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A LIMIT THEOREM FOR TWO-DIMENSIONAL

CONDITIONED RANDOM WALK

MICHIO SHIMURA

§ 1. Introduction

Let {(Sn, Tn), n — 0, 1, 2, •} be a two-dimensional random walk with

stationary independent increments starting at the origin 0. Throughout

the paper we always assume the following condition:

(1.1) ES1 = ET = 0 and the coυarίance matrix of (Sl9 T,) is ί1 °\ .

We set a probability space (Ω, s/, P) on which all our random quantities

are defined. Let D stand for the family of right continuous functions z

on [0, oo) with left-hand limits, and with z(0) = 0. Let & be the usual

(/-field of D. We define a sequence of random elements Zn(t) = (Xn(t),

Yn(t)\ n = 1,2, . . . , in D by

Zn(t) = n~1/2(Sk, Tk) for k/n<t< (k + l)jn and k = 0, 1, 2, • .

Let {Zip) — (X(t), Y(t)), t ^ 0} be the two-dimensional standard Brownian

motion with continuous paths starting at the origin. Let ί(Z) donote the

random set of all finite open intervals (r, υ) in [0, oo) such that

Y(t) > Y(τ) for 0 ^ t < T, Y(t) > Y(τ) for τ < t < υ and Y(τ) = Y(ϋ) .

Here we note the following fact. We set

Ϋ(i) = Y(i) - minQ£s£tY(s) and Z(ί) - (X(t), Y(t)) for ί ^ 0 .

Then the process Z( ) is the reflecting Brownian motion on the upper half-

plane with Z(0) = 0, and g(Z) coincides with the set of excursion intervals

of the Z( ).

Let σF be the exit time from a closed domain F in R2 defined by

σ F ( z ) = i n f {t; z ( t ) £ F ] f o r z e D
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(inf φ = oo). We are interested in the weak convergence of conditional

probabilities P(Zn e * | σF(Zn) > 1), n = 1, 2, , on (D, &) under the as-

sumption:

(1.2) the boundary dF of F contains the origin .

Let us state our main result. Let h e C(R -» [0, oo)) satisfy the fol-

lowing assumption:

(1.3) Λ(0) = 0 and h(x) > 0 on [- b, b] - {0} for some b > 0 .

For such h we define Fh = {(x9y); y > h(x)}9 which clearly satisfies (1.2).

Let d be the metric on D which induces the extended Jt topology (Lindvall

[7], p. 115). We set FQ = R X [0, oo), the upper half-plane, and introduce

another metric d on D by

d(zu z2) = d(zu z2) + \σFlzϊ) - σFΰ(z2)},

where we understand oo — oo = 0. Let (τ, υ) be the first element of £{Z)

satisfying υ — τ > 1 (note that (τ, ΰ) exists almost surely), and define the

process Z by

Z(f) = Z{τ + t) - Z(τ) for t^ 0.

We will prove the following theorem.

THEOREM. Assume that h e C(R -» [0, oo)) satisfies (1.3) and the follow-

ing assumption:

/ - Λ l^ l " 1 ^) is nondecreasίng on (0, 6], nonincreasίng on [—6,0) and

\x\-ίh(x)->0 as x - > 0 ,

and the integral

(1.5) f \x\~2h(x)dx

converges. Then the sequence of conditional probabilities P(Zn e * | σFh(Zn)

> 1), n = 1, 2, , converges weakly to P(Ze*\σFh(Z) > 1) in (/>, d).

Theorem is a two-dimensional analogue (viz conditioned to stay on

Fh) of the limit theorem of one-dimensional random walk conditioned to

stay positive which has been considered by Iglehart [4], Bolthausen [2],

Shimura [11] and others. First we observe the following two-dimensional

version (viz conditioned to stay on the half-plane) of the above one-

dimensional conditioned limit theorem:



RANDOM WALK 107

(1.6) P(Zn 6 * I σFΰ(Zn) > 1) > P(Z e *) in (D, d) ,

IV

where > denotes the weak convergence. In Section 2 we give a proof

of (1.6), then, in Section 3, we consider a necessary and sufficient condition

for h under which P(σFh(Z) > 1) > 0, that is, the origin is an irregular

point to the set (Fh)
c for the limit process Z. Difficulty in proving Theo-

rem consists in the fact that σFh( ) is P(Z e *)-almost surely discontinuous

and that, for this reason, (1.6) does not imply Theorem. The most essential

point in our proof is to overcome the difficulty. It is done by obtaining

the following estimate:

(1.7) l i π w limsup^.. P(σFh(Zn) ^ δ \ σFo(Zn) > 1) = 0 ,

see Section 4, most of which is devoted to this estimate. In Section 5

we consider an asymptotic behavior of moments for the conditioned random

walk in (1.6) and get an estimate (4.14), which plays a key role in show-

ing (1.7).

ACKNOWLEDGEMENT. The author is grateful to the referee who helped

him to improve the original manuscript.

§2. Proof of (1.6)

The idea of the proof given here is due to Bolthausen [2] (refer also

to [11] for the detail). For any fixed n, let λm, m = 0,1, 2, , be a

sequence of "decreasing ladder epochs" of the process Zn( ) defined by

λ0 = 0 and λm = inf{t> λ^ , Yn(t) < Yn(λm-d}, m = 1, 2, •. .

Let m — min{m; λm+ί — λm > 1}, which is finite almost surely, and set

*n = Λ*> »n = λ*+i and Zn{t) = Zn(τn + t) - Zn(τn) for t> 0 .

Then we easily get the following formula:

(2.1) P((Zn, σFΰ(Zn)) e L \ σFo(Zn) > 1) = P{{Zn, ΰn - τn) e L)

for every measurable set L in D X R. Noting Zn > Z in (Z>, d) by the

central limit theorem, we apply the continuous mapping theorem (Bil-

lingsley [1], Theorem 5.5) on the right-hand side of (2.1) in the same way

as [2] to get

P((Zn, ΰn - τn) e *) - ^ > P((Z, ΰ-τ)e*) a s n — > oo
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in the product space (Z>, d) X R. Hence we have (1.6).

§3. Kolmogorov type test for the Brownian excursions

We first show the following lemma.

LEMMA 3.1. Suppose that h e C(R -> [0, oo)) satisfies (1.4) in Section

1. Then we have

(3.1) P(σFh(Z(τ + •) - Z(τ)) > 0 for all (r, υ) e i(Z)) = 1

or

(3.2) P(σFh(Z(τ + •) - Z(τ)) = 0 /or αZZ (τ, υ) e #(Z)) = 1

according as the integral (1.5) converges or diverges.

Proof. Let (τ (7 i' fc), f/n'fc)) be the A-th element of

iUn{Z) = {(T, U) e <f(Z); m a x r ^ , B F(ί) ̂  1/Λ} ,

and put Z ( n ' f cί(ί) = Z(τ ( w ' f c ) + ί) - Z(r ( n ' f c )) for ί ^ 0. Clearly {Z(n'fe), Λ =

1, 2, •} is a sequence of identically distributed processes. Hence, noting

(f1/?i(Z) f £(Z) as n-^ oo, we have that (3.1) or (3.2) is equivalent to

(3.3) P(σFh(Zin^) > 0) ΞΞ 1 or 0 for every n = 1, 2, ,

respectively.

Let W(') be a three-dimensional standard Brownian motion inde-

pendent of X( ) Note that the radial process {||FF(ί)||, t ^ 0} is the three-

dimensional Bessel process. We set pa(z) = inf {t; y(t) Ξ̂> a} for z = (x,y)

e C([0, oo) -> R2), and consider two killed processes

and

ϋ = {U(t) = (X(ί), || PF(ί)H), 0 ^ ί < Pι/n(U)}.

Then it follows from Williams [13] that the processes Z(TC'1} and U are

identical in law. Combining this fact with (3.3), we reduce the lemma to

Ito and McKean [5], 7.11, 9).

We note that Brownian motion has absolutely continuous transition

probability. Then, using the above identification of Z{nΛ) with U, we

obtain P{Z^ι\s) e 3Fh) = 0 for every n = 1, 2, and s > 0. Hence we

have the following lemma.
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LEMMA 3.2. Let h e C(R -> [0, oo)). Then we have

P(Z(τ + s) - Z(τ) e dFh for some (τ, υ) e i(Z)) = 0 for every s > 0 .

§ 4. Proof of Theorem

We note the following identity

P(Z eL\σF(Z)>l)=
P(σFh(Zn)>l\σFo(Zn)>l)

for L e § . Since P(σFh(Z) > 1) > 0 by Lemma 3.1, and since

P(σFh(Z) = 1) ^ P(Z(1) e cλFJ = 0

by Lemma 3.2, we can conclude

P(Zn e LI σFh(Zn) > 1) > P(Z e L \ σFh(Z) > 1)

for every P(Z e *)-continuity set L, if we have the following refinement

of (1.6).

LEMMA 4.1. If he C(R -> [0, oo)) satisfies the condition in Theorem,

we have

(4.1) P((Zn, σFh(Zn)) e * | σFo(Zn) > 1) - ^ > P((Z, σFh(Z)) e *)

in (D, d) X R.

Proof. (First Step) Let Qw(*) = P(Zn e *) denote the induced measure

on (Z>, ̂ ) . We show that (4.1) is proved if we have (1.7), that is,

(4.2) limδ_o+ limsupn^oo Qn (σFh £d\σFo>ΐ) = 0,

in addition to (1.6). To do this we introduce an auxiliary time σδ(z) —

inf {t ^ δ; z(t) £ Fh] for δ > 0. We note that σδ(>) is a continuous mapping.

For 0 < δ < u,

Qn(L; σδ^u\σFo>l)^ Qn(L; σFh <u\σFo>ΐ)

^ Qn(L; σδ ^ u\σFo > 1) + Qn(σFh £ δ\σFo > 1).

We first let n -> oo, and then <5 -> 0 + for P(Z e *)-continuity set L. Since

τδ-+σFh as ^-^ 0 + , we have from (1.6) and (4.2) that both the extreme

terms in the above inequality tend to P(Z e L; σFh(Z) <̂  u). This proves

(4.1).

Furthermore, in proving (4.2), we may assume without loss of gener-

ality the following:
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,, o\ Ψ(x) = Ixl"1^^) is bounded on R, nondecreasing on (0, oo) and

nonincreasing on (—oo,0),

where we define ψ(0) = 0. Indeed we have the following fact:

Suppose that h e C(R -> [0, oo)) satisfies (1.3) and (1.4). Put hx e C(R -*

[0, oo)) to satisfy h^x) = h(x) on [— b, b] and (4.3). If hx satisfies (4.2),

then so does h.

Let B be the closed disc of radius b with the centre 0. Then we have

Qn(σFh ^δ\σFo>ί)< Qn(σFl £ δ\σFo > 1) + Qn(σB ^δ\σFQ>l)

for δ > 0. Since σB( ) is a continuous mapping, we easily conclude the

above fact from (1.6).

(Second Step) We prove (4.2) under the assumption (4.3). Set <$fk =

\Sk\ψ(n-1/2Sk) (the suffix n in 5fk is suppressed). Let N(T) = min{k;

Tk < 0}. For any fixed positive integer kθ9 we have

Qn(σFh <δ\σFo>ΐ)£ {Uko) + I2(K δή))IP(N(T) > n) ,

where

Uk0) = P(Tk <<7k,0<*k£k0; N(T) > n),

and

I2(k09 δή) = P(Tk < Sfk, ko<*k^δn; N(T) > n).

Hence (4.2) is proved if we have

(4.4) l im n _ {Uko)IP(N(T) >n)} = 0 for every k0

and

(4.5) I2(k0, δn)IP(N(T) > n) < f(δ) + Kk~^ ,

where f(δ) is independent of k0 and n, and satisfies f(δ) —>0 as δ —>0 + ,

and K is a positive constant not depending on k0, n and δ.

Before proving (4.4) and (4.5), we introduce useful tail estimate of

the absorption time N(TV) = min {k; Tk + y < 0}:

For each y ^ 0 and n = 1, 2, , we have

(4.6) Kln~1/2 ^ P(N(Ty) >n)< κ2{y + ΐ)n~1/2,

where κλ and tc2 are positive constants.
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The first estimate in (4.6) is an easy consequence of the formula

;4.7) P(N(T) > n) ~ e«(πn)-1/2 (n > oo),

where μ is given by the convergent series

;4.8) μ = Σ:=i n-'{P{Tn ^ 0) - 1/2}

^Spitzer [12]). The second one is given by Kozlov [6].

For Al9 , Aj e s/, and for integrable random variable X, let E[AX

A; ; X] denote the integral X(ω)P(dω). Using the Markov property

at k09 then applying (4.6), we get

" T <^ <& Π <r̂  3£> <Γ h T i Π
^ - 1 Ίc ^ ^ fc) u ^ κ = / I C 0 J -«• fc0 ~ Γ J-JP(ΛΓ(T) > n ) " « 1 \ n - ϋ

Since ^ f c j 0 as n | oo for each &, the right-hand side tends to zero as

γι —> oo by the dominated convergence theorem. This proves (4.4).

Proof of (4.5) is as follows (the idea is suggested from Ritter [9]).

For integers α, b with k0 5̂  a < b < δn, set

Aa+1 = {Ta+1 < sra+1; N(T) > a + 1}

and

A, - {Tk < yk; N(T) >k}f]{ΓU<«*(^.)c} for a + 2 ^ fe ^ 6 .

Γhen, noting Tlc < ¥k on Ak and J B [ ^ J < oo by (4.3), we get

;4.9) I2(a9 b) £ 2fc2n'1/2 Σa<ic^ E[Ak; <fk + 1] for δ < 3/4 .

Put ΛΓ3 = inf^! {P(Sk ^ 0), P(S, < 0)}. Then 0 < ΛT3 (<1) by the central limit

theorem, and we have, for a < k fg b,

, 4 1 0 ) ^[A. ^ J ^ A ί Έ t A ^ S ^ O and Sδ - Sk ^ 0 or S, < 0

and Sb-Sk< 0; ^ fc] ^

Decause h(x) is nondecreasing (resp. nonincreasing) on (0, oo) (resp. (— oo, 0))

:rom (4.3). By (4.6), (4.9), (4.10) and by \Ja<k^b Ak c {N(T) > a}, we obtain

'4.11) I2(a, b)£2^(?ιa)-1/2{E[^b \N(T) > a] + 1} for δ < 3/4 .

Let c > 1 be a fixed integer. Let r0 be the greatest of integers r satisf}ang

2r ^ fe0, and r1 be the greatest of integers r satisfjάng cr < δn. Then we

bave from (4.11)
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(4.12) UK δn) ^ Σr'=,o Ucr, cr+1) ^ K'n-vψ^ + k^},

where K' is a positive constant independent of n, δ and k0,

Jn., = Σ?=r0 Γ \x\ir(n-^C^x)dθcr(x)
J —CO

and

θn(x) = P(n-1/2Scn ^ x\N(T) > n).

Finally we prove

(4.13) Jn,s

for some f^δ) satisfying /Ί(<5) —> 0 as δ -> 0 + . To do this we need the

following inequality:

For every c >̂ 1 there exists a constant M = Mc < oo swc/i ί/iαί

(4.14) P ί l rc- 1 / 2 ^ ! > x\N(T) >ή)^ M(x + I)" 2

for every n — 1, 2, , and x >̂ 0, where [a] is the integral part of a (see

Corollary to Lemma 5.1 in Section 5). We integrate by parts and use

(4.14) to get

φ + l)- ! ΣrU0 Ψ(n~1/2cr/2x)dx,

where ψ(x) = ψ( — x) + ψ(x). Set

ψδ(x) = 2__ ί(cJ) 1/2' y-iψ(y)dy and /i(ί) = M f" x(x + ί)-ψδ(x)dx .
log C Jo Jo

Then it follows from (4.3) and from the convergence of (1.5) that

and hence JW f ί ^Λ(d) and f^-^O as ^->0 + . This completes the proof.

It follows from P(σFh(Z) > 0) - 0 that P(σFh(Zn) > 1) -* 0 as n -> oo.

Moreover we can determine the rate of the convergence.

COROLLARY TO LEMMA 4.1. If he C(R -> [0, oo)) satisfies the condition

in Theorem, we have

(4.15) P(σFh(Zn) > 1) ~ π-1/2P(σFh(Z) > ΐ)e^n^2 as n -* oo .
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Proof. Observe an obvious identity

P(σFh(Zn) > 1) = P(σFh(Zn) > l\σF£Zn) > l)P(σFo(Zn) > 1).

Since P(σFo(Zn) > 1) = P(N(T) > ή), we conclude (4.15) from Lemma 4.1

and (4.7).

§5. Asymptotic behavior of conditional moments

In this section we will prove the following lemma.

LEMMA 5.1. Let f be a real valued continuous function on R such that

f(x) = O(x2) as \x\ -* oo. Then we have

(5.1) lim^o, E[f(n-^2Sίcnl) \N(T) > n] = E[f(X(c))]

for every c >̂ 1.

Here we note the following. By (1.6), we have

(5.2) P(n-1/2Sίcnl e * | N(T) > n) -^-> P(X(c) e *) in R

for every c >̂ 0. Hence (5.1) is a consequence of (5.2) for bounded con-

tinuous /. But, if / is unbounded, we cannot conclude (5.1) from (5.2)

without some additional information such as the uniform integrability.

Setting f(x) = x2 in (5.1), we get from Chebyshev's inequality the fol-

lowing:

COROLLARY TO LEMMA 5.1. The estimate (4.14) holds.

Before proving the lemma, we prepare several lemmas and a defini-

tion.

LEMMA 5.2. // / satisfies the condition in Lemma 5.1, we have

(5.3) l im n _ E[f(n-^SM)] = E[f(X(c))]

for every c |Ξ> 0.

Proof is elementary and is omitted here.

Remark 5.3. We note that Lemma 5.1 is just reduced to Lemma 5.2,

if the component random walks {Sn} and {Tn} are mutually independent.

DEFINITION. Let A(t) = Σn=o ant
n and B(t) = 2]n=o bnt

n be power series

with radii of convergence one, and with |A(1 — )| = |B(l —)] = oo. Then

we write A(i) = B(t) (£—•!—) when an~bn (n —> oo).
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It follows from Definition we have the following two lemmas.

LEMMA 5.4. Let A(t) and C(t) = Σ~ = o cnt
n be power series such that

an~na (n —> oo) for some a ^ 0, and such that Σn=o \cn\ < oo and C(ΐ) Φ 0.

Then we have C(t)A(t) g* C(ΐ)A(t) (t-^1 - ) .

LEMMA 5.5 (Hardy [3], 5.6, theorem 41). Suppose that A(t) = (l — t)~a

and B(t) ^ (1 — t)~β (Z->1 —) for some positive a and β. Then we have

Proof of Lemma 5.1. We note that the lemma follows from

(5.4) l im n _ E[(n~^SnY \ N(T) > n] = 1 ( = £[X(1)2]).

Indeed, observing the identity

(n~^SίcnlY = (n-^SnY + 2 r e-'Sn(S [ c n ] - Sn) + {n-^(Sίcnl - Sn)f

and independence of the increments, we get (5.1) for f(x) = x2 from (5.4)

and Lemma 5.2. Then, the lemma is an easy consequence of (5.2).

To show (5.4) we introduce the following identity. Let I(t), Jt(ί) and

I2(t) be power series given by

ίi(ί) = Σ:=itnE[Tn ^ 0; (n-^SJ]

Ut) = (Σ:=itnn-^E[Tn ^ 0; n'

and I(t) = Ix(t) + h(t\ then we have

( 5 5 ) Σ>^
= (1- ί)"1 / 2 exp [Σn=i tnn-*{P(Tn ^ 0) - l/2}]I(ί) for \t\ < 1.

The proof is as follows. We recall the half-plane factorization identity:

For |£| < 1 and — oo < ξ, η < oo

( 5 # 6 ) Σn-o t»E[N(T) > n; exp {i(ξSn + ηTn)}]

= exp E ? - i tnn-ιE(Tn ^ 0; exp {i(|Sn + 9Γn)})].

The formula (5.6) is a special case of MoguΓskii and Pecherskii [8], Theo-

rem 1 in which we take the dimension m = 2 and the semigroup H =

{(xj); y >̂ 0}. See also Corollary 3 and remark in [8], §2, from which

we have EOi7l = {Tn ^ 0} in our case. Differentiating (5.6) with respect to

ξ twice, and then letting ξ = η = 0, we get (5.5).

Let us prove

(5.7)
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By a two-dimensional modification of Lemma 5.2, we have

(5.8) E[Tn ^ 0; n^2Sn] > E[Y(ΐ) ^ 0; X(ΐ)] = 0

and

(5.9) E[Tn ^ 0; (n-^SnY] > E[Y(1) ^ 0; X(ί)2] = 1/2

as n -> oo. Then

/.(«) = 2"1 Σ ϊ . o ί- = 2-"(l - ί)-1 ( « - 1 - )

by (5.9), and the coefBcients of the power series I2(t) converge to zero by

(5.8), which proves (5.7).

Finally we note that

(Rosen [10]). Then we have from Lemmas 5.4, 5.5 and from (5.7)

the right-hand side of (5.5) ^ 2" V( l - t)~3/2 (t -» 1 - ) ,

where μ is given by (4.8). Hence we have

E[N(T) > n; S3 ~ 2" V ( - ΐ)n(~ 8 ^ - π~1/2e«n1/2 (n -> oo).

Combining this formula with (4.7), we conclude (5.4). This completes the

proof.
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