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DIRICHLET SERIES IN THE THEORY OF

SIEGEL MODULAR FORMS

YOSHIYUKI KITAOKA

We are concerned with Dirichlet series which appear in the Fourier
expansion of the non-analytic Eisenstein series on the Siegel upper half
space Hm of degree m. In the case of m = 2 Kaufhold [1] evaluated them.
Here we treat the general cases by a different method.

For a rational matrix R we denote the product of denominators of
elementary divisiors of R by v{R). For a half-integral symmetric matrix
Tw we put

where R runs over n X n rational symmetric matrices modulo 1 and σ
means the trace, and e(z) is exp(2πίz). If Res > n + 1, then b(s, T) is
absolutely convergent. For a rational symmetric matrix R there is a
unique decomposition R = J]RP mod 1 where Rv is a rational symmetric
matrix such that v(Rp) is a power of prime p. Therefore we have a
decomposition

6(s, T) = Π bp(8, T),

where R runs over rational symmetric matrices modulo 1 such that v(R)
is a power of prime p. Our aim is to give bp(s, T) in a form easy to see.
Shimura [7] also treats bp(s, T) in a more general situation. bp(s, T) here
is a special case a0, Case SP in [7]. His results about a0 are weaker than
ours.

Generalized confluent hypergeometric functions in the Fourier ex-
pansion of the non-analytic Eisenstein series are investigated by Shimura
[6].
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first version of this paper and offered suggestions.

THEOREM 1. Let T^~λ) be a half-integral symmetric matrix and T(n)

= (T1 QY Then we have

bp(s, T) = (l- r 0 ( 1 + ̂ - X l - Pn+1-2s)-%(s - 1, Td .

We prepare some lemmas to prove this theorem. Put C(k;p) =

{C e Mk(Z)\\C\ is a power of/?} and

Ak = {SeMk(Z)\tS = S}.

The following lemma is known ([1], [5]).

LEMMA 1. bp(s, T) = Σi\C\-se(σ(TC-χD)),

where C, D run over SLn(Z)\C(n;p), {D e Mn{Z)\C~lD = ι(C-ιD) and (C, D)

is primitive} mod CΛn respectively.

ΐ f( l - Pk-s)-%(s, T) = Σ |C|-β(<KTC-'D)),
λ; = 0

where C, D run over SLn(Z)\C(n;p), {D eMn{Z)\C~ιD = ι(C-1 D)}mod CAn

respectively.

The next lemma is easy.

LEMMA 2. As representatives of SLn(Z)\C(n;p) we can choose

c_(crλ) o
j

where Cu C4 and C3 run oner SLn_1{Z)\C{n — l p), C(l;p) and Mx,n_x(Z)

mod Mu n_ 1(Z)C1 respectively.

( n(n-l) Q\
1 j e C(n;p) we can choose as representa-

tives of {De Mn(Z)\C-ιΌ = ^(C-'^

D VA .

where A , D2 and A run over {AeM n _ 1 (Z) |Cr 1 A = '(Cf'A)}mod CJn.u

{D2e Mn^hl(Z)\Ci

tD2 + C3

ίAeM l 5 r ι_1(Z) iC1}modC1M r e_ l 5 l(Z) α îd ZmodC 4

respectively and then A = ((VA + C^D^Cϊ1.
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Proof. Since C 1 = ( _ ^ ^ ^ j , we have

Ϊ ^ - A) - C

Since C"1!) is symmetric, Cf^A is symmetric and A = (C^A +

( O(w-l) O \

) h o l d s -

From these follows easily our lemma.

The next lemma is an immediate corollary.

LEMMA 4. Let Cλ e C(n - l p), A € Λίn.1(Z) and C4 e C(l p).

fry ̂ (CΊ, 2?!, C4) ίΛβ number of elements of the set

{A e Mn.ltl(Z)mod C ^ . ^ ί Z ) , C3 e M ^ .

swcΛ that C/D2 + C3

tD1e M^^WCt}.

Then the number of C = (Cί ° V D = (Dί D*\ where C8, D rw î oυer

Λίi^^ίZ) mod Λfi^.^C,, { D ' e M ^ m o d c i l C - 1 ! ) = ^C"1!))} respectively

is CMC,, A , Q .

LEMMA 5. Lei R be a rational symmetric matrix and CΐιDt = R for

Cu A e Mn(Z) (i = 1, 2). // (C,, D^ is primitive then (C2, A ) =

/or some

Proof. This is well known [5]).

LEMMA 6. Let We C(n - l p), C4 e C(l p), C: e C(n - l p) and A €

Mn_1(Z) such that Cf2A is symmetric and (CΊ, A ) is primitive. Then we

have

x(WCu WDU C4) = IWC,I Π (C4, a;,),
i = l

where {Wi} is the set of elementary divisors of W.

Proof. Let Al9 B, e Mn_x{Z) such that (Aί Bl) e Spn_x{Z). Suppose

z'Ώ, = wιC, for z, w e Λf1>nM(Z); then 2 = ^ Φ ^ j - ^ i Q = w'CAi -
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ztBιC1 = {wtA1 — ztB1)CίeMhn_1(Z)C1. Conversely, suppose z = xCt for

z,xe Mhn_x{zy, then ztDι = xCι

tDι = sZVd 6 M ^ . ^ Z ) ' d Thus we have

proved that for zeMUn

z'D, e Mhn_lzyCx iff z e Mltn^{Z)Cx.

Next we show that for D2eMn_ίfl(Z) there exists Cz^M^n_x{Z) such that

d ' A + C3WA) e Mltn^(zy(WCd iff CSDJW-1 e M^Z). The "only if"

part is trivial. Suppose C/D^W-1 = y e M.^.^Z); then y — yAfD1 =

- yBSCt implies C/A + ( - yA)%WD^ = - yB^WCd e M

Hence we can take — yAx as C3.

Lastly suppose that D2e Afn_lfl(Z), C3)i e Λίi^.^Z) satisfy

d * A + d,*ί(WDi) e M^izyiWC,) (i = 1, 2),

then (d,i - Cg^)^! e Mj^.^Zj 'd and then C3)1 - C3)2 e M^n_iZ)Cx. There-
fore

, WDU C4)

= I W|#{A e Mn_UZ) mod WCM,-, ,^) ! C / A ' ^ " 1 e M l in_,

Let W = C/Woy where

and putC7, VeGLn(Z), Wo =

(•• ,ytlwt, •••yv-1 i m p l i e s

,, C4)

Ί, ,y»-i) e Af1,,,.1(Z)modM1.n.1(Z)tC1'VW.I C4y« = Omod «;,}

. ^ Z ) : MI,,.I(Z)ίC1'VWαl/

[uf,,B-i(Z): {(y1; , y»-i) € ^ . . . . ( Z ) |y< ΞΞ o;mod>4/(C4) u;,)}]

Proof of Theorem 1. From above lemmas follows that

= Σ IGl-Ci-eGK^Cr^MC,, A, Q ,
where C,, A, C4 run over SL^iZ^Cin - l p), {A e Mπ.,(Z)mod C^.,1

CfJA = '(Cr'A)} and C(l;p) respectively

, WDlt Ct),
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where C19 Du C4 run over the same set as above with an additional condi-

tion that (C1?A) is primitive, and W runs over SLn-x{Z)\C(n — l p)

= Σ|C 1 | 1 -e(^ΓiCr 1 A)) Σ | W r l 1 - C i - Π (C<,wd,

where C19 Dl9 C4, VFrun over the above set and {wt} is the set of elementary

divisors of W.

Thus we have proved that 6p(s, T)bp(s — 1, ϊ^)" 1 is independent of Tx.

Hence by the formula of bp(s, 0) ([7]) or evaluating bp(s, T), bp(s, Ti) for

0 1
1 0

0 1
1 0

fO 1
1 0

o r
 \ 0 1

1 0

similarly to the proof of the next theorem we have bv(s, T)bp(s — 1, TΊ)"1

COROLLARY 1. Let T(n) = [Q1 Q ) (1 ^ r < ή) be a half-integral sym-

metric matrix. Then we have

Π (i-p2ί-2s)
min(r-l,[w/2])

X

X
2\k

where [ ] means the Gauss9 symbol.

Proof. By induction it is easy to see

bp(s, T) = (1 - p - χ i + p ' - ) Π (1 -
0<ί<r

From this follows our formula.

COROLLARY 2. Let 0{n) be the n X n zero matrix. Then we have

&P(S,O«) = ( I - P - S ) π ( I - P " - 2 S )
0<fc=S[n/2]

•{(l-p"- ) Π



78 YOSHIYUKI KITAOKA

Proof. bP(s, Om) = (1 — P's)(l — P1'3)'1 is easy to see. Applying Corol-
lary 1 to r = n - 1, Γ = Ow we get

bp(s, O< >) = (1 - p-*){l - p - 8 ) " 1 Π {(1 - P2*"2s)(l - p"**-*')-1}
1£*S»-1

From this follows our formula.

Remark. In Corollary 1 there is a cancellation

(1 + p'-)(l - P2'"2')"1 = (1 - P 1 -)- 1 (7 = r) if r ̂  [n/2] + 1.

In the rest of this paper we will show that bp(s, T) is a polynomial
in p~s for regular half-integral symmetric matrices T.

Put En = {S = (stJ) € Mn(Zp) IS = 'S, sit e 2ZP (1 ̂  i £ n)} and

0 1
1 0

0 1
1 0

eE2s.

For NeEn we put

«(JV, H.; p() = {Te Mu,n(Z,Kp'))\H,[T] - Nep'E.),
B(N, H,;p') = {Te a(N, Hs; p

()l T: primitive}.

LEMMA 7. Let NeEn with \N\ΦO and Ge GLn(QP) Π Mn(Zp). If t >
ordj, I JV|, we have

(p( ),(.+.)/.-Ί.«#{2τ6 a ( N } H ; p t 3 TG-1: primitive}

Proo/. Let Te Mu>n(Zp) and suppose that £Γ,[Γ] - NepιEn and ϊ^ =
-1 is primitive. Then HS[T] =N + p'C holds for some C e En and HS[T]

= Nmoάp1. Hence \HaTa\\G\* = |iV|modp' holds and 2ordp |G| ̂  ordp|iV|
< t follows from ordp|iV| < t. Denote by Cu , Ca the representatives
of the set {pιC[G-1]]CeEn}modp'En, then we have HXT,] = NIG'1] +
p'ClG-1] = NIG-1] + Ck modpΈn. Conversely suppose that Tx e M2s,B(Zp)
and Tt is primitive and Hs[Tt] = iV[G-'] + C t modp'£Jn, then we have
Hs[TtG\ ΞΞ iVmodp'ίJ,,. Therefore we get

MTeM2s<n(ZP)modp<Mu,π(ZP)G\Hs[T] - Nep'En, TG-': primitive}
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Since Ck is in pEn, by virtue of 2.2 in [2] we have

] + Ck, Hs;p')

+ Ck,Hs;p)

Let p α i , ,pan be elementary divisors of G, then from the definition of

a follows immediately

a = %[{p'(ctip-«-*>)\(ciί)eEtι}modP

tEn\
__ /pθrdp\G\\n + l

Thus we have

TG'1: primitive}

As a corollary we get

LEMMA 8. Let NeEn with \N\ Φ 0 αncί ί > ordp \N\. Then we have

(p'yv' + M-^aW H9; p')

where G runs over GLn(Zp)\{GLn(Qp)f)Mn(Zp)}.

Proof. Let Tea(N, Hs; pι) and suppose that TG1 is primitive forf ( , s; p) pp p

G e GLn(Qp) Π Mn(Zp). For any matrix Tx = 7τmodp ί J^G"1 is also primitive

since 2 o r d p | G | < ί as in the proof of the previous lemma. If TGϊ1,

TGϊ1 are primitive for Gt e GLn(Qp) Π Mn(Zp), then Gfiς1 eGLn(Zp) since

TG^iGfiς1) = TGϊ1. Now Lemma 7 completes the proof of Lemma 8.

Let H = Zl(p)[e, f] be a quadratic space over Z/(p) such that q(e) =

<?(/) - 0, 6(e, /) - l(g(x + y) - g(x) - qO) - 6(x, y)), and Hs = A_SH. For

a quadratic space N over Z/(p) we put

B(N, Hs) = #{isometries form N to Hs}.

If NeEn, then

q(xl9

makes a quadratic space N' over Z/(p) corresponding to N and §B(N, Hs p)

Γ7, Hs) holds.
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LEMMA 9. Let N be a quadratic space over Z/(p) and dim N = n. Let

N' = Nx _i_ iV2 where N2 is a maximal totally singular subspace, that is, N2

has a maximal dimension among the subspaces in N such that q(N2) = 0.

Put dim Nt = d and ε = 1 if Nλ is isometric to Hk for some k or d — 0,

otherwise ε = — 1. Then for a sufficiently large s we have

ί(l - p - ) ( l + ep»-"2") Π (1 -P2ί~2s) 2\d,
J l^i£n-d/2-l

1(1-P-) Π (l-PM- ί f)
l ^ i ^ ( d l)/2

Proof. Let p be an odd prime. This follows from the proof of Lemma

1 in [2], For a sufficiently large s there is an isometry u from iVinto Hs.

Let M be the orthogonal complement of u(Nt) in Hs. By the theorem of

Witt the isometry class of M is independent of the choice of u. Then

we have

B(N, H.) = B(iV,, HS)B(N2, M),

where B(N2, M) is the number of isometries from N2 into M. Then it is

known ([8], [2]).

(Q. - p-Xl + e

_ J

\(l-p-s) Π

- (2s - d) (n - d) + (n - d) (w - d +

{(1 - ε p n - s - a / 2 - k ' 1 ) ( l + ep' — " * - " ) } 2\d ,
d l

From this follows our formula. Similarly we get the same formulas for

p = 2. There is nothing to change in the above proof for an odd prime p.

Let T be a half-integral symmetric matrix with \T\Φ 0. Put

bp(s, Γ ; p O = Σ K p - ^ - e W Γ ί p - ^ ) ) ) ,
i2 mod jj*

where i? runs over integral symmetric matrices modpί. Then it is known

([4]) that for a natural number s

bp(s, T;pl)= (p'Y^^'-^^iK^^modp'lp-'dH^K] + T)e2'1En}

= (pί)«(»+D/2-2» jfα(_ 2Γ? H ; pO .
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By definition bp(s, T; pι) is a polynomial in p~s. On the other hand

by virtue of Lemma 8,9 there exists a polynomial f(x, T) which depends

only on T such that bp(s, T p1) = f(p~s, T) if s, t are sufficiently large

integers. Hence we have bp(s, T; pι) = f(p~s, T) for any s e C, and bp(s, T)

= f(p-,T) as ί->oo.
Thus we have proved

THEOREM 2. Let T{n) be a half-integral symmetric matrix with \T\ Φ 0.

Then we have

bP(s} T) = (- TIG-1], s),

where G runs over GLn(Zp)\{GLn(Qp)Γ\Mn(Zp)} and a(T, s) is defined as

follows. If T is not half-integral, a(T, s) = 0. If T is half-integral, we

define a quadratic space N over Z\(p) with dim N = n by

(Xu - , x n ) = mod/?, and N = A\ _[_ N2

where N2 is a maximal totally singular subspace. Put d = dim iVj and

ε = 1 if' JVΊ is a hyperbolic space or d = 0, otherwise ε = — 1. 7%en we seί

( P)( + p ) Π ( P O
α(Γ, S) - lStSn-d/2-l

1(1-p-0 Π (1-P2ί~2s)
l^ί^n-(d + l)/2

In the above formula for bp(s, T) G runs over a finite set.

COROLLARY. ( i ) Let Ow be the n X n zero matrix. Then

( rp(n-r)

- Pn~s) Π

δe α half-integral symmetric matrix with \Ti\ φ 0

(ii) If p does not divide \2T^\,

bp(s, T) = (l-

X

Π

2\n-r,

2Jfn — r
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where e(Ti) = 1 if Tx corresponds to a hyperbolic space over Z\(p), and

ε(Tx) = - 1 otherwise, i.e., ε(Tx) = (((-iyn'r)/i\2T^lp) (Kronecker symbol).

(iii) If n — r is odd, then

bp(s, T) = (polynomial in p~s)(l ~P~s)i Π (1 - p 2 j " 2 s )

X JJ (l-p*-2*)-1.

(iv) If n — r is even, then

bp(s, T) = (polynomial in p~s) X (1 — 5?p ( n + r ) / 2- s)~1(l — p~s)

X Π (1-p 2 '- 2 ' ) Π (l-p*-28)-1,

where η is defined as follows:

If there is an integral matrix G{n~r) such that Tλ[G~x] is half-integral

and ^ΓjtG""1]! is not divided by p, then

η = είΓJG-1]) (in (ii)) .

(η is uniquely determined by Γj).

Otherwise η = 0 .

Especially η = 0 if ordp ^ΓJ is odd.

Proof, (i) is already proved, (ii) follows from Corollary 1 and

Theorem 2. Let Tin~r) be a half-integral matrix with \T2\ Φ 0. lϊ n - r

is odd or p||2!Γ2|, then a(T2, s) is divided by

( 1 - P - ) Π (1-P 2 ί- 2 S)

(iii) and (iv) for η = 0 follow from this and Corollary 1 and Theorem 2.

Suppose that there is an integral matrix G{n'r) such that T^G'1] is half-

integral and I2ΓJG-1]! is not divided by p. Then

1 ] , s) = (1 - p-)(l + KΓJG-Dp^-)/2-) Π (1 - P2ί~2s).
l / l

The coset Gn_r(Zv)G is not necessarily unique, but ε(ϊ7

1[G~1]) depends only

on Γj. Taking these terms into account, we complete the proof of the

case η Φ 0.

Remark 1. Let n = 2k be an even integer and Γ(7Z) a half-integral

symmetric regular matrix. Let L = Zp[β1? , e j be a free module over
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and define a bilinear form B{eu e7) on it by (B(et, e3)) = 2Ϊ7. Then there

an integral matrix G such that T[G-1] is half-integral and p\\2T[G-']\

ind only if there is a unimodular lattice M such that M z> L and the

:m of M is 2ZP. A corresponding matrix to M is diag [1, -- ,1, δ]

HGΰ Q]
or if p = 2 .

t |2T| — pa-u (pJ(u). Then there is an integral matrix G such that

G-1] is half-integral and p/|i2ϊτ[G-1]| if and only if the following condi-

ns hold:

( i ) a is even,

(ii) if p Φ 2, then the Hasse invariant is 1,

(iii) if p = 2, then ( - l ) f c i ί Ξ l m o d 4 and the Hasse invariant is

( - l)*'*^/* if ( - ΐ)ku = 1 mod 8, ( - l)*^ 1)/ 2* 1 if (_ iγu = 5 mod 8.

ire the Hasse invariant S is defined as follows: Taking a regular matrix

such that 2T[H] = diag [du , dn], we put

S= U (du Π d,),

iere (,) is the Hubert symbol of degree 2 on Qp

x. S is uniquely deter-

ned by T.

Remark 2. Let K be a finite extension field over the p-adic rational

imber field Qp) O the maximal order of K and (β) the different of K over

, {δeK). For xeK we denote by |x|^ the normalized valuation of x.

>r a prime element TΓ of X" we have ITΓ^1 = #(O/(ττ)). Let i? be a sym-

atric matrix in Mn(K). Then i? is decomposed as R — C~ιD such that

^ fyeSpn(O) and we put v(R) = | d e t C | ^ . This is well-defined. For

a Qp we put e(x) = exp (2πί (the fractional part of x)). Let T be a half-

tegral matrix, that is, 2TeMn(0), T=ιT and all diagonal entries of T

•e in O. Then we put

b(s, T) = Σ v(RYse{txκ/Qv

here R runs over {R e Mn(K)\R = *i?} mod O. Then all theorems and
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corollaries hold for b(s, T) instead of bp(s, T) with the following minor

changes:

( i ) p should be Iπl^1.

(ii) In Theorem 2 G runs over GLn(O)\{GLn(K)ΠMn(O)} andp o r d* I G 1

should be jdetG^ 1 and a quadratic form q should be defined over O/(π)

(also in Corollary).

Conjecture 6.3 for λ = 0, Case SP in [7] where the denominator can

be solved therein does not necessarily refer to the reduced denominator.

Remark 3. Let T be a half-integral symmetric binary regular matrix.

Denote by t* the discriminant of Q(V — | T\) and let a be the integer such

that p2a\\\2T\lt*. Then from the explicit formula of bp(s, T) ([1], [3]) fol-

lows that bp(s,pT) — p2~sbp(s, T) does not depend on T itself but only on
a , (t*lp) (Kronecker symbol). A weaker assertion holds for the function

a, (Case SP) defined in [7] from [3].
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