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DIRICHLET SERIES IN THE THEORY OF
SIEGEL MODULAR FORMS

YOSHIYUKI KITAOKA

We are concerned with Dirichlet series which appear in the Fourier
expansion of the non-analytic Eisenstein series on the Siegel upper half
space H, of degree m. In the case of m = 2 Kaufhold [1] evaluated them.
Here we treat the general cases by a different method.

For a rational matrix R we denote the product of denominators of
elementary divisiors of R by v»(R). For a half-integral symmetric matrix
T™ we put

b(s, T) = 2 v(R) *e(s(TR)),

where R runs over n X n rational symmetric matrices modulo 1 and o
means the trace, and e(2) is exp(2riz). If Res >n <+ 1, then b(s, T) is
absolutely convergent. For a rational symmetric matrix R there is a
unique decomposition R = > R,mod1 where R, is a rational symmetric
matrix such that v(R,) is a power of prime p. Therefore we have a
decomposition

b(s, T) = 1 b,(s, T),
by(s, T) = X v(R)-*e(o(TR)).

where R runs over rational symmetric matrices modulo 1 such that v(R)
is a power of prime p. Our aim is to give b,(s, T') in a form easy to see.
Shimura [7] also treats b,(s, T') in a more general situation. b,(s, T) here
is a special case «, Case SP in [7]. His results about «, are weaker than
ours.

Generalized confluent hypergeometric functions in the Fourier ex-
pansion of the non-analytic Eisenstein series are investigated by Shimura
[6].

The author would like to thank Professor G. Shimura who read the
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first version of this paper and offered suggestions.

THEOREM 1. Let TV be a half-integral symmetric matrix and T™

= (g1 ! 8) Then we have

by(s, T) =1 —p)A +p'" )L —p""'*)7'b,(s — 1, T}).

We prepare some lemmas to prove this theorem. Put C(k;p) =
{Ce M(2)||C| is a power of p} and

A, ={SeM(2)|'S = S}.
The following lemma is known ([1], [5]).
Lemma 1. b,(s, T) = >, |C|*e(e(TC'D)),
where C, D run over SL,(Z)\C(n;p), {De M, (Z)|C'D = “(C'D) and (C, D)
is primitive} mod CA, respectively.
n-1
11— p*)b,(s, T) = X3 |CIe(a(TC-'DY),
where C, D run over SL.(Z)\C(n;p), {De M,(Z)|C'D = *(C-'D)}mod C4,
vespectively.
The next lemma is easy.

LEMMA 2. As representatives of SL,(Z)\C(n;p) we can choose

ce 0
=l o)
¢ G

where C,, C, and C, run oner SL, (Z)\C(n — 1;p), C;p) and M, ,_(Z)
mod M, ,,_(Z)C, respectively.

cmv 0
Lemma 3. For C = < 1
EM or c. C.

tives of {D e M,(Z)|C-'D = {C-'D)}mod CA,

D¢ D
b3 2)
D, D,

)e C(n;p) we can choose as representa-

where D,, D, and D, run over {D,e M,_(Z)|C:'D, = {(C;'Dy)} mod C 4, _,,
{D,e M,_,(Z)|C!D, + Ci!D,e M, , (Z2)'C;}mod C,\M,_, (Z) and Zmod C,
respectively and then D, = (C,'D, -+ C,!D)'C.
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Proof. Since C' = (_ C?Z’s o C(Z‘l)’ we have
oo~ ( C'D, CrD Y,
- CII(CSC;IDI - Da) - C4_1(0301—1D2 - D4)
Since C-'D is symmetric, C'D, is symmetric and D, = (C,'D, + C,'D)‘C;.
For an integral symmetric matrix S = (S}; Y gz) ’

C.S C,S
S:( S S, )hld.
=\cs +cs. s +cs) Bl

From these follows easily our lemma.
The next lemma is an immediate corollary.

Lemma 4. Let Cie C(n — 1;p), D;e M,_(Z) and C,e C(1;p). Denote
by x(C, D,, C,) the number of elements of the set

{Dz € Mn—l,l(Z) mod Can-m(Z), Ce Ml,n—l(Z) mod Ml.n-l(Z)CI
such that C,'D, + Cs'D,e M, ,_(Z)'C,}.

Then the number of C = (g: g), D = (g: gi) where C,, D run over
M, ,.(Z) mod M, ,_(Z)C,, {De M, (Z)mod CA,|C-'D = {(C-'D)} respectively
iS C4x(Cb Dl’ C4)'

LemMA 5. Let R be a rational symmetric matrix and C;'D, = R for
C,D,eM,(Z)(G=1,2). If (C, D) is primitive then (C, D,) = W(C,, D)
for some We M (Z).

Proof. This is well known [5]).

LemmA 6. Let WeC(n — 1;p), C,e C(1;p), Cie C(n — 1;p) and D, e
M,_(Z) such that C;'D, is symmetric and (C,, D)) is primitive. Then we
have

2(WC,, WD, C) = | WG| T] (C,y wy),
i=1

where {w,} is the set of elementary divisors of W.

Proof. Let A, B,e M,_(Z) such that (‘é‘ IB;l) e Sp,_(Z). Suppose
1 1

2'D, = w'C, for z, weM,, (Z); then z=2(‘D,A, — 'B,C)) = w'CA, —
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2'B,C, = w'A, — 2'B))C,e M, ,_(Z)C,. Conversely, suppose z = xC; for
z,xe M, , (Z); then 2D, = xC,'D, = xD,'C,e M, ,_(Z)'C,. Thus we have
proved that for ze M, ,_(Z)
2'Die M, .(Z)C, iff zeM, .. (Z)C,.

Next we show that for D,e M, _,,(Z) there exists C,e M, ,_(Z) such that
C/'D, + CHWD,) e M, ,_(Z)(WC)) iff C;/D,;W-'e M,,_(Z). The “only if”
part is trivial. Suppose C,D,W-'=ye M, , (Z); then y — yA'D, =
—yB/C, implies C,'D, + (—yA)WD,) = —yBXWC) e M, ,_(Z)(WC).
Hence we can take — yA, as C,.

Lastly suppose that D,e M,_, (Z), C,,e M, ,_(Z) satisfy

C/!'D, + Ca,it(WDl) € Ml,n—l(Z)t(WCI) =1, 2),

then (C,, — C,)'D,e M, ,_(Z)C, and then C,, — C,,e M, ,_(Z)C,. There-
fore
x(WC,, WD,, C)
= |W|${D,e M,_, (Z) mod WC,M,_, (Z)|C;'D,W-"'e M, , (Z)}.
Let W = UW,V where
w,
U VeGL(Z), W,= e and put ‘DU = (¥, * ) Yu-1) -
W1
DW= (- -, yiJwy, -+ ) V™! implies
x(WC,, WD,, C)
=|W|[${(yy -+ -, Yu-d) € M, o Z)mod M, ,_(Z)'C;' VW, | C,y; = Omod w;}
= | WI[MI,n—l(Z): Ml,n-—l(Z)tCIt VWo]/
[Ml,n—l(Z): {yy sy eM, . (Z)]|y; = O:mOd:wi/(C4: wz)}]
= [CW|]] (C, w)).

Proof of Theorem 1. From above lemmas follows that
n=1
T @ — p*97b,(s, T)

= 2 1Ci|*Cie(o(T,CT'D)x(C,, D, C)) ,

where C,, D,, C, run over SL,_(Z)\C(n — 1;p), {D,e M,_(Z) mod C,4,_,]
C:'D, = Y(Ci'D,)} and C(1; p) respectively

= 2 |WC,|=*Cie(o(T,C*D))x(WC,, WD,, C)) ,
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where C,, D,, C, run over the same set as above with an additional condi-
tion that (C,D,) is primitive, and W runs over SL,_,(Z)\C(n — 1;p)

= 22 |C['e(a(T,CT* DY) - 25| W= Cie [T (G wy)

where C,, D,, C,, W run over the above set and {w,} is the set of elementary
divisors of W.

Thus we have proved that b,(s, T)b,(s — 1, T})"' is independent of T:.
Hence by the formula of b,(s, 0) ([7]) or evaluating b,(s, T'), b,(s, T,) for

01 01
10

1110 1 .
T == " or — .
2. 2 0

1

= O
[

1
0

{ 2)

similarly to the proof of the next theorem we have b,(s, T)b,(s — 1, T)*
= (L= p L+ PN~ P )

CorOLLARY 1. Let T™ = ((’{ " 8) (1 £ r < n) be a half-integral sym-

metric matrix. Then we have

b5, T) =010 —p A +p ) [ 1 — p*-%)

0<i< min (r-1,[n/2])

a-— ij—Zs)—l

max (r,[n/2]+1) < j<[(n+7)/2]

X I @ =p**)7by(s =1, T),

n+1SksSn+7r
21k

where [ ] means the Gauss’ symbol.

Proof. By induction it is easy to see
b5, T) =0 —p )1 + pr-x)0<li—[<r(1 )
L —=p*) b (s —r,T).

n+lsj<n+r
From this follows our formula.

COROLLARY 2. Let O™ be the n X n zero matrix. Then we have

by(s, 0" =Q1Q—=p=) [ (1—p*™)

0<k=[n/2]

@ —p*) H<2n(1 — P

n+1=j
217
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Proof. b,(s,0") = (1 —p~)(1 — p'~*)~' is easy to see. Applying Corol-
lary 1tor=n—1, T = O™ we get

by(s, 0M) =@ —p7)A —p)7" T {Q —p*7)A —p™**) 7).

1=

From this follows our formula.
Remark. In Corollary 1 there is a cancellation
A+p )L —=p"*)'=Q0—=p )" (j=r) if r=I[n/2] +1.

In the rest of this paper we will show that b,(s, T) is a polynomial
in p~° for regular half-integral symmetric matrices T.

Put E, = {S = (s,)) e M((Z,)|S = 'S, 5,,€2Z,(1 < i < n)} and

01
10
H_,,: .'. €E23.

01
[ 10

a(]v’ Hs; pt) = {Te MZs,n(Zp/(pz))]Hs[T] - NeptEn} ’
B(N, H,; p*) = {T e «(N, H,; p*)| T: primitive}.

For Ne E, we put

Lemma 7. Let Ne E, with |N|+ 0 and Ge GL(Q,)NM,\(Z,). If t>
ord, |N|, we have

(pt)r o=ty T e (N, H,; p*)| My, (Z,)  TG-': primitive}
= (priv ety pr e b g BN G, Hi p) -

Proof. Let Te M,, ,(Z,) and suppose that H[T] — Nep'E, and T, =
TG is primitive. Then H,[T] = N + p*C holds for some Ce E, and H,[T]
= Nmod p’. Hence |H,[T}]||G] =|N|mod p* holds and 20rd, |G| < ord, |N|
<t follows from ord,|N|< ¢ Denote by C, ---, C, the representatives
of the set {p’C[G']|Ce E,}modp'E,, then we have H,T,] = N[G'] +
p'C[G] = N[G™'] + C. mod p‘E,. Conversely suppose that T e M,, (Z,)
and T, is primitive and H,[T,] = N[G"'] 4+ C, modp‘E,, then we have
HJT\G] = Nmod p‘E,. Therefore we get

#H{T e M,,  (Z,) mod p‘M,, (Z,)G|H,[T] — Nep'E,, TG™': primitive}
= 3 4BIVIG™] + Cs, H; ).
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Since C, is in pE,, by virtue of 2.2 in [2] we have

(p)rsnre=tmg BIN[G™'] + Cy, Hy; p)
=pn(n+1)/2-23n#B(N[G—l] + Ck’ Hs; p)
= pr -ty BNG-, H,; p)

Let p*, - .., p° be elementary divisors of G, then from the definition of
a follows immediately

a = §[{p*(c;;p~*"*)|(c:;) € E,} mod p*E,]
— (pordp]GI)nn .

Thus we have

(= “)*4{T & a(N, H,; p')| My, o(Z;) > TG™: primitive}
— (pordp!Gl)n+l(p—t)n(n+l)/2—23npn(n+1)/Z—an#B(N[G—1], Hs; p) .

As a corollary we get
LemMA 8. Let Ne E, with |N|+# 0 and t > ord, |[N|. Then we have

(pt)n(n-fl)/z—z.sn#a(N’ Hs; pt)
—_ Z (pordplal)n«(-1—Zspn(n+1)/2—23n#B(N[G—1]’ Hs;p)

where G runs over GL,(Z,)\{GL.(Q,) N M, (Z,)}.

Proof. Let Tea(N, H,; p*) and suppose that TG-' is primitive for
GeGL,(Q,)NM,(Z,). For any matrix T, = Tmodp* T,G' is also primitive
since 2ord,|G|<t¢ as in the proof of the previous lemma. If TG,
TG;' are primitive for G, e GL,(Q,)NM,(Z,), then G,G;'e GL,(Z,) since
TG:Y(G,G;Y) = TG;'. Now Lemma 7 completes the proof of Lemma 8.

Let H = Z/(p)le, f] be a quadratic space over Z/(p) such that g(e) =
q(f) = 0, be, f) = Uq(x + y) — q(x) — q(y) = b(x, y)), and H, = | ,H. For
a quadratic space N over Z/(p) we put

B(N, H,) = #{isometries form N to H,}.
If NeE,, then
Xy

1
Q(xb ) xn) = ——Z—N
x,

makes a quadratic space N’ over Z/(p) corresponding to N and #B(N, H,; p)
= B(N’, H,) holds.
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LemMmA 9. Let N be a quadratic space over Z|(p) and dim N = n. Let
N =N, | N, where N, is a maximal totally singular subspace, that is, N,
has a maximal dimension among the subspaces in N such that q(N,) = 0.
Put dim N, =d and ¢ =1 if N, is isometric to H, for some k or d =0,
otherwise ¢ = — 1. Then for a sufficiently large s we have

pn(n+1)/2—23nB(N, Hs)
{(1—p-s><1+ep"-d/2-s) M a—p"  2/d,

1£ign—-d/2~-1

T—-p) I @=p"™) 24d.

1isn—(d+1)/2

Proof. Let p be an odd prime. This follows from the proof of Lemma
1 in [2]. For a sufficiently large s there is an isometry u from N into H..
Let M be the orthogonal complement of w(XNV,) in H,. By the theorem of
Witt the isometry class of M is independent of the choice of u. Then
we have

B(N, H)) = BIN,, H)B(V,, M),

where B(IV,, M) is the number of isometries from N, into M. Then it is
known ([8], [2]).

pd(d+l)/2—2sdB(M’ Hs)
{(1 — D0 )1 + epi* )y [ @ —p*) 2|d >0,
—_ 1<

k<d/2-1

T—=p I @—=p*") 2/d,

1k=(d-1)/2

-@2s-d)y(n-d)+(n-d)(n~d+1)/2
p 29

{n (L — ep =P s)L + eprr ) 2]d,
- Oskél;l'_d—l (1 . pZn—-2s—d—1~2k) Z*d .

From this follows our formula. Similarly we get the same formulas for

p = 2. There is nothing to change in the above proof for an odd prime p.
Let T be a half-integral symmetric matrix with |T| s 0. Put

b,(s, T;p") = . n‘% ” v(p ‘R)*e(o(T(p *R))),

where R runs over integral symmetric matrices mod p’. Then it is known
([4]) that for a natural number s

bp(s, T;pt): (pt)n(n+1)/2—2ns#{K(n,2s) modpt Ip—t(%_Hs[tK] + T) € 2—1En}
= (PO a(— 2T, H'; ).
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By definition b,(s, T; p*) is a polynomial in p~*. On the other hand
by virtue of Lemma 8,9 there exists a polynomial f(x, T') which depends
only on T such that b,(s, T; p') = f(p~5, T) if s, t are sufficiently large
integers. Hence we have b,(s, T; p') = f(p~*, T) for any s € C, and b,(s, T)
=f(p~%,T) as t— oo.

Thus we have proved

THEOREM 2. Let T™ be a half-integral symmetric matrix with |T|+ 0.
Then we have

by(s, T) = 2 (") a(— TG, 5)

where G runs over GL.(Z)\{GL,(Q,)NM/(Z,)} and a(T,s) is defined as
follows. If T is not half-integral, a(T,s) = 0. If T is half-integral, we
define a quadratic space N over Z|(p) with dim N = n by

x,
q(x, -+, x,)=T| - |modp, and N =N, | N,

Xy

where N, is a maximal totally singular subspace. Put d = dim N, and

e = 1if N, is a hyperboile space or d = 0, ctherwise e = — 1. Then we set
Q—p A+ [ @Q@—pi*  2|d,
(T, s) = 1EEn=d/
(1 — p-s) I—[ (1 — p27,—2s) 2/l/d.

1gis=n—(d+1)/2

In the above formula for b,(s, T) G runs over a finite set.

CoroLLARY. (i) Let O™ be the n X n zero matrix. Then

bp(S, O('ﬂ)) — (1 . p-—s) n (1 — pzk—Zs){(l . pn—s) 1_[ (1 . pj—ZS)}—l .
0<k<[n/2] n+12§*]j<2n
Let T™ = (gwinm 8) be a half-integral symmetric matrix with |T;|++ 0
O r<n)
(i1) If p does not divide |2T),|, then

b(s, T)=@1—p>) [ @—p¥*> J @Q@—=p*)"

1<j=[n/2] n+1§ﬂﬁ%n+r

y 1 = «TYp+re=s)=t 2ln—r,
1 2n —r
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where «T,) =1 if T, corresponds to a hyperbolic space over Z|(p), and
«(T)) = — 1 otherwise, i.e., e(T)) = (—1)""|2T\))/p) (Kronecker symbol).
(iii) If n —r is odd, then

b,(s, T) = (polynomial in p=*)1 — p~*) 1 — p¥-%)
1=j=sn/2]
X ]—l' (1 . pk—ZS)—l .
n+1sksn+r
2yk

@iv) If n — r is even, then

b,(s, T) = (polynomial in p=*) X (1 — pp™+"/*=5)=Y(1 — p~*)
X [ @—=p®) I @Q—=p,

1=jsln/2] n+1SkSn+r
%

where 7 is defined as follows:
If there is an integral matrix G™" such that T,[G™'] is half-integral
and |2T[G']| is not divided by p, then

7=¢eT(GD  (Gn ().
(n is uniquely determined by T,).
Otherwise n = 0.
Especially n = 0 if ord, |2T}| is odd.

Proof. (i) is already proved. (ii) follows from Corollary 1 and
Theorem 2. Let T{ " be a half-integral matrix with |T,|+0. If n —r
is odd or pl||2T,|, then a(T}, s) is divided by

Q—=p= I (@ —=p*™).
15i<[(n-r)/2]

(ii1) and (iv) for = 0 follow from this and Corollary 1 and Theorem 2.
Suppose that there is an integral matrix G™~7 such that T,[G~'] is half-
integral and |27,[G']] is not divided by p. Then

a(Tl[G"I], S) = (1 —p”)(l + E(TI[G"l])pW*T)/?—S) I‘[ (1 _p2i-2s) .

1=is(n-7)/2-1

The coset G,_,(Z,)G is not necessarily unique, but &(7,[G"']) depends only
on T,. Taking these terms into account, we complete the proof of the
case 7 #= 0.

Remark 1. Let n = 2k be an even integer and T™ a half-integral
symmetric regular matrix. Let L = Z,[e, ---,e,] be a free module over
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and define a bilinear form B(e;, e;) on it by (B(e;, ¢,;)) = 27. Then there
an integral matrix G such that T[G~'] is half-integral and p/{|2T[G"']}
ind only if there is a unimodular lattice M such that M D L and the
m of M is 2Z,. A corresponding matrix to M is diag(l, ---,1, 6]
. Z3) if p # 2,

jdiag[(‘l’ o) (1 o)l

or ifp=2.
. T/0 1 “.(01) <21)
dlag[(1 o)’ '\10/\4 2]

t |27 ] = p*-u (pyuw). Then there is an integral matrix G such that
G-'] is half-integral and p}{27[G~']| if and only if the following condi-
ns hold:
(i) a is even,
(i1) if p # 2, then the Hasse invariant is 1,
@1ii) if p =2, then (— 1)*u =1mod4 and the Hasse invariant is
(— DFED24f (— 1)*u = 1 mod 8, (— 1)**+b2+1 if (— 1)*u = 5 mod 8.
sre the Hasse invariant S is defined as follows: Taking a regular matrix
such that 27 [H] = diag [d,, ---, d,], we put
S= 11 @, Il dy),

=it

1ere (,) is the Hilbert symbol of degree 2 on Q. S is uniquely deter-
ned by T.

Remark 2. Let K be a finite extension field over the p-adic rational
imber field Q,, O the maximal order of K and (9) the different of K over
, @e K). For xe K we denote by |x|z the normalized valuation of x.
x a prime clement n of K we have |z|z' = #(0/(x)). Let R be a sym-
atric matrix in M, (K). Then R is decomposed as R = C~'D such that

: ]’3) € Sp,(0) and we put »(R) — |det C|z. This is well-defined. For

=2 Q, we put e(x) = exp (2xi (the fractional part of x)). Let T be a half-
tegral matrix, that is, 2T e M, (O), T = ‘T and all diagonal entries of T
e in O. Then we put

b(s, T) = 25 v(R)*eltrysq, (o(TR)S™),
here R runs over {Re M, (K)|R = ‘R}mod O. Then all theorems and
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corollaries hold for b(s, T') instead of b,(s, T) with the following minor
changes:

(i) p should be |z|z.

(ii) In Theorem 2 G runs over GL,(O)\{GL.,(K)NM,(O)} and p°='é
should be |det G|z' and a quadratic form ¢ should be defined over O/f(x)
(also in Corollary).

Conjecture 6.3 for 4 =0, Case SP in [7] where the denominator can
be solved therein does not necessarily refer to the reduced denominator.

Remark 3. Let T be a half-integral symmetric binary regular matrix.
Denote by t* the discriminant of Q(+/—|T|) and let a be the integer such
that p*|||2T|/¢*. Then from the explicit formula of b,(s, T) ({11, [3]) fol-
lows that b,(s, pT) — p*~*b,(s, T') does not depend on T itself but only on
a, (t*/p) (Kronecker symbol). A weaker assertion holds for the function
a; (Case SP) defined in [7] from [3].
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