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ON MAXIMAL SPACELIKE HYPERSURFACES

IN A LORENTZIAN MANIFOLD

SEIKI NISHIKAWA*

ABSTRACT. We prove a Bernstein-type property for maximal spacelike
hypersurfaces in a Lorentzian manifold.

§ 1. Introduction

The object of this note is to prove the following

THEOREM A. Let N be a Lorentzian manifold satisfying the strong
energy condition. Let M be a complete maximal spacelike hypersurface in
N. Suppose that N is locally symmetric and has nonnegatίve spacelike
sectional curvature. Then M is totally geodesic.

For the terminology in the theorem, see Section 2.
It has been proved by Calabi [2] (for n <L 4) and Cheng-Yau [4] (for

all ή) that a complete maximal spacelike hypersurface in the flat
Minkowski (n + l)-space Ln+1 is totally geodesic. In particular, the
only entire nonparametric maximal spacelike hypersurfaces in Ln + 1 are
spacelike hyperplanes. This is remarkable since the Euclidean counter-
part, the Bernstein theorem, holds only for n ^ 7: the entire nonpara-
metric minimal hypersurfaces in the Euclidean space Rn + \ n <£ 7, are
hyperplanes (cf. [8]).

Theorem A implies, for instance, that a complete maximal spacelike
hypersurface in the Einstein static universe is totally geodesic. In the
proof of Theorem A, a refinement of a Bernstein-type theorem of Choquet-
Bruhat [5, 6] will be also given.

§ 2. Definitions

First we set up our terminology and notation. Let N = (N, g) be a
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Lorentzian manifold with Lorentzian metric g of signature ( — , + , • • • , + ) .

N has a uniquely defined torsion-free affine connection V compatible with

the metric g. N is said to satisfy the strong energy condition (the timelike

convergence condition in Hawking-EUis [7]) if the Ricci curvature Ric of

N is positive semidefinite for all timelike vectors, that is, if Ric (υ, v)^>0

for every timelike vector v e TN (cf. [1, 6]). N is called locally symmetric

if the curvature tensor R of N is parallel, that is, FR = 0. We say that

N has nonnegatίve spacelike sectional curvature if the sectional curvature

K(u A v) of N is nonnegative for every nondegenerate tangent 2-plane

spanned by spacelike vectors u, v e TN.

Let M be a hypersurface immersed in N. M is said to be spacelike

if the Lorentzian metric g of N induces a Riemannian metric g on M.

For a spacelike M there is naturally defined the second fundamental form

(the extrinsic curvature) S of M. M is called maximal spacelike if the

mean (extrinsic) curvature H = Tr S, the trace of S, of M vanishes identi-

cally. M is maximal spacelike if and only if it is extremal under the

variations, with compact support through spacelike hypersurfaces, for the

induced volume. M is said to be totally geodesic (a moment of time sym-

metry) if the second fundamental form S vanishes identically.

§3. Local formulas

Let M be a spacelike hypersurface in a Lorentzian (n + l)-manifold

N = (N, g). We choose a local field of Lorentz orthonormal frames eQt

eu - - -, en in N such that, restricted to M, the vectors eu , en are tangent

to M. Let ω0, ωu , ωn be its dual frame field so that the Lorentzian

metric g can be written as g = — ω2

0 + Σlί 6f>i *) Then the connection forms

ωaβ of N are characterized by the equations

do)i = — 2 «>ik Λ ωk + coi0 A ω0,
( 1 )

dω0 = — Σ ωok Λ ωk, ωα j 9 + ωβa = 0 .

The curvature forms βαi9 of JV are given by

ΏiS = dωiS + Σiωik A ωkj — ωi0 A ωoj,
( 2 )

Ωoί = dωoί + 2 ] cyOfc Λ ωkί ,

*> We shall use the summation convention with Roman indices in the range 1 ^
i, j , - - ^kn and Greek in 0 ^ α, /3, ^ w.
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and we have

( 3 ) Ωaβ — j Σ R<χβγbωγ A ωδ,

where Raβΐδ are components of the curvature tensor R of N.

We restrict these forms to M. Then

( 4 ) ωQ = 0,

and the induced Riemannian metric g of M is written as g = Σ * ω i From

formulas (l)-(4), we obtain the structure equations of M

(5) dωu = — Σiωik A ωkj + ωi0 A ωoj + Ωi3 ,

Ωi3 = dω^ + Σ ωΐfc Λ ω fc j = \ Σ Rίjkeωk A ωe,

where β^ and i?ίJfc^ denote the curvature forms and the components of

the curvature tensor R of M, respectively. We can also write

( 6 ) αιi0 = Σ Λ Λ ,

where /ιί; are components of the second fundamental form S = Σί . j ̂ jω«

® ω; of M. Using (6) in (5) then gives the Gauss formula

Let hijk denote the covariant derivative of hi3 so that

k k k

Then, by exterior differentiating (6), we obtain the Coddazi equation

\ v ) ίl/ijk nikj — £Xΰίjk

Next, exterior differentiate (8) and define the second covariant derivative

of hi3 by

I ί i £

Then we obtain the Ricci formula

(10) hijki — hij£k = Σ hmjRmίu + Σ himRmjkί.
m m

Let us now denote the covariant derivative of Raβrδ> as a curvature

tensor of N, by Raβrδ.ε. Then restricting on M, Roίjk]ί is given by
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^OiQk^je -t^OijO^ke 2-J t*"mijkh"mC y
m

where ROίjU denote the covariant derivative of Roίjk as a tensor on M

so that

Σ Rθijk£ω£ — dROijlv — Σ Rθ(ikω£i — Σ Rθi£kω£j ~ Σ ^Oίj£ω£k
ί £ £ £

The Laplacian Δhίj of the second fundamental form htj is defined by

From (9) we then obtain

(12) JΛ i ; = Σ
k k

and from (10)

hkijk = = hkίkj \ 2-1 ̂ mi^mkjk ~Γ

Replace ΛfcifcJ in (13) by ΛfcfcU + ROkikj (by (9)) and substitute the right

hand side of (13) into hkίjk in (12). Then we obtain

Δίlij = 2_j \hkkij ~\~ -Kokikj + Roίjkk)

(14)
mί t*"mkjk ~Γ /̂_j f^km-^mi j k)

From (7), (11) and (14) we then obtain

Z_j hkkίj + 2_l Rokίk j + Z_J Roijk; k
k k k

I 2_i (hkk-ttoijO i hj
k

— — —
+ ΣK^mjRmkίk + ZhmkRmijk + hmiRmkjk)

m,k

Z_ι \""mi'l/mjhJkk i
km,k

ij

Now we assume that iV is locally symmetric, that is, i?α^rδ; ε = 0 and

that M is maximal in N, so that Σkhkk = 0. Then, from (15) we obtain

Σ hijΔhij = Σ hljRokOk + Σ %(hijh»mjRmkik + hίjhmkRmίjk)

+ (Σ KY.
i

*-* This is the Lorentzian version of the well-known formula established, for ex-
ample, in [8].
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§ 4. Proof of Theorem A

Theorem A is an immediate consequence of the following

THEOREM B. Let N = (N, g) be a locally symmetric Lorentzian (n + 1)-

manίfold and M be a complete maximal spacelike hypersurface in N. As-

sume that there exist constants cu c2 such that

( i ) Ric (u, v) ̂ > cx for all timelike vectors v e TN,

(ii) K(u Λ v) ̂  c2 for all nondegenerate tangent 2-planes spanned by

spacelike vectors u, v e TN, and

(iii) c, + 2nc2 ;> 0.

Then M is totally geodesic.

To prove Theorem B, we first note

LEMMA 1. Under the assumptions of Theorem B,

(17) MΣ hi) ^ (g hi)2.

Proof For any point p e M, we may choose our frame {eu , en} at

p so that htj = λiδij. Then, by assumption (ii) of Theorem B, we have

at p

, Lx *\nijnmjJ*mkik T- nίjnmknmίjk)

= Y1 (1 — 2 YR > r Y1 (1 — 2 V

= 2c2(n Σ%-(Σ ^f) = 2nc2 Σ K3.
i i ι,j

Also we have by assumption (i)

k

It then follows from (16) and assumption (iii) that

M Σ hi) = Σk hlk + Σ hi3Δhi3

^ (Cl + 2nc2)(Σ hi) + (Σ hi)2

id id

^ ( Σ hi3) .

Let u = Σid h2ij be the squared of the length of the second fundamental

form of M. The proof of Theorem B is complete if we show that u

vanishes identically. Recall that from (17), u satisfies
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(18) Δu > 2u2.

Then, by the maximum principle, the result is immediate provided M is

compact.

We now assume that M is noncompact and complete. We will modify

the maximum principle argument as in [4]. Take a point p e M, and let

r denote the geodesic distance on M from p with respect to the induced

Riemannian metric. For a > 0, let Ba(p) = {xe M\ r(x) < a} be the geodesic

ball of radius a and center p.

LEMMA 2. For any a > 0, there exists a constant c depending only on

n such that

(19) u(x) <: 4 ( ί
(a2

for all x e Ba(p).

Proof, Assuming that u is not identically zero on Ba(p), we consider

the function

f(x) = (α* _ r(xYYu(x), xeBa(p).

Then / attains a nonzero maximum at some point q e Ba{p), for the closure

of Ba(p) is compact since M is complete. As in [§2, 3], we may assume

that / is C2 around q. Then we have

Hence at

Vu _ ArVr
2 2~ '

u a — r
Δu^ < \Vuf_ , _ 8r2 4(1 +

" = ~ V ~(2" 2)2"V (α2 - r2)2 α2 - r2

from which we obtain

(20) i « (g) ^ - . ^ ^ ( g ) + A ( l d ^ > (,) .
u (α2 — r") α2 — r2

On the other hand, according to [Lemma 1, 9], Δr{q) is bounded from

above by

550 We may concentrate on the case of q ^ p for the proof become simpler when
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(21) Δr(q)< min [~ff-^- ~Ί ,} ^ Γ* (* ~ W Ric (σ(t), σ(t))dt] ,

where cr(ί) is the tangent vector of the minimizing geodesic σ: [0, r(q)] -> M

from p to q and Ric denote the Ricci curvature of M. Also, from (7)

and assumption (ii) of Theorem B, Ric (σ(i), σ(t)) is bounded from below by

(22) Ric (σ(t), σ(t)) ^ (n - ΐ)c2,

since M is maximal spacelike. From (21) and (22) we then obtain

(23) rΔr(q) ^ (n - 1) + 2(n - 1) |c2f/V(g).

It follows from (20) and (23) that

(a2 - r(qffu-ιΔu{q) ^ 24α2 + Sna\l + \c2\
1/2a) .

From (18) we then obtain

f(q) = (α2 - r(q)Ju{q) £ ca%l + \c2\^a) ,

c being a constant depending only on n. Since q is the maximum point

of / in Ba(p), this implies that

(α2 - r(x)Ju{x) £ ca\l + \c2\^a)

for all x e Ba(p).

Since M is complete, we may fix x in Inequality (19) and let a tend

to infinity. Then we obtain u(x) = 0 for all xe M. This completes the

proof of Theorem B.

Remark. Let N = Lk + 1 X Sn~k be the product Lorentzian manifold of

the flat Minkowski (k + l)-space Lk + \ l<Lk<Ln, and Sn~k, a Riemannian

(n — £)-manifold of positive constant curvature. Then N satisfies the as-

sumptions of Theorem A. The Einstein static space N = (R, —dt) X Sn

also satisfies these assumptions.

The Lorentzian (ft+l)-manifold Sΐ+1 of constant curvature c > 0,

called the de Sitter space, satisfies the assumptions of Theorem B (with

Cj = — en, c2 = c). Theorem B then gives a refinement of a theorem of

Choquet-Bruhat [Theorem 4.6, 6].
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