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NON-LINEAR PREDICTORS OF TRANSFORMED

STATIONARY PROCESSES

IZUMI KUBO AND SHEU-SAN LEE

§ 1. Introduction

One of the authors discussed the best non-linear predictor of the
process X(t) = f(U(t)), which is obtained by transforming an Ornstein-
Uhlenbeck process U(t) with a measurable function f(u) (see [5]). We
denote by @t{X) the completion of the σ-field generated by {X(s, ω); s < t},
and by @t(X) the completion of the (7-field generated by {X(s, ω);s > t}.
Assuming that X(t) is square integrable, he defined the best non-linear
predictor X(t; τ, ώ) of X(t + τ, ω) for the given data {X(s, ω); s < t} by

(1.1)

which gives the least mean square error. It can be rewritten as

(1.2) X(t; τ) = E[(Tξf)(U(t)) I <gt(X)] a.s.,

where Tf, τ > 0, is the semi-group of the Ornstein-Uhlenbeck process

U(t). He has shown that &t(X) = ^SJJ) holds in many cases and that
algorithms determining the value of U(t, ω) by the observed data can be
given.

In this paper, we shall see that his methods can be applied to more
general base processes {V(t, ω), t e R}. Throughout this paper, we assume
that each base process {V(i)} is a strictly stationary process with con-
tinuous paths defined on a probability space (Ω, &, P) and that V(t, ω)
takes its values in an interval (£, r) with — o o < ^ < r < o o , and satisfies

(1.3) lim V(t, ω) = £ and ϊϊm V(t9 ω) = r a.s.
ί-»-oo ί-»-oo

Let m(dv) be the distribution of V(t) for each t and let f(v) be a function
in L\dm). Then the transformed process X(t9 ω) = f(V(t, ω)), teR, is a

strictly stationary process with the variance f(vfdm(ϋ) — M f(v)dm(v)j .
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The best non-linear predictor X(t; τ, ω) of X(t + τ, ω) for the observed

data {X(s, ω); s < t] is defined by

(1.4) X(t; τ) = E[f(V(t + τ))\£gt(X)] = E[E[f(V(t + τ))\at(V)]\at(X)],

which gives the least mean square error. Our problem is to give an

algorithm to determine X(t; τ, ω) in terms of the observed data {X(s, ω);

s < t}.
In Section 2, we shall discuss the case that the base process V(t)

satisfies the local limit theorem

(1.5) ΠE j V ( l ± ^ " ) - y f t j O L = 1 a.s. for any teR,
Λ-o r(h)

with a suitable T(h) of ϊ(h) — o(l). If f(v) is a piecewise monotone and

differentiable function without any local symmetry (see Definition 2.3),

then we can show 3St{X) = @t(V) and X(t9 τ) = E[f(V(t + τ))\&t(V)] (see

Theorems 2.4 and 2.5). If f(v) has a single bottom without peaks (see

Definition 2.1) additionally, then we can give an algorithm to determine

V(t) by the observed data {X(s);s < t}. The condition (1.5) is weakened

as (2.5).

In Section 3, we shall discuss the case that the base process V(t) is

a diffusion. The results are very similar to those in [5].

In Section 4, we shall discuss the case that V(t) has smooth sample

paths. If V(t) has the property that for any fixed v

(1.6) P({ω: It e R, V(t, ω) = υ, V'(t, ω) = 0}) = 0

holds, then we have a finer result (see Theorem 4.3).

In Section 5, stationary Gaussian processes will be discussed. In

particular, we give precise results for double Markov, stationary Gaus-

sian processes (see Theorem 5.2).

ACKNOWLEDGEMENT. The authors would like to express their hearty

thanks to Professor T. Hida and the members of Seminar on Probability

in Nagoya for valuable suggestions and encouragements.

§2. Prediction appealing to local limit theorems

Now we are going to discuss the best non-linear prediction problem

of the transformed process X(t) = f(V(t))9 assuming that the base process

Vit) satisfies the conditions already stated in Section 1. We restrict the
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class of functions f(v) defined on the range (£, r) of V(t).

DEFINITION 2.1. A function f(ϋ) on (£, r) is simply said to be piece-

wise monotone, if f(v) is a continuous function*} with extremum points

Vi < v2 < < vL finite in number and if f(v) is strictly monotone on

each interval (υj9 vJ + ί), 0 < j < L, with υ0 = £ and vL+1 = r. We call υό

a peak (resp. a bottom), if Vj is a maximal (resp. minimal) point of f(v).

Throughout this paper, we assume that f(v) is piecewise monotone

and piecewise continuously differentiable. Additionally, we assume that

f(υ) belongs to U(dm).

Let {υl9 - ,υL} be the set of all extremum points of f(v). Set

Ij-iv^vj^], 0<j <L- 1 ,

IL ΞΞΞ (υLi υL+1) a n d ϊ] = [υj9 υJ + 1] , 0 < j < L .

Put /(ι;0) = f(£ + 0) and f(υL + 1) = f(r - 0). Define fj\h) by

(v if f(v) = h and υeϊj,

[A if f(v) φ h for any υe Ij,

with an extra point Δ. Define a process j(s, ω) by

(2.1) j ( s , ω) = j i f V(s, ω) e IJ9 0<j < L .

Obviously we have

(2.2)

Firstly, we discuss V(t) satisfying the following local limit theorem.

Let Y(h) be a continuous even function defined in a neighbourhood of

h = 0 with ϊ(h) = o(l) as Λ -> 0. Assume that

(2.3)

Then the following lemma is obviously proved, while useful.

LEMMA 2.2. (i) Let D(f) be the set of all v at which f(v) is differen-

tiable. Then

; t, co) = lίm J^ίl+Λ. »)-_?(*. «).l = If (V(t,
Λ-o τ(h)

*> The continuity of f(v) is not essential for our discussions. But we assume it for
simplicity.
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for a.e. ω in {ω; V(t, ω) e D{f)}.

(ii) // T(ω) is a random variable taking its values only in rational

numbers, then

T(a>), co)
r(h)

Let us observe the two dimensional process X(t, ω) = (X(t, ω),

Or(x; t, ω)) = (f(V(t, ω)), \f'(V(t, ω))|), which is J ^ - m e a s u r a b l e . Obviously,

ggt(X) = SSt{V) holds, if f(v) and \f\v)\ separate each point of the interval

(£, r). We shall give weaker conditions for 39t(X) = 3St{V) and algorithms

to determine V(t) by the observed data {X(s); s < t}. For the purpose, we

introduce a terminology.

DEFINITION 2.3. We say that f(υ) has a local symmetry with respect

to υ*, if /(u* + v) = f(v* — v) holds in a neighbourhood of v = 0. We say

that /(u) has a global symmetry with respect to u*, if /(u* + v) = /(υ* — u)

holds for any u with £ < v* + v < r.

Now we suppose that f(v) has a unique bottom υt without peaks and

that it does not have any local symmetry with respect to vu Let G(f)

be the interior of the set of all Λ's such that fo\h) Φ fΐ\h) holds, and

- Γ(fΛh)) Φ ff(fϊ\h)) holds whenever both f^(h) and fc\h) are in D(f).
Then G(f) is non empty. Define random times Tj{t, ώ), j = 0,1, by

k 2~n < t; X(k-2-\ ω) e G(f\

σ(X;k.2-*,ω) =

if the above set is empty.

By Lemma 2.2 and the assumption (1.3), we can see that Tό(t, ώ) > — oo a.s.

for j = 0,1. We have obviously that

(2.4) - (° i f

almost surely. Moreover T^^t, ω) is the time when V(s, ω) (s < t) passes

through Vj, lastly, if j(t9 ω) = j . Thus we have

THEOREM 2.4. // V(t) satisfies the local limit theorem (2.3) and if f(v)

has a unique bottom without peaks and has no local symmetry with respect

to υu then &t(X) = &t(V) holds, and hence X(t; τ) = E[f(V(t + τ))|Λt(V)]

a.s. holds. Actually the value of V(t, ω) is determined almost surely by the
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observed data {X(s, ω); s < t) as follows

V(t, ω) = fjlUX(t> ω))

with j(t, ω) given by (2.4).

Proof. The assertion follows from (2.2) and the above discussions.

THEOREM 2.5. Let f(v) be a pίecewίse monotone and piecewise differenti-

able function which does not have any local symmetry. Then 3$t{X) —

holds and hence X(t;τ) = E[f(V(t +

Proof. Since f(v) has no local symmetry, we can recognize the times

when V(s, ω) passes through one of peaks (or bottoms), by the same reason

as in the proof of Theorem 2.4. Hence j(s, ω) defined by (2.1), can be

traced for s < t, if j(s\ ω) is determined once at a certain time s' ( < t).

Therefore we can determine \j(su ω) — j(s2, ω)\ for any su s2 < t, by the

observed data {X(s, ώ); s < i). By the condition (1.3), there exist sx and s2

such that \j(su ω) — j(s2, ω)\ = L, sί < s2. Then V(sl9 ω) is in either Io or IL.

If L is even, we can determine j(su ω) by observing which does X(s, ω)

pass a peak or a bottom firstly after sλ. If L is odd, we can find a time

s3 (Si < s3 < s2) when V(s, ω) passes va+ί)/2 and can see the interval con-

taining V(s, ω) for each s in a neighbourhood of s3. Thus we can trace

j(s, ω), s < t. Obviously V(s, ω) = fjlSiΰ))(X(s, ω)) is Jί

ί(X)-measurable.

The local limit theorem (2.3) may seem a condition too strong. A

weaker condition does work well. Suppose that there exists a positive

continuous function a(v) on (£, r) admitting the following local limit

theorem

(2.5) σ(V, ί, ω) = ΪΪS 1 ^ + Λ ^ l J ^ ^ = a(V(t, ω)) a.s.
Λ-O ϊ(h)

Define an increasing function <p(v) on (S, r) by

(2.6) P W Ξ Γ A , υe(£,r)
J v* a(u)

with a fixed u* in (t, r). Put ^ = φ(£ + 0), r = p(r - 0) and g(w) = /o ^- !(

for w; e (̂ , r). Since φ(v) is one-to-one map from (£, r) onto (̂ , r),

W(t,ω) = φ ( V ( t , ω ) ) , teR,

satisfies @t(W) = @t(V) and
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(2.7) X(t, ω) ΞΞ g(W(t, ω)).

Since

O'(W; t,a>) Ξ IfiS

for any £, we can apply Theorem 2.4 and Theorem 2.5 to the new base

process W(t). Define Fj{h) and η{f,a\Vj_ϊ) by

77,M - ί1 nfΛh))W7\h)) if /7'(Λ) e
v^.o; -Γ An) — i xi •

[co otherwise,

(2.9) v(f, a u,) = inf {| h - f(υ3) \ F,{h) Φ F3 _

for i = l ,2 , ,L.

THEOREM 2.6. Suppose that the base process V(i) satisfies (2.5) and

that f(v) is pίecewise differentίable and piecewίse monotone with peaks and

bottoms vl9 , υL. If η(f, a; v3) = 0 for every j , 1 < j < L, ί̂ era &t(X) =

@t(V) holds, and hence X(t; τ) = E[f(V(t + τ))\@t{V)]. Moreover, the value

of V(t, ω) can be determined in a similar way to Theorem 2.4 and Theorem

2.5.

§3. Diffusion processes

In this section, we consider the case that the strictly stationary

process V(t) is a conservative one-dimensional diffusion process with

natural boundaries £ and r (£ < r). We assume that V(t) satisfies a

stochastic differential equation

(3.1) dV(t) = a(V(t)) dB(t) + b(V(t))dt

with a suitable Brownian motion B(t) and with (^-coefficients a(v) (> 0)

and b(v) on (£, r). Then we know that the distribution dm(v) of V(t) is

the speed measure and that the speed measure m and the scale measure

s are given by

( ϋ ) Ξ C Γ

C ()

with a v* in (£, r) and a normalizing constant c as
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(3.3) m(r - 0) - m(£ + 0) = 1.

Since ί and r are natural boundaries, we have

(3.4) s(r - 0) - - s(£ + 0) = Γ ° s(ϋ)dm(υ) = - f s(v)dm(ϋ) = oo .

As well known, the semigroup {Γf} of the process V(t) is self adjoint in

L\dm) and the transition probability of V(i) has a symmetric density

with respect to the speed measure m (see McKean [7]). The time reversed

process V(t) = V(— t) is also a diffusion process with the same semi-

group, and hence V(t) satisfies the time reversed stochastic differential

equation

(3.5) dV(t) = a(V(t))dB(t) - b(V(t))dt,

~ rt

with a suitable Brownian motion B(t). Here we denote by ψ(r, ω)dV(r)
Js

the time reversed stochastic integral

(3.6) Γψ(r, ω)dV(r) = lim Σ Ψ(ri + 1, ω)(V(rJ + 1, ω) - V(rh ω))
J S W—oo S<Tj<t

with rs =j 2~\ Put r*(Λ) ΞΞ [2|Λ|log2|Λ| T / 2 Then we can prove that

Or\V; t, co) Ξ Πm m +.Ag_Γ ^ - "> = α(V(f, «)) a.β.

for any ί (see McKean [6] p. 57 Problem 3) and that

lim V(t, ω) = r, lim V(t, ω) = £ a.s.

(see Ikeda-Watanabe [3] Chapter VI § 3). Thus we can apply Theorem

2.6. By using the strong Markov properties of V(t) and its time reversed

process V(t), we can state more precise results (c.f. Lee [5]).

PROPOSITION 3.1. Let f(v) be a function in L\dm). Then the best

non-linear predictor of X(t + τ) = f(V(t + τ)) for the given data {X(s, ω) ΞΞ

f(V(s, ω));s < t} is given by

X(t; τ) = E[(Tζf)(V(t))\^t(X)] a.s.

Proof. By the Markov property, we have

x(t; τ) = E[E[f(V(t +
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Now, we suppose that f(υ) has a unique bottom without peaks. Let

τ)(f, α, LΊ) be the number defined by (2.9). Firstly, we discuss the case that

η(f, α, ϋi) < max {f(£ + 0), f(r — 0)} — ffa). Then we can find a decreas-

ing sequence {hn} in the G(f) defined in Section 2 such that lim^*, hn =

η(f, a, vl) + /(ϋi). Define stopping times of the time reversed process

{V(£) = V(- ί)} by

f Γ(ί, Λ, o») Ξ sup {s < t; X(s, ω) = h] ,
(3.7)

(T(t, f

\T(ω) T(t, {hn}, ω) = sup T(t, hπ, ω).
n

For almost every ω in A = {ω; T(t,f(υl), ω) < T(ω)}, we have the dichotomy

U\X(t, ω)) if (X(X, T(ω), ω) = F0(X(T(ω), ω))
(3.8) V(t,ω) [ f Λ χ ( ^ ) ) i{OrχX,T(ω),ω)=F1(X(T(ω),ω)).

Thus we have

(3.9) X(t; r, ω) = (Tζf)(fj\X(t, ω)))

if aXV, T(ω), ω) = FjiXiTiω), ω)) for a.e. ω e A. In the contrary case

T(t9 /(t>i), ω) > ^(ω), we can not determine the value of V(t, ω) by the

observed data {X(s, ω); s < t). Under the condition Ac, we have an

expression

(3.10) X(t; τ,ω)= Σ p3(ω)(Tζf)(fj\X(t, ω))) a.e. ωeA',
y=o,i

where Pj(ω) is the conditional probability of the event V(t) e Ij under the

conditions Ac and &t(X). Let us now calculate Pj(ω), j = 0, 1. Let func-

tions <p(v) and g(w) be as in Section 2 with υ* — vlt Then g(w) is sym-

metric on an interval [— q, q] with g(q) = η(f, a, IΊ) + /(i^i). The process

W(t) = <p(V(t)) is a conservative diffusion process with the natural bounda-

ries I and r. Moreover, it satisfies the stochastic differential equations.

(dW(t) dB(t) + β(W(t))dt,

\dW(t) = dB(t) - β(W(t))dt,

with β(w) = b{φ-\w))la(ψ-\w))-\af(φ-\w)\ Put T*(ω) = T(t, f{v,\ ω) =

sup {s < t; W(s, ω) = 0}. Then either | W(s, ω)\ = W(s, α>), T*(ω) <s<t

or I W(s, ω)) = - W(s, ω), T*(ω) < s < t holds. Therefore the following

stochastic integral makes a sense and we have the relation
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Γ ψ(s, ω)dW(s, ω) if W(t, ω) > 0 ,
I ψ(s, ω)d\W(s, ω)\ = ™

THω) - ψ(s, ω)dW(s, ω) if W(t, ω)< 0 ,
J T*(ω)

or a J^TO-adapted ψ(s,ώ) in a suitable class.

LEMMA 3.2. Let po(ω) and p^ω) be the conditional probabilities in

3.10). Then it holds that

Pl(ω) = ί l + exp Γ f (β(\ W(u) |) + β( - \ W(u) \))d \ W(u) \

+ ~ Γ (β*(- I W(u)\) - β\\ W(u)\))du
2 J T*(ω)

Γ\W(t)\ ~]Λ -1

- 2 β(w)dw\) .
J-\W(t)\ A)

nd po(ω) — 1 — Pι(ω) on Ac.

Proof. Since W(t) is a stationary Markov process satisfying (3.11),

he density of the distribution of W(t) is given by

c'exp I Γ2/3(ι/)dί/l

fith a normalizing constant c\ we have

pjwjt) <o\w(t)\)_ = r r — ) d i
^ P(W(t)>0 \W(t)\) y l J-iwωi PK } J

)n the set A% the data X(s, ω), T*(ω) < s < ί, determine the values

W(s, ω)\, T*(ω) < s < t. By the strong Markov property, {W(s, ω), s<
y*(ω)} is independent of {W(s, ω); T*(ω) < s < ί}. Hence it is sufficient

3r a computation of p^ω) that we consider the σ-field &t(W) Π 3?T*(W).

et Pw(-) be the conditional measure denned on &t(W) Π $T*(W) condi-

ίoned by W(t) = ^. Define

M(ω) = exp Γf β(W(u))dW(u) + i- Γ

Y(s, ω) = W((t - s)vT(ω)vTr*(ω)) - W(t)

'hen (Y(s,ω), Pw) is a stopped Brownian motion at {q — w, — q — w,

- w}, where Pw = MPW (see Ikeda-Watanabe [3], Chapter IV, § 4). Since
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the measure of a Brownian motion is symmetric, we can conclude the
assertion by (3.12).

THEOREM 3.3. ( i ) If η(f, a, ι>,) = 0, then @t(X) = &t(V), and hence
X(t;τ) = (T?f)(V(t)). The value of V(t,ω) is determined by (3.11).

(ii) Iff(Vl) < η(f, a, vd + f(υt) < max{f(S + 0), f(r - 0)}, then we have

UTζf)(V(t,ω)) for sue. ω in A,
X(f, τ,co) P}(ωχτTfXfjι(X(t, ω))) for a.e. ω in A,

J=o,i

where A = {ω; T*(ω) < T(ω)}.

(iii) If v(f, a, υd + f(υd = max {f(£ + 0), f(r - 0)}, then

X(f, τ,ω)= Σ Pj(ω)(T:f)(fj\X(t, ω))) a.e. ω .

We now remark another interesting fact. Suppose that the generator
J£? = ja2(v)d/dv2 + b(v)d/dv of V(t) has an eigenvalue ^(< 0) and a cor-
responding eigenfunction fλ(υ) in L2(dm); that is,

(3.13) (Timv) = e»aυ) .

Then the best non-linear predictor of the transformed process X(t) =
fλ(V(t)) is given by

(3.14)

by virtue of Proposition 3.1 and (3.13). The expression (3.14) means that
the best non-linear predictor coincides with the best linear predictor. If
V(t) is Ornstein-Uhlenbeck process, then Hermite polynomials serve the
eigenfunctions (c.f. Lee [5]).

§4. Processes with differetiable paths

In Section 2, we have discussed the cases that the base processes
satisfy a local limit theorem either (2.3) or (2.5). If a base process V(t)
has differentiable paths, then such a local limit theorem does not hold.
However we may expect that the iV-th derivative V(N)(t9 ω) satisfies the
local limit theorem (2.3). Actually, we have many examples in Gaussian
stationary processes.

We assume that V(t, ω) is iV-times continuously differentiable (N > 1)
and its iV-th derivative Vm(t, ω) satisfies

(4.1) O'(V^;t, co) Ξ m\V^(t±hM-V^^_ = 1 a s_
•ft-o γ(k)
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for any t. If f(ύ) is (N + l)-times differentiable and piecewise monotone,

the process X(t) = f(V(t)) has continuously N-times differentiable paths

and its iV-th derivative X{N)(i) satisfies the local limit theorem

(4.2) σ(x«\t,ω)=m \X-)(L+A^xι%j»)l = \πv{t))\ a.s.
ΛO r(h)

for any t. In a similar manner to Theorems 2.4 and 2.5, we can show:

THEOREM 4.1. Suppose that V(t) has continuously N-times differenti-

able paths satisfying (4.1) and that f(v) is (N + ΐ)-times differentiable and

piecewise monotone (N > 1). If f(ϋ) has no local symmetry, then 0St(X) =

at(V) and X(t; τ) = E[f(V(t + τ))\&t(V)] hold. In particular, if f(v) has

a single bottom without any peaks, then the value of V(t, ω) is determined

by the observed data {X(s, ω); s < t) as follows

(fΛX(t,ω)) ίfT0{T,ω)>Tit,ω),
{ ' ω) [f;\X(t, ω)) if Tit, ω) < Tit, ω) .

where Tj(t, ω), j = 0, 1, are defined by

The theorem is merely a correspondence to the former result. But

the following owes to the differentiability of paths essentially. We assume

that

(4.3) P({lt e R, V(t, ω) = v*, V'(t, ω) = 0}) = 0 for any ι;*

and that/(u) is piecewise monotone with peaks and bottoms at {υl9 , vL}.

P u t C(f) = {v; 3;, f(Vj) = f(v)} and C(f) = {f(υj); l < j < L}. Then the set

Ω = {ω; V(t, ω) is continuously differentiable, it e R, V(t, ω) e C(f), V'(t, ω)

= 0} has probability one. For any ω in Ω, X(t, ω) does not take its maximal

(or minimal) values in C(f) except the times when V(t, ω) passes through

the points {υu , vL}. Moreover, V(t, ω) does not turn its moving direc-

tion at the times. Thus we can have the time sequence when V(s, ω),

s < t, moves into an interval 7, from the other, by the observed data

{X(s, ω); s < t}. In the same way as proof of Theorem 2.5, we get the

value of j(s, ω) defined by (2.1), if L is even. If L is odd, then we get an
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estimation j(s9ω) such that

(j(s9 ω) for s < t, if j(t, ω) ̂  (L + l)/2 ,
(4.4) j(fi,ω)=<

{L—j(s,ω) ϊoγs<t9 ήj(t,<

Define

(4.5) V(s, ω) = fj(\,ω)(X(s9 ω))9 s<t.

If f(v) has a symmetry with respect to u*, then the following dichotomy

holds

, ω) for s < t, if j(t9 ω)>(L + l)/2 ,

- V(s9 ω) for s < t, if ;(*, ω ) < (L + l)/2 .

THEOREM 4.2. Suppose that V(t) has continuously N-times differentiable

paths (N > 1) and that V(t) satisfies the condition (4.3). Suppose that f(v)

is piecewise monotone.

( i ) If L is even, then &t(X) = ^t(V) and X(t; τ) = E[f(V(t + τ))|

Λt(V)] hold.

(ii) If f(v) has a global symmetry with respect to a v*9 then the dichoto-

my (4.6) holds. Let S(ω) be a Sit(X)-measurable random time such that

V(S(ω)9ω)φ09S(ω)<t. We have that

= σ({\V(s) -v*\;s<t}) and

(iii) // f(v) has no global symmetry and is (N + l)-times differentiate

and if V(t) satisfies (4.1), then we have &t(X) = &t(V) and X(t;τ) =

Proof. ( i ) By the above discussion, we know j(s, ω), since L is even.

Therefore V(s, ω) is determined by V(s, ω) = fjlSy(ΰ)(X(s, ω)).

(ii) We have seen the dichotomy (4.6) whenever f(v) has a global

symmetry with respect to ι>*. Therefore | V(s, ω) — υ*\ = \ V(s, ω) — v*\ is

^s(X)-measurable. Thus we have the first equality. If we know once the

actual value of V(s', ω) at a time s/ < t, then the dichotomy (4.6) deter-

mines the values of V(s9 ω), s < t.

(iii) If f(v) has no global symmetry, we can find i and h such that

\fXfΛh))\Φ\f'(fl-i(h))\. Appealing to (4.2), we can determine j(s9ω) at

the time s when j(s, ω) = i and X(s9 ω) = h hold.
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§5. Stationary Gaussian processes

In this section, we assume that process V(t) is a stationary Gaussian

process with continuous paths and that V(t) has a canonical represen-

tation

(5.1) V(t) = P G(t - u)dB(u)
J — oo

with a suitable Brownian motion {B(t), te R} and with a canonical kernel

G(t — u) (see Hida [2]). Let {Tτ} be the semi-group of the Brownian

motion; that is,

(5.2) (Tτf)(v) = Γ .1 f(u) exp Γ- —(υ - u)2]du .
J -oo v 2πτ L 2τ J

Then we can easily see that

[a2 ΞΞ E[V(t)2] = Γ G(u)2du
Jo

(5.3) V(t; τ) = E[V(t + τ)\at(υ)] = Γ G(ί + τ - u)dB(u) a.s. ,

β2 = E[(V(t + τ) - V(ί; τ))21 &t(V)] = Γ G(u)2d^
\ Jo

a.s.

For any f(v) in L2((2ττσ2)-1/2 exp [- v2l2σ2]dυ), X(t) = f(V(t)) is a strictly

stationary process with mean (TU/)(0) and with variance (Tσ2f2)(O) —

(Tσ2f)(0)2. The best non-linear predictor of X(t + τ) for the given data

{X(s, ω) s ^ t} is expressed in the form

(5.4) X(t; τ) = E[(Tδ*f)(V(t; r)) | @t(X)].

In particular, if 08t{X) = ^£(V), then we have

(5.4)' X(ί;r) = (Γ l./)(V(ί;r)).

Since V(t) has the canonical representation (5.1), V(t) is ergodic.

Hence we have that

(5.5) lim — Γ V(u, ω)du = 0 a.s.,

(5.6) lim V(s, ώ) = — lim V(s, ω) = oo a.s.

Moreover, if 0 < limΛ_0| V(t + h, ω) — V(t, ω)\jϊ(h) < oo a.s., then the value

must be constant a.s. Therefore the assumption (2.5) is abandon. We can
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apply Theorem 2.4 and Theorem 2.5. Sufficient conditions for (2.3) have

been discussed by many authors (for example, see Kδno [4]).

We now come to the case that the base process V(t) has differenti-

able paths and that the JV-th derivative of V(t) satisfies the local limit

theorem (2.3). In this case, we can apply Theorem 4.1. More interesting

is the case that (4.3) is applied. Suppose that f(v) is piecewise monotone

and globally symmetric with respect to a u*. As discussed in Section 4,

we have the estimation {V(s, ω); s <̂  t} with the dichotomy (4.6). Together

with (5.5), we have the dichotomy

(5.6) v ΞΞΞ lim — Γ V(u, ω)du - 0 or 2υ* a.s.
S-̂ oo § J t-S

Hence we can determine V(s, ω) as follows

V(8,ω)= F ( δ ' ω ) i f Ό = °
[2v* - V(s, ω) if v = 2v* ,

if v* φ 0. Thus we have @t(X) = SSt(V). If v* = 0, then either V(s, ω)

= V(s, ω) for s ^ t, or V(s, ω) = — V(s, ω) for s <; t, holds. Since V(t; τ)

is a linear functional of {V(s, ω); s ^ t}, \ V(t; τ)\ is {V(s, ω); s ^ ^-measur-

able; that is, J^CJQ-measurable. Since (Tδ2f)(v) is an even function, We

have

(5.7) X(t; r) = (Γ,,/)(V(ί; τ)) = (Tδ,f)(\ V(t; τ)|)

with <52 defined by (5.3).

THEOREM 5.1. Suppose that a Gaussian stationary process V(t) with

the canonical representation (5.1) has N-tίmes continuously differentiable

paths and that the N-th derivative ViN)(t, ω) satisfies the local limit theorem

(2.3).

( i ) // f(v) is (N + lytimes continuously differentiable and piecewise

monotone, then

(5.8) X(t; τ) = (Tδ2f)(V(t; τ)) with δ2 = P G(u)2du .
Jo

(ii) // f(v) is piecewise monotone and globally symmetric, then (5.8)

holds again.

For example, we now discuss double Markov, stationary Gaussian

processes in the sense of Hida [2]. Such processes are classified in three

cases by canonical representations:
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Case 1. V(t) = Γ (61e-«1(<-"> + 6 ίβ— ( |-">)dJB(«),
J —oo

with axφa2> 0, 6X + 62 ̂  0, ( α ^ + a2b,)\(bx + &2) ̂  0.

Case 2. V(ί) = 6 Γ (e-
a^-u) - e-a^-u))dB{u)

with a! Φ a2 > 0, 6 Φ 0.

Case 3. V(ί) = b Γ (ί - u)e-a^-u)dB{ύ)
J — oo

with a > 0, 6 ^ 0 .
In Case 1, we can easily see that

A^__-Zjg^.. = 1 a.s. for any t,

where r*(h) = [2\h\log2 (l/|/ι|)]1/2. Thus we can apply Theorems 2.4 and

2.5. The quantities in (5.3) are calculated;

σ2 ΞΞ E[V(t)2] = ..~M- + _ _ ? ^ _ . + M_ ,
2αi αt + α2 2α2

V(ί τ) = Γ (b.e-^^-^
J - c o

^2 = (1 — g " 2 α i Γ ) ^ + (1 — e~ ( α i + α a ) r) 2 ^ ^ 2 + (1 — e - 2 α a r ) - — - .
2α2 ax + α2 2α2

In both Case 2 and Case 3, the process V(t) has continuously dif-

ferentiable paths. Moreover (V(t), V'(t)) is a two-dimensional diffusion

process.

Case 2. The generator J*? is given by

& - -J-62(α2 - α , ) 2 - ^ - ( α ^ + (α, + a2)υ2)^- + ι;2/-
2 9u| av2 aυ1

and the V(ί) satisfies the stochastic differential equation;

(5 9) ίdV(t) = V'(t)dt

\dV'(t) = b(a2 - a)dB{t) - α ^ V ^ ί - (α, + σJ

The transition probability density p(t, vu υ2; uu u2) is given by

(5.10) (4τr2 det Γ(ί))-1/2 exp f -- 1 _{
L 2 det Γ(t)

where Γ(ί) = (Γtj(t))1£{,}£2,
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Γn(t) = b2 Γ (e~aiU - e-a2U)2du,
Jo

Γ12(t) = Γ21(t) = 62 Γ (e~aiu - e-a*u)(- axe~a^ +
Jo

Γ22(t) = 62 Γ ( - α ^ " 0 1 " + a2e-a*u)2du,
Jo

α2 -

ξ2 = U2 + a ί ( l ^ e ' -

As £ -> 0, we have

Γn(t) = Γ21(ί) = -^(α2 - α i)
2ί2 + 0{t)

Li

Γ22(ί) = b\a2 - <φ + O(f),

det Γ(t) = ^-(a2- aJΨ + O(f).

Case 3. The generator ϋ? is given by

2 dvt

and the V(t) satisfies the stochastic differential equation;

= V'(t)dt

(dV'(t) = 6 dB(ί) - o2V(ί)Λ - 2aV'(t)dt.

The transition probability density p(t, vuv2;u1, u2) is given by the same

formula as (5.10) with the replacement;

Γ u(ί) = 62 Γ w2e-2α!Idw,
Jo

Γ12(t) = Γ2 I(ί) = bz f w(l - au)e-2audu ,
Jo

Γ22(ί) = 62 Γ (1 - aufe-^du ,
Jo

ξ1 = u1- (at + ϊ)e-a% - te-atυ2,

ξ2 = u2 + aΐte~atv1 - (1 — at)e~atv2.
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Then their orders as t —> 0 are given by

Γn(t) = ζ-f + oφ), r12(o = r2ί(t) =:ζt + O(f),

Γ22(ί) = 62ί + O(ί2) and det Γ(ί) = -^-ί4 + O(ί5).

In both cases, we can show that the Green function

Λco

ga(vl9 v2, uu u2) = p(t, vl9 v2; ul9 u2)e~atdt, a > 0 ,
Jo

is positive, continuous except on the diagonal {(υl9 v2) = (uu u2)}9 and

satisfies

a = ocga for (vu v2) Φ (ul9 u2)

and

lim ga(υl9 v2, ul9 0) = oo .

Therefore we can apply Lemma 2.1 of Chapter 11 in Friedman [1]. Thus

we can check in both Case 2 and Case 3, that V(t) satisfies the condition

(4.3).

By the proposition, we know that Theorem 5.1 is applicable to the

double Markov, stationary Gaussian processes in the strict sense (Case 2

and Case 3).

THEOREM 5.2. Let V(t) be a double Markov, stationary Gaussian process

in the strict sense and let f(v) be pίecewise monotone.

( i ) // f(v) is 3-times continuously diffentiable, then

a2 — aλ

-e(
a2 aλ a2 — ax

(5.11) X(ί;r)= \ '
for Case 2,

(ΓΓ u ( f )/)((l + aτ)V{t) + τe-"V'{t)) for Case 3.

(ii) If f(v) has a global symmetry with respect to a v* with v* Φ 0,

then (5.11) holds. If f(v) has a global symmetry with respect to 0, then

(5.11) holds replacing V(t, ω) with V(t9 ω) defined by (4.5).
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