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ON MAXIMAL SPACELIKE HYPERSURFACES
IN A LORENTZIAN MANIFOLD

SEIKI NISHIKAWA*

ABstracT. We prove a Bernstein-type property for maximal spacelike
hypersurfaces in a Lorentzian manifold.

§1. Introduction

The object of this note is to prove the following

THEOREM A. Let N be a Lorentzian manifold satisfying the strong
energy condition. Let M be a complete maximal spacelike hypersurface in
N. Suppose that N is locally symmetric and has nonnegative spacelike
sectional curvature. Then M is totally geodesic.

For the terminology in the theorem, see Section 2.

It has been proved by Calabi [2] (for n < 4) and Cheng-Yau [4] (for
all n) that a complete maximal spacelike hypersurface in the flat
Minkowski (n + 1)-space L**' is totally geodesic. In particular, the
only entire nonparametric maximal spacelike hypersurfaces in L"*' are
spacelike hyperplanes. This is remarkable since the Euclidean counter-
part, the Bernstein theorem, holds only for n < 7: the entire nonpara-
metric minimal hypersurfaces in the Euclidean space R"*!, n < 7, are
hyperplanes (cf. [8]).

Theorem A implies, for instance, that a complete maximal spacelike
hypersurface in the Einstein static universe is totally geodesic. In the
proof of Theorem A, a refinement of a Bernstein-type theorem of Choquet-
Bruhat [5, 6] will be also given.

§2. Definitions

First we set up our terminology and notation. Let N = (N,g) be a
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Lorentzian manifold with Lorentzian metric g of signature (—, +, ---, +).
N has a uniquely defined torsion-free affine connection /' compatible with
the metric g. N is said to satisfy the strong energy condition (the timelike
convergence condition in Hawking-Ellis [7]) if the Ricci curvature Ric of
N is positive semidefinite for all timelike vectors, that is, if Ric (v, v) =0
for every timelike vector ve TN (cf. [1,6]). N is called locally symmetric
if the curvature tensor R of N is parallel, that is, PR = 0. We say that
N has nonnegative spacelike sectional curvature if the sectional curvature
K(u A v) of N is nonnegative for every nondegenerate tangent 2-plane
spanned by spacelike vectors u, ve TN.

Let M be a hypersurface immersed in N. M is said to be spacelike
if the Lorentzian metric g of N induces a Riemannian metric & on M.
For a spacelike M there is naturally defined the second fundamental form
(the extrinsic curvature) S of M. M is called maximal spacelike if the
mean (extrinsic) curvature H = Tr S, the trace of S, of M vanishes identi-
cally. M is maximal spacelike if and only if it is extremal under the
variations, with compact support through spacelike hypersurfaces, for the
induced volume. M is said to be totally geodesic (a moment of time sym-
metry) if the second fundamental form S vanishes identically.

§3. Local formulas

Let M be a spacelike hypersurface in a Lorentzian (n + 1)-manifold
N = (N,g). We choose a local field of Lorentz orthonormal frames e,
e, - -+, e, in N such that, restricted to M, the vectors e,, - - -, e, are tangent
to M. Let w, w, -+, o, be its dual frame field so that the Lorentzian
metric g can be written as § = — o; + 2., ©.® Then the connection forms
w,; of N are characterized by the equations

do;, = _;wik/\wk+wio/\wo»

(1)
do, = — 2, oy N\ o, Wep + w5, = 0.
k

The curvature forms 2,, of N are given by
Qu = dwij + Zwik A Wy — Wy A Wy
k

(2) _
Q4 = dw,, + A:_-:w()k N @y,

*  We shall use the summation convention with Roman indices in the range 1 <
%, 7, <n and Greek in 0 <, 8, .-+ < n.
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and we have
(3) gap:%Z[j:Rapraw,/\wa,

where R,;; are components of the curvature tensor R of N.
We restrict these forms to M. Then

(4) w, =0,

and the induced Riemannian metric g of M is written as g = >, . From
formulas (1)-(4), we obtain the structure equations of M

dcoiz—;co”/\cok, w0y + 0, =0,
(5) dw“:—Zk:wi,c/\wk]——l—wio/\woj—l-.@“,
2, =do,; + ;wik N oy = %kZJ'IR“”wk N w,,
where £,, and R,;,, denote the curvature forms and the components of
the curvature tensor R of M, respectively. We can also write
(6) wi(,:;h“wj,

where h,; are components of the second fundamental form S =37, ; A, 0,
® w; of M. Using (6) in (5) then gives the Gauss formula

(7) Rijee = Rijee — (Ruihy — huchy) -
Let A, denote the covariant derivative of h,;; so that
(8) Zk]h“kwk = dh,; ——Zk:hkja)m -—;hika)w.
Then, by exterior differentiating (6), we obtain the Coddazi equation
(9) Rije — Bivy; = Ry

Next, exterior differentiate (8) and define the second covariant derivative
of h,; by

Zg: hi]‘kéwl = dhijk — ; thkwM - ; hizka’ej - ; hzjea)uc .
Then we obtain the Ricci formula
(10) him — Rije = 23 AR + 23 himiju .

Let us now denote the covariant derivative of Ram, as a curvature
tensor of N, by R, . Then restricting on M, R, ;. is given by
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(11) R()ijk;é = Ronm - Roiokhﬂ - Roij()hké - ZRmijkhmﬂ ’

where R,;,;, denote the covariant derivative of R,;,, as a tensor on M
so that

; Ry, 0, = dRy,;, — }; Ry 0, — ; Ry 05 — Zl: Ry 0, .
The Laplacian 4h;; of the second fundamental form h,; is defined by
Ah;; = ;h”“ .
From (9) we then obtain
(12) Ahig = 2 heise + 25 Roijur
and from (10)
(13) Pioiin = Pries + 20 BuiBoiie + 20 PemBomise -

m m

Replace Ay in (13) by Auiis + Rowir; (by (9)) and substitute the right
hand side of (13) into A, in (12). Then we obtain

Ahij - Zk:(hkkij + Rokik] + Roijkk)
+ Zk: (Z hmiRmkjk + Z hkamijk) .

(14)

From (7), (11) and (14) we then obtain
iy = S b + 5 Bovirss + 5 Bucge
+ 20 arBosso + iy Rosos)
+ g(hmjl?m“k + 2 R + P Roiin)
— %}C(hmihmh“ + BemhmiPie — BemPmihi; — BpiBnihyg) .

(15)®

Now we assume that N is locally symmetric, that is, R, .= 0 and
that M is maximal in N, so that >, A, = 0. Then, from (15) we obtain

(16) lZ]: hijAhij :i;k h%jRomk +i ;5 mz(hijhmjl_{mkik + hijhmkRmijk)
+ (A"
07

k)

This is the Lorentzian version of the well-known formula established, for ex-
ample, in [8].
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§4. Proof of Theorem A

Theorem A is an immediate consequence of the following

THEOREM B. Let N = (N, g) be a locally symmetric Lorentzian (n + 1)-
manifold and M be a complete maximal spacelike hypersurface in N. As-
sume that there exist constants c,, ¢, such that

(1) Ric (v, v) = ¢, for all timelike vectors ve TN,

(ii) K(u A v) = c, for all nondegenerate tangent 2-planes spanned by
spacelike vectors u, ve TN, and

(iii)) ¢, + 2nc, = 0.
Then M is totally geodesic.

To prove Theorem B, we first note

LemMa 1. Under the assumptions of Theorem B,
e¥)) %A(iZ]} ki) = (ZJI ki)

Proof. For any point p € M, we may choose our frame {e, ---,¢e,} at
p so that h,; = 2,6,;. Then, by assumption (ii) of Theorem B, we have
at p

”Zk]m 2R Rie + PP Roisi)
= Zk 2R i + A A Riik)
= Zk (2; — 2R = €, 7_};6 A, — A
= 2¢,(n Zl: 23— (f{] 2, = 2nc, ZZ]: R .
Also we have by assumption (i)
It then follows from (16) and assumption (iii) that
%A(%] k) =]Z;c R + Z,' h;dh,
= (¢ + 2ncz)(iZj hi) + (ZJ] hiy)’
=Gy,

%

C .

Let u= >, ; h}; be the squared of the length of the second fundamental
form of M. The proof of Theorem B is complete if we show that u
vanishes identically. Recall that from (17), u satisfies
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(18) du = 2u*.

Then, by the maximum principle, the result is immediate provided M is
compact.

We now assume that M is noncompact and complete. We will modify
the maximum principle argument as in [4]. Take a point p e M, and let
r denote the geodesic distance on M from p with respect to the induced
Riemannian metric. For a >0, let B,(p) = {x € M|r(x) < a} be the geodesic
ball of radius a and center p.

LemmA 2. For any a > 0, there exists a constant ¢ depending only on
n such that
_caX(l + [&|"a)

(@ — ()

(19) u(x) <

for all x e B,(p).

Proof. Assuming that u is not identically zero on B,(p), we consider
the function

f(@) = @ —r(@))u(x), xe€Byp).

Then f attains a nonzero maximum at some point g € B,(p), for the closure
of B.,(p) is compact since M is complete. As in [§2, 3], we may assume
that f is C* around ¢q. Then we have

Ff9) =0,  4f(g) <0.

Hence at g®

Vu _ Arbr
u aF —rf
du [Ful 8r* 41 + rdr)
du o Vulb . ,
u = uw + (@* — roy? + @t — rt

20) = "2%’1;;(‘1) + ’40'; mzr) @ -
u (@ —r%) a*—r

On the other hand, according to [Lemma 1, 9], 4r(¢) is bounded from
above by

= We may concentrate on the case of g = p for the proof become simpler when
q=p.
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. -1 1 (@) - o, .
21)  dr(g) < [n - J t — k) Ric (o(2), tdt],
@) 4ri@= min rD -k @ — R (t — k)* Ric (5(2), 6(1))
where 6(f) is the tangent vector of the minimizing geodesic o: [0, r(@)] > M
from p to ¢ and Ric denote the Ricci curvature of M. Also, from (7)
and assumption (ii) of Theorem B, Ric (¢(f), 6(¢)) is bounded from below by

(22) Ric (4(8), 6@®) = (n — 1)c,,
since M is maximal spacelike. From (21) and (22) we then obtain
(23) rdr(@) < (n — 1) + 2(n — Dle["r(q) .
It follows from (20) and (23) that
(@® — r(@)u'du(q) < 24a* + 8na*(l + |c,|'*a).
From (18) we then obtain
(@) = (@ — r(@)uq) < ca’(l + [¢,["a),

¢ being a constant depending only on n. Since g is the maximum point
of f in B,(p), this implies that

(@ — r(x))u(x) =< ca’(1 + |c,[*a)
for all xe B,(p).

Since M is complete, we may fix x in Inequality (19) and let a tend
to infinity. Then we obtain w(x) = 0 for all xe M. This completes the
proof of Theorem B.

Remark. Let N = L**' X S*~* be the product Lorentzian manifold of
the flat Minkowski (& + 1)-space L**!, 1< k< n, and S" %, a Riemannian
(n — k)-manifold of positive constant curvature. Then N satisfies the as-
sumptions of Theorem A. The Einstein static space N = (R, —dt*) X S*
also satisfies these assumptions.

The Lorentzian (n-+1)-manifold S7** of constant curvature c¢ > 0,
called the de Sitter space, satisfies the assumptions of Theorem B (with
¢, = —cn,c, = c). Theorem B then gives a refinement of a theorem of
Choquet-Bruhat [Theorem 4.6, 6].
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