Y. Kitaoka Nagoya Math. J. Vol. 95 (1984), 73-84

DIRICHLET SERIES IN THE THEORY OF SIEGEL MODULAR FORMS

YOSHIYUKI KITAOKA

We are concerned with Dirichlet series which appear in the Fourier expansion of the non-analytic Eisenstein series on the Siegel upper half space H_m of degree m. In the case of m = 2 Kaufhold [1] evaluated them. Here we treat the general cases by a different method.

For a rational matrix R we denote the product of denominators of elementary divisiors of R by $\nu(R)$. For a half-integral symmetric matrix $T^{(n)}$ we put

$$b(s, T) = \sum \nu(R)^{-s} e(\sigma(TR)),$$

where R runs over $n \times n$ rational symmetric matrices modulo 1 and σ means the trace, and e(z) is $\exp(2\pi i z)$. If $\operatorname{Re} s > n + 1$, then b(s, T) is absolutely convergent. For a rational symmetric matrix R there is a unique decomposition $R \equiv \sum R_p \mod 1$ where R_p is a rational symmetric matrix such that $\nu(R_p)$ is a power of prime p. Therefore we have a decomposition

$$egin{aligned} b(s,\,T) &= \prod \, b_{\,p}(s,\,T) \,, \ b_{\,p}(s,\,T) &= \sum \,
u(R)^{-s} \, e(\sigma(TR)) \,. \end{aligned}$$

where R runs over rational symmetric matrices modulo 1 such that $\nu(R)$ is a power of prime p. Our aim is to give $b_p(s, T)$ in a form easy to see. Shimura [7] also treats $b_p(s, T)$ in a more general situation. $b_p(s, T)$ here is a special case α_0 , Case SP in [7]. His results about α_0 are weaker than ours.

Generalized confluent hypergeometric functions in the Fourier expansion of the non-analytic Eisenstein series are investigated by Shimura [6].

The author would like to thank Professor G. Shimura who read the

Received April 22, 1983.

first version of this paper and offered suggestions.

THEOREM 1. Let $T_1^{(n-1)}$ be a half-integral symmetric matrix and $T^{(n)} = \begin{pmatrix} T_1 & 0 \\ 0 & 0 \end{pmatrix}$. Then we have

$$b_p(s, T) = (1 - p^{-s})(1 + p^{1-s})(1 - p^{n+1-2s})^{-1}b_p(s - 1, T_1)$$

We prepare some lemmas to prove this theorem. Put $C(k; p) = \{C \in M_k(Z) | |C| \text{ is a power of } p\}$ and

$$arLambda_{k}=\{S\,{\in}\,M_{k}(Z)|^{t}S=S\}\,.$$

The following lemma is known ([1], [5]).

LEMMA 1. $b_p(s, T) = \sum |C|^{-s} e(\sigma(TC^{-1}D))$,

where C, D run over $SL_n(Z)\setminus C(n; p)$, $\{D \in M_n(Z) | C^{-1}D = {}^{\iota}(C^{-1}D) \text{ and } (C, D)$ is primitive} mod $C\Lambda_n$ respectively.

$$\prod_{k=0}^{n-1} (1-p^{k-s})^{-1} b_p(s,T) = \sum |C|^{-s} e(\sigma(TC^{-1}D))$$

where C, D run over $SL_n(Z)\setminus C(n;p)$, $\{D \in M_n(Z) | C^{-1}D = {}^t(C^{-1}D)\} \mod C\Lambda_n$ respectively.

The next lemma is easy.

LEMMA 2. As representatives of $SL_n(Z) \setminus C(n; p)$ we can choose

$$C=egin{pmatrix} C_1^{(n-1)}&0\ C_3&C_4 \end{pmatrix}$$
 ,

where C_1 , C_4 and C_3 run oner $SL_{n-1}(Z)\setminus C(n-1;p)$, C(1;p) and $M_{1,n-1}(Z) \mod M_{1,n-1}(Z)C_1$ respectively.

LEMMA 3. For $C = \begin{pmatrix} C_1^{(n-1)} & 0 \\ C_3 & C_4 \end{pmatrix} \in C(n;p)$ we can choose as representatives of $\{D \in M_n(Z) | C^{-1}D = {}^t(C^{-1}D)\} \mod C\Lambda_n$

$$D=egin{pmatrix} D_1^{(n-1)}&D_2\D_3&D_4 \end{pmatrix}$$
 ,

where D_1 , D_2 and D_4 run over $\{D_1 \in M_{n-1}(Z) | C_1^{-1}D_1 = {}^t(C_1^{-1}D_1)\} \mod C_1A_{n-1}, \{D_2 \in M_{n-1,1}(Z) | C_4{}^tD_2 + C_3{}^tD_1 \in M_{1,n-1}(Z){}^tC_1\} \mod C_1M_{n-1,1}(Z) \text{ and } Z \mod C_4 \text{ respectively and then } D_3 = (C_4{}^tD_2 + C_3{}^tD_1){}^tC_1^{-1}.$

Proof. Since
$$C^{-1} = \begin{pmatrix} C_1^{-1} & 0 \\ - & C_4^{-1}C_3C_1^{-1} & C_4^{-1} \end{pmatrix}$$
, we have
 $C^{-1}D = \begin{pmatrix} C_1^{-1}D_1 & C_1^{-1}D_2 \\ - & C_4^{-1}(C_3C_1^{-1}D_1 - D_3) & - & C_4^{-1}(C_3C_1^{-1}D_2 - D_4) \end{pmatrix}$.

Since $C^{-1}D$ is symmetric, $C_1^{-1}D_1$ is symmetric and $D_3 = (C_4^{\ t}D_2 + C_3^{\ t}D_1)^t C_1^{-1}$. For an integral symmetric matrix $S = \begin{pmatrix} S_1^{(n-1)} & S_2 \\ {}^tS_2 & S_2 \end{pmatrix}$,

$$CS = egin{pmatrix} C_1 S_1 & C_1 S_2 \ C_3 S_1 + \ C_4{}^t S_2 & C_3 S_2 + \ C_4 S_4 \end{pmatrix} \ \ ext{holds} \ .$$

From these follows easily our lemma.

The next lemma is an immediate corollary.

LEMMA 4. Let $C_1 \in C(n-1; p)$, $D_1 \in M_{n-1}(Z)$ and $C_4 \in C(1; p)$. Denote by $x(C_1, D_1, C_4)$ the number of elements of the set

$$\{D_2 \in M_{n-1,1}(Z) \bmod C_1 M_{n-1,1}(Z), \ C_3 \in M_{1,n-1}(Z) \mod M_{1,n-1}(Z) C_1 \ such that \ C_4{}^t D_2 + C_3{}^t D_1 \in M_{1,n-1}(Z){}^t C_1\}.$$

Then the number of $C = \begin{pmatrix} C_1 & 0 \\ C_3 & C_4 \end{pmatrix}$, $D = \begin{pmatrix} D_1 & D_2 \\ D_3 & D_4 \end{pmatrix}$ where C_3 , D run over $M_{1,n-1}(Z) \mod M_{1,n-1}(Z)C_1$, $\{D \in M_n(Z) \mod CA_n | C^{-1}D = {}^t(C^{-1}D)\}$ respectively is $C_4x(C_1, D_1, C_4)$.

LEMMA 5. Let R be a rational symmetric matrix and $C_i^{-1}D_i = R$ for C_i , $D_i \in M_n(Z)$ (i = 1, 2). If (C_1, D_1) is primitive then $(C_2, D_2) = W(C_1, D_1)$ for some $W \in M_n(Z)$.

Proof. This is well known [5]).

LEMMA 6. Let $W \in C(n-1; p)$, $C_4 \in C(1; p)$, $C_1 \in C(n-1; p)$ and $D_1 \in M_{n-1}(Z)$ such that $C_1^{-1}D_1$ is symmetric and (C_1, D_1) is primitive. Then we have

$$x(WC_1, WD_1, C_4) = |WC_1| \prod_{i=1}^{n-1} (C_i, w_i),$$

where $\{w_i\}$ is the set of elementary divisors of W.

Proof. Let $A_1, B_1 \in M_{n-1}(Z)$ such that $\begin{pmatrix} A_1 & B_1 \\ C_1 & D_1 \end{pmatrix} \in Sp_{n-1}(Z)$. Suppose $z^t D_1 = w^t C_1$ for $z, w \in M_{1, n-1}(Z)$; then $z = z({}^t D_1 A_1 - {}^t B_1 C_1) = w^t C_1 A_1 - {}^t C_1 A_1 - {}^t B_1 C_1$.

 $z^{t}B_{1}C_{1} = (w^{t}A_{1} - z^{t}B_{1})C_{1} \in M_{1, n-1}(Z)C_{1}$. Conversely, suppose $z = xC_{1}$ for $z, x \in M_{1, n-1}(Z)$; then $z^{t}D_{1} = xC_{1}^{t}D_{1} = xD_{1}^{t}C_{1} \in M_{1, n-1}(Z)^{t}C_{1}$. Thus we have proved that for $z \in M_{1, n-1}(Z)$

$$z^t D_1 \in M_{1, n-1}(Z)^t C_1$$
 iff $z \in M_{1, n-1}(Z) C_1$.

Next we show that for $D_2 \in M_{n-1,1}(Z)$ there exists $C_3 \in M_{1,n-1}(Z)$ such that $C_4{}^t D_2 + C_3{}^t (WD_1) \in M_{1,n-1}(Z){}^t (WC_1)$ iff $C_4{}^t D_2{}^t W^{-1} \in M_{1,n-1}(Z)$. The "only if" part is trivial. Suppose $C_4{}^t D_2{}^t W^{-1} = y \in M_{1,n-1}(Z)$; then $y - yA_1{}^t D_1 = -yB_1{}^t C_1$ implies $C_4{}^t D_2 + (-yA){}^t (WD_1) = -yB_1{}^t (WC_1) \in M_{1,n-1}(Z){}^t (WC_1)$. Hence we can take $-yA_1$ as C_3 .

Lastly suppose that $D_2 \in M_{n-1,1}(Z)$, $C_{3,i} \in M_{1,n-1}(Z)$ satisfy

$$C_{4}{}^{t}D_{2} + C_{3,i}{}^{t}(WD_{1}) \in M_{1,n-1}(Z)^{t}(WC_{1}) \qquad (i = 1, 2),$$

then $(C_{3,1} - C_{3,2})^t D_1 \in M_{1,n-1}(Z)^t C_1$ and then $C_{3,1} - C_{3,2} \in M_{1,n-1}(Z) C_1$. Therefore

$$x(WC_1, WD_1, C_4) = |W| \sharp \{D_2 \in M_{n-1,1}(Z) \mod WC_1M_{n-1,1}(Z) | C_4^{t}D_2^{t}W^{-1} \in M_{1,n-1}(Z) \}.$$

Let $W = UW_0V$ where

$$U, V \in GL_n(Z), \quad W_0 = \begin{bmatrix} w_1 & & \\ & \ddots & \\ & & w_{n-1} \end{bmatrix}$$
 and put ${}^tD_2{}^tU^{-1} = (y_1, \cdots, y_{n-1}).$

 ${}^{\scriptscriptstyle t}D_{\scriptscriptstyle 2}{}^{\scriptscriptstyle t}W^{\scriptscriptstyle -1}=(\cdots,y_{\scriptscriptstyle i}/w_{\scriptscriptstyle i},\,\cdots){}^{\scriptscriptstyle t}V^{\scriptscriptstyle -1}$ implies

$$\begin{split} x(WC_1, WD_1, C_4) \\ &= |W| \sharp \{(y_1, \cdots, y_{n-1}) \in M_{1, n-1}(Z) \mod M_{1, n-1}(Z)^t C_1^{-t} VW_0 | C_4 y_i \equiv 0 \mod w_i \} \\ &= |W| [M_{1, n-1}(Z) \colon M_{1, n-1}(Z)^t C_1^{-t} VW_0] / \\ & [M_{1, n-1}(Z) \colon \{(y_1, \cdots, y_{n-1}) \in M_{1, n-1}(Z) | y_i \equiv 0 \mod w_i / (C_4, w_i) \}] \\ &= |C_1 W| \prod (C_4, w_i) \,. \end{split}$$

Proof of Theorem 1. From above lemmas follows that

$$egin{aligned} &\prod_{k=0}^{n-1}{(1-p^{k-s})^{-1}b_{\,p}(s,\,T)}\ &=\sum{|C_1|^{-s}C_4^{1-s}e(\sigma(T_1C_1^{-1}D_1))x(C_1,\,D_1,\,C_4)}\,, \end{aligned}$$

where C_1, D_1, C_4 run over $SL_{n-1}(Z) \setminus C(n-1; p)$, $\{D_1 \in M_{n-1}(Z) \mod C_1 \Lambda_{n-1} | C_1^{-1}D_1 = {}^t(C_1^{-1}D_1)\}$ and C(1; p) respectively

$$= \sum |WC_1|^{-s} C_4^{1-s} e(\sigma(T_1 C_1^{-1} D_1)) x(WC_1, WD_1, C_4),$$

where C_1 , D_1 , C_4 run over the same set as above with an additional condition that (C_1, D_1) is primitive, and W runs over $SL_{n-1}(Z) \setminus C(n-1; p)$

$$= \sum |C_1|^{1-s} e(\sigma(T_1 C_1^{-1} D_1)) \cdot \sum |W|^{1-s} C_4^{1-s} \prod (C_4, w_i),$$

where C_1 , D_1 , C_4 , W run over the above set and $\{w_i\}$ is the set of elementary divisors of W.

Thus we have proved that $b_p(s, T)b_p(s-1, T_1)^{-1}$ is independent of T_1 . Hence by the formula of $b_p(s, 0)$ ([7]) or evaluating $b_p(s, T)$, $b_p(s, T_1)$ for

$$T_{1}=rac{1}{2}egin{pmatrix} 0&1&&&\ 1&0&&\ &&\cdot&&\ &&0&1\ &&1&0\ \end{pmatrix} \quad ext{ or } rac{1}{2}egin{pmatrix} 0&1&&\ 1&0&&\ &&\cdot&&\ &&0&1\ &&1&0\ &&&1&0\ \end{pmatrix}$$

similarly to the proof of the next theorem we have $b_p(s, T)b_p(s - 1, T_1)^{-1} = (1 - p^{-s})(1 + p^{1-s})(1 - p^{n+1-2s})^{-1}$.

COROLLARY 1. Let $T^{(n)} = \begin{pmatrix} T_1^{(n-r)} & 0 \\ 0 & 0 \end{pmatrix}$ $(1 \le r < n)$ be a half-integral symmetric matrix. Then we have

$$egin{aligned} b_{p}(s,\,T) &= (1-p^{-s})(1+p^{r-s}) \prod\limits_{0 < i \le \min{(r-1, \lceil n/2
ceil)}} (1-p^{2i-2s}) \ & imes \prod\limits_{\max{(r, \lceil n/2
ceil+1) \le j \le \lceil (n+r)/2
ceil}} (1-p^{2j-2s})^{-1} \ & imes \prod\limits_{n+1 \le k \le n+r} (1-p^{k-2s})^{-1} b_{p}(s-r,\,T_{1}) ext{,} \end{aligned}$$

where [] means the Gauss' symbol.

Proof. By induction it is easy to see

$$egin{aligned} b_{p}(s,\,T) &= (1-p^{-s})(1+p^{r-s}) \prod\limits_{0 < i < r} (1-p^{2i-2s}) \ &\cdot \prod\limits_{n+1 \leq j \leq n+r} (1-p^{j-2s})^{-1} b_{p}(s-r,\,T_{1}) \,. \end{aligned}$$

From this follows our formula.

COROLLARY 2. Let $O^{(n)}$ be the $n \times n$ zero matrix. Then we have

$$egin{aligned} &b_{p}(s, O^{(n)}) = (1-p^{-s}) \prod\limits_{\substack{0 < k \leq \lfloor n/2
floor} \ 1 < p^{2k-2s})} & (1-p^{2k-2s}) \ &\cdot \{ (1-p^{n-s}) \prod\limits_{\substack{n+1 \leq j < 2n \ 2lj}} (1-p^{j-2s}) \}^{-1} \end{aligned}$$

YOSHIYUKI KITAOKA

Proof. $b_p(s, O^{(1)}) = (1 - p^{-s})(1 - p^{1-s})^{-1}$ is easy to see. Applying Corollary 1 to r = n - 1, $T = O^{(n)}$ we get

$$b_p(s, O^{(n)}) = (1 - p^{-s})(1 - p^{n-s})^{-1} \prod_{1 \le k \le n-1} \{(1 - p^{2k-2s})(1 - p^{n+k-2s})^{-1}\}.$$

From this follows our formula.

Remark. In Corollary 1 there is a cancellation

$$(1+p^{r-s})(1-p^{2j-2s})^{-1}=(1-p^{r-s})^{-1}$$
 $(j=r)$ if $r\geq [n/2]+1$.

In the rest of this paper we will show that $b_p(s, T)$ is a polynomial in p^{-s} for regular half-integral symmetric matrices T.

$$\begin{array}{l} \text{Put} \,\, E_n = \{S = (s_{ij}) \in M_n(\boldsymbol{Z}_p) \,|\, S = \,{}^tS, \,\, s_{ii} \in 2\boldsymbol{Z}_p \,\, (1 \leq i \leq n) \} \,\, \text{and} \\ \\ H_s = \begin{pmatrix} 0 \,\, 1 \\ 1 \,\, 0 \\ & \ddots \\ & 0 \,\, 1 \\ & 1 \,\, 0 \end{pmatrix} \in E_{2s} \,. \end{array}$$

For $N \in E_n$ we put

$$lpha(N,\,H_s;\,p^\iota) = \{T \in M_{2s,\,n}({old Z}_p/(p^\iota)) \,|\, H_s[T] - N \in p^\iota E_n\}\,, \ B(N,\,H_s;\,p^\iota) = \{T \in lpha(N,\,H_s;\,p^\iota) \,|\, T\colon\, ext{primitive}\}\,.$$

LEMMA 7. Let $N \in E_n$ with $|N| \neq 0$ and $G \in GL_n(Q_p) \cap M_n(Z_p)$. If t >ord $_p |N|$, we have

$$\begin{array}{l} (p^{\iota})^{n(n+1)/2-2sn} \#\{T \in \alpha(N, H_s; p^{\iota}) \mid M_{2s,n}(Z_p) \ni TG^{-1}: \ primitive\} \\ = (p^{\operatorname{ord}_p \mid G\mid})^{n-2s+1} p^{n(n+1)/2-2sn} \#B(N[G^{-1}], H_s; p) \,. \end{array}$$

Proof. Let $T \in M_{2s,n}(Z_p)$ and suppose that $H_s[T] - N \in p^t E_n$ and $T_1 = TG^{-1}$ is primitive. Then $H_s[T] = N + p^t C$ holds for some $C \in E_n$ and $H_s[T] \equiv N \mod p^t$. Hence $|H_s[T_1]||G|^2 \equiv |N| \mod p^t$ holds and $2 \operatorname{ord}_p |G| \leq \operatorname{ord}_p |N| < t$ follows from $\operatorname{ord}_p |N| < t$. Denote by C_1, \dots, C_a the representatives of the set $\{p^t \overline{C}[G^{-1}] | \overline{C} \in E_n\} \mod p^t E_n$, then we have $H_s[T_1] = N[G^{-1}] + p^t C[G^{-1}] \equiv N[G^{-1}] + C_k \mod p^t E_n$. Conversely suppose that $T_1 \in M_{2s,n}(Z_p)$ and T_1 is primitive and $H_s[T_1] \equiv N[G^{-1}] + C_k \mod p^t E_n$, then we have $H_s[T_1G] \equiv N \mod p^t E_n$.

$$rac{1}{2} \{T \in M_{2s, n}(Z_p) ext{ mod } p^t M_{2s, n}(Z_p)G | H_s[T] - N \in p^t E_n, \ TG^{-1} \colon ext{ primitive} \}$$

 $= \sum_{k=1}^{a} \#B(N[G^{-1}] + C_k, H_s; p^t).$

78

Since C_k is in pE_n , by virtue of 2.2 in [2] we have

$$(p^t)^{n(n+1)/2-2sn} \# B(N[G^{-1}] + C_k, H_s; p^t) \ = p^{n(n+1)/2-2sn} \# B(N[G^{-1}] + C_k, H_s; p) \ = p^{n(n+1)/2-2sn} \# B(N[G^{-1}], H_s; p) \ .$$

Let p^{a_1}, \dots, p^{a_n} be elementary divisors of G, then from the definition of a follows immediately

$$a = \#[\{p^t(c_{ij}p^{-a_i-a_j}) | (c_{ij}) \in E_n\} \mod p^t E_n]$$

= $(p^{\operatorname{ord}_p|G|})^{n+1}$.

Thus we have

$$(p^{\operatorname{ord}_p|G|})^{2s} # \{ T \in \alpha(N, H_s; p^t) \mid M_{2s, n}(Z_p) \ni TG^{-1} \colon \operatorname{primitive} \}$$

= $(p^{\operatorname{ord}_p|G|})^{n+1} (p^{-t})^{n(n+1)/2-2sn} p^{n(n+1)/2-2sn} # B(N[G^{-1}], H_s; p) .$

As a corollary we get

LEMMA 8. Let $N \in E_n$ with $|N| \neq 0$ and $t > \operatorname{ord}_p |N|$. Then we have $(p^t)^{n(n+1)/2-2sn} \sharp \alpha(N, H_s; p^t)$ = $\sum (p^{\operatorname{ord}_p|G|})^{n+1-2s} p^{n(n+1)/2-2sn} \sharp B(N[G^{-1}], H_s; p)$

where G runs over $GL_n(\mathbf{Z}_p) \setminus \{GL_n(\mathbf{Q}_p) \cap M_n(\mathbf{Z}_p)\}.$

Proof. Let $T \in \alpha(N, H_s; p^i)$ and suppose that TG^{-1} is primitive for $G \in GL_n(\mathbf{Q}_p) \cap M_n(\mathbf{Z}_p)$. For any matrix $T_1 \equiv T \mod p^i \ T_1G^{-1}$ is also primitive since $2 \operatorname{ord}_p |G| < t$ as in the proof of the previous lemma. If TG_1^{-1} , TG_2^{-1} are primitive for $G_i \in GL_n(\mathbf{Q}_p) \cap M_n(\mathbf{Z}_p)$, then $G_1G_2^{-1} \in GL_n(\mathbf{Z}_p)$ since $TG_1^{-1}(G_1G_2^{-1}) = TG_2^{-1}$. Now Lemma 7 completes the proof of Lemma 8.

Let H = Z/(p)[e, f] be a quadratic space over Z/(p) such that q(e) = q(f) = 0, b(e, f) = 1(q(x + y) - q(x) - q(y) = b(x, y)), and $\overline{H}_s = \perp_s H$. For a quadratic space N over Z/(p) we put

 $B(N, \overline{H}_s) = \# \{ \text{isometries form } N \text{ to } \overline{H}_s \}.$

If $N \in E_n$, then

$$q(x_1, \cdots, x_n) = rac{1}{2} N \left[egin{array}{c} x_1 \ dots \ x_n \end{array}
ight]$$

makes a quadratic space N' over Z/(p) corresponding to N and $\#B(N, H_s; p) = B(N', \overline{H}_s)$ holds.

YOSHIYUKI KITAOKA

LEMMA 9. Let N be a quadratic space over Z/(p) and dim N = n. Let $N = N_1 \perp N_2$ where N_2 is a maximal totally singular subspace, that is, N_2 has a maximal dimension among the subspaces in N such that $q(N_2) = 0$. Put dim $N_1 = d$ and $\varepsilon = 1$ if N_1 is isometric to \overline{H}_k for some k or d = 0, otherwise $\varepsilon = -1$. Then for a sufficiently large s we have

$$p^{n(n+1)/2-2s\,n}B(N,ar{H}_s) = egin{cases} (1-p^{-s})(1+arepsilon p^{n-d/2-s}) \prod \limits_{1\leq i\leq n-d/2-1}(1-p^{2i-2s}) & 2ert d\,, \ (1-p^{-s}) \prod \limits_{1\leq i\leq n-(d+1)/2}(1-p^{2i-2s}) & 2ert d\,. \end{cases}$$

Proof. Let p be an odd prime. This follows from the proof of Lemma 1 in [2]. For a sufficiently large s there is an isometry u from N into \overline{H}_s . Let M be the orthogonal complement of $u(N_i)$ in \overline{H}_s . By the theorem of Witt the isometry class of M is independent of the choice of u. Then we have

$$B(N, \overline{H}_s) = B(N_1, \overline{H}_s)B(N_2, M)$$

where $B(N_2, M)$ is the number of isometries from N_2 into M. Then it is known ([8], [2]).

$$egin{aligned} p^{d\,(d+1)/2-2s\,d} B(N_{1},\,ar{H}_{s}) &= egin{cases} & (1-p^{-s})(1+arepsilon p^{d/2-s}) \prod\limits_{1\leq k\leq d/2-1}(1-p^{2k-2s}) & 2ert d>0\,, \ & (1-p^{-s})\prod\limits_{1\leq k\leq (d-1)/2}(1-p^{2k-2s}) & 2ert d\,, \ & p^{-(2s-d)\,(n-d)\,+\,(n-d)\,(n-d+1)/2}B(N_{2},\,M) & \ & = egin{cases} & \prod\limits_{0\leq k\leq n-d-1}\{(1-arepsilon p^{n-s-d/2-k-1})(1+arepsilon p^{n-s-d/2-k})\} & 2ert d\,, \ & \prod\limits_{0\leq k\leq n-d-1}\{(1-p^{2n-2s-d-1-2k}) & 2ert d\,. \end{aligned}$$

From this follows our formula. Similarly we get the same formulas for p = 2. There is nothing to change in the above proof for an odd prime p. Let T be a half-integral symmetric matrix with $|T| \neq 0$. Put

$$b_{p}(s, T; p^{t}) = \sum_{R \mod p^{t}} \nu(p^{-t}R)^{-s} e(\sigma(T(p^{-t}R))),$$

where R runs over integral symmetric matrices mod p^t . Then it is known ([4]) that for a natural number s

$$egin{aligned} &b_p(s,\,T;\,p^t) = (p^t)^{n\,(n\,+\,1)/2\,-\,2n\,s} \#\{K^{(n,\,2s)} \ \mathrm{mod} \ p^t \,|\, p^{-t}(rac{1}{2}H_s[^tK]\,+\,T) \in 2^{-1}E_n\} \ &= (p^t)^{n\,(n\,+\,1)/2\,-\,2n\,s} \#lpha(-\,2T,\,H^s;\,p^t) \,. \end{aligned}$$

By definition $b_p(s, T; p^t)$ is a polynomial in p^{-s} . On the other hand by virtue of Lemma 8,9 there exists a polynomial f(x, T) which depends only on T such that $b_p(s, T; p^t) = f(p^{-s}, T)$ if s, t are sufficiently large integers. Hence we have $b_p(s, T; p^t) = f(p^{-s}, T)$ for any $s \in C$, and $b_p(s, T)$ $= f(p^{-s}, T)$ as $t \to \infty$.

Thus we have proved

THEOREM 2. Let $T^{(n)}$ be a half-integral symmetric matrix with $|T| \neq 0$. Then we have

$$b_{p}(s,\,T)=\sum\limits_{G}\,(p^{{
m ord}_{p}|G|})^{n+1-2s}a(-\,T[G^{-1}],\,s)$$
 ,

where G runs over $GL_n(\mathbb{Z}_p) \setminus \{GL_n(\mathbb{Q}_p) \cap M_n(\mathbb{Z}_p)\}$ and a(T, s) is defined as follows. If T is not half-integral, a(T, s) = 0. If T is half-integral, we define a quadratic space N over $\mathbb{Z}/(p)$ with dim N = n by

$$q(x_1,\,\cdots,\,x_n)=\,T\!\left[egin{array}{c} x_1\dots\ x_n\ dots\ x_n\end{array}
ight] \mathrm{mod}\,p, \hspace{0.3cm} and \hspace{0.3cm} N=N_1\perp N_2$$

where N_2 is a maximal totally singular subspace. Put $d = \dim N_1$ and $\varepsilon = 1$ if N_1 is a hyperbolic space or d = 0, otherwise $\varepsilon = -1$. Then we set

$$a(T,s) = egin{cases} (1-p^{-s})(1+arepsilon p^{n-d/2-s}) \prod\limits_{1 \leq i \leq n-d/2-1} (1-p^{2i-2s}) & 2 \, | \, d \, , \ (1-p^{-s}) \prod\limits_{1 \leq i \leq n-(d+1)/2} (1-p^{2i-2s}) & 2
eq d \, . \end{cases}$$

In the above formula for $b_p(s, T)$ G runs over a finite set.

COROLLARY. (i) Let $O^{(n)}$ be the $n \times n$ zero matrix. Then

$${b}_{p}(s,\,O^{(n)})=(1-p^{-s}){\displaystyle\prod_{0< k\leq \left \lfloor n/2
ight \rfloor}}(1-p^{2\,k\,-2\,s})\{(1-p^{n-s}){\displaystyle\prod_{n+1\leq j< 2n}}(1-p^{j-2s})\}^{-1}$$

Let $T^{(n)} = \begin{pmatrix} T_1^{(n-r)} & 0 \\ 0 & 0 \end{pmatrix}$ be a half-integral symmetric matrix with $|T_1| \neq 0$ $(0 \leq r < n)$.

(ii) If p does not divide $|2T_1|$, then

$$egin{aligned} b_p(s,\,T) &= (1-p^{-s}) \prod\limits_{1 \leq j \leq \lfloor n/2
floor} (1-p^{2j-2s}) \prod\limits_{n+1 \leq k \leq n+r} (1-p^{k-2s})^{-1} \ & imes egin{cases} & \left\{ (1-arepsilon(T_1)p^{(n+r)/2-s})^{-1} & 2 ig| n-r \ & 1 \ & 2
otin n-r \ \end{array}
ight\}
onumber \ & imes iggin{aligned} & \left\{ (1-arepsilon(T_1)p^{(n+r)/2-s})^{-1} & 2 igg| n-r \ & 1 \ \end{array}
ight\} egin{aligned} & \left\{ (1-arepsilon(T_1)p^{(n+r)/2-s})^{-1} & 2 iggin{aligned} & \left\{ n-r \ & n-r \ \end{array}
ight\}
ight\}
ight\} \end{aligned}$$

where $\varepsilon(T_1) = 1$ if T_1 corresponds to a hyperbolic space over Z/(p), and $\varepsilon(T_1) = -1$ otherwise, i.e., $\varepsilon(T_1) = (((-1)^{(n-r)/2} |2T_1|)/p)$ (Kronecker symbol). (iii) If n - r is odd, then

$$egin{aligned} b_p(s,\,T) &= (polynomial\ in\ p^{-s})(1-p^{-s}) \prod\limits_{1\leq j\leq \lfloor n/2
ceil}\ (1-p^{2j-2s}) \ & imes \prod\limits_{\substack{n+1\leq k\leq n+r \ 2k} \ k} (1-p^{k-2s})^{-1}. \end{aligned}$$

(iv) If n - r is even, then

$$egin{aligned} b_p(s,\,T) &= (polynomial\,\,in\,\,p^{-s}) imes (1-\eta p^{(n+r)/2-s})^{-1}(1-p^{-s}) \ & imes \prod_{1 \leq j \leq \lfloor n/2
ceil} (1-p^{2j-2s}) \prod_{n+1 \leq k \leq n+r lpha
ceil_{2/k}} (1-p^{k-2s})^{-1}\,, \end{aligned}$$

where
$$\eta$$
 is defined as follows:

If there is an integral matrix $G^{(n-r)}$ such that $T_1[G^{-1}]$ is half-integral and $|2T_1[G^{-1}]|$ is not divided by p, then

$$\eta = \varepsilon(T_1[G^{-1}]) \qquad (in \ (ii)) \ .$$

(η is uniquely determined by T_1).

Otherwise $\eta = 0$.

Especially $\eta = 0$ if $\operatorname{ord}_p |2T_1|$ is odd.

Proof. (i) is already proved. (ii) follows from Corollary 1 and Theorem 2. Let $T_2^{(n-r)}$ be a half-integral matrix with $|T_2| \neq 0$. If n-r is odd or $p||2T_2|$, then $a(T_2, s)$ is divided by

$$(1-p^{-s})\prod_{1\le i\le \lceil (n-r)/2\rceil}(1-p^{2i-2s})$$
 .

(iii) and (iv) for $\eta = 0$ follow from this and Corollary 1 and Theorem 2. Suppose that there is an integral matrix $G^{(n-\tau)}$ such that $T_1[G^{-1}]$ is half-integral and $|2T_1[G^{-1}]|$ is not divided by p. Then

$$a(T_1[G^{-1}],s) = (1-p^{-s})(1+arepsilon(T_1[G^{-1}])p^{(n-r)/2-s}) \prod_{1 \leq i \leq (n-r)/2-1} (1-p^{2i-2s}) \,.$$

The coset $G_{n-r}(Z_p)G$ is not necessarily unique, but $\varepsilon(T_1[G^{-1}])$ depends only on T_1 . Taking these terms into account, we complete the proof of the case $\eta \neq 0$.

Remark 1. Let n = 2k be an even integer and $T^{(n)}$ a half-integral symmetric regular matrix. Let $L = Z_p[e_1, \dots, e_n]$ be a free module over

and define a bilinear form $B(e_i, e_j)$ on it by $(B(e_i, e_j)) = 2T$. Then there an integral matrix G such that $T[G^{-1}]$ is half-integral and $p \not\models |2T[G^{-1}]|$ and only if there is a unimodular lattice M such that $M \supset L$ and the rm of M is $2Z_p$. A corresponding matrix to M is diag $[1, \dots, 1, \delta]$ $\geq Z_p^{\times}$ if $p \neq 2$,

$$\begin{cases} \operatorname{diag}\left[\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\right] \\ \operatorname{or} & \text{if } p = 2 \\ \operatorname{diag}\left[\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}\right] \end{cases}$$

t $|2T| = p^{\alpha} \cdot u$ $(p \nmid u)$. Then there is an integral matrix G such that G^{-1} is half-integral and $p \nmid |2T[G^{-1}]|$ if and only if the following condins hold:

- (i) a is even,
- (ii) if $p \neq 2$, then the Hasse invariant is 1,
- (iii) if p = 2, then $(-1)^k u \equiv 1 \mod 4$ and the Hasse invariant is $(-1)^{k(k+1)/2}$ if $(-1)^k u \equiv 1 \mod 8$, $(-1)^{k(k+1)/2+1}$ if $(-1)^k u \equiv 5 \mod 8$. For the Hasse invariant S is defined as follows: Taking a regular matrix

ere the Hasse invariant S is defined as follows: Taking a regular matrix such that $2T[H] = \text{diag} [d_1, \dots, d_n]$, we put

$$S = \prod\limits_{1 \leq i \leq n} \left(d_i, \; \prod\limits_{1 \leq j \leq i} d_j
ight),$$

here (,) is the Hilbert symbol of degree 2 on Q_p^{\times} . S is uniquely deterned by T.

Remark 2. Let K be a finite extension field over the p-adic rational imber field Q_p , O the maximal order of K and (δ) the different of K over , ($\delta \in K$). For $x \in K$ we denote by $|x|_{\kappa}$ the normalized valuation of x. or a prime element π of K we have $|\pi|_{\kappa}^{-1} = \sharp(O/(\pi))$. Let R be a symetric matrix in $M_n(K)$. Then R is decomposed as $R = C^{-1}D$ such that $\sum_{i=1}^{n} m_i(C)$ and we put $\nu(R) = |\det C|_{\kappa}^{-1}$. This is well-defined. For $\approx Q_p$ we put $e(x) = \exp(2\pi i$ (the fractional part of x)). Let T be a halftegral matrix, that is, $2T \in M_n(O)$, $T = {}^{t}T$ and all diagonal entries of T re in O. Then we put

$$b(s, T) = \sum \nu(R)^{-s} e(\operatorname{tr}_{K/Q_p} (\sigma(TR)\delta^{-1})),$$

here R runs over $\{R \in M_n(K) | R = {}^tR\} \mod O$. Then all theorems and

YOSHIYUKI KITAOKA

corollaries hold for b(s, T) instead of $b_p(s, T)$ with the following minor changes:

(i) p should be $|\pi|_{K}^{-1}$.

(ii) In Theorem 2 G runs over $GL_n(O) \setminus \{GL_n(K) \cap M_n(O)\}$ and $p^{\operatorname{ord}_p |G|}$ should be $|\det G|_{K}^{-1}$ and a quadratic form q should be defined over $O/(\pi)$ (also in Corollary).

Conjecture 6.3 for $\lambda = 0$, Case SP in [7] where the denominator can be solved therein does not necessarily refer to the reduced denominator.

Remark 3. Let T be a half-integral symmetric binary regular matrix. Denote by t^* the discriminant of $Q(\sqrt{-|T|})$ and let α be the integer such that $p^{2\alpha}|||2T|/t^*$. Then from the explicit formula of $b_p(s, T)$ ([1], [3]) follows that $b_p(s, pT) - p^{2-s}b_p(s, T)$ does not depend on T itself but only on α , (t^*/p) (Kronecker symbol). A weaker assertion holds for the function α_1 (Case SP) defined in [7] from [3].

References

- G. Kaufhold, Dirichletsche Reihe mit Funktionalgleichung in der Theorie der Modulfunktion 2. Grades, Math. Ann., 137 (1959), 454-476.
- [2] Y. Kitaoka, Modular forms of degree n and representation by quadratic forms II, Nagoya Math. J., 87 (1982), 127-146.
- [3] —, A note on local densities of quadratic forms, Nagoya Math. J., 92 (1983), 145-152.
- [4] H. Maaß, Die Fourierkoeffizienten der Eisensteinreihen zweiten Grades, Mat.-Fys. Medd. Danske Vid. Selsk., 34 (1964), no. 7.
- [5] —, Siegel's modular forms and Dirichlet series, Lecture Notes in Mathematics, vol. 216. Berlin, Heidelberg, New York, Springer 1971.
- [6] G. Shimura, Confluent hypergeometric functions on tube domains, Math. Ann., 260 (1982), 269-302.
- [7] —, On Eisenstein series, to appear in Duke Math. J.
- [8] C. L. Siegel, Über die analytische Theorie der quadratischen Formen, Ann. of Math., 36 (1935), 527-606.

Department of Mathematics Faculty of Science Nagoya University Chikusa-ku, Nagoya 464 Japan

84