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THE COHEN-MACAULAYNESS OF THE REES ALGEBRAS

OF LOCAL RINGS

SHIN IKEDA

§ 0. Introduction

Let (A, m, k) be a Noetherian local ring. We define
R(A) = © mn

and call it the Rees algebra of A. Let X be an indeterminate over A,

then R(A) can be identified with the A-subalgebra A[{aX\a e m}] of A[X].

Note that the associated graded ring

G(A) = 0 mnlmn+ί

n>0

of A is isomorphic to R(A)/mR(A).

The purpose of this paper is to give a criterion for R(A) to be Cohen-

Macaulay. For this purpose we may assume that the residue field k — A/m

is infinite. In fact, if k is finite we replace A by A[T]nAm = A(T), where

T is an indeterminate over A. Then A(T) is faithfully flat over A and is

a local ring with maximal ideal mA(T). Hence

R(A(T))-^+R(A)®AA(T)

and this is Cohen-Macaulay if and only if R(A) is Cohen-Macaulay. There-

fore in this paper all local rings are assumed to have infinite residue field.

Since A/m is infinite there exist al9 a2, , ad e m such that mn = (aίy a2, ,

a^m71'1 for some positive integer n, where d = dim A (cf. [6]), and q =

(a19 - - , ad) is called a minimal reduction of m.

Now we state our criterion.

THEOREM (0.1). Let (A, m, k) be a Noetherian local ring of dimension

d > 0, q = (aί9 , ad) a minimal reduction of m and ?β = G(A)+. Then
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the following conditions are equivalent

1) R(A) is Cohen-Macaulay.

2) a) A is Buchsbaum,

b) for i < d

) (n Φ -1) ,

and

c) md = qmd-\

In this case G(A\ is Buchsbaum.

Y. Shimoda proved a slightly more complicated but essentially the

same result for dim A = 3 and he communicated it to me informally. I

have also learned that S. Goto independently obtained the implication 1)

Φ 2).

Our theorem generalizes a result due to S. Goto and Y. Shimoda which

says that when A is Cohen-Macaulay, R(A) is Cohen-Macaulay if and only

if G(A) is Cohen-Macaulay and there exist au •• , c ί e m such that md =

(a19 , ad)md~1 (cf. [2]). Our proof of the condition c) is the same as that

of [2].

The theory of Buchsbaum rings has been rapidly developed in recent

years as a generalization of that of Cohen-Macaulay rings. It is remarka-

ble that the theory of Buchsbaum rings can be related to the Cohen-

Macaulayness of the Rees algebra as our result shows.

In section 1 we recall the definition of Buchsbaum rings and their

basic properties which we need in this paper. Section 2 is devoted to the

proof of Theorem (0.1). The idea of the proof was inspired by the tech-

niques of S. Goto. The proof is carried out by detailed computations of

local cohomology modules. In section 3 we give an example of a Buchsbaum

ring which is not Cohen-Macaulay and whose Rees algebra is Cohen-

Macaulay.

All rings in this paper are commutative with identity.

Before closing this section the author would like to thank S. Goto

and J. Watanabe for helpful advices and inspiring discussions.

§1 . Buchsbaum rings

Recall the definition of Buchsbaum rings. Let (A, m, k) be a Noetherian

local ring and M a finitely generated A-module. An ideal of A is called
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a parameter ideal of M if it is generated by a system of parameters of M.

We say that M i s a Buchsbaum A-module if for any parameter ideal

q of M the difference lJJMjqM) — eM(q) is an invariant of M which does

not depend on the choice of the parameter ideal q of M, where 1A{ )

denotes the length of A-module and eM(q) is the multiplicity of q with

respect to M. We denote this invariant of M by I{M). A Noetherian

local ring is Buchsbaum if it is a Buchsbaum module over itself.

Before recalling the basic properties of Buchsbaum rings we introduce

some notation. Let R be a Noetherian ring, M a finitely generated i?-module

and N a proper submodule of M. Let Asshβ {MjN) = {p e Suppβ (MjN) \

dim Rjp = dim MjN}. Let N = ΠpeAssh* m/m N{p) be a primary decompo-

sition of N in M, where N(p) is a p-primary submodule of M. Then we

define

U(N) = Π N(p) .
pβAsshR (M/N)

Note that U(N) does not depend on the primary decomposition chosen

since every p e Assh^ {MjN) is minimal in Supp^ {MjN).

Let R be as above and a an ideal of R. For any JR-module M we

define

Hl(M) = lim Ext^ {Rjan, M)
n

and call it the i-th local cohomology module of M with support in Spec Rja.

The functor H{{ ) is the ί-th derived functor of H°a{ ). If i? = θ ^ 0 ^n is

a graded ring, α a homogeneous ideal of R and Λf = ®nezMn a graded

iϊ-module, then H\{M) has a natural structure of graded jR-module. We

denote the homogeneous part of degree n of H\{M) by [Hi{M)]n.

Now let us recall the basic properties of Buchsbaum rings.

PROPOSITION (1.1). Let {A, m, k) be a Noetherian local ring of dimension

d > 0. Then the following conditions are equivalent.

1) A is Buchsbaum.

2) For any system of parameters α15 α2, , ad of A, we have

mU{{aί9 a2, , a%)) c (a19 α2, , a%) for 0 < i < d .

Proof. See [10].

COROLLARY (1.2). Let {A, m, k) be a Buchsbaum ring of dimension

d > 0. Then,
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1) for any a em such that dim A\aA < dim A, A\aA is Buchsbaum,

2) for any system of parameters of A,

U((U((a19 α2, , α<)), αί+1)) = U((ax, α2, , αi+1)) for 0 < i < d - 2,

3) AjU((O)) is Buchsbaum, and

4) £/((<*!, α2, , az)) = (au α2, , α j : α i + 1 for 0 < i < d.

Proof. See [10].

PROPOSITION (1.3). Lei (A, m, k) be a Noetherian local ring and A the

completion of A. Then A is Buchsbaum if and only if A is Buchsbaum.

Proof. See [9].

PROPOSITION (1.4). Let (A, m, k) be a Buchsbaum ring of dimension

d > 0. Then,

1) mHi(A) = (0) for 0 < i < d, and

2) I(A) = Σίzl ί ~ ) dimfc Hi(A), where dimfc denotes the dimension

of k-vector space.

Proof. See [8] or [3].

PROPOSITION (1.5). Let (A, m, k) be a Noetherian local ring and M a

finitely generated A-module of dimension d > 0. Assume that the canonical

homomorphism

φt: Exti (A, M) > Hi(M) = lim Exti (A/m71, M)
n

is surjectίve for 0<i <d. Then M is a Buchsbaum A-module. Furthermore

if A is regular the converse is true.

Proof. See [11].

PROPOSITION (1.6). Let k be a field, G = ®n^0 Gn a Noetherian graded

ring with Go = k and $β = G+. Suppose that there is an integer n such

that for 0 < ί < d = dim G and m Φ n

= (0).

Then G% is Buchsbaum.

Proof. See [8].

The following result is crucial in section 2.
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PROPOSITION (1.7). Let (A, m, k) be a Buchsbaum ring of dimension

d>0, G = G(A) and ^ = G+. If G^ is Buchsbaum and I (A) = I(G%), then

for any minimal reduction q = (a19 a2, , ad) of m we have

(cG\ al\ , ay) f] mn = Σ α?'mn-n<
i = l

for all positive integers nu n2, , nd9 n, where mj — A if j < 0.

Proof. Let ht (1 < i < d) be the initial form of at in G. Then hιr

h2, - -, hd is a system of parameters of G%. By the definition of Buchsbaum

rings, we have

αϊS σj , , α3

for all positive integers nu n2y , τzd.

So we have

lβ(G/(ΛϊS Λr. , hγ)) =

because

and

eA((aΐ\ - - -,an

d

d)) = n,n2 ndeA((ai9 ,ad))

by [1] and because

eG((hlf , ΛJ) = eA((alf , α )̂) .

On the other hand,

and

But

Σ ai'm"-** + mn+1 c (α?1, , αgώ) Π mn + mn+1

for all n > 0. Hence,



52 SHIN IKEDA

Σ aγmn-ni + m*+1 = (α?1, , a11/) Π mn + mn+1

for all positive integers n19 n29 , nd9 n.

Therefore

Σ aTmn-nί = (α?1, , an/) Π m71

for all positive integers nί9 n29 , Λd, n.

COROLLARY (1.8). Under the same hypothesis as in (1.7) we have

i

(αj1, , α?0 Π mw = XI α5ytnn"n^

/or 1 < i < d and for all positive integers n19 n29 , ni9 n.

Proof.

(aψ, , af) Π mn = ί Π Q (α?S , β?S «*+i»

§ 2. Proof of Theorem (0.1)

Let (A, m, k) be a Noetherian local ring of dimension d > 0, R — R(A)

and G = G(A). Let X be an indeterminate over A. We identify R with

the graded A-subalgebra A[{αX| α e m}] of A[X], Then the homogeneous

component of degree n of R is given by [R]n — xnnXn for n > 0 and [R]n

= (0) for n < 0. Let R+ = Θ n > 0 [i?]w and let

h: R >A = R/R+

be the canonical projection. Let E be an A-module. We denote E by hE

if E is considered as an 12-module via h. Furthermore hE is considered

as a graded .R-module whose grading is given by [hE]0 = E and [hE]n =

(0) for n Φ 0. Let M be the unique maximal homogeneous ideal of R9

then

for all i > 0 (cf. [4]) .
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Now recall that dim R = dim RM = d + 1 (cf. [12]). Let q = (aί9 α2, ,

ad) be a minimal reduction of m and we set

Q = fa, az - atX, " , a d - ad.,X9 adX) .

LEMMA (2.1). QRM is a minimal reduction of MRM. In particular a19

a2 — axX, - , ad — aa^X9 adX is a system of parameters of RM.

Proof. Let P = (aί9 a2, , ad, aJC, a2X, , adX) and n a positive

integer such that mn = qmn~\ Then,

Mn = PMn~ι .

But it is easy to see that P2 — QP. Hence

Mn+1 = P2Mn-1 = QPM71-1 = QMn.

LEMMA (2.2). R is Cohen-Macaulay if and only if au a2 — axX, , ad

— ad_λX, adX is an Resequence.

Proof. By [5] JR is Cohen-Macaulay if and only if RM is Cohen-

Macaulay. Hence (2.2) follows from (2.1).

We first prove 1) => 2).

Suppose R is Cohen-Macaulay. Then aί9 a2 — aλX, , ad — ad^X,

adX is an ί?i¥-sequence by (2.2). In particular aγ is a non-zero divisor on

A. For any xemd,

a,xXd = ch

~ adxX

= 0 mod (α2 — axX9 , ad — ad_xX, adX) .

Hence we can find geR not contained in M such that

(#) g(xXd) = (α2 - αiX)/; + + (ad - aa.&ft-t + adXfd

for some fuf2, -9fde R. Comparing the coefficients of Xd in the equation

(#), we have xeqm^"1 since the constant term of g is a unit of A. Thus

md = qmd'1 and this shows c). The above method of the proof is the same

as that of [2].

We need an easy lemma to prove a) and b).

LEMMA (2.3). Let a em be a non-zero divisor on A. Then we have the



54 SHIN IKEDA

following exact sequences of graded R-modules

0 > G(-ΐ) > R/aR > Rl(a, aX)R • 0

0 • hA • RlaXR — > Rj{a, aX)R • 0 .

Proof. Consider the exact sequences of graded .R-modules

0 • (σ, aX)RlaR • R/aR • R/(a, aX)R • 0

0 > (a, aX)R/aXR > RlaXR • Rjia, aX)R • 0.

But we have the isomorphisms of graded .R-modules

(a, aX)R/aR -^> aXRjaXiaR: aX) -=^+ RI(aR: aX)(- 1)

(a, aX)R/aXR -==* aR/a(aXR: a) -^> Rj{aX: a).

Since a is a non-zero divisor we have (aR: aX) — mi? and (aXR: a) = R+.

Therefore we have the exact sequences of graded .R-modules

0 • G ( - 1) > RlaR • Rl(a, aX)R • 0

0 • hA • RlaXR > Λ/(α, aX)R • 0 .

Let a = Oj and let R' = Rj(a, aX)R. Then we have the exact sequences

of graded .R-modules

(*) 0 • G(- 1) • RlaR • R' • 0

(**) o • hA • RlaXR • R' • 0

from (2.3).

Since a is a non-zero divisor on A RjaR and RlaXR are Cohen-

Macaulay rings of dimension d. From the exact sequences (*) and (**)

we have the isomorphisms of graded .R-modules,

- 1) and HURT) ^ > H^\hA) = hWm{A)

for all i < d .

But by [5]

HUG) = Hi(G) for all i, where φ = G+ .

Thus, we have for i < d

(Hi(A) (n = - 1)

Therefore G% is Buchsbaum by (1.6). This shows b).
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To prove a) we may assume A is complete by (1.3). Let (B, π, k) be

a regular local ring such that A is a homomorphic image of it. Let Xί9

X2) - - -, Xv be indeterminates over B, where υ = emb A, the embedding

dimension of A, and we set S = B[X19 X2, , Xv], We give S a structure

of graded JB-algebra by letting deg Xt = 1 (1 < i < ι;). Let 2V = (n, X1? , X«)

be the unique maximal homogeneous ideal of S. We can choose αd + 1, ,

αυ e m so that m = (al9 , ad, ad+ί, ,aυ) by [6]. We define a surjective

homomorphism of graded jB-algebra a: S -+ R by a(XD = ^ X (1 < i < f).

Since G »̂ R/mR and A >̂ .R/.R+ both G and A are homomorphic images

of S. By the definition of Buchsbaum rings G^ (resp. A) is Buchsbaum

if and only if G$ (resp. A) is a Buchsbaum S^-module. Let T — SN and

a = ΛΓSjv. Then, from the exact sequences (*) and (**) we get the follow-

ing commutative diagrams of T-modules

tfr1 (k, R'M) - ^

Φi-l\ Ψi\

Hi~\RM) - ^ > H\(G%)

and

Extjrι (k9 R'M) - ^ > Ext^ (k, A)

Φi-l\

HΓ\R'M) - ^ >

where i < dand φt_u ψt and ξt are the canonical homomorphisms. Since

T is regular local and G% is Buchsbaum ψf is surjective for i < d by (1.5).

Hence & is surjective for i < d by the commutative diagrams above.

Therefore A is Buchsbaum by (1.5). This completes the proof of 1) Φ 2).

Conversely, assume that 2) holds.

First we set for 0 < i < d

A, =

Λ* =

and

where q0 = (0). Let i, j be integers. Then we set [i,j] = {ne Z\i < n <j}.
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LEMMA (2.4). Let ht (1 < i < d) be the initial form of at in G. Then,

for 0 < ί < d and 0 <j < d — i we have

[Hί(G/(hί9 , hd)]Λ = (0) for n e [- 1, i - 1] .

Proof. For i = 0, there is nothing to prove. We proceed by induction

on i. Assume i > 0. Since Gφ is Buchsbaum we have the following exact

sequence of graded G-modules

0 — > Hi(GI(hί9 , ht.,)) — > HUGKK , h,))

—> Ht\GI(K , A^X- 1) —> 0

for 0 < j < d — L By the induction hypothesis

[Hi(GI(h19 •-,hi_i))]n = (0)

for 0 < j < d - i and n e [- 1, i - 2].

Hence we have

for 0 < j < d — ί and n i [— 1, i — 1].

LEMMA (2.5). U(qd ί l ra" = qίtn""1 for 0 < i < d and n>i.

Proof. By (2.4)

[#£(G)]B = (0)

for n Φ — 1. Hence

H%(G) = (0) .

Since G$ is Buchsbaum this means

for 1 < i < d. Hence

for 1 < i < d and n > 0. By (1.2) G , / ^ , , /iJG^ is Buchsbaum for 1 <

ί < d. Therefore

Hl(G/(hu , Λ,)) = ((A,, , K): hί+1)GKK • , ΛJ

for 0 < ί < d. By (2.4)
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for n & [— 1, i — 1], and this implies

((qtm
n + m*+2): α ί+1) Π mn c

for n > z. On the other hand, by b) and (1.4) I(G%) = I(A). Hence by

(1.8) q, Π mn = q.rn71-1 for τι > 0. Therefore

((q< Π mκ + 1): σ<+1) Π mn c q.m^1 + mTC+1

for n > i. By what we have just proved above (m7Z+1: α ί+1) = mn for n > 0.

Thus we have

U(qt) Γ) mn = q.m71"1 + mn+ι

for λi > i. This yields

for 7z > ί.

COROLLARY (2.6). U(ai+1At) Π mπA, = a ^ ^ - ^ /or 0 < ί < d - 2 and

n>i + l.

Proof. It is sufficient to prove that

((E7(q<), α<+1): m) Π (m», C7(q,)) = q.^nt- 1 + C/(q<)

for n > i + 1.

But this follows from (1.2) and (2.5).

LEMMA (2.7). We have the exact sequence of graded R-modules

/or 0 < i < d - 1 αred > 0.

Proof. There exist canonical surjective homomorphisms of graded R-

modules ut: RJdt^XRt -*Ei+1. Let K{ = Ker ut. Since Ai+1 =* A{IU(ai+1Ai)

by (1.2)

θ m AtlUia^Ad Π m'

Hence [K^ = U(at+1Ad and [ ί j n = U(flt+iAύ Π mMi/α^.m^'Λ for n > 0.

But Aj is Buchsbaum by (1.2), so mU(ai+1At) c ai+iA4 by (1.1). Therefore

1^([£J») <oo ΐov n>0 and [XJ, = (0) for n > i + 1 by (2.6). It follows

that
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is a graded iϊ-module of dimension 0. Hence from the exact sequence

0 >Ki+ >Kt > hU(ai+ίAi) > 0 ,

we get the isomorphism of graded i?-modules

for j > 0. On the other hand, from the exact sequence

0 >Kt • RJai+lXRt • Rt+ι • 0 ,

we get the exact sequence of graded i?-modules

WM(K%) —+ miRJa^XRt) — * ff*(Λ<+1)

for j > 0, and this completes the proof of (2.7).

LEMMA (2.8). We have the exact sequence of graded R-modules

Hί(GtX- 1) • Hi(RJai+lRJ > m(Rί+1)

for 0 < i < d - 2 and j > 0.

Proof Let υt: R^a^^ > Rί+1 be the canonical surjective homo-

morphism and Lt = Ker vt. Then [LJn ^ JJia^^^) Π m.nAJai+1m
nAί for n > 0.

On the other hand,

for n > 0. Hence we have an exact sequence of graded i?-modules

0 • (σ1+1> a^^RJa^R, • Lt • L< • 0 ,

where

IA = Θ U(aί+1Ai) Π v^AJa^m^Ai .

By (2.6) dimL< = 0. Since ai+1 is a non-zero divisor on At we have an

isomorphism (α ί+1, αί+1X)J?Jαί+1jRέ ^ Gt{— 1). Hence we have the exact

sequences of graded iϊ-modules

0 • G,(- 1) > Lt • L\ • 0

and

0 > Lt • RJa^Rt • Rt+ι > 0 .

Since dim L\ = 0 we have a surjective homomorphism Ή\{G^){— 1) ->
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and an isomorphism Hi(Gτ)(— 1) ~t H3

M{Lτ) for j > 1. Therefore we have

the exact sequence of graded i?-modules

for j > 0.

LEMMA (2.9). We have the isomorphism of graded R-modules

for 0 < ί < d - 2 and j > 0.

Proof. There is a surjective homomorphism wt: G/(h19 , ht) —• Gt

with kernel N, = ® ^ 0 U(qί)Γίmnlqim
n-ί + [/(qjΠm7141. By (2.5), we have

dim Nt = 0. Hence we have the isomorphism

for j > 0.

L E M M A (2 .10) . [H°M(RM+iRi)]n = (0) for 0 < ί < d and ne[0,i- 1 ] .

Proof By the definition of local cohomology, we have

HURJa^R,) - ^ > (ai+1Rt: MtRt)BJai+1Ri

for sufficiently large t > 0.

Let n > i. Given any fnX
n e (ai+1Rt: M'R^^., fn e mnAί9 we have

fn e {ai+1m
n+tAt: m'A,) c (ai+1At: m'Λ) ΓΊ (mw + ί + 1Λ: mfΛ) .

Suppose i < d — 2. Then

(α,+1A,: m^i) = U(ai+1Aτ) .

On the other hand,

( m ^ ^ A , : m ^ ) c ( m ^ ^ ^ : aUΛ,) .

By (2.6),

/n e U{aί+^) Π (m^'^A,: αξ+1A,) = U{aί+ιAι) Π mn + 1Λ = σ^m A, .

Hence /^Z7" e ai+iRt. Therefore

[HURJai+1Rd]n = (0) for n t [0, i - 1] .

Suppose i = d — 1. Then we may choose t so that (adAd^: mιAd_^ = Ad.x.

By c), mn+t+1Ad.x = ^ + V A , _ ,
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Therefore

fn e (ad

+1mnAa^: aaAd_x) = adm
nAd.1 .

Hence fnX
n eadRd_t. Thus we have

[fli(Λ«/αί+Λ)]» = (0) for 0 < i < d a n d ^ [0, i - 1] .

Now we can complete the proof of Theorem (0.1) by the following

proposition.

PROPOSITION (2.11). [Hs

M{R^\n = (0) for 0<i<d, 1 < j < d - i and

n & [0, ί - 1].

In fact, for i = 0 we have Ro = R. Since [0, —1] is empty (2.11) shows

that H3

M{R) = (0) for 1 < j < d. On the other hand, H*M(R) = (0) since

depth A > 0. Hence i? is Cohen-Macaulay as required.

Proof of Proposition (2.11). We prove this by descending induction

on i. For i = d — 1, we know from (2.10) that

i/α<fβ
d
-i)]« = (0)

for n g [0, d — 2]. From the exact sequence

we obtain the exact sequence

Hence ad is a non-zero divisor on [iϊlfC-Rί-i)]^ for n e [0, d — 2]. For any

Λ; e [fli(JRί_i)]n, ft £ [0, c£ — 2], there exist a positive integer t such that

αjjίc = 0. Hence x — 0. Thus [•#!(#<*-i)L = (0) for ne[0,d - 2]. For i <

d-1,

[Hl(Rt+J\» = (0) for 1 < i < d - i - 1 and n <£ [0, ί]

by induction hypothesis. By (2.7)

hHl(U(ai+1AJ) • HURJat+iXRd • HL{Ri+ι)

is exact for j > 0. Hence

( *) [miRJa^XRdL = (0) for 1 < j < d - i and n e [0, i] .

By (2.8)
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is exact for jf > 0. Hence, by (2.4) and (2.9)

(**) [HίiRMM]* = (0) for 1 < j < d - i and n e [0, i] .

From the exact sequence

0 >Ri^>Ri • RJai+1Rt > 0

we get the exact sequence

HίiRJa^Rt) > Hti\Rτ) ^> Hί+1(Rt)

for j > 0.

Hence [£&(£*)]» = (0) for n e [0, i - 1] by (2.10). For j > 2, by (**)

above

(***) [fl£(B,)]» = (0) for 2 < j < d - i and n £ [0, ί] .

From the exact sequence

0 > B t(_ l) - ^ . i?. > RJai+ιXRt > 0

we have the following exact sequence

Hί(Rtlat+ιXRd —•> m\Rt)(- 1) —-> fΓlr+1(B*)

for y > 0. Hence, by (*) and (***)

[ffiCRJL = (0) for 1 < j < d - i and n £ [0, i - 1] .

This completes the proof of Proposition (2.11) and hence of Theorem (0.1).

COROLLARY (2.12) (S. Goto and Y. Shimoda). Let (A, m, k) be a Cohen-

Macaulay local ring of dimension d > 0. Then R(A) is Cohen-Macaulay

if and only if G(A) is Cohen-Macaulay and md = (a19 , ad)md~1 for some

aί9 - - -, ad e m.

Proof This follows from the fact that A is Cohen-Macaulay if and

only if Hi(A) = (0) for i < d.

Remark. We have shown depth A > 0 if R(A) is Cohen-Macaulay in

the proof of Theorem (0.1). But more can be said about depth A. In fact,

we can prove depth A > min {2, d} if R(A) is Cohen-Macaulay. A proof

can be found in [2], but here we give a proof based on our result.

Proof We have the following exact sequence

0 — • H%(G) — • H%(GI(K)) —-* m(G)(- 1) — > 0 .
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But Hl(G) = (0) by b). Hence [H%(GI(hJ)]0 = Hi(A) by the above exact

sequence and b). On the other hand, by the definition of local cohomology

we have [H^G/ikM = (0). Therefore H\(A) = (0) as required.

§ 3. Example

In this section we construct a Buchsbaum ring which is not Cohen-

Macaulay and whose Rees algebra is Cohen-Macaulay.

Let k be a field and d > 3 be an integer and let X19 , Xd be inde-

terminates over k. We put S = k[[Xί9 , Xd]]. Let

0—>s^>S d—• ll+/\Sd-^+Sd-^+S—>0

be the Koszul complex with respect to X19 , Xd. Let E — Im /2. Let

A = S X E be the idealization of £7. Then, it is easy to see that

A^kilX,, ...,XΛ1 {Yi3\l< i<j< d}]]/α ,

where Ύi5 (1 < i < j < d) is an indeterminate over S and α is the ideal

generated by

XtιYuit - Xί2YίlU + X,3Yίlί2 (1 < U < U < h < d)

and

Let xi9 ytj be the canonical images of Xί9 Ytj in A and m be the

maximal ideal of A. Then, by construction dim A = d and

HHA) - P (ί = 2 )

m ( ) ~ l ( 0 ) (iΦ2,d).

Hence A is Buchsbaum by the following lemma.

LEMMA 3.1. Let (A, m, k) be a Noetherian local ring of dimension d >

depth A = t. Suppose mHι

m{A) = (0) and Hi(A) = (0) for iψt9 d. Then

A is Buchsbaum.

Proof. See [11].

It is easy to see that m2 = (xl9 , xd)m. On the other hand, since

α is generated by homogeneous polynomials G(A) is isomorphic to
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where b is the ideal generated by the polynomials generating α. Hence
it is easy to check that for i < d

Hί{A) ( n = - 1 )

Hence R(A) is Cohen-Macaulay, but A is not Cohen-Macaulay.
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