Y. Kitaoka Nagoya Math. J. Vol. 95 (1984), 73-84

DIRICHLET SERIES IN THE THEORY OF SIEGEL MODULAR FORMS

YOSHIYUKI KITAOKA

We are concerned with Dirichlet series which appear in the Fourier expansion of the non-analytic Eisenstein series on the Siegel upper half space H_m of degree m. In the case of $m=2$ Kaufhold [1] evaluated them. Here we treat the general cases by a different method.

For a rational matrix *R* we denote the product of denominators of elementary divisiors of R by $\nu(R)$. For a half-integral symmetric matrix $T^{(n)}$ we put

$$
b(s, T) = \sum \nu(R)^{-s} e(\sigma(TR)),
$$

where *R* runs over *n* X *n* rational symmetric matrices modulo 1 and *σ* means the trace, and $e(z)$ is $exp(2\pi i z)$. If $\text{Re } s > n + 1$, then $b(s, T)$ is absolutely convergent. For a rational symmetric matrix *R* there is a unique decomposition $R \equiv \sum R_p \bmod 1$ where R_p is a rational symmetric matrix such that $\nu(R_p)$ is a power of prime p. Therefore we have a decomposition

$$
b(s, T) = \prod b_p(s, T),
$$

\n
$$
b_p(s, T) = \sum \nu(R)^{-s} e(\sigma(TR)).
$$

where *R* runs over rational symmetric matrices modulo 1 such that $\nu(R)$ is a power of prime p . Our aim is to give $b_p(s, T)$ in a form easy to see. Shimura [7] also treats $b_p(s, T)$ in a more general situation. $b_p(s, T)$ here is a special case α_0 , Case SP in [7]. His results about α_0 are weaker than ours.

Generalized confluent hypergeometric functions in the Fourier ex pansion of the non-analytic Eisenstein series are investigated by Shimura [6].

The author would like to thank Professor G. Shimura who read the

Received April 22, 1983.

first version of this paper and offered suggestions.

THEOREM 1. Let $T^{(n-1)}$ be a half-integral symmetric matrix and $T^{(n)}$ $=\begin{pmatrix} I_1 & 0 \\ 0 & 0 \end{pmatrix}$. Then we have

$$
b_p(s, T) = (1 - p^{-s})(1 + p^{1-s})(1 - p^{n+1-2s})^{-1}b_p(s - 1, T_1).
$$

We prepare some lemmas to prove this theorem. Put $C(k; p) =$ ${C \in M_k(Z) \vert\vert C\vert}$ is a power of $p\}$ and

$$
\Lambda_{\scriptscriptstyle{k}}=\left\{S\mathop{\in}\nolimits M_{\scriptscriptstyle{k}}(Z)|^{\scriptscriptstyle{k}}S=S\right\}.
$$

The following lemma is known ([1], [5]).

LEMMA 1. $b_p(s, T) = \sum |C|^{-s} e(\sigma(TC^{-1}D))$,

where C, D run over $SL_n(Z)\backslash C(n;p)$, $\{D \in M_n(Z)|C^{-1}D = (C^{-1}D)$ and (C, D) *is primitive}* mod *CΛⁿ respectively.*

$$
\prod_{k=0}^{n-1}(1-p^{k-s})^{-1}b_p(s,T)=\textstyle\sum |C|^{-s}e(\sigma(TC^{-1}D))\,,
$$

 $where C, D$ run over $SL_n(Z)\backslash C(n;p)$, $\{D \in M_n(Z)|C^{-1}D = {}^{t}(C^{-1}D)\}\text{ mod } C A$ *respectively.*

The next lemma is easy.

LEMMA 2. As representatives of $SL_n(Z) \setminus C(n; p)$ we can choose

$$
C=\begin{pmatrix}C_1^{(n-1)} & 0\\ C_3 & C_4\end{pmatrix},
$$

where C_1 , C_4 and C_3 run oner $SL_{n-1}(Z) \setminus C(n-1; p)$, $C(1; p)$ and $M_{1, n-1}(Z)$ $\mod M_{1,\,n-1}(\boldsymbol{Z})\textcolor{black}{C_{1}}$ respectively.

 $\begin{pmatrix} C_1^{(n-1)} & 0 \ C_2 & C \end{pmatrix} \in C(n;p)$ we can choose as representa $tives \text{ of } \{D \in M_n(\boldsymbol{Z}) | C^{-1}D = {}^{t}(C^{-1}D)\}$

$$
D=\begin{pmatrix}D_1^{\scriptscriptstyle(n-1)}&D_{\scriptscriptstyle 2}\\[2pt] D_{\scriptscriptstyle 3}&D_{\scriptscriptstyle 4}\end{pmatrix},
$$

 $where D_1, D_2, and D_4, run over \{D_1 \in M_{n-1}(Z) | C_1^{-1}D_1 = {}^{t}(C_1^{-1}D_1) \} \bmod C_1 \Lambda_{n-1},$ $\{D_{\scriptscriptstyle 2}\in M_{\scriptscriptstyle n-1,1}(Z)\!\mid\! C_{\scriptscriptstyle 4}{}^tD_{\scriptscriptstyle 2}+C_{\scriptscriptstyle 3}{}^tD_{\scriptscriptstyle 1}\!\in M_{\scriptscriptstyle 1,\,n-1}(Z)^tC_{\scriptscriptstyle 1}\}\,\text{mod}\;C_{\scriptscriptstyle 1}M_{\scriptscriptstyle n-1,1}(Z)\;\;\text{ and }\;\;Z\,\text{mod}\;C_{\scriptscriptstyle 4}$ *respectively and then* $D_3 = (C_4{}^t D_2 + C_3{}^t D_1)^t C_1^{-1}$.

Proof. Since
$$
C^{-1} = \begin{pmatrix} C_1^{-1} & 0 \ -C_4^{-1}C_8C_1^{-1} & C_4^{-1} \end{pmatrix}
$$
, we have

$$
C^{-1}D = \begin{pmatrix} C_1^{-1}D_1 & C_1^{-1}D_2 \ -C_4^{-1}(C_3C_1^{-1}D_1 - D_3) & -C_4^{-1}(C_3C_1^{-1}D_2 - D_4) \end{pmatrix}
$$

Since $C^{-1}D$ is symmetric, $C_1^{-1}D_1$ is symmetric and $D_3 = (C_4^t D_2 + C_3^t D_1)^t C_1^{-1}$.
For an integral symmetric matrix $S = \begin{pmatrix} S_1^{(n-1)} & S_2 \\ {}^tS_2 & S_4 \end{pmatrix}$,

$$
CS = \begin{pmatrix} C_{\scriptscriptstyle 1} S_{\scriptscriptstyle 1} & C_{\scriptscriptstyle 1} S_{\scriptscriptstyle 2} \\[1mm] C_{\scriptscriptstyle 3} S_{\scriptscriptstyle 1} + C_{\scriptscriptstyle 4} {\scriptscriptstyle ^t} S_{\scriptscriptstyle 2} & C_{\scriptscriptstyle 3} S_{\scriptscriptstyle 2} + C_{\scriptscriptstyle 4} S_{\scriptscriptstyle 4} \end{pmatrix} \;\; \text{ holds} \, .
$$

From these follows easily our lemma.

The next lemma is an immediate corollary.

LEMMA 4. Let $C_1 \in C(n-1;p)$, $D_1 \in M_{n-1}(Z)$ and $C_4 \in C(1;p)$. Denote by $x(C_1, D_1, C_4)$ the number of elements of the set

$$
\{D_2\in M_{n-1,1}(\boldsymbol{Z}) \bmod C_1M_{n-1,1}(\boldsymbol{Z}),\ C_3\in M_{1,\,n-1}(\boldsymbol{Z}) \bmod M_{1,\,n-1}(\boldsymbol{Z}) C_1\} \text{ such that } C_4{}^tD_2 + C_3{}^tD_1\in M_{1,\,n-1}(\boldsymbol{Z}){}^tC_1\}.
$$

Then the number of $C = \begin{pmatrix} C_1 & 0 \ C_3 & C_4 \end{pmatrix}$, $D = \begin{pmatrix} D_1 & D_2 \ D_3 & D_4 \end{pmatrix}$ where C_3 , D run over $M_{1, n-1}(Z) \bmod M_{1, n-1}(Z)C_1$, $\{D \in M_n(Z) \bmod CA_n | C^{-1}D = {}^{t}(C^{-1}D)\}$ respectively is $C_4x(C_1, D_1, C_4)$.

LEMMA 5. Let R be a rational symmetric matrix and $C_i^{-1}D_i = R$ for $C_i, D_i \in M_n(Z)$ $(i = 1, 2)$. If (C_1, D_1) is primitive then $(C_2, D_2) = W(C_1, D_1)$ for some $W \in M_n(Z)$.

Proof. This is well known [5]).

LEMMA 6. Let $W \in C(n-1; p)$, $C_i \in C(1; p)$, $C_i \in C(n-1; p)$ and $D_i \in$ $M_{n-1}(Z)$ such that $C_1^{-1}D_1$ is symmetric and (C_1, D_1) is primitive. Then we have

$$
x(WC_1, WD_1, C_4) = |WC_1| \prod_{i=1}^{n-1} (C_i, w_i),
$$

where $\{w_i\}$ is the set of elementary divisors of W.

Proof. Let $A_1, B_1 \in M_{n-1}(Z)$ such that $\begin{pmatrix} A_1 & B_1 \ C_1 & D_1 \end{pmatrix} \in Sp_{n-1}(Z)$. Suppose $z^tD_1=w^tC_1$ for $z, w \in M_{1,n-1}(Z)$; then $z=z(^tD_1A_1 - {}^tB_1C_1)=w^tC_1A_1 -$

 $z^tB_1C_1=(w^tA_1-z^tB_1)C_1\in M_{1,n-1}(Z)C_1$. Conversely, suppose $z=xC_1$ for $z, x \in M_{1,n-1}(Z)$; then $z^t D_1 = x C_1^t D_1 = x D_1^t C_1 \in M_{1,n-1}(Z)^t C_1$. Thus we have proved that for $z \in M_{1,n-1}(Z)$

$$
z^t D_1 \in M_{1,n-1}(Z)^t C_1 \quad \text{iff } z \in M_{1,n-1}(Z) C_1.
$$

Next we show that for $D_2 \in M_{n-1,1}(Z)$ there exists $C_3 \in M_{1,n-1}(Z)$ such that $C_i^{\ t}D_2 + C_3^{\ t}(WD_1) \in M_{1,n-1}(Z)^t(WC_1)$ iff $C_i^{\ t}D_2^{\ t}W^{-1} \in M_{1,n-1}(Z)$. The "only if" Suppose $C_i^t D_i^t W^{-1} = y \in M_{1,n-1}(Z)$; then $y - yA_i^t D_i =$ part is trivial. $-yB_1^tC_1$ implies $C_1^tD_2 + (-yA)^t(WD_1) = -yB_1^t(WC_1) \in M_{1,n-1}(Z)^t(WC_1)$. Hence we can take $-yA_1$ as C_3 .

Lastly suppose that $D_2 \in M_{n-1,1}(Z)$, $C_{3,i} \in M_{1,n-1}(Z)$ satisfy

$$
C_{\scriptscriptstyle 4}{}^{\scriptscriptstyle t}D_{\scriptscriptstyle 2} + C_{\scriptscriptstyle 3,i}{}^{\scriptscriptstyle t}(W D_{\scriptscriptstyle 1}) \in M_{\scriptscriptstyle 1,\,n-1}(Z)^i(W C_{\scriptscriptstyle 1}) \qquad (i=1,2) \ ,
$$

then $(C_{3,1} - C_{3,2})^t D_1 \in M_{1,n-1}(Z)^t C_1$ and then $C_{3,1} - C_{3,2} \in M_{1,n-1}(Z) C_1$. Therefore

$$
x(WC_1, WD_1, C_4)
$$

= |W| $\#\{D_2 \in M_{n-1,1}(Z) \text{ mod } WC_1M_{n-1,1}(Z) | C_4 D_2^{\ i} W^{-1} \in M_{1,n-1}(Z) \}.$

Let $W = UW_0V$ where

$$
U, V \in GL_n(\mathbf{Z}), \quad W_0 = \begin{bmatrix} w_1 & & \\ & \ddots & \\ & & w_{n-1} \end{bmatrix} \text{ and } \text{ put } {}^t D_{2} {}^t U^{-1} = (y_1, \cdots, y_{n-1}).
$$

 ${}^{t}D_{v} {}^{t}W^{-1} = (\cdots, y_{i}/w_{i}, \cdots) {}^{t}V^{-1}$ implies

$$
x(WC_1, WD_1, C_4)
$$

=|W| $\# \{(y_1, \dots, y_{n-1}) \in M_{1,n-1}(Z) \text{ mod } M_{1,n-1}(Z)^t C_1^t VW_0 | C_4 y_i \equiv 0 \text{ mod } w_i\}$
=|W|[M_{1,n-1}(Z): M_{1,n-1}(Z)^t C_1^t VW_0]|
[M_{1,n-1}(Z): {(y_1, \dots, y_{n-1}) \in M_{1,n-1}(Z) | y_i \equiv 0] \text{mod}^t w_i/(C_4, w_i)]
=|C_1 W| \prod (C_4, w_i).

Proof of Theorem 1. From above lemmas follows that

$$
\prod_{k=0}^{n-1} (1 - p^{k-s})^{-1} b_p(s, T)
$$

= $\sum |C_1|^{-s} C_4^{1-s} e(\sigma(T_1 C_1^{-1} D_1)) x(C_1, D_1, C_4)$,

where C_1, D_1, C_4 run over $SL_{n-1}(Z) \setminus C(n-1;p)$, $\{D_1 \in M_{n-1}(Z) \text{ mod } C_1 A_{n-1}\}\$ $C_1^{-1}D_1 = {}^{t}(C_1^{-1}D_1)$ and $C(1; p)$ respectively

$$
= \sum |WC_1|^{-s} C_4^{1-s} e(\sigma(T_1 C_1^{-1} D_1)) x(WC_1, WD_1, C_4),
$$

where C_1 , D_1 , C_4 run over the same set as above with an additional condi tion that (C_1,D_1) is primitive, and *W* runs over $SL_{n-1}(Z)\backslash C(n-1;p)$

$$
= \sum |C_1|^{1-s} e(\sigma(T_1 C_1^{-1} D_1)) \cdot \sum |W|^{1-s} C_4^{1-s} \prod (C_4, w_i),
$$

where C_1 , D_1 , C_4 , W run over the above set and $\{w_i\}$ is the set of elementary divisors of *W.*

Thus we have proved that $b_p(s, T) b_p(s - 1, T_1)^{-1}$ is independent of T_1 . Hence by the formula of $b_p(s, 0)$ ([7]) or evaluating $b_p(s, T)$, $b_p(s, T_1)$ for

$$
T_1=\frac{1}{2}\begin{bmatrix}0&1\\1&0\\&&\ddots\\&&&0&1\\&&&1&0\end{bmatrix}\quad\text{or}\quad\frac{1}{2}\begin{bmatrix}0&1\\1&0\\&&\ddots\\&&&0&1\\&&&1&0\\&&&&2\end{bmatrix}
$$

similarly to the proof of the next theorem we have $b_p(s, T)b_p(s - 1, T_1)^{-1}$

COROLLARY 1. Let $T^{(n)} = \begin{pmatrix} 1 & 0 \ 0 & 0 \end{pmatrix}$ $(1 \le r < n)$ be a half-integral sym*metric matrix. Then we have*

$$
b_{_{p}}(s,\,T)=(1-p^{-s})(1+p^{r-s})\prod\limits_{0< i\leq \ {\rm min}{(r-1,\lceil n/2\rceil})}(1-p^{2i-2s})\\\times \\\times \prod\limits_{\max{(r,\lceil n/2\rceil+1)\leq j\leq \lceil (n+r)/2\rceil}\atop{2\nmid k}}(1-p^{2j-2s})^{-1}\\\times \prod\limits_{\substack{1\leq k\leq n+r\\ 2\nmid k}}(1-p^{k-2s})^{-1}b_{_{p}}(s-r,\,T_{_{1}})\:,
$$

 $where [] means the Gauss' symbol.$

Proof. By induction it is easy to see

$$
b_{_{p}}\!(s,\,T)=(1-p^{\text{-}s})(1+p^{\text{-}s})\underset{_{0\leq i\leq r}}{\prod}(1-p^{\text{{\tiny $2i-2s$}}})\\ \cdot\underset{_{n+1\leq j\leq n+r}}{\prod}(1-p^{\text{{\tiny $j-2s$}}})^{-1}b_{_{p}}\!(s-r,\,T_{\text{{\tiny 1}}})\,.
$$

From this follows our formula.

COROLLARY 2. Let $O^{(n)}$ be the $n \times n$ zero matrix. Then we have

$$
b_p(s, O^{\scriptscriptstyle(n)}) = (1-p^{-s})\prod_{0 < k \leq \lfloor n/2 \rfloor} (1-p^{2k-2s}) \\ \cdot \{(1-p^{n-s})\prod_{\substack{n+1 \leq j < 2n}} (1-p^{j-2s})\}^{-1}.
$$

78 YOSHIYUKI KITAOKA

Proof. $b_p(s, O^{(1)}) = (1 - p^{-s})(1 - p^{1-s})^{-1}$ is easy to see. Applying Corollary 1 to $r = n - 1$, $T = O^{(n)}$ we get

$$
b_p(s, 0^{(n)}) = (1-p^{-s})(1-p^{n-s})^{-1} \prod_{1 \leq k \leq n-1} \{(1-p^{2k-2s})(1-p^{n+k-2s})^{-1}\}.
$$

From this follows our formula.

Remark. In Corollary 1 there is a cancellation

$$
(1+p^{r-s})(1-p^{2j-2s})^{-1}=(1-p^{r-s})^{-1} (j=r) \text{ if } r\geq [n/2]+1.
$$

In the rest of this paper we will show that $b_p(s, T)$ is a polynomial in *p~ s* for regular half-integral symmetric matrices T.

$$
\begin{aligned} \text{Put}\ \ E_n = \{S = (s_{ij}) \hspace{-0.05cm}\in\hspace{-0.05cm} M_n(Z_p) \hspace{-0.05cm} | \, S = \hspace{-0.05cm} \begin{matrix} \hspace{-0.05cm}S, \ s_{ii} \hspace{-0.05cm}\in\hspace{-0.05cm} 2Z_p \ (1 \leq i \leq n) \} \ \text{and} \end{matrix} \\ \hspace{10cm} H_s = \begin{bmatrix} 0 \ \ 1 \ \ 0 \ \ \ \ \ \ \cdot \end{bmatrix} \hspace{-0.05cm} \begin{matrix} \hspace{-0.05cm}S, \ s_{ii} \hspace{-0.05cm}\in\hspace{-0.05cm} 2Z_p \ (1 \leq i \leq n) \} \ \hspace{-0.05cm}S, \ \hspace{-0.05cm} S \end{matrix} \hspace{-0.05cm} \begin{matrix} \hspace{-0.05cm}S \\ \hspace{-0.05cm} \text{\Large I} \end{matrix} \hspace{-0.05cm} \begin{matrix} \hspace{-0.05cm}S \\ \hspace{-0.05cm} \text
$$

For $N \in E_n$ we put

$$
\alpha(N,H_s;\ p^\iota)=\left\{T\!\in M_{\scriptscriptstyle 2s,\,n}(Z_p\!/ (p^\iota))\!\mid\! H_{s}[T]-N\!\in\!p^\iota E_n\right\},\\ B(N,H_s;p^\iota)=\left\{T\!\in\alpha(N,H_s;p^\iota)\!\mid\! T\!\colon\text{ primitive}\right\}.
$$

LEMMA 7. Let $N \in E_n$ with $|N| \neq 0$ and $G \in GL_n(Q_p) \cap M_n(Z_p)$. If $t >$ ord_{*v*} | N |*, we have*

$$
(p')^{n(n+1)/2-2s} \# \{T \in \alpha(N, H_s; p') \mid M_{2s,n}(Z_p) \ni TG^{-1}: \text{ primitive}\}\
$$

=
$$
(p^{\text{ord}_p |G|})^{n-2s+1} p^{n(n+1)/2-2s} \# B(N[G^{-1}], H_s; p).
$$

Proof. Let $T \in M_{2s,n}(Z_p)$ and suppose that $H_s[T] - N \in p^t E_n$ and $T_i =$ ¹ is primitive. Then $H_s[T] = N + p^t C$ holds for some $C \in E_n$ and $H_s[T]$ $\equiv N\, \mathrm{mod}\, p^{\iota}$. Hence $|H_{\scriptscriptstyle s}[T_{\scriptscriptstyle 1}]||G|^{\scriptscriptstyle 2} \equiv |N|\, \mathrm{mod}\, p^{\iota}\, \text{ holds and } 2\, \mathrm{ord}_p\, |G| \leqq \mathrm{ord}_p\, |N|$ $<$ t follows from $\text{ord}_p |N| < t$. Denote by C_1, \dots, C_a the representatives of the set ${p^t \overline{C} [G^{-1}] \cap \overline{C} \in E_n} \mod p^tE_n$, then we have $H_s[T_1] = N[G^{-1}] +$ $p^t C[G^{-1}] \equiv N[G^{-1}] + C_k \bmod p^t E_n$. Conversely suppose that $T_i \in M_{2s,n}(Z_p)$ and T_1 is primitive and $H_s[T_1] \equiv N[G^{-1}] + C_k \mod p^t E_n$, then we have $H_s[T_tG] \equiv N \mod p^t E_n$. Therefore we get

$$
\begin{aligned} &\# \{ T \in M_{2s,\,n}(Z_p) \, \text{mod} \, p^t M_{2s,\,n}(Z_p) G \, | \, H_s[T] \, - \, N \, \varepsilon \, p^t E_n, \,\, TG^{-1} \colon \, \text{primitive} \} \\ &\ = \sum_{k=1}^a \, \# B(N[G^{-1}] \, + \, C_k, \, H_s; \, p^t) \, . \end{aligned}
$$

Since C_k is in pE_n , by virtue of 2.2 in [2] we have

$$
(pt)n(n+1)/2-2s n \#B(N[G-1] + Ck, Hs; pt)
$$

= $p^{n(n+1)/2-2s n} \#B(N[G-1] + Ck, Hs; p)$
= $p^{n(n+1)/2-2s n} \#B(N[G-1], Hs; p).$

Let p^{a_1}, \dots, p^{a_n} be elementary divisors of G, then from the definition of *a* follows immediately

$$
\begin{aligned} a &= \sharp [\{p^t(c_{ij}p^{-a_i - a_j}) \vert (c_{ij}) \in E_{\scriptscriptstyle n}\} \operatorname{mod} p^tE_{\scriptscriptstyle n}] \\ &= (p^{\operatorname{ord}_p\vert G\vert})^{n+1}\,. \end{aligned}
$$

Thus we have

$$
(p^{\text{ord}_p|\mathcal{G}|})^{2s}\sharp \{T\in \alpha(N,H_s;\,p^t)\,|\, M_{2s,\,n}(\boldsymbol{Z}_p)\ni TG^{-1}\colon \text{ primitive}\}\\= (p^{\text{ord}_p|\mathcal{G}|})^{n+1}(p^{-t})^{n\,(n+1)/2-2s}n p^{n\,(n+1)/2-2s}\sharp B(N[G^{-1}],\,H_s;\,p)\ .
$$

As a corollary we get

LEMMA 8. Let $N \in E_n$ with $|N| \neq 0$ and $t > \text{ord}_p |N|$. Then we have $(p^t)^{n(n+1)/2-2sn}$ # α (*N*, *H*₈; *p*^t)

 $where \ G \ runs \ over \ GL_n(\mathbb{Z}_p) \setminus \{GL_n(\mathbb{Q}_p) \cap M_n(\mathbb{Z}_p)\}.$

Proof. Let $T \in \alpha(N, H_s; p)$ and suppose that TG^{-1} is primitive for $G \in GL_n(Q_p) \cap M_n(Z_p)$. For any matrix $T_1 \equiv T \mod p^t$ T_1G^{-1} is also primitive $\int \text{since } 2 \text{ ord}_p |G| < t \text{ as in the proof of the previous lemma. If } TG_1^{-1}$ TG_2^{-1} are primitive for $G_i \in GL_n(Q_p) \cap M_n(Z_p)$, then $G_1G_2^{-1} \in GL_n(Z_p)$ since $TG_1^{-1}(G_1G_2^{-1}) = TG_2^{-1}$. Now Lemma 7 completes the proof of Lemma 8.

Let $H = Z(p)[e, f]$ be a quadratic space over $Z(p)$ such that $q(e) =$ $q(f) = 0$, $b(e, f) = 1(q(x + y) - q(x) - q(y) = b(x, y)$, and $H_s = \perp_s H$. For a quadratic space N over $Z/(p)$ we put

 $B(N, H_s) = \text{\#} \{\text{isometries form } N \text{ to } \overline{H}_s \}.$

If $N \in E_n$, then

$$
q(x_1,\dots,x_n)=\frac{1}{2}N\left[\begin{array}{c}x_1\\ \vdots\\ x_n\end{array}\right]
$$

makes a quadratic space N' over $\mathsf{Z} \! \left(p \right)$ corresponding to N and $\#B \! \left(N,H_{\scriptscriptstyle{s}};p \right)$ $,\overline{H}_s$) holds.

80 YOSHIYUKI KITAOKA

LEMMA 9. Let N be a quadratic space over $\mathbb{Z}/(p)$ and $\dim N = n$. Let $N = N_1 \perp N_2$ where N_2 is a maximal totally singular subspace, that is, N_2 *has a maximal dimension among the subspaces in N such that* $q(N_2) = 0$ *. Put* dim $N_1 = d$ and $\varepsilon = 1$ if N_1 is isometric to \overline{H}_k for some k or $d = 0$, *otherwise* $\varepsilon = -1$. Then for a sufficiently large s we have

$$
\begin{aligned} p^{n(n+1)/2-2s\,n}B(N,\,\overline{\!H}_s) \\ = & \begin{cases} (1-p^{-s})(1+\varepsilon p^{n-d/2-s}) \prod\limits_{1\le i\le n-d/2-1} (1-p^{2i-2s}) & 2\, | \, d\ , \\ (1-p^{-s}) \prod\limits_{1\le i\le n-(d+1)/2} (1-p^{2i-2s}) & 2\nmid \, d\ . \end{cases} \end{aligned}
$$

Proof. Let p be an odd prime. This follows from the proof of Lemma 1 in [2]. For a sufficiently large *s* there is an isometry *u* from *N* into \overline{H}_s . Let *M* be the orthogonal complement of $u(N_1)$ in \overline{H}_s . By the theorem of Witt the isometry class of *M* is independent of the choice of *u.* Then we have

$$
B(N, \,\overline{\!H}_s) = B(N_{\scriptscriptstyle 1}, \,\overline{\!H}_s) B(N_{\scriptscriptstyle 2}, \,M)\ ,
$$

where $B(N_2, M)$ is the number of isometries from N_2 into M. Then it is known ([8], [2]).

$$
\begin{aligned} p^{a(d+1)/2-2s\,d}B(N_{\mathrm{l}},\overline{H}_{s}) \\&= \begin{cases} (1-p^{-s})(1+\varepsilon p^{d/2-s}) \prod\limits_{1\leq k\leq d/2-1}(1-p^{2k-2s}) & 2\,d>0\,,\\ (1-p^{-s}) \prod\limits_{1\leq k\leq (d-1)/2}(1-p^{2k-2s}) & 2\nmid d\,,\\ p^{-(2s-d)(n-d)+(n-d)(n-d+1)/2}B(N_{\mathrm{2}},M) \\&= \begin{cases} 0\leq k\sum\limits_{s=1-d-1}^{n}\{(1-\varepsilon p^{n-s-d/2-k-1})(1+\varepsilon p^{n-s-d/2-k})\}& 2\,d\,,\\ \prod\limits_{0\leq k\leq n-d-1}(1-p^{2n-2s-d-1-2k}) & 2\nmid d\,. \end{cases} \end{aligned}
$$

From this follows our formula. Similarly we get the same formulas for *p =* 2. There is nothing to change in the above proof for an odd prime *p.* Let *T* be a half-integral symmetric matrix with $|T| \neq 0$. Put

$$
b_{p}(s, T; p^{t}) = \sum_{R \bmod p^{t}} \nu(p^{-t}R)^{-s} e(\sigma(T(p^{-t}R)))
$$

where R runs over integral symmetric matrices mod p^t . Then it is known ([4]) that for a natural number *s*

$$
b_p(s, T; p^t) = (p^t)^{n(n+1)/2-2ns} \# \{K^{(n,2s)} \bmod p^t | p^{-t}(\frac{1}{2}H_s[^tK] + T) \in 2^{-1}E_n\}
$$

=
$$
(p^t)^{n(n+1)/2-2ns} \# \alpha(-2T, H^s; p^t).
$$

By definition $b_p(s, T; p^t)$ is a polynomial in p^{-s} . On the other hand by virtue of Lemma 8,9 there exists a polynomial *f(x, T)* which depends only on T such that $b_p(s, T; p^t) = f(p^{-s}, T)$ if *s*, *t* are sufficiently large integers. Hence we have $b_p(s, T; p^t) = f(p^{-s}, T)$ for any $s \in \mathbb{C}$, and $b_p(s, T)$ $=f(p^{-s}, T)$ as $t \to \infty$.

Thus we have proved

THEOREM 2. Let $T^{(n)}$ be a half-integral symmetric matrix with $|T| \neq 0$. *Then we have*

$$
b_{p}(s, T) = \sum_{G} (p^{\text{ord}_{p}[G]})^{n+1-2s} a(-T[G^{-1}], s) ,
$$

 $where \ G \ runs \ over \ GL_n(\mathbb{Z}_p)\backslash\{GL_n(\mathbf{Q}_p)\cap M_n(\mathbb{Z}_p)\} \ and \ a(T, s) \ is \ defined \ as$ *follows.* If T is not half-integral, $a(T, s) = 0$. If T is half-integral, we *define a quadratic space N over* $Z/(p)$ *with* dim $N = n$ by

$$
q(x_1,\ \cdots,\ x_n)=\displaystyle T\left[\begin{array}{c}x_1 \\ \vdots \\ x_n\end{array}\right]\hbox{mod}\ p,\quad and \quad N=N_1\perp N_2
$$

 $where N_z is a maximal totally singular subspace. Put d = dim N₁ and d$ $\varepsilon = 1$ if N_1 is a hyperboilc space or $d = 0$, otherwise $\varepsilon = -1$. Then we set

$$
a(T,s)=\begin{cases}(1-p^{-s})(1+\varepsilon p^{n-d/2-s})\prod\limits_{1\leq i\leq n-d/2-1}\left(1-p^{2i-2s}\right)&2\,|\,d\,,\\(1-p^{-s})\prod\limits_{1\leq i\leq n-(d+1)/2}(1-p^{2i-2s})&2{\nmid\,}d\,.\end{cases}
$$

In the above formula for $b_p(s, T)$ G runs over a finite set.

COROLLARY. (i) Let $O^{(n)}$ be the $n \times n$ zero matrix. Then

$$
b_p(s, O^{\scriptscriptstyle(n)}) = (1-p^{-s})\prod\limits_{0
$$

 $r\left(\begin{matrix} T_1^{(n-r)} & 0 \ 0 & 0 \end{matrix}\right)$ be a half-integral symmetric matrix with $|T_1| \neq 0$ $(0 \leq r < n).$

(ii) If p does not divide $\langle 2T_1 \rangle$, then

$$
b_{_{p}}(s,\,T)=(1-p^{-s})\prod_{1\leq j\leq \lfloor n/2\rfloor}(1-p^{2j-2s})\prod_{\substack{n+1\leq k\leq n+r\\ 2\nmid k}}(1-p^{k-2s})^{-1}\\ \times\begin{cases} (1-\varepsilon(T_{\rm i})p^{(n+r)/2-s})^{-1}&2\,|\,n-r\\ 1&2\nmid n-r \end{cases},
$$

where $\varepsilon(T_{\text{i}}) = 1$ if T_{i} corresponds to a hyperbolic space over $Z\vert (p),$ and $\varepsilon(T_1) = -1$ otherwise, i.e., $\varepsilon(T_1) = (((-1)^{(n-r)/2} |2T_1|)/p)$ (Kronecker symbol). (iii) If $n - r$ is odd, then

$$
b_p(s, T) = (polynomial \; in \; p^{-s})(1-p^{-s}) \prod_{1 \leq j \leq \lceil n/2 \rceil} (1-p^{2j-2s}) \\ \times \prod_{\substack{n+1 \leq k \leq n+r}} (1-p^{k-2s})^{-1} \, .
$$

(iv) *If n — r is even, then*

$$
b_p(s,\,T)=(\text{polynomial in }p^{-s})\times (1-\eta p^{(n+r)/2-s})^{-1}(1-p^{-s})\\\times\prod_{1\leq j\leq \lfloor n/2\rfloor}(1-p^{2j-2s})\prod_{n+1\leq k\leq n+r}(1-p^{k-2s})^{-1}\,,
$$

where
$$
\eta
$$
 is defined as follows:

If there is an integral matrix $G^{(n-r)}$ *such that* $T_1[G^{-1}]$ *is half-integral* $and \; |2T_1[G^{-1}]|\; is\; not\; divided\; by\; p,\; then$

$$
\eta = \varepsilon(T_1[G^{-1}]) \qquad (in \text{ (ii)}).
$$

(η is uniquely determined by Γj).

Otherwise $\eta = 0$.

 $Especially \t\eta = 0 \t\it{if} \t\rm{ord}_{\it{p}} \left[2T_{\it{i}} \right] \t\it{is} \t\it{odd}.$

Proof, (i) is already proved, (ii) follows from Corollary 1 and Theorem 2. Let $T_2^{(n-r)}$ be a half-integral matrix with $|T_2| \neq 0$. If $n - r$ \inf odd or $p||2T_2|$, then $a(T_2, s)$ is divided by

$$
(1-p^{-s})\prod_{1\leq i\leq \lfloor (n-r)/2\rfloor}(1-p^{2i-2s})\,.
$$

(iii) and (iv) for $\eta = 0$ follow from this and Corollary 1 and Theorem 2. Suppose that there is an integral matrix $G^{(n-r)}$ such that $T_1[G^{-1}]$ is half integral and $|2T_1[G^{-1}]|$ is not divided by p. Then

$$
a(T_{1}[G^{-1}],s)=(1-p^{-s})(1+\varepsilon(T_{1}[G^{-1}])p^{(n-r)/2-s})\prod_{1\leq i\leq (n-r)/2-1}\left(1-p^{2i-2s}\right).
$$

The coset $G_{n-r}(Z_p)G$ is not necessarily unique, but $\varepsilon(T_1[G^{-1}])$ depends only on T_1 . Taking these terms into account, we complete the proof of the case $\eta \neq 0$.

Remark 1. Let $n = 2k$ be an even integer and $T^{(n)}$ a half-integral symmetric regular matrix. Let $L = Z_p[e_1, \dots, e_n]$ be a free module over

and define a bilinear form $B(e_i, e_j)$ on it by $(B(e_i, e_j)) = 2T$. Then there an integral matrix G such that $T[G^{-1}]$ is half-integral and $p \text{in}[2T[G^{-1}]]$ and only if there is a unimodular lattice M such that $M \supset L$ and the $x \text{ m of } M \text{ is } 2Z_p$. A corresponding matrix to M is diag $[1, \dots, 1, \delta]$ $\exists Z_p^{\times}$ if $p \neq 2$,

$$
\begin{cases}\n\text{diag}\left[\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\right] & \text{if } p = 2 \\
\text{diag}\left[\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}\right] & \text{if } p = 2\n\end{cases}
$$

 $|2T| = p^a \cdot u$ ($p \nmid u$). Then there is an integral matrix G such that G^{-1}] is half-integral and $p||2T[G^{-1}]$ if and only if the following condi ns hold:

- (i) *a* is even,
- (ii) if $p \neq 2$, then the Hasse invariant is 1,
- (iii) if $p = 2$, then $(-1)^{k}u \equiv 1 \mod 4$ and the Hasse invariant is $(-1)^{k(k+1)/2} \text{ if } (-1)^k u \equiv 1 \text{ mod } 8, (-1)^{k(k+1)/2+1} \text{ if } (-1)^k u \equiv 5 \text{ mod } 8.$ i re the Hasse invariant S is defined as follows: Taking a regular matrix

 $\text{such that } 2T[H] = \text{diag} \left[d_1, \dots, d_n\right]$, we put

$$
S=\textstyle\prod\limits_{1\leq i\leq n}\left(d_i,\textstyle\prod\limits_{1\leq j\leq i}d_j\right),
$$

here (,) is the Hilbert symbol of degree 2 on \mathbf{Q}_p^{\times} . S is uniquely deter ned by *T.*

Remark 2. Let *K* be a finite extension field over the p-adic rational imber field *Qp) O* the maximal order of *K* and *(β)* the different of *K* over , $(\delta \in K)$. For $x \in K$ we denote by $|x|_K$ the normalized valuation of x. or a prime element π of K we have $|\pi|_{K}^{-1} = \#(O/(\pi))$. Let R be a sym etric matrix in $M_n(K)$. Then R is decomposed as $R = C^{-1}D$ such that $\left(\begin{array}{c} p \ p \end{array} \right) \in Sp_n(O)$ and we put $\nu(R) = |\det C|_K^{-1}$. This is well-defined. For $\alpha \in \mathbf{Q}_p$ we put $e(x) = \exp(2\pi i)$ (the fractional part of x)). Let T be a half tegral matrix, that is, $2T \in M_n(O),$ $T = {^t}T$ and all diagonal entries of T •e in *O.* Then we put

$$
b(s, T) = \sum \nu(R)^{-s} e(\text{tr}_{K/Q_p} (\sigma(TR)\delta^{-1})),
$$

here R runs over $\{R \in M_n(K) | R = {}^t R\}$ mod O . Then all theorems and

84 YOSHIYUKI KITAOKA

corollaries hold for $b(s, T)$ instead of $b_p(s, T)$ with the following minor changes:

(i) p should be $|\pi|_{K}^{-1}$.

 (iii) In Theorem 2 *G* runs over $GL_n(O)\setminus \{GL_n(K)\cap M_n(O)\}$ and $p^{\text{ord}_p(G)}$ should be $|\det G|_{\kappa}^{-1}$ and a quadratic form q should be defined over $O/(\pi)$ (also in Corollary).

Conjecture 6.3 for $\lambda = 0$, Case SP in [7] where the denominator can be solved therein does not necessarily refer to the reduced denominator.

Remark 3. Let *T* be a half-integral symmetric binary regular matrix. Denote by t^* the discriminant of $Q(\sqrt{-|T|})$ and let α be the integer such that $p^{2a} \sim |2T|/t^*$. Then from the explicit formula of $b_p(s, T)$ ([1], [3]) fol $\frac{1}{2}$ lows that $b_p(s, pT) - p^{2-s}b_p(s, T)$ does not depend on T itself but only on α , $(t^*|p)$ (Kronecker symbol). A weaker assertion holds for the function α , (Case SP) defined in [7] from [3].

REFERENCES

- [1] G. Kaufhold, Dirichletsche Reihe mit Funktionalgleichung in der Theorie der Modulfunktion 2. Grades, Math. Ann., **137** (1959), 454-476.
- *I* 2] Y. Kitaoka, Modular forms of degree n and representation by quadratic forms II, Nagoya Math. J., 87 (1982), 127-146.
- [3] -, A note on local densities of quadratic forms, Nagoya Math. J., 92 (1983), 145-152.
- [4] H. Maaβ, Die Fourierkoeffizienten der Eisensteinreihen zweiten Grades, Mat.-Fys. Medd. Danske Vid. Selsk., 34 (1964), no. 7.
- [5] Siegel's modular forms and Dirichlet series, Lecture Notes in Mathematics, vol. **216.** Berlin, Heidelberg, New York, Springer 1971.
- [6] G. Shimura, Confluent hypergeometric functions on tube domains, Math. Ann., **260** (1982), 269-302.
- [7] -, On Eisenstein series, to appear in Duke Math. J.
- [8] C. L. Siegel, ϋber die analytische Theorie der quadratischen Formen, Ann. of Math., **36** (1935), 527-606.

Department of Mathematics Faculty of Science Nagoya University Chikusa-ku, Nagoya 464 Japan