and by gl(p,F) the real (resp. complex) general linear Lie
algebra of degree p, where F = R (resp. C).

1.2. Put 0 = 3 2,0/32, + % >, w,0/ow, and @ = iy, wo/ow, Then
the following results (1.4)—(1.6) are known in [6].

(1.1) The vector field 9 belongs to g, and g, is a graded Lie algebra;
Gn = 8.1 + 81z + 8o + @i + 6, Where g, is the i-eigenspace of ad(?)
(A= #1, +1,0). Furthermore g, is the graded subalgebra; g, =
g+ 81z + Goo

1.2) g1 = {2 a*d/0z;; a* e R} .

1.3) g ={23 F¥(w, )]0z, + Y, c0/ow,; ¢ =2, c*f,e W},
where F(w,c) = X, F¥(w, ¢)ey.

(1.4)  go=1{2 a112:9/02; + 2, bW, 0/0w,; A = (ar) € g(V), B=(b,) € gl(W),
AF(u,uw) = F(Bu,u) + F(u, Bu) for each ue W}. '

Let t be the radical of g,. Then
(1.5) 1t is a graded ideal of g, such that t =1t_, + v_,,, + 1,
where r_, =t Ng_, 1=1,1,0).
(1.6) dimg, =dimg_; — dimr_, 1=1,%) .
Considering (1.1) we denote by p (resp. o) the adjoint representation

of the subalgebra g, on g_, (resp. g_,,). Let us define real linear iso-
morphisms ¢_, and ¢_,, as follows;

o, ta=>,0%,eR— ¢_j(@) =, a3z eg_, ,
p_pic=Cfe€Wro_,(c) =23 F¥(w, 0)a/0z; + 2, ¢*0/ow, € G_1p -
Then by easy computations we can see that the following (1.7) and (1.8)
are valid; for aeR, c,c/e W and X = 3] a,2,0/02, + >, b,,w0/0w, € g,

17D oX)(p-(a)) = —p_(Aa) and o(X)(p_,x(0) = —o_i,(Bo),
where A = (ay;) and B = (b,,). In particular ¢(3")(p_,,(0)) = —¢_y.(70).
(1.8) [o_1/2(€)s 0_1(c)] = do_,(Im F(¢/, ¢)) .

By the facts stated above we can identify o(g,) with a subalgebra of g(V).
The following results (1.9) and (1.10) are due to Nakajima (Prop-
osition 2.6 in [9]).
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(1.9) The subspace g,, of g, consists of all polynomial vector fields
X = 3 p¥d/oz, + 3 (05, + p5;)0/0w, satisfying the condition
[g-12» X1 C g5, Where p%, and p;, are polynomials of homogeneous
degree 2 in 2, --.,2, and homogeneous degree u in w,, - - -, Wy.

(1.10) The subspace g, of g, consists of all polynomial vector fields
X = 3 p50/0z: + D pi.d/ow, satisfying the following conditions;
[g_120 X1 C @325 [g-1, X1 C g, and Im Tr o([Y,X]) = 0 for each Yeg_,.

§2. Lie algebras of infinitesimal automorphisms

2.1. Kaneyuki and Sudo [4] proved that if D(V,F) is an irreducible
symmetric domain (or equivalently g, is simple), then the representation
o is irreducible. Conversely without the assumption of homogeneity of
D(V,F) we have

THEOREM 2.1. If the representation p is irreducible, then g, is
simple or g, = g,.

Proof. By our assumption we have t_, = (0) or t_, = g_,, since t_,
is a subspace of g_, invariant under p(g,). First we suppose t_, = (0).
Then it follows from (1.5), (1.7) and (1.8) that r_,,, = 1, = (0) and ¢ = (0)
(this fact was proved more generally in [9]). So g, is semi-simple.
Suppose that g, is not simple. Then the Siegel domain D(V, F') is reduc-
ible and the cone V is decomposed into irreducible factors (cf. [9], Corol-
laries 4.8 and 4.9), which means that p is not irreducible. This con-
tradicts to our assumption. Thus g, is simple.

Now we consider the case t_, = g_,. It follows from (1.6) that g,
= (0). We will show that g,, = (0). By (1.9) every X e g,, is represent-
ed as X = 3 pl9/02% + 2, (0f, + p;)o/ow,. Put Z =[X,[?,X]]. Then
from the direct verification it follows that Z is represented as

. apk . ( apa apa )
7 =2 Fo—21 9/0z 21 B —202  __ pk 10 )5/ow, .
Zpl,o ow, [0z + 263 1,0 w, D1, oz, /

By (1.1) and the fact & e g, the vector field Z belongs to g, = (0). Hence

we have

« apf.l —_—
2.1 2 pl,OW =0 A<k<Ln.
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Since [g_,, X1 C g_,,, there exist ¢, =2 cff,eW (1 <1< n) such that
[8/0z;, X1 = 2 3 F*¥(w, ¢,)9/0z; + >, cfo/ow, 1 <1< n). On the other

hand, [9/0z, X] = 3 a(?;%a/az,c > %’&a/aw,, (1 <1 < n), which implies
1 (]

k a
i 2i F'¥(w, ¢;) and OPio _ ¢;. Hence we have
azl azl

piy =203 F¥w,c)?, and pfy=2 ¢z, A1<k<n l1<a<m).

In view of (2.1) we obtain > F*(c;,¢)22, =0 1<k <m). So we get
F¥e,,¢) =0 A<k l<n). Therefore ¢;,=0 and pf, =pf, =0 A<k
<m 1<a<m). Thus X is written as X = 2 pedfow, It is easily
seen that [¢/,X] =iX. So both X and ¢X are contained in g,. This
means X = 0 by the well-known theorem of H. Cartan. Consequently
we have g,, = (0) and by (1.1) we conclude that g, = g,. q.e.d.

The above theorem will be used to determine the Lie algebras g, of
certain Siegel domains in the following sections.

A Siegel domain D(V,F) in R¢ X W is said to be non-degenerate if
the linear closure of the set {F'(u,u); v € W} in R coincides with R (cf. [4]).
Otherwise D(V,F) is called degenerate.

Without the assumptions of irreducibility of p and homogeneity of
D(V,F), we have

PROPOSITION 2.2. If D(V,F) is mon-degenerate and g,, = (0), then
8n = Qa-

Proof. From (1.7) and (1.8) it follows that D(V, F) is non-degenerate
if and only if [g_,,g_,.] = g-,. For Xeg, we have [X,g_,,] Cg,, = (0)
and so [X,g_,]1 = [X,[g.18_1.]] = (0). On the other hand, the condition
[X,g_,] = (0) implies X = 0 (see [9], Lemma 3.1). By (1.1) we have g,
= gq- q.e.d.

2.2. We now discuss sufficient conditions of the vanishing of g,, of
a Siegel domain D(V,F) of type II in R® X W. Let X = >, p¥,9/02, +
> (2, + pi)d/ow, be a polynomial vector field on R° X W. Then it is
known in [9] that X is contained in g, if and only if there exist ¢, =
eif.eW 1<l<n and b5,eC (b5, = b%, 1 < a,B,y < m) satisfying
the following (2.2), (2.3) and (2.4) (see (8.2) and (3.5) in [9]);

(2.2) X is represented as
X =23 F¥w, ¢)2,8/02, + 2 c;z,0/0w, + X bsw,w,0/0w, .



38 TADASHI TSUJI

(2.3) Z‘ b Fk, = zZL (P4 FY, + FLeiF)
for 1<k<n, 1<B8,7,0 <m, where F¥, = F*(f,, f5).

(2.4) For each dec W, the matrix A(d) = (A(d):;) belongs to g(V),
where A(d),; = Im F*(c,, d).

PROPOSITION 2.8. If a vector field X eg,, satisfies the condition
P([Q-l/z: XD = (0), then X = 0.

Proof. By (2.2) thereexistc,e W(1<l<n)andb;,eC (A<, B,y <m)
such that X is represented as X = 2i > F¥(w, ¢,)2,0/0%; + >, ¢;2:0/0w, +
2 bswaw,d/ow,. For each deW, we can verify that the matrix
o(o_1(d), X]) coincides with (4 Im F*(¢c;,d)). From our assumption it
follows that F*(¢c;,,d) = 0 for every de W (1 < k,l < n). Therefore ¢, =
0 A1<lI<m and X is written as X = 3 p§,0/0w,. By the same con-
sideration as in the proof of Theorem 2.1 we have X = 0. q.e.d.

Now we suppose that W is the direct sum of subspaces W, (1 = 1,2)
satisfying the condition F(W,, W,) = (0). Let F, denote the restriction
of the V-hermitian form F to W, X W,. Then F, is a V-hermitian form
on W,. We denote by ¢ = g% + g%, + ai® + g{% + g the Lie algebra
of all infinitesimal automorphisms of the Siegel domain D(V,F,) in
R¢ x W,. We can assume that {f,, -, fu,} @eSP. {fmuv-» S u}) 1Is a
base of W, (resp. W,), where m, = dim W,.

We define a linear map @ of the Lie algebra of all polynomial vector
fields on R® X W into that of all polynomial vector fields on R¢ X W, by

a)( > p;z,,a/azk)= ST (@, 0 09/02k
1<k<n 1£k<n

(2.5)
@< > pﬁ',ﬁ/awa) = ISZ @5, 0 03/ow, ,

1<a<m asmy

where ¢ is the injection (z,w,) e R X W, (2,w; + 0)e R® x W.
For

X =203 F¥w, ¢)2,9/02 + 3 ¢;2,0/0w, + 2 bjw,w,0/0w, € ),
(cf. (2.2)), we define two vector fields X® and X® by

X0 = 203 Fi(w,, ¢,)2,0/02, + . cizd/ow,
1<

asmy
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bsw,w,0/o0w, ,

+ 22
(2.6) 1<a,B,y<my
X® =25 F¥(w,, ¢,,)2,0/02, + >, ciz,0/0w,

mi<a<m

+ 2] bs,w,w,0/0w, ,
mi<a,B,y<m

where w = w, + w,, ¢, = ¢, + ¢, € W= W, + W,. Then we get

LEMMA 2.4. For each X € g, X® belongs to g (1 = 1,2) and O(X)
=X,

Proof. We will show that the polynomial vector field X (resp. X%®)
on R¢ X W, (resp. R° x W,) satisfies the conditions (2.2), (2.3) and (2.4).
In fact, by (2.6) X® (resp. X®) satisfies the condition (2.2). By using
the equalities F(W,, W,) = (0), F¥(f., f») = F% (A1 L a,f < my), Fi(f., f3)
= F¥% (m, < a,B <m) and the fact X eg,,, we have
>, b FL = ISaZSIm bs Fr =1 Y, (FyciFy, + FLeiF}.)

1<ag<my }élén
asm

=1 2, (FLeFy, + FLeF)

A<k<n 1<B,r,6<m),

which implies that X® gatisfies the condition (2.8). For each d, ¢ W, the
matrix (Im F¥(c;,,,d,)) belongs to g(V), since the matrix (Im F*(c;, d))
belongs to g(V) and F*(e;,d) = F¥(¢;,,d). Thus we showed that X®
satisfies the condition (2.4). Therefore X is contained in g{%. Analogously
we can see that X® belongs to g%. From (2.5), (2.6) and the condition
F(W,,W,) = (0) it follows immediately that @#(X) = X®. q.e.d.

LEMMA 2.5. For each X € g, ®(X) belongs to g§¥.

0'1(X) Ua(X)
0'2(X) 0'4(X)
of degree m,. Then it can be easily seen that @#(X) is represented by

¢(X) = Z a“zla/azk + Z baﬁ’wpa/a’w,, ’

1<k, l<n 1<a,f<my

Proof. We put o(X) = ( ) where ¢,(X) is the submatrix

where the matrices (ay,) and (b,,) coincide with p(X) and ¢,(X), respect-
ively. From the condition F(W,, W,) = (0) and (1.4) it follows that for
each u, e W,,

p(X)Fl(ul’ u) = o(X)F (uy, u,)
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= Fe(X)u,, u,) + F(uy, o(X)u,)
= F(o'x(X)ul + o (X)u,, ul) + F(un a,(X)u, + az(X)ux)
= Fy(a,(X)uy, u) + Fy(u,, 0:(X)u,) .

So, by (1.4) &(X) belongs to gi. q.e.d.
We now denote by @, the map & restricted to the subspace g; of g,
(A= %1, +%,0). Then we have

PROPOSITION 2.6. If g{f = (0), then the map @ induces a grade-
preserving linear map of g, into g satisfying the following conditions:

(1) The subspace g_, of g, coincides with g and @_, is an identity.
Furthermore @_,, is a surjection of g_,, onto g%,.

(2) The map 9, is an injection of g, into gi.

(@) The subspace g, of g, is contained in g® and @, is an identity.

4) The maps @, satisfy the condition; ®([X,Y]) = [§_(X), D,(V)]
for Xeg_,,Yeg, A=1,9).

Proof. By (1.2) it is obvious that g_, = g% and @_,(3/02;) = 0/9%;.
Now we show &(g_,,) = g%,. In fact, from (1.3) and the condition
F(W,, W,) = (0) it follows that @(p_,,(c)) = ¢_,x(c) for c=¢ + c,e W =
W, + W,. Thus we have &(g_,,) = g%, and the assertion (1) was proved.

By Lemma 2.4 we have &(g,,) C g{. For Xeg,, we suppose that
D,,(X) =0. Then from the assumption g} = (0) and Lemma 2.4 it
follows that X® = X® =0 and X is represented as X = ) p§,d/0w,.
Therefore, (as we stated before,) X = 0. Thus the assertion (2) was
proved.

Now we show that &,(X) = X for each Xeg,. In fact, let X =
21 Akz200/02 + 3 Bizwgd/ow, € g, (A% = A}, Bj e C, cf. (1.10)). Then
from the condition [g_,,, X] C g,, it follows that for each ce W,

[{0—1/2(0), Xl =23 CF{(w, C)A’;L - prFk(fu c)wp)zla/azk

2.7
@D + 2, ¢’ Byridfow, + 24 3 By, FR(w, o)w,d/ow,

belongs to g,,. On the other hand, by (2.2) there exist c,e W 1 <1< n)
and b5,eC (1 < a,B,y < m) such that
[p_12(0), X1 = 24 3 F¥(w, ¢))2,8/02, + 3 ci28/0w, + 3, bs,w,w,0/0w, .

By the assumption g{} = (0) and Lemma 2.4 we have [¢p_,,(c), X]® = 0.
Therefore by (2.6) c; is contained in W, (i.e., ¢ =0 if m; <a < m).



SIEGEL DOMAINS 41

By (2.7 we have
B=0Q0<li<n, m<a<m, 1<p<m)
and

F¥(wy,c) =2 3, Fl(w,0A% — 33 BLF*(f, 0w, .
e gz

By the condition F(W,,W,) = (0) we get
2 Z Fj(’wzr cz)Agl - Z B‘llﬁFk(fa’ cl)wp =0.

1<j<n 1<agmy
mi1<B<m

As ¢ = ¢, + ¢, is an arbitrary element in W =W, + W,, so

Z BgﬂFk(fm Cl)w,e =0.
1<a<my
mi<psm

By putting ¢, = >, Bgf. we have F"( > ngfa,ls«;;» B, ,):0,

1<a<my 1<a<my
Therefore

By =0 Ai<n, 1<a<s<m<p<L<m,
and X is written as

— k a
@2.8) X = 1s;§:‘m Akz,2,0/02, + lsé Biziwd /0w, .

1<a,f<ma

By (2.5) we conclude that &,(X) = X.

We want to show g, C g®. It is enough to show that each element
X e g, considered as a polynomial vector field on R¢ x W, satisfies the
conditions in (1.10).

For each ¢, e W,, by (2.7) and (2.8) we have

@1/2([90—1/2(01), X)) = [§0_1/z(01), X].

From the facts [p_,,,(c), X] € g, and D,,,(g,,.) C g} it follows that [¢_,.(c,), X]
belongs to gf}. We put Y, = [9/92;, X] 1 < k < n). Then by (2.8) &,(Y%)
=Y,. From the fact [g_,, X] C g, and Lemma 2.5 it follows that Y, is
contained in g{”. By (2.8) we can see that

ot = (129 9).

Thus, Im Tre,(Y;) = ImTre(Y,) = 0. Therefore by (1.10) we conclude
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that X belongs to g®. The assertion (3) was proved.
By (1) and (8) we have [X,Y]eg{® for Xeg_,,Yeg,. Therefore we
get O,(IX,Y]) = [0_,(X),0,(Y)]. Let
X == 2’i Z Fk(wl, Cl)zla/azk + Z C?zza/awa
1<i<n

1<k,l<n
1<a<my

+ 2] b, wsw,0/0W, € Gy (c,eW).

1<a,B,y<m

Then for each d =d, + d,e W = W, + W, we have
[q)—l/z(SD_x/z(d)), @1/2(X)] = [50_1/2(d1)’ @1/2(X)] .

We can verify that p(lp_,.(d), ?,,(X)] = (4 Im F*(¢,,d,))) and the (a,p)-
component of the matrix ¢,([p_,,(d), D,,(X)D is
2 > (FLide; + bgd) ALa,p<m).

1<k<n
1<rsmy

On the other hand, by the conditions ¢, € W, and F(W,, W,) = (0) we have
lo_1p(@, X1 =4 >3 ImF*c,,d)z0/0%

1<Kk, 1<n

+2 3 (z > Fides + b;,d’)wﬁa/aw,,.
1<La,B,7r<m 1<k<n

We can see that b5, =0 if 1< a,8<m <y<m. In fact, by (2.3) and
the condition F(W,, W,) = (0) it follows that > b5 F% =01 <d<m),

1<agmy

which implies F"( 2 b;,fa,fa) =0 A<k<n, 1<d<m). So,

1<a<my

>, b5, fe=0and b5, =0 A<La,p<m <y<m). Therefore by (2.5)

1<a<my
we have

@0([S0—1/2(d); XD =4 132 Im F*(c,, d))2,0/ 02,

k,l<n

+2 (’c > Fidres + bg,dr)w,,a/aw,,,
1<a,B,y<m1

1<k<n

which implies that @\([p_,,.(d), X]) = [D_,(p_1(d), D,,(X)] . q.e.d.
By (2) in the above proposition we get

COROLLARY 2.7. If ¢{j = (0) (¢ = 1,2), then g,, = (0).

2.3. Let D(V,F) be a Siegel domain of type II in R° X W. Let
D’ denote the associated tube domain with D(V,F), i.e.,

(2.9) D’ = D(V,F) N (R° x {0)),



SIEGEL DOMAINS 43

which is isomorphic to the Siegel domain D(V) of type I in RC. It was
proved by Kaup, Matsushima and Ochiai [6] that the subalgebra g_, +
g + g of g, is the Lie subalgebra corresponding to the subgroup of all
automorphisms of D(V,F) leaving the domain D’ invariant. Let g, = ¢,
+ g + g1 be the Lie algebra of all infinitesimal automorphisms of D’.
Then there exists a grade-preserving Lie algebra homomorphism & of g_,
+ g + @& into ¢, = g7, + g + 15

(2.10) g:Xeg +g+a—eXeq,,

where &(X) is the vector field which is the restriction of X to D’.
As a corollary to Proposition 2.6 we have the following proposition
which will be used in order to determine the subspace g, of g,.

ProprosITION 2.8. If g, = (0), then g, is o subspace of g and the
map & restricted to g, is an identity.

Proof. We put W, = (0) and W, = W. Then the Siegel domains
D(V,F) and D(V,F,) coincide with D’ and D(V, F), respectively. There-
fore g = g, and g = g,. It is easy to see that the map @ restricted
to g_, + g, + g, coincides with the map ¢ (cf. (2.5)). Thus our assertions
follow from (3) of Proposition 2.6. q.e.d.

§ 3. Automorphisms of Siegel domains over self-dual cones

In this section we calculate infinitesimal automorphisms of the homo-
geneous Siegel domains over self-dual cones (except circular cones) which
were constructed by Pjateckii-Sapiro [10].

3.1. We will use the following notations and well-known results
for irreducible self-dual cones.

1) The cone H*(p, R).

Let R = H(p,R) be the real vector space of all real symmetric
matrices of degree p. We denote by H*(p,R) the cone of all positive
definite matrices in R. Then dim R = {p(p + 1). Let E;, denote a square
matrix of degree p whose (i, j)-component is one and others are zero.
We define a base {€;;}ici<j<p Of R by ¢;;,=E,;; A1 <i<p) and ¢; =FE;
+E,;, A<i<j<p). (2ipicicj<p denotes the coordinate system of RC
associated with the base {e;;}<i<j<p-

It is known in [17] that the Lie algebra g(H*(p,R)) consists of all
linear endomorphisms A of the form;
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8.1 A: XeR—>AX + X*AcR,

where A is an element of gl(p, R).

2) The cone H*(p,C).

Let R = H(p,C) be the real vector space of all hermitian matrices
of degree p. We denote by H*(p,C) the cone of all positive definite
matrices in B. Then dim R = p?. We define a base {e,(1 <7< D), €5
I<i<j<p, s=12}of R bye;,=E,;, A<i<p,e;,=E;+E,
and e, =4E; —E;) A<i<ji<p). @ A<i<p),2y, A<i<y
< p, § =1,2)) denotes the coordinate system of R¢ associated with the
base {e;;, €,s}-

It is known in [17] that the Lie algebra g(H*(p,C)) consists of all

~

linear endomorphisms A of the form;
(3.2 A:XeR— AX + X*4AeR,

where A is an element of gl(p,O).
3) The cone H*(p, K).
Let R = H(p,K) be the real vector space of all hermitian matrices
X of degree 2p satisfying the condition; XJ = JX, where
7 0

=1 . and j=(0 1).
- ~1 0
J

We denote by H*(p,K) the cone of all positive definite matrices in E.
Let X = (X)) be a hermitian matrix of degree 2p, where X;; is a 2 X 2-
minor matrix of X 1 < k,l <p). Then X belongs to R if and only if
X, is represented as follows;

Xu=(" O)a<k<p, Xu=(" U)age<i<w,
0 2z —Yrr Ty
where ;e R and =z, %, €C. Thus we have dimR = p2p — 1). We
define a base {e;; A <i<p), ¢, A<LI1<j<pP,1<s<4D} of R by
€y = Ezt—l 21 T Ezi 2% a <i<p), €ijq = Ezi—x 2i-1 Ezi 29y €i4,2 =7:(Ezi—1 2§-1
— K, 21), €53 = By 2§ — E, 2j-10 €ij0 = WEyy 2y + E, 2J~1) 1<i<i<p,
where E,; is the square matrix of degree 2p whose (7, j)-component is
one and others are zero. (z;;, A <1< D), 2,5, A1 <I<i<pP,1<s<K4)
denotes the coordinate system of RC¢ associated with the base {e;, e}
It is known in [17] that the Lie algebra g(H*(p,K)) consists of all
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~

linear endomorphisms A of the form;

(3.3 A:XeR—AX + X*4deR,

where A is an element of gl(2p,C) satisfying the condition AJ = JA.
3.2. As an application of Theorem 2.1 we have

LEMMA 3.1. For each of the homogeneous Stegel domains D(V,F)
given in the following (1), (2) and (3), the Lie algebra g, coincides with
the subalgebra q,.

1 V=H*'®R), W=Mp,q;C) ®=2),

F(u,v) = 3u'v + 7'u) for u,veWw.
2 V=H®OC, W=M®p,q;C) + M®»,q,; C) (direct sum, p > 2),

F(u’ ,”) — %(u(l)tﬁ(l) + @(2)&”'(2))

for u=u® 4+ u®, v =00 + P ecW.
@ V=H®WK), W=M2p,q;C) (p,q >2),
F(u,v) = (v + Jou'J) for u,veW.

Proof. First we show that for each Siegel domain D(V, F) in (1), (2)
and (8), the subalgebra p(g,) of g(V) coincides with g(V).

Case (1): For each Ae (V) (A € gl(p, R)) we define a complex linear
endomorphism B of W by

B:ueW—AuecW,

where Ay means a usual matrix multiplication of A and . Then by
(8.1) we have

AF(u,u) = F(Bu,u) + F(u, Bu)

for every ue W. Hence by (1.4) A is contained in 0(g). Therefore we
have p(g,) = g(V). 5

Case (2): For each A eg(V) (A € gl(p,C)) we define a complex linear
endomorphism B of W by

B:u=u®4+u®eW—» Au® + Au® e W .
Then by using (3.2) we can verify
AF(u,u) = F(Bu,w) + F(u, Bu)
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for every ue W. It follows from (1.4) that A belongs to o(g). Thus,
we have p(g,) = g(V).

Case (3): For each Aeg(V) (Aegl(@p,C),AJ = JA) we define a
complex linear endomorphism B of W by

B:ueWw— AueW.
Then by (3.3) we have
AF(u,u) = F(Bu,u) + F(u, Bu)

for every ue W. Hence by (1.4) A belongs to p(g,) and o(g) = g(V).

Each cone V in (1), (2) and (3) is an irreducible homogeneous self-
dual cone. On the other hand, it was proved by Rothaus [11] that for
an irreducible homogeneous self-dual cone V, the Lie algebra g(V) is
irreducible. Therefore the representation p is irreducible. Furthermore
each domain D(V,F) in (1), (2) and (3) is non-symmetric (cf. [10]). Thus,
from Theorem 2.1 we conclude that g, = g,. q.e.d.

Now we consider degenerate Siegel domains over the cones V =
H*(p,F) (p >2), where F is R or C or K. Let F be a V-hermitian
form on a complex vector space W of dimension m (m > 0). Then we
get

LEMMA 3.2. If there exists a positive integer q (@ < p) such that
the linear closure of the set {F(u,w);ue W} in R coincides with the

proper subspace (H(%’ F) 8) of R, then g, = (0).

Proof. Case F= R: We show that if a linear endomorphism 4 e
g(V) belongs to p(g,), then A must be of the form;

b
3.4 A= (“ ) ,
3.4 0 ¢
where a€gl(q,R), beM(q,p — q;R) and cegl(p — q,R). In fact, let

Aeolg), A = (‘; ’;) Then by (1.4) there exists Begl(W) such that

(A,B) satisfies the condition; AF(u,u) = F(Bu,u) + F(u,Bu) for every
ue W. Therefore A must satisfy the following; for each Y ¢ H(q,R),

AT )+ (Y )4 belongs to (OB D),
o o/ "\ o o 0
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which implies d = 0.
Now we want to show g,, = 0. For each X eg,,, by (2.2) and (2.4)
there exist ¢,; e W (1 < k <1< p) such that

1o(p_1(d), X1 = (Im F*(cy;, d))

for every de W. From our assumption we can see that F'*/ = 0 if 7 > q.
Therefore, the linear endomorphism p([¢_,.(d), X]) maps the space R =

H(p, R) into the proper subspace (H(%’ B 8) of R. On the other hand,

from (3.4) there exists A egl(p,R) of the form: A = (g l;) satisfying

olo_1(d), X1 = A. Thus, for each Y,e H(q,R), Y,e M(¢,p — ¢; R) and
Y;eH® - ¢, R),

o b)(Yl Yz) (Y, Yz)<ta, 0>b1 . (H(q,R) 0)
(0 Ny, v) Ty, v\ o) PO o)

Hence we get aY, 4+ Yic + bY, =0 and cY, + Yi = 0, which implies
b=0. We can see that « = 0 and ¢ = 0 by taking Y, and Y, suitably.
So, A =0 and o(lo_,.(d), X1) = 0. By Proposition 2.3 we conclude that
Qi = (O)

Case F=C: We proceed analogously as in the above case. Let
Zieg(V) belong to p(g). Then by (1.4) it can be easily verified that A
must be of the form;

b
3.5 A - (a ) ’
3.5) 0 ¢
where a € gl(q,C), be M(q,p — q;C) and cegl(p — q,C).
Now we show g,, = (0). Let Xeg,,. Then by (2.2) and (2.4) there
exist ¢ A< k<D, €1y A <E<ILp, t=1,2)e W such that

10(lp-1(d), XD = (Im F7%(cyy 1, d))

for each de W, where we put Fit=F% ¢,;,=¢; and F(u,v) =
> Fihs(u, v)ey;,,. From our assumption it follows that F*/* = 0 if 7 > q.
Therefore the linear endomorphism p([p_,,(d), X]) maps the space R =

H(p, C) into the proper subspace (H (%’C) 8) of R. On the other hand,

there exists A e gl(p,C) of the form (3.5) such that o([p_,.(d), XD = A.
Thus for each Y, e H(q,C), Y,e M(q,p — q;C) and Y, e H(p — q,0C),
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a b\(Y, Y Y, Y\ia O H(q, 0

<0 c)(t'yi Yz) + (‘le Yz)(‘IS ‘a) belongs to < (g © 0)’
that is, aY, + Yie + bY; =0 and c¢Y,+ Yic =0. Taking Y, and Y,
suitably we have b =0, a =iE, and ¢ = FE,_,, where § is a real
number. By considering (3.2) we get A =0. Therefore o(lp_,,(d), X])
= 0 for every de W. So, by Proposition 2.3, g,, = (0).

Case F= K: By the same considerations as in the above, we can
see that if Aeg(V) belongs to o(g), then A must be of the form;

b
3.6 A= (“ ) ,
(3.6) 0 o
where a € gl(29,C), b € M(2q,2(p — q); C) and c € gl(2(p — @), C) satisfying

o, = Ja, cf,=J,z, bJ,=Jb, J = (gl JO> (f. (3.3)).

Now we want to show g,, = (0). For each X eg,,, by (2.2) and (2.4)
there exist ¢y A<k <D, ¢,y A <EkE<ILP, 1<t<4)e W such that

1o(lp_1(d), X1 = (Am F¥*(¢yy ., d))

for every de W, where we put Fi*=F% ¢;,,=c¢, and F(u,v) =
> Fs(u,v)e;;,. By our assumption, F** =0 if 7 > q. Therefore the
linear endomorphism p([¢_,,(d), X]) maps the space R = H(p,K) into the

proper subspace (H(%’ K) 8) of R. On the other hand, there exists
Ae p(g,) of the form (3.6) such that p([p_,,(d), X]) = A. Thus, for each
Y. cH(@q,K), Y,e M(29,2(p — q); C) and Y,ec H(p — q,K) satisfying Y,J,
=J 172»

a b)(Y1 YZ) (Yl Yz><‘@ O)bl " (H(q,K) 0)
<0 Ny, v) Ty, y N ) PEOmEsS Uy o)

Hence we have

aY, + Y +bY, =0 and cY,+ Yic=0.

~

Taking Y, and Y, suitably we get a =0, b=0 and ¢=0. So, A=0
and p([g_,, X]D) = (0). From Proposition 2.3 it follows that g,, = (0).
q.e.d.

3.3. In this paragraph we calculate infinitesimal automorphisms of
all homogeneous Siegel domains of type II over the cone V = H*(p,R)
»=2).
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Let s be a positive integer and 7(¢) be a non-decreasing integer
valued function defined on an interval [1,s] such that 1 < »(1), r(s) < p.
Let W be the complex vector space of all complex p X s-matrices u =
(ugy) such that w,; =0 if ¢ > r(). We put F(u,v) = {(u'v + v'u) for
u,v€ W. Then it is known in [10] that F' is a V-hermitian form on W
and the Siegel domain D(V,F) is homogeneous. We note that every
homogeneous Siegel domain of type II over the cone H*(p,R) (p > 2) is
isomorphic to the one given here (cf. [10], [13]). It was proved by
Kaneyuki and Sudo [4] that the Siegel domain D(V, F) is non-degenerate
if and only if r(s) = p.

THEOREM 3.3.0 For a Siegel domain D(V,F) mentioned above, the
subspaces g,, and g, of g, are given as follows;

Qi = (O),

g, is isomorphic to the vector space H(p — 7(s), R).

Proof. First we suppose that D(V, F) is degenerate. Then r(s) < p
and the linear closure of the set {F(u,u); ue W} in R coincides with the

proper subspace (H(%’ R 8) of R, where q = r(s) (cf. [4]). Hence, by

Lemma 3.2 we have g,,, = (0).

Now we determine Ql.” We consider the associated tube domain D’
with D(V,F) (cf. (2.9)). It is known in [10] that D’ is the classical
domain of type (III) and the Lie algebra gj, = g, + g + g of all infini-
tesimal automorphisms of D’ can be identified with 3p(p, R) as follows
(cf. [10], Chap. 2, §D;

=500 ={(4 _F)idcqw.p, B,CcHOB),
L )
8% = {(é _J;): A egf(p,R)} .

For each g = <€P EO) cexpgi, 9 acts on D’ by
¥4

1 If s=1, then this theorem was proved by Tanaka [14] and Murakami [8]. Nakajima
[18] calculated the dimensions of gi/z and g, of this theorem by using different methods.
2) This idea of determining g; is due to Murakami [8].
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g:2eD' —2(Cz + E,)'eD .
The image &(g,) of g, is given by
_[(A 0 o
g = { egh; Aep@)  (ef @10).
0 —tA
We want to show that &(g,) coincides with the following subspace of g!;

60 {4 Yewir=( ) vero o)

Let Xeg,. Then, since &X)eg;, there exists Y e H(p,R) such that
&X) = (g, 3) By the conditions &(g_,) = ¢, and [g_,, X] C g, we have

[¢71, 6(X)] C &(g,). Therefore, for each Be H(p,R), BY belongs to p(g,).
So, BY must be of the form (3.4) for each B e H(p,R), which implies
that Y must be of the form (3.7). Conversely let Y be an element in
H(p,R) of the form (3.7). We define the map g, (te R) of D(V,F) into
R¢ x W by

9:: z,wWeDWV,F)— (2(tYz + E,)",we R° X W .
Then we can easily verify (cf. [8]) that
Im (2(tYz + E,)™) = {tYz + E,)"'Imz(tYz + E,)™
and
WtYz + E,)'F(u, w)(tYz + E,)™" = F(u, )

for each ueW.
Thus, ¢, is a one-parameter group of transformations of D(V,F) and g,

induces a vector field X e g, such that &X) = ((I)/ g)
= (0) and Proposition 2.8 we conclude that g, is isomorphic to the vector
space H(p — q, R).

Now we suppose that D(V,F) is non-degenerate. If 7(1) = p, then
W coincides with M(p,s; C) and the Siegel domain D(V,F) is the one
given in (1) of Lemma 3.1. So, we can assume that s>2 and (1) <p.
We put ¢, = min {¢ e[1,s]; ¢ is an integer such that »(f) = p} and define
the complex subspaces W; (¢ = 1,2) of W by

W,={u=@w)eW; uy;=0if j <t}

By the fact gy,

and
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Wy={u=@eW; u; =01if j > 1,;}.
Then it can be seen that
W =W, + W, (direct sum) and F(W, W, = (0) .

We denote by F, the restriction of F' to the subspace W,. Then the
vector space W, is isomorphic to M(p,s —t, + 1; C), and the Siegel
domain D(V,F)) in R¢ x W, is isomorphic to the one given in (1) of
Lemma 3.1. Thus g{f} = (0).

On the other hand, for the Siegel domain D(V,F, in R¢ x W, we can

see that the linear closure of the set {F,(u,w);ue W, in R coincides

with the proper subspace (H(%’ R) 8) of R, where q = r(t, — 1). Hence

by Lemma 3.2 we have g{} = (0). From Corollary 2.7 it follows that g,,
= (0). Therefore by Proposition 2.2 we get g, = g.. q.e.d.

3.4. In this paragraph we consider the Siegel domains of type II
over the cone V = H*(p,C) (p > 2).

Let s, and s, be two positive integers. Let r,(¢) be a non-decreasing
integer valued function defined on an interval [1,s,] such that 0 < r,(%)
and 7, (&) <p (¢t =1,2). We denote by W® the complex vector space of
all complex p X si-matrices u® = (u{?) such that u® =0 if k> r,Q1).
Let W be the direct sum of the vector spaces W@ and W®. We put
F(u,v) = @0 4+ 7@y®) for u=u® + u®,v =00 + 0@ c W = WO
+ W®, Then it is known in [10] that the map F' is a V-hermitian form
on W and the Siegel domain D(V,F) is homogeneous. Furthermore it
was proved in [4] that the Siegel domain D(V,F) is non-degenerate if
and only if 7,(s) = p or 7,s,) = p.

THEOREM 3.4.» (i) If a Siegel domain D(V,F) mentioned above is
degenerate, then the subspaces g,, and g, of g, are given by

Qi = 0,

g, s isomorphic to the wvector space H(p — q,C),
where q = max (7,(s), 7,(s.)).
(11) If 1"1(81) = 7'2(32) = p, then 8rn = Ga-

Proof. First we consider the case (i). The linear closure of the

® Nakajima [18] calculated the dimensions of g2 and g of this theorem by using
different methods.
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set {F(u,u); ue W} in R coincides with the proper subspace (H (‘(I)’C) 0)

0
of R (cf. [4]). Thus, by Lemma 3.2 it follows g,, = (0).

Now we determine g,. We consider the tube domain D’ associated
with D(V,F) (cf. (2.9)). Then it is known in [10] that D’ is the classical
domain of type (I). The Lie algebra ¢, = ¢, + ¢, + g/ of all infinitesimal
automorphisms of D’ can be identified with 3u(p,p) as follows (cf. [10],
Chap. 2, §6);

gn = 3u(p, p)
A B

= {(C ) Aegl®,C), B,Ce H(p,C)} (mod {i6E,,; 6 R} ,

= ), (g )

o= {(64 _tf_‘;) : A e gl(p, C)} (mod {iE,,; 6 ¢ R)) .

Each g = (gf’ EO)(e exp g;) acts on D’ by
b

9:zeD' — 2(Cz + E,)'eD .

The image &(g,) of g, is the subalgebra of g, given by

£@g0) = {(‘(;1 _52) cg; Ae P(go)} .

We want to show that the subspace &(g;) of g; coincides with the follow-
ing subspace of ¢f;

09 {5 9ir= Yvero—ao).

In fact, let X eg,. Then &X) belongs to g; and &(X) is represented as

00
g(X)_<Y 0), YeH®,O).
From the condition [g_;,X]C g, and the fact &(g_) = g’,, we have
[g71,6(X)] C &(g)). Thus it can be seen that, for each Be H(p,C), BY
must be of the form (8.5). It follows that Y must be of the form (3.8).

Conversely let Y be an element in H(p,C) of the form (3.8). We
define the map g, (¢(eR) of D(V,F) into R° x W by
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9::@weDWV,F)— 2tYz + E,))",w)e R° X W .
Then we can easily verify that
Im (2(¢Yz + E,)) = 4tYz + E,) ' Im 2z (tYz + E,)™!
and
(tYz + E,)"'F(u, w)(tYz + E,)™" = F(u, u)

for each ue W. Therefore the map g, is a one-parameter group of
transformations of D(V, F) and the vector field X induced by ¢, belongs

to g,. Furthermore we have &X) = (2, 8) Considering Proposition

2.8 we can identify g, with the vector space H(p — q,C).

Now we consider the case (ii). If (1) = r,(1) = p, then the Siegel
domain D(V,F) is the one given in (2) of Lemma 3.1. Thus we get
gn = gq. We suppose that (1) =p and (1) <p. We put ¢, = min{¢
e[l,s];t is an integer such that r,(f) = p} and define the subspaces W,
and W, of W by

Wi={u=u®+uPeW;u® =0 if j<t},
Wo={u=u" +uPeW;u® =0, u =0 if j>t}.

Then we can see that
W =W, + W, (direct sum) and F(W,W, = (0).

The Siegel domain D(V,F,) in R¢ x W, is isomorphic to the one given
in (2) of Lemma 3.1. Thus we get g} = (0).

For the Siegel domain D(V,F,) in R¢ X W,, it can be seen that the
linear closure of the set {F,(u,w); ue W,} in R coincides with the proper

subspace (H(((I)’ 0 8) of R, where q¢ = r,(t, — 1) (cf. [4]). From Lemma

3.2 it follows that g{ = (0). By Corollary 2.7 we have g,, = (0). Apply-
ing Proposition 2.2 to the non-degenerate Siegel domain D(V,F), we get
8n = Qa-

If (1) # p and 7r,(1) = p, then the fact g, = g, can be analogously
obtained.

Now we suppose that (1) #p» and 7,(1) #p. We putti, =
min {t e [1,s;]; t is an integer such that r,(¢) = »} (1 =1,2) and define
the subspaces W, ¢ =1,2) of W by
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Wy={u=u®+u®eW;ul =0if j <t¢t, u =0 if j <t}
and
Wy={u=u® +uPeW;u=0if j >, u? =01if j > t,}.
Then we have
W=W,+ W, (direct sum) and F(W, W, = ().

It is easy to see that the Siegel domain D(V, F,) in R¢ x W, is isomorphic
to the one given in (2) of Lemma 3.1. Thus we have g} = (0). And
for the Siegel domain D(V,F,) in R¢ x W,, the linear closure of the set

{Fyu,w); ue W,} in R coincides with the proper subspace <H(q0, 0 8)

of R, where q = max (r,({, — 1), 7,(t, — 1)) (cf. [4]). Hence by Lemma
3.2 we get g{} = (0). From Corollary 2.7 it follows that g,, = (0). Using
Proposition 2.2 we conclude that g, = g,. q.e.d.

THEOREM 3.5.Y If r(s) <p and r(s,) = p, then the subspaces g,,
and g, of g, are given as follows;

82 18 tsomorphic to the real vector space M(sy,p — q; C),

g, is isomorphic to the wvector space H(p — q,C),
where s, = 8, — t, + 1, ¢ = max (r(s), 7, — 1)) and t, = min{te[l,s,];
t is an integer such that ry(t) = p}, and r(t, — 1) means zero if t, = 1.

Proof. We define the subspaces W, and W, of W by
Wiy={u=u® + u®PeW;u® =0, u? =0 if 7 <{;},
Wo,={u=u® 4+ uPeW;u =0if j > t}.

Then we can see that
W =W, + W, (direct sum) and F(W,, W, = (0) .

If W, = (0), then D(V,F) is the classical domain of type (I) (cf. [10],
Chap. 2).*> Therefore we consider the case W, # (0).

The Siegel domain D(V,F,) in R x W, is degenerate and the linear
closure of the set {F,(u,u); ue W,} in R coincides with the proper sub-

9 Nakajima [18] calculated the dimensions of g1z and g, of this theorem by using
different methods.

* By the following decomposition of the Lie algebra g,®, we can see that the
theorem is valid for this case.
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space (H(qd O 8) of R (cf. [4]). Hence, by Lemma 3.2 we get ¢ = (0).

On the other hand, the Siegel domain D(V,F) in R¢ x W, is the
classical domain of type (I). The Lie algebra g can be identified with
su(s, + »,p) as follows (cf. [10], Chap. 2, §6);

A, A, Ayl A= 1:‘7123, Ay = —1 57421 e M(p,s,; C)
0
g4l =10
0 0 0 O 0

A, Ay, Ayl A AyeH(p,O)
0 0 0 0 0
g’ = 0 0 0), gin = (D 0 0); DeM(sy,p; C)y s
H(p,C) 0 0 0 —itD 0

g = 3u(s, + p,p)
(mod {i0E,,,.,; 0 € R)) .
A 0 0
oo = {(0 B 0) ; Aeglp,C), Beu(s)

S oo <

{(Au A, Axs) Ay = —‘Zuegt(p, C), Apeulsy) }
H(p,C) 0O C o0
0 ) g%, =110 0 i‘ﬁ);CeM(p,so;C) ,
0 0 —t4

(mod {i6E,,,.,; 6 € R} .
First we note that for
E, 0 0
9= ( D E,, 0) € exp g{j}
—3i*DD —i'D E,
and
E, 0 0
h=|0 E, 0) eexpg®,
Y 0 E,
g and h act on D(V,F) as follows (cf. [10]);
9z, u) = (#,u) and h(z,u) = @Yz + E,) LYYz + E)'u,),
where
2 = 2(—4i'DDz — itD'u, + E,)™
and
w, = *(—%i DDz — i ‘D'u, + E,)7'(2*D + u,)
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for each (z,u) e D(V,F).

Now we show that if A belongs to 0(g)(A € gl(p, C)), then A must
be of the form (3.5). In fact, there exists Begl(W) such that (4,B)
satisfies the condition: AF(u,u) = F(Bu,u) + F(u, Bu) for every ueW.
Putting « = u, ¢ W, we have

AF(u, ) = F(Buy, u;) + F(u,, Buy) ,
which implies
AF (s ) + Fothyy u) A = Fy(Buy),, ) + Fi(ug, (B,

Therefore by the same considerations as in Lemma 3.2 it follows that
A must be of the form (3.5). By Proposition 2.6 we have

0_,(g.) = g‘.’i @=1, %)

A 0 0
Dy(gy) = {(0 B 0) eg;Ae P(go)} .
0 0 —t4

and

Now we want to show that
0 0 O
3.9 Diulg) = (D 0 0) egii; D =(0,D),D,e M(sp,p — 45 C)y¢ -
0 —i!tD 0

Let X eg,,. Then by (2) of Proposition 2.6 @,,(X) belongs to g{}. Thus,
there exists D e M(s,,p; C) such that

0 0 0
o,X)=|D 0o of.
0 —itD 0

From (1) and (4) of Proposition 2.6 it follows that [g%),, ,,(X)] belongs
to @,g,). So, for each Ce M(p,s,; O),

0C 0 0O 0 0
[(0 0 ité) : (D 0 0)] belongs to O,g) -
00 0 0 —itD 0

Therefore CD is contained in o(g). Thus CD must be of the form (3.5),
which implies that D must be of the form (3.9).
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Conversely let D(e M(s,p; C)) be of the form (3.9). We define the
map ¢, (tcR) of D(V,F) into R° X W by

9:: @uy + u) e DV, F) — (2, u; + u)) e RC X W,
where
2 = 2(—%}it**DDz — it 'D'u, + E )",
u; = Y(—3it?*DDz — it *Dtu, + E,) " (t'2*D + u,) ,
Uy = U, .
Then, by elementary calculations we can verify that
Im#z — Fw,v) = ‘Q(Im z — F(u,w)Q ,

where Q = (—4it?*DDz — itDu, + E,)™', u=1u, + u, and o = uj + u.
Therefore the map ¢, is a one-parameter group of transformations of
D(V,F). Let X be the vector field induced by g,. Then it is obvious

0 0 0
that X belongs to g,, and 9,,(X) = (D 0 0). By (2) of Proposition
. 0 —itD 0

2.6 we have proved that g,, is isomorphic to the real vector space
M(s,,p — q; C).
Now we determine g;. We can show

0 0 O
3100 o) =10 0 o eg;”;Y=(° 0), yeH®P— ;0 .
Y 0 0 0 v

In fact, let X eg,. Then by (8) of Proposition 2.6 @,(X) belongs to g®.
So, there exists Y € H(p,C) such that

0 0 0
9(X)=10 0 Of.
YO0 O

From the condition [g_,, X] C g, and (4) of Proposition 2.6 it follows that
for each Be H(p,C),

0 0 By (0 0 0
(0 0 0),(0 0 o)] belongs to B,(g,) -

0 0 0/ \YO O

Hence, BY belongs to p(g,), which implies that BY must be of the form
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(8.5). Therefore Y must be of the form (3.10). Conversely let Y( e H(p,C))
be of the form (8.10). We define the map h, (teR) of D(V,F) into
RC¢ x W by

he: @yuy + w) e DIV, F) — &,ul + w)e RE X W,

where 2’ = 2(tYz + E,)™', u; = (tYz + E,)"'u, and u; = u,. Then we can
verify that

Imz — Fw,w) =(tYz + E,))'(Imz — Flu,w))(tYz + E,)7",

where % = u, + u,, W = u, + u,e W. Therefore the map k, is a one-
parameter group of transformations of D(V,F) and h, induces a vector

0 0 O

field X € g, such that &,(X) = (0 0 0). Thus, by (3) of Proposition 2.6
Y 0 O

we have proved that g, is isomorphic to the vector space H(p — g, 0.

q.e.d.

Remark. If r(s) = p and 7s,) < p, then the Siegel domain D(V, F)
is isomorphic to the one given in the above theorem. If s, =3s,=1,
r1)=p —1 and r,(1) = p, then the fact dimg,, =2 was proved by
Sudo [12] by using different methods.

3.5. In this paragraph we treat the Siegel domains of type II over
the cone V = H(p,K) (p > 2).

Let s be a positive integer and 7(f) be a non-decreasing integer
valued function defined on an interval [1, s] such that 1 < »(1), 7(s) < 2p.
We denote by W the complex vector space of all complex 2p X s-matrices
% = (uyy) such that u;; = 0 if ¢ > r(j). We put F(u,v) = {(u v + Jv utJ)
for u,v e W. Then it is known in [10] that the map F is a V-hermitian
form on W and the Siegel domain D(V,F) is homogeneous. Further-
more it was proved in [4] that the domain D(V,F) is non-degenerate if
and only if 7(s) = 2p or 2p — 1.

THEOREM 3.6.» (i) If a Siegel domain D(V,F) mensioned above
is degenerate, then the subspaces g,, and g, of g, are given by

8, = (0),

g, ts isomorphic to the vector space H(p — q,K),
where q = [(r(s) + 1)/2].

5 Nakajima [18] calculated the dimensions of gi2 and g; of this theorem by using
different methods.
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(i) If s>2 and r(1) = 2p, or if s >3 and there exists an integer t,
such that 1 <t,<s—1,7(t,) =2p and r{t, — 1) < 2p — 2, then g, = g..

Proof. First we consider the case (i). The linear closure of the

set {F'(u,w); ue W} in R coincides with the proper subspace <H (qd K) 8)

of R, where q = [(r(s) + 1)/2] (cf. [4]). Hence by Lemma 3.2 we have
Gz = (0).

We determine g,. Now, we consider the tube domain D’ associated
with D(V, F) (cf. (2.9)). Then it is known in [10] that D’ is the classical
domain of type (II). The Lie algebra g}, = g, + ¢ + g} of all infinitesimal
automorphisms of D’ can be identified with so*(4p) as follows (cf. [10],
Chap. 2, §7);

g, = 30*(4p)
—{(A _B);acqen0,47 = 74, B,CeHG,BY,

Cc —*A
G TET). ey O

’ A 0 . -
go={(0 _LZ)’AGQ[(ZP’C)’ AJ—-JA} )

E

w0
Y E,

We note that g = ( ) (eexpg) acts on D’ by

g:2e D' —2(Yz + E,))'eD .
It can be easily seen that the image &(g,) of g, (cf. (2.10)) is the follow-
ing subalgebra of gj;

£ = {(gl _0571) cg; Ae P(Qo)} :

We want to show that &(g,) coincides with the following subspace of g;;

(3.11) {(‘1’, g) eqgls ¥ = (7 2) yeHE — ¢, K} .

In fact, let Xeg,. Then &X) belongs to g; and there exists Y ¢ H(p, K)
such that £(X) = (g, g). On the other hand, £(g_) = ¢’,. So, by the

condition [g_,,X]C g, we have [g’,,&(X)] C &(g,). Hence, for each Be
H(p,K), BY must be contained in p(g,). Therefore BY must be of the
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form (3.6). Thus, Y must be of the form (8.11). Conversely let Y be
an element in H(p,K) of the form (3.11). We define the map g, (te R)
of D(V,F) into R° X W by

9:: @uw)eDWV,F)— Yz + E,,)) ", u)e RE X W .
Then we can verify that
Im (2(tYz + E,,)™) = {&¥z + B,,)"' Im z (tYz + E,,)™"
and
‘XYz + E.,)"'F(u,w)tYz + E,p)™" = F(u,u) .

Therefore the map ¢, is a one-parameter group of transformations of

D(V,F), and g, induces a vector field X g, such that &X) = (2, 8).

Thus, by the fact g,, = (0) and Proposition 2.8 g, can be identified with
the vector space H(» — ¢, K).

Now we consider the case (ii). If (1) = 2p, then the complex vector
space W coincides with M(2p,s; C) and the Siegel domain D(V, F) is the
one given in (3) of Lemma 3.1. So, we have g, = g,. We proceed to
the second case. We define the subspaces W, and W, of W by

Wiy={u=@)eW;u,;=0Iif j <t}
and
Wy,={u=@)eW;u;=01if j>t}.
Then we have
W=W,+ W, (direct sum) and F(W,W, = (0).

The vector space W, is isomorphic to M(2p,s — t, + 1; C) and the Siegel
domain D(V,F,) in R¢ x W, is isomorphic to the one given in (8) of
Lemma 3.1. Thus, we have g{} = (0). For the Siegel domain D(V,F,)
in R x W,, by our assumption 7(f{, — 1) < 2p — 2 the linear closure of
the set {F,(u,uw);ueW, in R coincides with the proper subspace

(H(‘I(;K) 8) of R, where ¢ =[(r(t, — 1) + 1)/2] (cf. [4]). Thus, by

Lemma 3.2 we get g{?}, = (0). It follows from Corollary 2.7 that g,, = (0).
Applying Proposition 2.2 to the non-degenerate Siegel domain D(V,F),
we conclude that g, = g,. q.e.d.
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§ 4. Homogeneous Siegel domains over circular cones

In this section, we will study how to construct all homogeneous
non-degenerate Siegel domains over circular cones and study their equiv-
alence. We omit the terminology ‘“of type Il of rank 2”, since we con-
sider here exclusively N-algebras of type II of rank 2.

4.1. We will recall some of definitions and results about N-algebras
and skeletons due to Kaneyuki and Tsuji [5] in the case of rank 2.

Let N be a finite dimensional algebra over the real number field.
Suppose that N is the direct sum of the bigraded subspaces N;; (1 <14
<7< 38) and that N is equipped with a positive definite inner product
{,>. Let j be a linear endomorphism of the subspace N,; + N,, of N.
Then the triple (N,{, >,7) is called an N-algebra® if the following con-
ditions are satisfied;

N13 * (0) or st * (0) ’
N12N23CN13’ Niijl:(O) if ]ik,
{N;;sNg) =0 ifixkorj+1,

(4-1) jNiszN‘iS (1:2 1,2)’ ]‘2____ -1 ’
“4.2) {a, jb> = <a,b> for a,beN,; + N, ,
4.3 §(@003) = @1,5(a3)

for every a,,b,,e N, and a,;, b, N,; ,
<a’12a237 b12b23> + <al2b23’ b12a23> = 2<a’12’ b12><a23’ b23> .
Remark. Let (N, {, >, j) be an N-algebra with dim N,,-dim N,, + 0.

Then the following condition is satisfied ; max (dim N, dim N,;) < dim N,
(cf. I5D).

A figure © in the plane is called a connected 2-skeleton (of type
II) if © is one of the following &, or &,;

“4.4)

1 omy B 1 om 3

2 2
6 This definition is slightly different from that of [5], but these are equivalent.
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where » and m, in &, are positive integers, and =,m,, m, in S, are
positive integers such that max (n,2m,) < 2m,.

Let (N, {, >, /) be an N-algebra. Then it is said that (N, {, >, 7)
corresponds to &, (resp. &, if dimN, =%, dimN,, =0 and dim N, =
2m, (resp. dim N, = n, dim N,; = 2m, and dim N, = 2m,). In this case,
&, (resp. &) is called the diagram of (N, {, >, 1.

Let (N, (,>, /) and (N’, {, ),7) be two N-algebras which cor-
respond to the skeletons &, or &, Then (N, {, ), /) is said to be
isomorphic to (N’, {, ), j/) if there exists a bigrade-preserving algebra
isomorphism ¢ of N onto N’ such that

<§D(a), So(b)>l = <a'7 b>, a, beN ’

(4.5) .
poj =170 on Ny+ Ny.

It follows immediately from the above definition that if two N-algebras
which correspond to the skeletons &, or &, are isomorphic, then their
diagrams are the same one.

According to [5], [13], there is a one-to-one correspondence between
the set of all (holomorphic) isomorphism clagses of homogeneous Siegel
domains of type II over circular cones and the set of all isomorphism
classes of N-algebras whose diagrams are &, or S,.

In what follows, for a Siegel domain D(C(n + 2),F) corresponding to
an N-algebra whose diagram is &, (resp. ©,), we say that D(C(n + 2),F)
corresponds to &, (resp. S,).

It is known in [5] that for given positive integers n,m,, there exists
a unique homogeneous Siegel domain which corresponds to ©,. Further-
more the explicit forms of these domains are found in [5], [10].

4.2. By the facts stated above we will consider the case of S,.

DEFINITION 4.1. Let {T:}<z<, be a system of m,; X m,-complex
matrices T, (1 < k < n) satisfying the condition;

(4.6) ‘TWTy + 'T\Ty = 26 E,, (A <kl<n).

Let {T;h<i<. be another system of m, X m,-complex matrices satisfying
(4.6). Then {T:}ici<, is said to be equivalent to {Ti}h<i<. if there exists
a triple (0,,U,, U,) e O(n) x U(m,) X U(m, such that

(47) (Tl’ Tty Tn) = Ul(T;r Tty T;)(Ol ® Uz) ’
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for the m, X nm,-matrices (T, ---,T,) and (T, ---,T%).

From (4.7) it can be seen that the above ‘“‘equivalence” is an equiv-
alence-relation in the set of all systems satisfying (4.6).

Let {T:}i<i<. be a system of m, X m,-matrices satisfying (4.6). Let
Ny, be the euclidean space R* with the inner product (,) and N, be
the complex euclidean space C™ (k =1,2) with the hermitian inner
product (,). Let N be the direct sum of real vector spaces N;; (1 <%
< j<3). Then for a fixed orthonormal base {e;},<;, of N,;,, we define
in N an inner product {, >, a multiplication and a complex structure
7 as follows;

Qg + Gy3 + Q13,013 + by + by
(48) = (aqz, b1z) + Re (azay bza) + Re (aqa’ bl.’i) )
@, b€ Ny 1<i<ji3y.

4.9 ey, = Tyay; holds in Ny A <k < n) and a0, =0 if 7+ s.
(4.10) JUs = Ty, k=12).

LEMMA 4.2. With respect to (4.8), (4.9) and (4.10) the vector space
N is an N-algebra which corresponds to ©,. Ewery N-algebra which
corresponds to S, can be obtained in this way by taking some system
satisfying (4.6).

Proof. It can be easily seen that (N, {, >, j) satisfies all the con-
ditions but (4.4). Using (4.6), (4.8) and (4.9), we obtain

€isy €:055) + {exby, €105)
= Re (T, T'b,;) + Re (Tb,y;, Thaty,)
= Re (CT:T, + ‘T Ti)0s, byy) = 261, Re (ayg, byy)
= 2{ey, €,y by

which implies (4.4). By Remark in the paragraph 4.1 it is obvious that
(N, <, >, 1) corresponds to &,. Hence the first assertion was proved.
Conversely let (N, {, >, 7) be an N-algebra which corresponds to
S,. Then by (4.1) and (4.2) we can identify N, (resp.N,) with C™
(resp. C™) as hermitian vector spaces. Let us identify N, with R" as
euclidean vector spaces and put {e;}<x<, be an orthonormal base of N,
= R". Let L, denote the left multiplication by ¢, in N (i.e., L,(x) =
e.x for xeN) (1 <k<mn). Then L, restricted to the subspace N,
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induces a complex linear mapping of N,, into N,, (cf. (4.3)). Hence,
under the identification of N,; with C™ (i = 1,2) L, induces a complex
m, X mymatrix T, such that T.a,, = e;a,, (1 <k <n). On the other
hand, (4.4) implies

L;ckLL + Lka = 25m1 ’

where * is the adjoint with respect to the inner product <, >. Thus,
it follows that the system {7T'},<.<, satisfies the condition (4.6). q.e.d.

In view of the above lemma the system {T:}<;<, is called the ad-
missible system of (N, {, >, j) with respect to the orthonormal base

{ek}1gksn-

LEMMA 4.3. Let (N, {, >, 7) and (N, {, ), ) be two N-algebras
which correspond to &,. Lel {ei}hcrcn (resp.{€ haren) be an arbitrary
orthonormal base of Ny, (resp. Ni,) and let {Tihcr<n (resp.{Tihi<i<n) be
the admissible system of (N, <, >, 7) (resp. (N',<, Y,§)) with respect to
{exh<isn (resp. {€hekcn). Then (N,<, D, 7) is isomorphic to (N',<{, Y, 7)) if
and only if {Tih<i<a 95 equivalent to {T;hcicn

Proof. Suppose that (N,{, >,j) is isomorphic to (N/,{, ’,7). Then
from (4.5) it follows that there exists a triple (f, g, k) of linear isometries;

f: le""N{z’ g: sz—"Nésy h: N13_>N;3

satisfying

(4.11) S(€)9(ar) = h(exay)

and

4.12) hoj=70oh on Nj; and goj =7 0og on N, .

Let O = («;;) be the orthogonal matrix of degree n defined by f(e,) =
Srane; A <k <m. Then (4.11) implies > a;ejg(a,;) = h(exa,;). Hence,
we have

(4.13) Siauliog = holL, A<k<sn).

From (4.12) it follows that ¢ (resp. k) induces a unitary matrix G (resp. H)
of degree m, (resp.m,). Thus, (4.13) shows that > «,T,G = HT, (1<
k <mn). From this we have -

(T{) "'9T;)(O®G) = H(Tp "‘,Tn) .
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Hence, {Tihck<n.is equivalent to {Ti}i<r<, (cf. Definition 4.1).
The converse of our assertion is analogously proved. q.e.d.

4.3. It was proved in [5] that homogeneous Siegel domains and
N-algebras are in one-to-one correspondence. By considering the cor-
respondence in detail in the rank 2 case, we will prove that every
homogeneous non-degenerate Siegel domain D(C(n 4+ 2), F') is constructed
directly in terms of the system {T:};<i<n-

Let (N,{, >,7) be an N-algebra whose diagram is &, and let {T};<1<n
be the admissible system of (N,<{, >,7). Now we will construct the
Siegel domain D(C(n + 2),F) which corresponds to (N,<{, >, 7) in the
sense of Corollary 2.7 in [6]. By Theorem 2.6 in [56] we can construct
the T-algebra (X = >, ;j<s Uisy *,7) Which corresponds to (N,<, >,7) as
follows;

Ay =R A<Li1<3), Ay =Ny, U =N A1 <i<7<L3),

where x is an involutive linear endomorphism of N,; such that xoj =
jox on Ny + N,. And the multiplications in % have the following
properties;

a0, = {a,a%> (1<i1<ji<3,

4.14)
<a13a32’ ery = Oy, exa%> = Re (ay, Trad) ,

where a;; € %,;.

We denote by R(Y) the direct sum U, + %, + %, and denote by
W@Q) the direct sum %,; + %, (=C™ + C™). We define the subset V()
of R() as

VIN) ={a = ay + @ + ¢, € RQ); a;, > 0, 0,0 — {ay,a,) > 0} .

Then we can see that V(IN) is a homogeneous convex cone and actually
isomorphic to C(n + 2) under the following linear isomorphim f of R()
onto R"*?;

(4.15) Jia=a, + ay + a,€ R — “ay, 0y, 03, - -+, %) € R*?,

where a, = > ake;.
We define the map F:C™m*m x C™tm s C**2 by putting F =
YFY, ..., F**?), where

* By aua We mean a usual multiplication of real numbers ai; € ¥i;=R(i=1, 2).
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F'(u,v) = (u,v,) , F(u,v) = (uy,vy) ,

(4.16) Fo*2(u, v) = ${(uy, Tyvy) + (Trthy, v} A<k<n

for u=u, + u,, v =2, + v, C™*™ = C™ + C™, Then we have

THEOREM 4.4.” (i) For F above, the domain D(C(n + 2),F) is a
homogeneous non-degenerate Siegel domain.
(ii) Conversely every homogeneous non-degenerate Siegel domain D(C(n
+ 2), F) is constructed in the above way (4.16) by taking some system
{Tihicr<n Sotisfying (4.6).
(iii) Furthermore suppose that D(C(n + 2), F’) is constructed by {Tih<ien-
Then D(C(n + 2),F) is holomorphically isomorphic to D(C(n + 2),F") if
and only if {Trher<n 8 equivalent to {Tihepen-

Proof. First we will show that the map F defined by (4.16) is a
C(n + 2)-hermitian form on C™ 4 C™: and the Siegel domain D(C(n + 2), F)
thus constructed is the one which corresponds to (N,<, ), 7) in the sense
of [5]. By Theorem A in [13], the homogeneous Siegel domain which
corresponds to the T-algebra (¥, x*,7) is given by the following V(IN)-
hermitian form F = Dickcics Foo on W) ;

Fro(u, v) = H{uegvh + vist) + 1(esf(0F) + j(rduih)}

for u = Uy + Uy, ¥V = V3 + Vy € W)
Hence, by (4.14) we have

Frew(u, v) = H2 U, Vis) + U<Ussy FJ0F*D + G(03), Uis)}
= H{ Uy Vis) + WUasy §(Vis)D} (Y %0f = jox)
= %{Re (Ugsy Vi5) + 7 Re (uksy";'vks)} (by (4.8))
= §(Ups, Vi) (B =1,2).

And we have

CFro(u, w), ) = §{uus, ey + %i(<u13j(u23)*, ery + {Jluz)ug, )
= § Re (uy, Txuyy) (by (4.14)) ,

which implies

F(u,v) =% 20 Ay, Trveg) + (Trtyss vi5)}es -

1<k<n

D If my=m, in &,, then this construction is reduced to Pjateckii-Sapiro’s [10].
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We define the complex linear isomorphism ¢ of W(%) onto C™ 4+ C™ by

1

9 Uys + U € W) — [2—

s + Uy € C™ + C™ .

1
VZ
Then we have

FEw@,v) = Flgw), g®)  (w,ve WED, cf. (4.15)) .

Thus, it can be seen that the map F defined by (4.16) is a C(n + 2)-
hermitian form on C™ 4 C™ and the Siegel domain D(C(n + 2),F) in
C"t2 x C™*m jg linearly isomorphic to the Siegel domain D(V(N), F) in
RA)¢ x W(). Hence, the homogeneous Siegel domain D(C(n + 2), F) is
the one which corresponds to (N,{, >,7) in the sense of Corollary 2.7
in [56]. From Lemma 4.2 it follows that every homogeneous Siegel
domain of type II over the cone C(n 4+ 2) which corresponds to the
gkeleton &, is constructed by (4.16) by taking some system {T;}hci<n
satisfying (4.6).

Now we will show that a homogeneous Siegel domain D(C(n + 2), F)
is non-degenerate if and only if D(C(n + 2), F) corresponds to &,. Suppose
that D(C(n + 2),F) corresponds to ©,. Then, as was proved above,
D(C(n + 2),F) is constructed by (4.16) by some system {T:},<s<, Satisfy-
ing (4.6). The subset {F(u,u);ueC™ + C™} of R"** contains n + 2
linearly independent vectors in R***. In fact, take unit vectors u; e C™
(¢t =1,2) and put

W=u+0, w=0+u, u*="Tau+ueC™+Cm
A<k<Ln.

Then we can verify that {F(u',«"), F(u*, 49, - - -, F(u"**, u"*?)} spans R"*%.
Suppose that D(C(n + 2), F) corresponds to ©,. Then it was proved in
[5], [10] that the C(n + 2)-hermitian form F' on C™ is given by

4.17) F(u,v) = *"((%,v),0,---,0) (u,veC™) .

Hence D(C(n + 2),F) is degenerate.
Thus, the first and the second assertions of the theorem were proved.
The last assertion follows immediately from Lemma 4.3. q.e.d.

§5. The exceptional bounded symmetric domain of type (V)
5.1. Let {T,,T,} be a system satisfying the condition (4.6) and define
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an m, X 2m,-matrix B as B = (T,,T,). Then it follows from (4.6) that
¢T\T, is a skew-hermitian matrix of degree m,, and we have

0

.1) ‘BB = (_1

(1)) & ‘T.T, + B, -

LEMMA 5.1. Let {T,,T,} and {T7, T;} be two systems satisfying (4.6).
Suppose that *T,T, (resp.'T;T;) has eigenvalues {id, -+, idm}, H <, "+,
< A, (resp. {32y, -+, L <, -+, < A,). Then {T,,T,} is equivalent to
{TL, T3} if and only if (A, -+, 2) = Q-+, 20) 0 (A -+ vy2n) =
(—Z;ng’ tt _2{)- °

Proof. Suppose that (A, --,4,,) = A, -+, 4,) or (A, -+, 2y) =
(=%, -+, —2). Then there exists U,e U(m, such that ‘U,'T.T;U, =

e!TT, ¢= +1. Putting B” = B’<<(1) ‘g) ® Uz), we have ‘B’B” — ‘BB.

Hence, by an analogous consideration as in Lemma 4.3 in [5], there
exists U, e U(m,) satistying B = U,B”, that is, B = UIB’(<(1) 2) ® Uz).

Therefore {T,,T,} is equivalent to {T7, T7} (cf. Definition 4.1). By making
use of (5.1) we can easgily prove the “only if” part. q.e.d.

The following proposition is stated without proof in Pjateckii-Sapiro
[10], but for the sake of completeness we prove it without using the
theory of Clifford algebras.

PROPOSITION 5.2. There exists a unique homogeneous Siegel domain
(up to holomorphic equivalence) which corresponds to &, with (n,m,,m,)
= (6,4,4). Furthermore this Siegel domain ts constructed by the follow-
ing system {Ti}hici<s;

s i 8). 1y ).
0 0 0 0 0 1

{o o 0 0 —1 0

T.=11 0 NE

6.2) 0 —1 0

[=IN R
. col o
[ay
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|
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ot
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Proof. It can be easily seen that the above {T:}h.i<s IS @ system
satisfying (4.6) with (n,m;,m,) = (6,4,4). Conversely let {S;}<.<s be a
system satisfying (4.6) with (n,m,,m,) = (6,4,4). Then, by (4.6) S,
belongs to U4) (1 < k < 6).

Now we will prove that {Si;}<i<s is equivalent to {T,}ci<s- Since
{S;,S,} is a system satisfying (4.6) with (n,m,,m,) = (2,4,4), it follows
from Lemma 5.1 that there exists a triple (0,, U,, U,) in O2) X U(4) x U4)
such that

(5.3 Ui(S,,8)(0,® Uy = (E,,S) ,

where S, = iE,, i(_Ol E?) or i("E)EZ EO) Putting 0, = (gl EO) € 0(6), by
3, 2, 4,

(5.3) we have U1(S1’ ce ’Ss)(oz ® Uz) = (E4, S;, U1S3U2, ceey UISGUz). So,
without loss of generality we can assume that (S, ---,S) = #,,S,, -,

S,), where S, = iE, or z(_ol Eg) or z’(—oEz Eg) The case S,=1E, or

i(_ol E?) does not occur. In fact, suppose that S, = i¢F,. Then it can
3,

be seen that {E,,<E,,S;} does not satisfy the condition (4.6). Further-

more suppose that S, = 2(7)1 E9) Then it follows from the condition

3,

18,8, + SeS; = 0 (k= 1,2) that S, is represented as

0 2z 2 2z

-z 0 0 0
z 0 0 ol #€C A<k<?3.

—-%Z 0 0 0

S;=|_
This contradicts to the condition ¢S,S, = E,. Hence S, must be T, =

i<_0E2 Eg) From (4.6) it follows that S, (3 < k < 6) is represented as

0 X,

G4 Se= (—ﬂYk :

), XX, + XX, =2uE, G<kl<6).

We will show that {Si}i<i<s 18 equivalent to {S{}i<i<s» Where Sy =T,
Sy =T, and Sy =T,. In fact, let U, = (t)(% EQ) Then by (5.4) we have
L))
U,e U4 and

U:;(Su c ,Se)(Ee ® tU_a) = (U3S1 tﬁa; oy U3Sa‘l73)
= (Tu Tz’ Ts, U3S4tU3, Ussn tl_faa Uasatﬁs) .
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Thus, without loss of generality we can assume that
{Sk}ISkse = {Tu sz Tsy Su Ss, Se} ’

where S, (4 < k < 6) is represented as follows;

(5.5) sk=(‘1’, Y(';), Yy = ~Y,eU®, Y.V +YY: =0
k

U<k+1<6).

In view of (5.5) there exists U,e U(2) such that U,Y,:U, = iE, or

—1iE, or z<(1) __(_)1) Furthermore from the condition Y,Y, 4+ Y,Y, = 0 it

follows that (U,Y,:U)U,Y,U) + (U, Y,*U)U,Y,'U) = 0. Therefore by

the fact U,Y,'U,eU®), U,Y,'U, must be i((l) _01). Putting U, =
(OU‘ U(i) e U4), we have

Us(Su e Se)(Ee ® lﬁs) = (Tn Tz’ T3, Tu T;’ T{;) ’

where T; and T; are represented as follows;

T;:(g Z(';), tZy = —ZyeUQ) (k=5,6), ZJZ+ ZZ;=0.
k

On the other hand, by the condition *T,T} + *T\T, =0 (k =5,6), Z, is
represented as

0 et 0 e
2y = (-—e‘“ 0 ) » 2= (—e“i” 0) GneR) .

And by the condition Z,Z, + Z,Z, = 0 we have €'~ = ¢, e = +1. Now
we put

e 00 0
0 10 0 E, 0
Ui=ly o o olcU® and 03=(05 E)eO(ﬁ).
o 00 1

Then the direct verification shows that
”Ue(Tn Tz; Ts, Tu Té, Té)(os ® Ue) = (Tl, ) Ta) .

Hence, {Sihci<s 18 equivalent to {Ti}h<i<o- q.e.d.
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5.2. We will investigate infinitesimal automorphisms of homogeneous
Siegel domains over circular cones. The same notations as in the pre-
vious sections will be employed.

LEMMA 5.3. Let D(C(n + 2),F) be a homogeneous Siegel domain
which corresponds to the skeleton ©,. Then the representation p is ir-
reducible if and only if m; = m, in S,

Proof. As is known in Theorem 4.4, the C(n + 2)-hermitian form
F = (F, ..., F**?) ig given by (4.16).

Suppose that m, =m, in &,. Then it was proved by Pjateckii-
Sapiro ([10], Chap. 5, §18) that p(g,) coincides with g(C(n + 2)). Since
C(n + 2) is an irreducible homogeneous self-dual cone (cf. Vinberg [17]),
g(C(n + 2)) is irreducible (cf. Rothaus [11]). Thus it follows that p is
irreducible.

Now we will show that if m, #+ m, in &,, then p is not irreducible.
It is known in [17] that the Lie algebra g(C(n + 2)) consists of all
matrices A of the form;

A 0 2a, 2a,
0 u 2b 2b,

(5.6) A=|b a ’

: 1A+ WE, + a

b, a,
where 4, u,a; and b, are real numbers (1 < k < n) and « is a real skew-
symmetric matrix of degree n. Let A € g(C(n + 2)) and B e gl(W). Then
(A, B) satisfies the condition; AF(u,u) = F(Bu,u) + F(u,Bu) (for every
ueW =C™ 4 C™) if and only if B is represented as follows;

3.7 B = (Bl + 3B, By ) ,
le Bz + %#Em,

where B, = > a; Ty, By = >, b,'T, and B, (resp. B,) is a skew-hermitian
matrix of degree m, (resp.m,) satisfying the conditions

(5.8 B(T,.--,T)=T, -, T)a®E,, + E,®B)
and

(5.9 2bkEm1 = TB, + tEthTk A<k<n.
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Now we suppose that m, = m,. Then by (5.9) we have

2biEm, = 3 b(Te'Ti+ Tv'Ty) (A <k<n).

1<i<n

From the fact !T,T; = E, (cf. (4.6)) it follows that there exists U e U(m,)
satisfying UT, = (EO,,,) By putting UT, = (glz) (1 k), we have

%wm=;wm@wﬂ+nﬁWﬁ=gw{G@y@mEH{gﬁwwm}
l

=u(CF T a<ksw,
L

D, 0
which implies that b, = b, = -+ = b, = 0. From (1.7) we conclude that
if m, # m,, then the representation p is not irreducible. qg.e.d.

The following theorem is stated implicitly in Pjateckii-Sapiro [10],
as we remarked in the introduction.

THEOREM 5.4. The exceptional bounded symmetric domain in C* of
type (V) (in the semse of E. Cartan) is realized as D(C(8),F), where
F = Y(F", ..., F® is the following C(8)-hermitian form on C®;

Fl(u: u) = Z luklzy Fz(u, u) = Z ,ulc-(-dlz ’
1<k<4 1<k<4

Fi(u,u) = Re (w; + w7 + s, + U
Fu, w) = Im (—u2l; — Uty + U, + uy)
(5.10) F(u, w) = Re (u, + Ul — Uz — UT,)
FS(u, w) = Im (u,%, — wds + Ushy — Uy ,
F'(u, w) = Re (u,tly — w4, + Uy — uy) ,
Féu, w) = Im (w3t + 4, + Uty + Uy ,

for u = “(u, -, uy) € C®

Proof. We will show that the Lie algebra g, of all infinitesimal
automorphisms of D(C(8), F) is simple. It can be seen that D(C(8),F)
is constructed by the system {T:},<.<s of (5.2) by using (4.16). Thus,
D(C(8),F) corresponds to the skeleton &, with (n,m,m,) = (6,4,4).
Therefore, by Lemma 5.3 the representation p is irreducible. )

Now we want to determine g, We define A € g(C(8) by putting
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A 0 2a 20,
0 p 2b 2bs

A= bl 0y y = (alcl) GQI(GaR) ’ b = —a .
L Ja 4 pE ta

Then by direct computations making use of (5.7), (5.8) and (5.9) we can
verify that B e gl(8, C) satisfies the condition; AF(u, w) = F(Bu,w) + F(u, Bw)
(for every ueC® if and only if B is represented as follows;

B (B1 + 11E, >0 o, Ty

(5.11) 127<0 ) + 0E, ,

Z bktTk B, + %#E4
1<k<6
where d¢ R, and B, = (a,,) and B, = (b,,) are skew-hermitian matrices

of degree 4 given by

Q= by, = H(—ay + ) — o + )},
Ay = —524 = 3 —(ay + ap) — oy — )},
@y = by = H— (s + az) — iy — )},
Uy = by = Hlay — ) — iy + )},

O = —byy = H(—a + ) + il + @)},

Oy = by = (s + ) + Wayy — )},

Gy =ty , Gy =y + ay + @), Gy = Ay, Gy = oy,

bu =0, by =1y + ay), by=1ay, + @), by =1a, + ay) .

Hence, from this fact and (1.4) it follows that dim g, = dim g(C(8)) + 1
= 30.

We want to show that g,, # (0). We define a polynomial vector
field X = 3 1ckas P¥10/02% + D 1cass D50 + D52)3/0w, on C* as follows;

pho= 22w, , P}, = 2{(z — 2)w; + (2 + 29w, + (2, + 12)ws} ,
D3, = 2w, + (2, — 12w, + (2 + 2Jw; + (2, + 2Pw, ,

Pty = —izw, + (25 + 2)w, + (—12 + 29w, + (—12, + 2w, ,
p?,l =2w; + (—2; + 2)W; + (25 + 2w, + (2; + 2w, ,

P31 = 2w, + (—12; — 2Jw; + (=12 + zJw, + (12, — 29w, ,

p;,l = 2,Ws + (—2; + 12)w, + (—2;,—izdw, + (2, + 2w, ,

PLi = 2wy + (—12; — 2w, + (—1izs + 29w, + (—iz; + zHw, ,

and
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Pio=12, Dlo=D0L0=00=0, p=12%—2z,

Plo=0, D=1+ 2, Dl,=12+ 2,

pé,z = 2uwi, pg,z = 2ww, , pg,z = 2’1,0{1/03 s

Dio = 20,Wy , DGy = 2w ,

Dh2 = 2wy + wwy — wawy) , Vi, = 2W,Ww, , Di, = 2W,Wy .

Then by elemgntary‘ calculations, for each ¢ = (¢, .- -, c® € C®* we have

[p_1p(0), X1 = 37 a},218/02 + 23 blyw,ed /0w, ,

where the matrices A(¢) = (a;,) and B(c) = (b, are given by

A(e) =
(2Rect 0 0 0 0 0 0 0
0 0 2Re¢® 2Imc¢® 2Rec —2Im¢ 2Rec¢® —2Imc
Rec® 0 Rec! Im¢ Rec¢? —Im¢® Rec¢t —Imct
Ime 0 —Ime Rec! Im ¢ Rec? Im¢t Rect
2 Rec 0 —Rec® —Ime Rec¢t —Im¢ Re¢? —Im¢|’
—Im¢ 0 Ime* —Rec? Im ¢t Rec¢t —Im¢? —Rec?
Rec® 0 —Rec¢t —Ime¢* —Rec? Im ¢ Rect " —Im¢
\—Imc® 0 Imet —Rect Im ¢ Rec? Im ¢ Re ¢V
¢ —c¢ —c¢ —¢c 0 0 0 0W
c ¢ 0 0 0 0 0 0
c? ¢ 0 0 0 0 0
Bo=2¢ 0 0 0 000 simeE,.
¢ 0 —¢ —-c¢¢ 0 -—-¢ 0 0
0 b ¢ —¢ ¢ —2ilme! —¢t ¢
. = e 0 0 ¢t 0 0
¢ T 0 FO0 @ 0 o

Hence by (5.6), A(c) belongs to g(C(8)). Considering (5.11) we can verify
that (A(c), B(c)) satisfies the condition; A()F(u,u) = F(B(c)u, u) +
F(u, B(c)w) for every ueC®. Therefore, by (1.4) [¢_,,(c), X] belongs to
g, and we have [g_,,, X] C g,. From (1.9), thus it follows that X belongs
to g,, and g,, #+ (0).

So, as a consequence of Theorem 2.1, we conclude that g, is simple.
By the well-known theorem of Borel-Koszul [1], [7], D(C(8),F) is holo-
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morphically isomorphic to an irreducible bounded symmetric domain in
C*,

This bounded symmetric domain is the exceptional domain of type
(V). In fact, by using (1.6) we have dimg, = 2(dimg_, + dimg_,,) +
dim g, = 78. And there is no classical irreducible bounded symmetric
domain in C* whose Lie algebra of all infinitesimal automorphisms is of
dimension 78 (cf. e.g., Helgason [2]). q.e.d.

Remark. The form F given by (5.10) is different from that of the
note [15]. But it can be seen that this domain is isomorphic to that of
[15] under a linear transformation (cf. Proposition 5.2).

§ 6. Automorphisms of Siegel domains over circular cones

In this section, we calculate infinitesimal automorphisms of homo-
geneous Siegel domains over circular cones.

The Lie algebra g, of a homogeneous non-degenerate Siegel domain
D(C(n + 2),F) for which the representation p is irreducible is determin-
ed completely by the following theorem.

THEOREM 6.1. The Lie algebra g, of all infinitesimal automorphisms
of a homogeneous Siegel domain D(C(n + 2),F) which corresponds to the
skeleton &, with m, = m,(=m) is given as follows;

(n, m) | an
(1) gn=3u(m+2,2) provided that D(C(4), F) is constructed
by the system {Ty, T3} (T, Tae U(m)) such thot iT,T; has

@, m) {iy 43} or {—i, -, —i} as its eigenvalues.
(ii) gn=gq, otherwise.

4,2) 8r=280*(10)

(6’4) anee(—]A)

otherwise 8n=0a

Proof. Pjateckii-Sapiro ([10], Chap. 2) gave case by case the ex-
plicit realizations of all classical domains. From his realizations it
follows that if D(C(n + 2),F) is classical, then (n,m) = (2, m) or (4,2).

Suppose that (n,m) = (2,m). Then it was proved in [10] that
D(C4),F) is a symmetric domain if and only if ‘T\T, has {¢,---,i} or
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{—1, ..., —1} as its eigenvalues and that in this case D(C(4),F) is the
classical domain in C***™ of type (I).

Suppose that (n,m) = (4,2). Then there exists a unique homogeneous
Siegel domain which corresponds to the skeleton &, with (n, m,, m,) =
4,2,2) (cf. [10],[16]). And it was proved in [10] that this domain is
the classical domain in C" of type (II).

Suppose that (n,m) = (6,4). Then there exists a unique homogeneous
Siegel domain which corresponds to the skeleton &, with (n,m,,m, =
(6,4,4) (Proposition 5.2) and this domain is the exceptional domain in
C® of type (V) (Theorem 5.4).

By the uniqueness theorem of realization (cf. Kaneyuki [3]), there
exists no symmetric Siegel domain of type II over circular cones other
than the domains listed above (cf. [10], and for the exceptional domain
of type (VI), see e.g., Vinberg [17]). Thus, our assertion follows from
Theorem 2.1 and Lemma 5.3. q.e.d.

Now we determine infinitesimal automorphisms of homogeneous
degenerate Siegel domains of type II over C(n + 2). As we stated in
section 4, every homogeneous degenerate Siegel domain D(C(n + 2),F)
in C***x C™ (m > 0) can be constructed by the following Cn + 2)-
hermitian form F on C™;

F(u,v) = (4, v),0,.---,0), u,ve C™ (cf. (4.17) .
PROPOSITION 6.2. For the homogeneous degenerate Siegel domain
D(C(n + 2),F) in C*** x C™ (m > 0), the subspaces q,, and g, of g, are
given by

Qi = (0) ’
6= {a( > #4.40/02, + 230/02, + >, zzzk,,za/azk“); ae R} .
1<k<n 1<k<n
Proof. First we will determine g,. Let A € g(C(n+2)) and B ¢ gl(m, C).
Then it can be eagily verified that (A, B) satisfies the condition; AF(u, )

= F(Bu,w) + F(u,Bu) (for each we C™) if and only if (4,B) is repre-
sented as

i 0 2, ... 2a,
(6.1) A=10 a , B+!B=2E,,

32+ WE, + «a
0 a,
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where 2, p4,a; (1 < k < n) are real numbers and « is a real skew-sym-
metric matrix of degree n (cf. (5.6)). Thus, by (1.4) we have determin-
ed g,.

Now we show g,, = (0). In view of Corollary 2.7 we can assume
that m = 1. Let Xeg,,. Then by (2.2), (2.3) and (2.4), there exist
¢, beC (1 <1< n+ 2) satisfying the following conditions;

(6.2) X is represented as X = 27> 6,2,wd/02, + >, ¢,2,0/0w + bw%d/ow ,
(6.3) b= 21¢,,

(6.4) for each deC, the matrix
Im(cd) Im(cd) --- Im(c,,.d)
0 0o ... 0
0 o ... 0
belongs to g(C(n + 2)j .
Hence, by (5.6) and (6.4), Im(¢;d) =0 for each deC A <I<n+ 2).
So, ¢, =0(A<LI<n+2). From (6.2) and (6.8) it follows that X = 0.

Thus, g,,, = (0) was proved.
Now we determine g;,. By (1.3) we have

81 = {2%(w, ¢)d/02, + > cd/ow,; ¢ = X, ¢ f, e C™} .

Let X = > pkd/02, + >, p.0/0w,€¢,. Then by the condition [g_,,, X]
= (0), we get 9pf,/02, =0 Q1 <k<n+2) and p;; =00 <L a<m). We
write p¥, = > a¥2,2; (a¥ = a%). Then we have

(6.5) o=t =0 (1<jk<n+2).

For each ¢ l<i<n+ 2), we define the (n + 2) X (n + 2)-matrix A, by

1 1 1
@y Qg = * Wyppg

2 2 2
V25 Qo = Qe

(6.6) A, = |- .
2 2 2
ot At e anh

Then we have

10(18/92, X)) = A, and o([9/d2, X)) =0 .
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By (1.10) and (1.4), (4,,0) must be of the form (6.1). Comparing (6.6)
with (6.1), we can see that the real numbers af, 1 < 4,7,k <n+ 2)
must satisfy the following relations;

6.7  aly,, = 2a%+* A<i<n+2,1<k<n),
6.8) a,=0 (A<i<n+2),

6.9 oah=2a, (A<Li<n+2,1<k<n,
(6.10) a%,, =0 I<i<n+2,1<k<mn,

6.11) a¥i = —alf2, (A<i<n+2, 1<k+1<mn).

By (6.5) we have a}, = a}, =0 1 <7< n + 2). Applying (6.7) and (6.11)
for 1< k+#1<n, we get

Uirarre = 20045 = 205, = —2a5%% = —20f{5 = — ke = —Qiias
which implies a.,,, = 0. Therefore, considering (6.8) we showed
(612) a}; =0 if1<i<2 or 1<j<2 or 83<i#j<n+2.
By (6.5) and (6.10) we get
(6.13) a; =0 it (4,9 #+2,2) .

From (6.5) we have af*=al"=0 (1 <i<n + 2) and by (6.7, (6.12)
we can see a2 =0a5"=0 (=2 o0or 3<i#k+2<n+2). Further-
more if 1 <7+ j+#k+#1<n, then by (6.11) af}};,, is skew-symmetric
with respect to the indices 7, k# and symmetric with respect to the indices
%,7. So, a¥3,,=01if 1 <i#j#k+#1<n Hence by (6.9, (6.11) we
have

6.149) afj?=0 if @ND#+=@,k+2) and G,)+Ek+2,2) A<k<n).
On the other hand, we can see

(6.15) oy = 2055, (by (6.9))
= Qirarsz (DY (6.7) A<k <m) .

As a consequence of (6.12)-(6.15), it follows that X must be represented.
by

(6.16) X = a§2( ST 2,,0/00 + 40)02, + 3 zzzma/az“,,) .
1<k<n 1<k<n
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Conversely if X is a polynomial vector field of the form (6.16), then it
can be easily seen that X satisfies all the conditions in (1.10). Thus,
the subspace g, of g, consists of all polynomial vector fields of the form
(6.16). q.e.d.

Finally we consider the homogeneous non-degenerate Siegel domains
which correspond to the skeleton &, with n < 2m, < 2m,. Let {Ti}i<i<n
be a system of m, X m,-matrices satisfying the condition (4.6). We put

T, = (%"), where 0 means the (m, — m,) X m,-zero matrix. Then it is

easy to see that the system {7}}<x<, satisfies the condition (4.6) and
corresponds to this skeleton &,. We denote by D(C(n + 2), F) the Siegel
domain in C"** X C™*™ which is constructed by the system {T:}i<n-
Then, by (4.16) the C(n + 2)-hermitian form F is given by

F'tu,v) = (uy, v) + (U5, 09) Fo(u,v) = (u,,v,) ,
Fe2(u, v) = 3w, Tyv,) + (Truy, v} A<k<n

for u = (u, + u) + %, v = (v, + V) + v, € C™*™ = (C™ 4 C™™™) 4 C™,

6.17)

PROPOSITION 6.3. For the Siegel domain D(C(n + 2),F) given by
6.17), if n+2, (n,m,) + 4,2) and (n,m,) # (6,4), then g, =g,. If n
= 2 and *T\T, does not have {i, - - -, i} and {—1, - - -, —1} as its eigenvalues,
then g, = g,.

Proof. We put the subspaces W, and W, of C™*™s = (C™ 4 C™ ™)
+ C™ by W, =C™ + C™ and W, = C™ ™, respectively. Then we can
see that F(W,, W,) = (0). The Siegel domain D(C(n + 2), F,) in C*** x W,
is the one given in Proposition 6.2. Therefore we have g{f = (0). On
the other hand, the Siegel domain D(C(n + 2),F;) in C*** x W, is the
one given in Theorem 6.1. Thus, by Theorem 6.1 we get g} = (0).
From Corollary 2.7 it follows that g,, = (0). Applying Proposition 2.2
to the non-degenerate Siegel domain D(C(n 4+ 2),F), we conclude that
ar = Ga- q.e.d.
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