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MAXIMAL ALGEBRAIC SUBGROUPS OF THE CREMONA GROUP
OF THREE VARIABLES

IMPRIMITIVE ALGEBRAIC SUBGROUPS OF
EXCEPTIONAL TYPE

HIROSHI UMEMURA

Enriques and Fano [4], [6] classified all the maximal connected alge-
braic subgroups of Cr,, Our aim is to give modern and rigorous proofs to
their results. In [10], we studied the primitive subgroups. In this paper,
we deal with exceptional imprimitive groups. The imprimitivity is an
analytic notion. The natural translation of the imprimitivity in algebraic
geometry is the de Jonquiéres type operation (definition (2.1)). Every de
Jonquiéres type operation is imprimitive. However, the difference of these
notions is subtle. The imprimitive algebraic operations in Cr, which are
not of de Jonquiéres type are rather exceptional; there are only 3 such
operations (theorem (3.26)). This paper together with [10] recovers all the
results on Cr, of Enriques and Fano [4]. It remains only to reconstruct
Fano’s classification [5] of the de Jonquiéres type operations, which shall
be done in our forthcoming paper.

Our technique is rather old; the classification of 3 dimensional primi-
tive operations, a very easy part of invariant theory which are of 19th
century, combined with the theory of algebraic groups and transformation
spaces of A. Weil. As the 4 dimensional primitive law chunks of analytic
operations are classified, our method can be applied to the 4 dimensional
Cremona group Cr,. We use the notations and the conventions of [10].
Therefore all manifolds, analytic groups, algebraic varieties, etc. are defined
over C. The transformation spaces X of analytic or algebraic law chunk
or operation (G,X) are connected. However, a differences lies in the
language that we employ. Here is our French-English dictionary:
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French English
groupuscule group germ
morceau de loi d’opération law chunk of operation

§1. Analytic preliminaries

We supply §1 of [10]. We recall known facts and nothing is new in
this section. We work in the category of the complex manifolds. All
manifolds, analytic groups, etc. are analytic over C. For the definitions

of analytic group germ and law chunk of analytic operation, we refer to
[10].

DerFinmTiON 1.1. Let g be an Lie algebra and X a (connected) manifold.
A homomorphism « of Lie algebra g to the Lie algebra H°X, Tx) of the
holomorphic vector fields on X is called an infinitesimal operation of g
on X. An infinitesimal operation is denoted by (g, X) without making «
precise. Let (g’, X’) be another infinitesimal operation defined by o': ¢’ —
H'(X’, Ty.). A morphism (p, ) of infinitesimal operations of (g, X) to (¢/, X’)
consists of a morphism of Lie algebras ¢:g g’ and a morphism f of a
non-empty open subset of X to X’ such that f,a(D) = o'(p(D)).

Let G be a analytic group germ, g its Lie algebra and X a manifold.
Let (G, X) be an law chunk of analytic operation. As we have seen in
[10], we can associate to (G, X) an infinitesimal operation of g on X. We
have a converse (corollaire 1, Ch. III, § 5, n°7, Bourbaki [2]).

ProrosiTiON 1.2. Suppose that X is paracompact. Let a : ¢ — H'(X, T;)
be an infinitesimal operation of g on X. Then, there exists a unique law
chunk of analytic operation (G, X) such that the infinitesimal operation
associated to (G, X) is a.

When we consider law chunks, we are in local questions. Hence the
hypothesis that X is paracompact is not a serious condition. Proposition
1.2 and the following proposition show that to consider law chunk is
equivalent to consider infinitesimal operations.

ProposrtioN 1.3. Let (G, X), (G', X’) be law chunks of analytic operation
and (g, X), (¢', X’) their infinitesimal operations. We have Homy,, chunis

((G7 X)’ (G/, X,)) = Homlnﬁnltesimal operations((g’ X)’ (97 Xl))'
See proposition 11, Ch. III, §4, n°7, Bourbaki [2].
Let a: g — HX, Ty) be an infinitesimal operation. Let V be the sub-
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set of X consisting of x € X such that dima(g), is maximal. Then V is
an open set and X — V is an analytic set.

DerinITION 1.4. Let (g, X) be an infinitesimal operation. We say that
(g, X) is generically transitive if there exists a point x € X such that a(g), =
T,. The infinitesimal operation (g, X) is said to be generically intransitive
if (g, X) is not generically transitive. A law chunk of analytic operation
is generically transitive (resp. intransitive) by definition if its associated
infinitesimal operation is generically transitive (resp. intransitive). For
the definition of primitive (resp. imprimitive) law chunks we refer to §1
in [10].

ProposiTioN 1.5. If (G, X) is generically intransitive and dim X > 2,
(G, X) is imprimitive.

Proof. The morphism «:g-— HYX, Ty) defines a system of vector
fields. On a non-empty open subset U of X, a(g)|U is a differential system
satisfying the integrability condition. Hence by the Frobenius theorem,
there exists locally the quotient W of X by the operation of G. Therefore,
we have a morphism of infinitesimal operations (g, X) — (0, W) and the
dim W is equal to d = dim X — dim a(g)(x) x € U. Hence, we get a mor-
phism of law chunks of analytic operation (G, X) — (E, W) where E is the
unit group by proposition 1.3. This shows (G, X) is imprimitive.

Now we study the generically transitive case. Let G be an analytic
group and g its Lie algebra. Let H be a connected analytic subgroup of
G. The subgroup H is not necessarily closed and the quotient space G/H
does not always exist. But it exists locally by the Frobenius theorem.
In fact, H operates on G from the right and this operation defines on G
a differential system satisfying the integrability condition. Hence by the
Frobenius theorem the quotient space exists locally around the unit ele-
ment e. We denote this local quotient space by (G/H). The operation
from the left of G on G itself leaves this differential system invariant.
Hence, G operates locally on (G/H)Y. We get a law chunk of analytic
operation (G, (G/H)"). The law chunk of analytic operation (G, (G/H)) is
uniquely determined up to local isomorphism.

LEMMmA 1.6. Let G be an analytic group, X a manifold and (G, X)
be a generically transitive law chunk of analytic operation. Then there
exists an analytic subgroup H of G such that (G, X) is locally isomorphic
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to (G, (G/H)).

Proof. Take a point x € X such that g, is equal to 7,. Let § be the
kernel ¢ — T, and H the connected analytic subgroup of G with Lie
algebra §. Then the mapping g — gx for ge G sufficiently close to e de-
fines a local morphism of law chunks of analytic operations of (G, G) to
(G, X). This morphism passes to the quotient (G, (G/H)) and gives local
isomorphism of (G, (G/HY) to (G, X).

ProposrrioN 1.7. Let G be an analytic group with Lie algebra g and
H be a connected analytic subgroup. Then the law chunk of analytic oper-
ation (G, (G/HY) is primitive if and only if the Lie algebra 5 of H is
maximal, among the Lie subalgebras < g.

Proof. If §) is not maximal, then let ¥ be a Lie algebra such that
h S £t g. The argument above shows there exists a morphism of law
chunks of analytic operation (G, (G/H))— (G, (G/K)) where K is the
connected analytic subgroup with Lie algebra . Hence (G, (G/H)') is im-
primitive. Conversely, if (G, (G/H)) is imprimitive, let (Id, f): (G, (G/H))
— (G, X) be a morphism of imprimitivity. Considering the image of f, we
may assume that f is a submersion hence (G, X) is generically transitive.
Therefore, we may assume, by lemma 1.6, that (G, X) = (G, (G/K)) for a
connected analytic subgroup K C G. Furthermore, we may assume that
f is defined at e ¢ (G/H)Y and is the natural projection (G/H)Y — (G/K) so
that the image f(e) of e c (G/H) coincides with ¢ e (G/K)'.

ProposiTiON 1.8. Let G be an analytic group and H be a closed analytic
subgroup of G. Let g, §) be the Lie algebra of the subgroup G and H
respectively. Then the following conditions are equivalent:

(1) The analytic operation (G, G/H) is primitive

(2) There exists no Lie subalgebra f of g such that H S f < g.

Proof. If we notice that (G, G/H) is (locally) isomorphic to (G, G/H®)
as a law chunk of analytic operation, the proposition follows from propo-
sition (1.7).

§2. Algebraic preliminaries

In this section, we work in the category of algebraic varieties. When
we speak of open subsets, they are open evidently in Zariski topology.
Everything works analogously as in the analytic case. The algebraic
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counterpart of imprimitivity is de Jonquiéres type transformation.

DerFinITION 2.1. Let G be an algebraic group germ and (G, X) a law
chunk of algebraic operation. We say that (G, X) is of de Jonquiéres type
if there exist a law chunk of algebraic operation (G’, X’), a morphism of
law chunks of algebraic operation (o, f) : (G, X) — (G’, X’) and a (Zariski)
open subset U of X such that fis regular on U and 0 < dim f(U) < dim X.

ProposiTioN 2.2. Let (G, X) be an algebraic operation. The following
conditions are equivalent:

(1) (G, X) is of de Jonquieres type.

(2) There exist an algebraic operation (G', X’), a morphism of law
chunks of algebraic operation (o, f): (G, X) — (G', X’) and a (Zariski) open
subset U of X such that f is regular on U and 0 < dimf(U) < dim X.

(8) There exist an algebraic operation (G', X’) with G’ = G, a morphism
of law chunks of algebraic operation (p,f) : (G, X) — (G, X’) and a (Zariski)
open subset U of X satisfying the same condition as in (2).

Proof. The implications (3) = (2) = (1) is trivial. The assertion (2)
follows from (1) by theorem 1, Rosenlicht [8]. To obtain (3) from (2), it
suffices to replace G’ by the image ¢(G).

If a law chunk of algebraic operation (G, X) is of de Jonquiéres type,
then its associated law chunk of analytic operation (G**, X°") is imprimitive.
As we shall see later there are law chunks of algebraic operations (G, X)
which are imprimitive but not of de Jonquiéres type. But when X is
rational and of dimension 3, most of imprimitive law chunks of algebraic
operation are of de Jonquiéres type.

TuHEOREM 2.3 (Rosenlicht [8]). Let G be an algebraic group and (G, X)
an algebraic operation. Then there exist an algebraic operation (G, X') and
a morphism (Idg, f): (G, X) — (G, X’) of law chunks of algebraic operation
and open set U C X such that f is generically surjective, f is regular on U
and such that, for any two points x, y € U, the image f(x) coincides with
f(y) if and only if x and y lie in an orbit of G.

The variety X’ is called the variety of G-orbits on X.

DerFinITION 2.4. We say that an algebraic operation (G, X) is gene-
rically intransitive if there does not exist an open orbit on X.

COROLLARY 2.5. Every generically intransitive algebraic operation on
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an algebraic variety of dimension > 2 is of de Jonquiéres type.
COROLLARY 2.6. Every algebraic operation of solvable linear algebraic
groups on an algebraic variety of dimension > 2 is of de Jonquiéres type.

Let G be a solvable algebraic group, X an algebraic variety of dimen-
sion > 2 and (G, X) be an algebraic operation. We may assume that the
map G — Aut X defined by the operation is injective. Since G is solvable,
there exists a normal subgroup H of dimension 1 of G. Since the dimen-
sion of X > 2, the operation (H, X) is generically intransitive. Since H
is normal, G interchanges the orbits of H on X. Hence, if X’ is the
variety of H-orbits on X, G acts rationally on X’ and we have natural
morphism (Idg, f) : (G, X) — (G, X’) of law chunks of algebraic operation.

The following proposition shows that we can globalize a local algebraic
morphism of homogeneous spaces.

ProrosiTioN 2.7 (Rosenlicht [8]). Let G,, G, be algebraic groups and
H,, H, be closed algebraic subgroups of G,, G,. Let(p,f): (G, Gi/H,)) — (G,
G,/H,) be a morphism of law chunks of algebraic operation. Then the
morphism ¢ and f are regular hence (¢,f) is a morphism of algebraic
operations.

CoroLLARY 2.8. Let G be an algebraic group. Let H be a closed alge-
braic subgroup. The algebraic operation (G, G/H) is of de Jonquiéres type
if and only if exists a closed algebraic subgroup K such that H C K and
dim H < dim K < dim G.

Proof of the Corollary. If (G, G/H) is of de Jonquiéres type, there
exists an algebraic operation (G, X’) and a morphism of law chunks of
algebraic operation (g, f): (G, G/H) — (G, X’) satisfying the conditions of
proposition 2.2. Since (G, G/H) is homogeneous, we may assume (G, X’)
is a homogeneous space (G, G/K). Then, by proposition 2.6, (p,f) is a
morphism of algebraic operations. Furthermore, we may assume the image
f(H) of the coset He G/H is Ke G/K. The subgroup K satisfies our
requirement. Conversely, if we have a closed algebraic subgroup K C G
such that H C K and dim H < dim K < dim G, the canonical map (G, G/H)
— (G, G/K) satisfies the condition of definition 2.1.

Remark 2.9. So far, it seems to us that everything works analogously
in analytic category and algebraic category: We have a correspondence;
imprimitive «<—> de Jonquiéres type
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proposition 1.5 <—> corollary 2.5
proposition 1.7 <> corollary 2.8.

But a big difference is that by Rosenlicht [8], a law chunk of algebraic
operation can be globalized but we can not always globalize a law chunk
of analytic operation. For example, there exist a simply connected analytic
group G with Lie algebra g and Lie subalgebra §) such that the analytic
subgroup corresponding to § is not closed.

§3. Algebraic subgroups in Cr,

The Cremona group Cr, of n-variables is, by definition, the group of
all the birational automorphisms of the projective space P,. The group
Cr, is isomorphic to the group of all the C-automorphisms of the rational
function field C(X,, - - -, X,) of n-variables. To give a connected algebraic
subgroup of the Cremona group Cr, is equivalent to give a connected
algebraic group G, an algebraic variety X, an algebraic operation (G, X),
a birational map f: X-.-—P, such that

(3.1) the map G — Aut X induced by the operation (G, X) is injective (See
Umemura [10], theorem 1 Rosenlicht [8]). If we replace the birational
map f by another birational map f’ of X to P,, we get another algebraic
subgroup G’ of Cr, conjugate to G. All the algebraic subgroups of Cr,
conjugate to G is obtained in this manner. Hence, there is a 1-1 cor-
respondence between the conjugacy classes of the connected algebraic
subgroup of Cr, and the local isomorphism classes of the algebraic oper-
ations (G, X) satisfying the condition (3.1) such that G is connected and
X is rational and n dimensional. As we are interested in the conjugacy
classes, we shall consider the algebraic operations. The following theorem
of Matsumura-Nishi estimates the dimension of the abelian part of an
algebraic group operating on a variety.

THEOREM 3.2 (Matsumura [7]). Let G be an algebraic group, (G, X) an
algebraic operation satisfying the condition (3.1) and G — A a surjective
homomorphism of G to an abelian variety A. Then, the dimension of A
< the irregularity of X (= the dimension of the Albanese variety of a non-
singular projective model of X).

When we treat rational varieties X, the irregularity is 0. It follows,
from the structure theorem of algebraic groups;
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CoroLLARY 3.3. Let (G,X) be an algebraic operation satisfying the
condition (38.1). If X is rational, the algebraic group G is linear.

ProposiTiON 3.4. Let G be a connected algebraic subgroup of Cr,.
The following are equivalent.

(1) There exists a primitive algebraic operation (G, X) realizing the
subgroup G C Cr,.

(2) Every algebraic operation realizing the subgroup G C Cr, is
primitive.

Proof. It is sufficient to show (2) is a consequence of (1). Let (G, X’)
be an algebraic operation realizing the subgroup G < Cr,. By corollary
p. 404 Rosenlicht [8], there exist open subsets U, U’ of X and X’ which
are invariant and a isomorphism of algebraic operations (G, U) — (G, U").
If (G, X’*") were imprimitive, (G*, U’*") would be imprimitive since the
Zariski open subset U’ is dense in the usual topology. Consequently (G",
U*") would be imprimitive.

CoroLLARY 3.5. Let G be a connected algebraic subgroup of Cr,. The
following are equivalent:

(1) There exists an imprimitive algebraic operation (G, X) realizing
the subgroup G C Cr,.

(2) Every algebraic operation realizing the subgroup G C Cr, is im-
primitive.

DeriniTION 3.6. Let G be a connected algebraic subgroup of Cr,. The
subgroup is said to be primitive (resp. imprimitive) if it satisfies the con-
ditions of proposition (3.4) (resp. corollary (3.5)).

THEOREM 3.7. Let G be a connected algebraic group, X a rational
variety of dimension 3 and (G, X) an algebraic operation satisfying the
condition (3.1). If (G, X) is imprimitive and the dimension of G > 4, then
(G, X) is of de Jonquiéres type.

Proof. By proposition 1.2, corollary 3.3 corollary 2.5 and corollary
2.6 we may assume that G is linear, (G, X) has an open orbit and G is
not solvable. Then, the algebraic operation (G, X) is birationally isomor-
phic to a homogeneous space (G, G/H), hence we can assume (G, X) is a
homogeneous space (G, G/H). It is sufficient to show by Corollary 2.8 that
there exists an algebraic subgroup H’ such that (a) HZ H' < G, dim H
< dim H'.
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LemMA 3.8. Let N + {e} be a normal subgroup of G. Then, the sub-
group N is not contained in H.

Proof of the lemma. In fact if N C H, for ge G we have NgH = gNH
= gH. The subgroup N operates trivially on G/H, which contradicts the
hypothesis that (G, G/H) satisfies the condition 3.1.

It follows from the lemma that if IV == {e} is a closed connected normal
algebraic subgroup of G, then HN is a closed algebraic subgroup of G
such that H C HN, dim H < dim HN, since the connected component
(HN) = H°N® = H°N. Hence moreover if HN #* G, the subgroup HN
satisfies the condition of corollary 2.8. Therefore, we may (and do) assume
that, (3.9) for any connected normal algebraic subgroup N + {e}, we have
NH = G. We study two cases separately.

Case (a). The group G is not semi-simple.
Let R be the radical of G and R, the unipotent part of R. The sub-
groups R and R, are connected and normal in G.

Subcase (a-1). R, + {e}.

Let Z be the center of R,. Since R, + {e}, the dimension of Z is
positive. Let Z° be the connected component of Z. Since R, is normal,
the center Z is normal in G. Therefore Z is normal in G. It follows
from our hypothesis (3.9) that Z°H = G. The group Z° is connected, com-
mutative and unipotent. Hence, the group Z° is isomorphic to G’ for
certain positive integer r. The equality Z°H = G shows that the com-
mutative algebraic group Z° operates on G/H transitively. The variety
Z°|H N Z° is isomorphic to G/H. Since the operation (Z°, H/H N Z°) = (Z°,
G/H) satisfies the condition (3.1) and Z° is abelian, the intersection H N Z°
reduces to e. It follows that G = Z°H is the semi-direct product. Let g,
3, b be the Lie algebras of G, Z, H respectively. Then g =3®D} as a
vector space. The imprimitivity of the operation (G, G/H) is equivalent
that the Lie subalgebra §j C g is not maximal by proposition 1.8. Hence
there exists a proper Lie subalgebra f of g such that ) C f Cg. This is
equivalent to say that there exists a proper linear subspace 0 == a & 3 such
that a is invariant through the adjoint action of §j. Since Z° is isomorphic
to G (in fact r = 3), the analytic subgroup A corresponding to a is alge-
braic. The group A is invariant by ad(H). Hence the subgroup AH
satisfies our requirement.
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Subcase (a-2). R, = {e}.

Then the radical R is a torus G, and G is reductive. Then the radical
R coincides with the center of G. From our assumption (3.9), G = RH
= G,H. It follows from our hypothesis (3.1) r = 3. An algebraic subgroup

K = G,H satisfies the condition of corollary 2.8. Now it remains to ex-
amine

Case (b). The group G is semi-simple.

Let «: G — G be the universal covering of G. Then it is known that
G and « are algebraic (théoréme 10, Chap. 8, Serre [7]). In fact « is finite.
We identify by « the Lie algebras of G and G. Let H be the inverse
image a"!(H). Then evidently the variety G/H is isomorphic to G/H. It
is sufficient to construct an algebraic subgroup K’ — G such that H S K’
< G, dim H < dimK’. For, the image a(K") satisfy the condition of corollary
2.8 since « is finite. The operation (G, G/H) does not satisfy the condition
(3.1) but the kernel of the homomorphism G — Aut (G/H) is the kernel of
a which is finite. Let N be a connected normal subgroup of positive
dimension of G. Then by the same argument as at the biginning of the
proof of the theorem, we may assume

3.9y G = NH; the group N acts transitively on G/]\N/'.

By proposition 1.8, the imprimitivity of the operation (G, G/H) shows that
the Lie subalgebra § C g of H (resp. H) in G (resp. G) is not maximal.
Let f be a Lie subalgebra of g such that § £ ¥ & g. Since the dimension
of G/H is 3, the dimension of the vector space g/f is 1 or 2.

Subcase (b-1). There exists a Lie subalgebra f C g such that y C f C
g, dimg/f = 1.

Lemma 3.10. The Lie subalgebra ¥ is algebraic; there exists a connected
algebraic subgroup K c G whose Lie algebra is f.

Proof of the lemma. It follows from proposition 1.8 a law chunk
(G, X’) of analytic operation and a morphism of law chunks of analytic
operation (g, f) : (G, G/N) — (@', X’) such that the dimension of X’ = 1 and
the image f has positive dimension. By Lie [6], any one dimensional law
chunk of analytic operation is considered as a sub-law chunk of the analytic
operation (PGL,, P)). Hence, we may assume (G’, X’) = (PGL,, P,) = (PGL,,
PGL,/B) where B is a Borel subgroup of PGL,. The subgroup B is alge-
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braic. Further, since (G, G/H) and (PGL,, P,) are homogeneous spaces, we
may assume that f is defined at the coset H e G/H and the image f(H) is
the coset B € PGL,/B. Since Gis simply connected, the local homomorphism
¢ can be extended to a homomorphism of analytic groups, which is also
denoted by ¢. Set ¢,; g — 8l, denote the Lie algebra homomorphism
induced by ¢ and 0 be the Lie algebra of B. Then the inverse image
p3'0(=¥) is the Lie algebra of the inverse image ¢~(B) which is algebraic,
since ¢ is algebraic by théoréme 10, Chap. 8, Serre [9]. qg.ed.

Remark 3.11. Since g is semi-simple, ¢, :g— 8[, is surjective, the
inclusion § C f implies H° < K.

Let K be the connected component of the kernel of ¢. Since dim G
> 4> dim 3l,, the dimension of N is positive. The N-orbits on G/H are
contained in the fibres of the canonical morphism G/FI" — é/lz = P, hence
they are at most of dimension < 2. On the other hand the N-orbits on
G/H are the images of the N orbits on G/H® by the canonical morphism
G/H*— G/H. Since the morphism G/H°— G/H is finite, the N-orbits on
G/H are at most of dimension 2. Hence the operation of N on G/H is
not transitive. Subcase (b-1) never happens under the hypotheses (3.9).

Subcase (b-2). There does not exist any Lie subalgebra { such that
HCtS g, dimg/f=1. But there exists a Lie subalgebra [ such that
hol Qg dimg/l =2

This condition shows by proposition 1.8 that there exists a primitive
law chunk of analytic of operation (G’, X’) and a morphism of law chunks
of analytic operations (p, f) : (G, G/H*") — (G, X’) such that ¢ induces a
surjective morphism of Lie algebras of G and G'. By Lie [6], we know
all the primitive operation of dimension 2. Namely, the law chunk of
analytic operation (G, X’) is (locally isomorphic to) one of the following:

(i) The full projective group (PGL,, P,)

(i1) The affine transformation group (TA,, A4,)

(iii) The special affine transformation group (STA,, A,).

(affine transformations with determinant = 1).

This shows, in particular the law chunks of analytic operation (G’, X’)
can be extended to global analytic operations. Notice also the analytic
operations (i), (ii), (iii) are algebraic.

LemMA 3.12. The law chunk of analytic operation (G, X') is locally
isomorphic to (PGL,, P,).
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Proof of the lemma. Since the morphism of analytic group germs ¢
induces a surjective morphism of Lie algebras and the Lie group G is
semi-simple, the Lie group G’ is semi-simple. The Lie groups TA, and
STA, are not semi-simple. Hence the law chunk of analytic operation
(@, X’) is locally isomorphic to (PGL,, P,). g.e.d.

Now we have a morphism of law chunks of analytic operation (g, f):
(G, G/H**) — (PGL,, P,). Since G is a simply connected, the morphism
¢ is not only a morphism of analytic group germs but also a morphism
of analytic groups. Let P be a parabolic subgroup of PGL, consisting of

L I

matrices (0 * *) e PGL, hence (PGL,, P,) ~ (PGL,, PGL,/P). Since we are
0 % =

dealing with homogeneous spaces, we may assume that the local morphism

f is defined at the coset He G/H and the image f(H) is the coset Pe P,
Let 3 be the Lie subalgebra of P and ¢, : g — 8!, be the homomorphism
of Lie algebras induced by ¢. The Lie subalgebra ! of g coincides with
07'3). By théoreme 10, Chap. 8, Serre [9], the morphism ¢ is algebraic.
Hence the algebraic subgroup ¢ '(P) of G corresponds to the Lie sub-
algebra [ = ¢3'(3). Putting L= o Y(P), we have H° c L because there is
an inclusion of Lie subalgebras §j C . Now let f’ be the canonical pro-
jection G/H® — G/L = Glo™'(P) ~ PGL,/P ~ P,. The map f’ is a morphism
of algebraic variety é/ﬁ ® onto P,. Then, we have a morphism of algebraic
operations (g, ) : (C~}, G/FI % — (PGL,, P,). There is a canonical morphism
of algebraic operations (Id, g) : (G, G/H®) — (G, G/H) induced by the inclu-
sion H° C H. The morphism g of algebraic varieties is finite since H is

algebraic.
We have a following diagram;
@, Gy 22, (PoL, P
d,
(G, G/H)

The morphism (g, f) can not be factorized by (¢, g) in the category of the
algebraic operations but we can complete the diagram above to a commu-
tative diagram locally and analytically:

@, @iy -2, (PeLy, Py
Id, an
td, @D

(G (GIEY")
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As the morphism ¢ is surjective, dim G > dim PGL, = 8. Let us first study
the case dim G >8. Then the kernel of ¢ has positive dimension. Let
N + {e} denote the connected component of the kernel of . Then N leaves
fixed all the fibres of f. Hence the connected normal subgroup N of
positive dimension does not act transitively. Since the projection g: G/H"
— @/ﬁ is finite, N does not act transitively on é/ﬁ which contradicts
our hypothesis (3.9). This subcase with dim G > 8 can not occur under
the hypotheses (3.9). It remains to treat the case dim G =8. Then, the
Lie algebra g is isomorphic to 3[; hence G = SL,, We may assume that
the morphism ¢ : SL, = G— PGL, = SL,/center of SL, is the canonical

¥k %
projection. The Lie subalgebra [ consists of the matrices (0 * *> The
0 % x
Lie algebra § is a subalgebra of [.

LeMMA 3.13. Assume G = SL,. Then one of the following assertions

is true.
(1) The Lie subalgebra Y is parabolic in g.

(2) The Lie subalgebra Y coincides with {
F
0
0

0 =
Proof of the lemma. Putting 1 = {(O 0
00

we get an exact sequence;

3.14) 0~—>n——a—>[—ﬁ~>g’——>0.

Since dimn = 2, dim§ = 5, dim ! = 6, we have either

(i) The Lie algebra ) N n is one dimensional or

(ii) ncCh.
Let us show the first case does not occur. If dim§ N n = 1, then SH) = g.
The Lie algebra % N n is invariant by ¢’. But this is impossible because
1 is an irreducible g-module. If n C Y, the image S(5) is a Lie subalgebra
of dimension 3 of g¢’. Hence the Lie algebra p(f) is one of the following;

000 x 0 0\
0 x x|eg’y, <{O N e€g’s where a is a Borel subalgebra of gl,. It
0 % x 0 /

follows from this that the Lie algebra § coincides with one of the following;

0 * x * k%
{(O * *) eéfs}, {0 a )e,@[s}. The following lemma completes the
0 % x 0

proof of the theorem.
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LemMa 3.15. If dim G = SL,, then the algebraic subgroup H c SL, is

T S

contained in the parabolic subgroup L = {[0 x x}e SL,".
0 * x }
Proof of the lemma. By the inclusion of Lie subalgebras §h C !, we
have H°Cc L. If we are in the first case of Lemma 3.13, then it is well

known that a parabolic subgroup is connected hence H=H'c L. Inthe
1 % =%

second case of lemma 3.13, H = {(O * *) € SLS}. Let us assume H & L.
0 * x

Then there exists an element (Z) X) eSL, of H, acC, v, ' weC* AcGL,

10

0 -
with w =+ 0. For any Be SL,, a matrix (O B ) belongs to H hence the
0

product (1 B) (; Av) = (Ba w Bl;l) e H varing Be SL,, Bw can be any

non-zero vector C? Consider the canonical map

X Xig X X1
o:HH'—> H/HN L C SLi/L = P,; | %01 X3 Xp3|} = | x| € P,
X31 X3z Xy X31

The calculation above shows that the image go(I:I/ﬁ") is not finite which
is a contradiction since H is an algebraic group.

CoroLLARY 3.16.1. Let (G, G/H) be an algebraic homogeneous space
satisfying the condition (3.1) such that G/H is rational and of dimension 3.
If dim G > 4 and (G, G/H) is imprimitive, then there is a closed (algebraic)
subgroup K © G such that dim H < dim K and K/H is irreducible.

Proof. We have only to check the connectedness of K/H. Let us
examine the proof of the theorem. If G is solvable, then we have{,’é con-
nected normal N subgroup of dimension 1. Then it is sufficient to put
K = HN. The variety K/H = HN/H = N/N N H is irreducible. In case
(a), we have shown that there exists a connected normal subgroup N such
that K = HN. Hence for the same reason as above, the variety K/H is
irreducible. In case (b), we work with G rather than G. In this case it
is sufficient to check in G. In the cases (b-1) and (b-2) with dim G > 8,
we found a connected normal subgroup as above. In the case (b-2) with
G = SL, we have shown that H is contained in the connected subgroup
L. Hence the variety L/H is irreducible.
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In the proof of the theorem, when we studied case (a-1) and (a-2),
we did not use the hypothesis that dim X = 3, dim G > 4. Hence we have,

CoroLLARY 3.16.2. Let G be a connected algebraic group, X a rational
variety and (G, X) an algebraic operation satisfying the condition (3.1). If
(G, X) is imprimitive and G is not semi-simple, then (G, X) is of de Jonquiéres
type.

We ask whether in Cr, there is an imprimitive operation which is
not of de Jonquiéres type.

By theorem 3.7, it is sufficient to study the imprimitive algebraic
operations (G, X) with dim G < 3. If G is solvable, the algebraic operation
(G, X) is of de Jonquiéres type by corollary 2.6. Since an algebraic group
of dimension < 2 is solvable, the algebraic operation (G,X) is of de
Jonquieres type if dim G < 2. Thus we have to examine the operations
(G, X) such that G is semi-simple and of dimension 3, i.e. G is isomorphic
to SL, or SO,. Moreover by corollary 2.5, (G, X) is of de Jonquiéres type
if (G, X) is not generically transitive. Therefore it remains to study only
the homogeneous spaces (G, G/H) where G is SL, or SO, Since the
dimension of G and G/H coincide, H is a finite subgroup of G. For any
finite subgroup H of G (= SL,, SO,), (G**, G/H*") is isomorphic to (SLg",
SLs™) as a law chunk of analytic operation. Therefore by proposition 1.7,
(G, G/H) is imprimitive. We know all the finite subgroups in G. Since
there is a morphism of degree 2 of SL, onto SO,, all the finite subgroups
of SO, are the images of finite subgroups of SL,.

ProposrtioN 3.17 (Blichfeldt [1]). A finite subgroup I' of SL, is con-
Jjugate to one of the following;

(A) Cyclic group.
g
0 ™

(B) Dihedral group. A subgroup generated by

e:e“i/N,mzo,l,---,N—l},N=1,2,3,--..

(iem 0 >’ < ’ 1>’ e = e where N=1,23, ..
0 +e7/7 \-1 0

(C) Tetrahedral group. A subgroup generated by

Coor Calonk (o 2
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(D) Octahedral group. A subgroup generated by

((—1+i)/2 (—1+i)/2) ((1+i)/«/7 0 )
a+92 (—1-92)"° 0 a-pwe/l

(E) Icosahedral group. A subgroup generated by the tetrahedral group
and

i/2 B —ir _1—v5 1445
(—‘B-iy —1/2> where p= = ="

Lemma 3.18. Let I' be a finite subgroup of the algebraic group G which
is isomorphic to SL, or SO,. Then the quotient variety G|I" is rational.

Proof. Let B be a Borel subgroup of G. Then the quotient variety
B\G is a projective rational curve hence P,. We have a following commu-
tative diagram;

G— G’
R, e
BG->Baor-v.
The morphism % : G—B\G is a principal B-bundle. Since I" is finite, the
set F = {xe B\G|xg = x for some gel', g x e} is closed. When G = SL,,
we may assume that the intersection of I with the center Z = {+ I} of
SL, reduces to the unit element since if I" O Z, considering the isogeny
¢ : SL, — SL,/Z ~ SO,, we get SL,/" ~ SO,/o(I"). It follows from this as-
sumption I' operates effectively on B\G = P! hence F ¢ B\G = P'. The
group I" operates on U = B\G — F freely and f is étale on U. Let X =
h-}(U), then the group I' operates freely on the principal B-bundle A : X
— U. By the descent theory, X/I' — U/I" is a principal B-bundle and X/I"
is an open subset of G/I'. Since B is solvable, the principal B-bundle
X/I' — U|I' is locally trivial for the Zariski topology. Thus X/I" is bira-
tional to BX(U/I"). Since B = G,,-G,, B is rational and (U/I') is rational
by the Liiroth theorem. Therefore X/I" is rational hence G/I" is rational.

Lemma 3.19. Let I' be a finite subgroup of SL,. An algebraic operation
(SL,, SL,|T") is of de Jonquiéres type if I' is conjugate to one of the finite
subgroups (A), (B).

Proof. We may assume that I" is one of the finite subgroups (A), (B).

If I is cyclic, the cyclic groups I' is contained in K = {(8’ 2_,) 'a € C*}.
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The natural projection (SL,, SL,/I") — (SL,, SL,/K) shows that (SL,, SL,/I")
is of de Jonquiéres type. If I' is dihedral, I” is contained in a algebraic
subgroup generated by (g 2_1>, (_(1) (1)>, a € C*. The same argument shows
that (SL,, SL,/I") is of de Jonquiéres type.

Lemma 3.20. Let I' be a finite subgroup of SL,. An algebraic oper-
ation (SL,, SL,/I") is not of de Jonquiéres type if I" is conjugate to one of
the finite subgroups (C), (D), (E).

Proof. We may assume that I” is one of the finite subgroups (C), (D),
(E). 1t is sufficient to show that there is no proper algebraic subgroup
K of positive dimension containing [', by corollary 2.8, Suppose that
there exists such a K. Let f be the Lie algebra of K. The Lie subalgebra

f is conjugate to {(g _2)‘(160}, {(8 g)lbec} or {(g _2>la,beC}.
(8.21) Assume that dimf = 2.

Then, { is conjugate to {(g __2) !a, be C}. Then K is a Borel subgroup.

As the algebraic subgroup K is conjugate to {(8 2_1) acC* be C}, I is
conjugate to a subgroup of triangular matrices. This shows that the
inclusion I" c SL, is not an irreducible representation. This is a contra-
diction. Since I' is not contained in any two dimensional subgroup, I” is

contained in the normalizer of a one-dimensional subgroup.

(3.22) Assume ! is conjugate to {(8 g)lbe C}.

The normalizer of the Lie subalgebra {(g 8) ‘ be C} is a Borel subalgebra

consisting of all the upper triangular matrices of 8(,., Thus, I" is contained
in a Borel subgroup. This is impossible as we have shown in (3.21).

__2) l ac C}. The connected compo-

ae C*}. The normalizer N of T is

a subgroup generated by 7T and (__(1) (1))

(8.23) Assume f is conjugate to {(g

nent K° is conjugate to T = {(8 2_1>

We have an exact sequence;
1—>T—>N—>Z2Z—0.

Since the group I" is a subgroup of N and I" is not cyclic, there exist a
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finite cyclic group A and an exact sequence;
1—A—>T-—>Z]2Z —>0.

If we put Z = {+ L}, Z < I and I'/Z is isomorphic to %,, &, or U; according
as I' is tetrahedral, octahedral or icosahedral. (Blichfeldt [1]). Since these
groups are not cyclic, we have an exact sequence

1—>B-—TI|Z-—>Z]2Z —0,

where B is a finite cyclic group. But the permutation groups %,, &, U,
can not be an extension of Z/2Z by a cyclic group.

LemMa 3.24. Let I' be a finite subgroup of SL,. Let n : SL, — SO, be
a covering morphism of degree 2. Then, an algebraic operation (SL,, SL,/I")
is of de Jonquiéres type if and only if (SO, SO,/x(I")) is of de Jonquiéres
type.

Proof. It is sufficient by corollary 2.8 to consider the image and the
inverse image of algebraic subgroups containing I” or =(I").

(3.25) Here is a complete list of imprimitive algebraic operations which
are not of de Jonquiéres type;

(SL,, SL,/I"), (SO,, SO,/z(I")) where I'" is the tetrahedral octahedral or
icosahedral subgroup of SL,.

Among the algebraic operations in (3.25), only (SO,, SO,/=(I")) satisfies
the condition (3.1). Therefore,

THEOREM 3.26. Every imprimitive connected algebraic group G in Cr,
is conjugate to one of the following algegraic operations.

(A) de Jonquiéres type operations

B) (SO, SO,/I") where I' is the tetrahedral, the octahedral or the
icosahedral subgroup of SQO..

LEmmA 8.27. The algebraic operation (SO,, SO,/z(I")) is not contained

in a primitive algebraic operation of Cr, if I' is either octahedral or icosa-
hedral.

Proof. Every primitive algebraic operation is contained in (PGL,, Py)
or (PGL;, quadric CP,) by [10]. Suppose that (SO,, SO,/x(I")) is an algebraic
suboperation of (PGL,, P,). The algebraic operation (PGL,, P;) are linearized;
this is the projectification of a linear representations of SL,. Therefore,
there is a linear representation p: SL, — SL, = SL(E) and a linear sub-
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space L C E of dimension 1 such that, for ge SL,, g belongs to I if and
only if p(g)(L) C L. In particular if ge I', then p(g)L C L. The SL,-module
E is the direct sum of irreducible SL,-modules of dimension < 4, i.e. vector
spaces of the homogeneous polynomials of 2 variables of degree < 3. But
the group I' has no semi-invariant of degree < 3 (neunter Abschnitt,
Weber [11]). Hence, the operation (SO,, SO,/z(I")) is not an algebraic sub-
operation of (PGL,, P,). Assume now that (SO, SO,/I") is an algebraic
suboperation of (PSO;, quadric C P). It follows that (SO, SO,/I') is an
algebraic suboperation of (PGLy, P;). The same argument as above shows
that I' has a semi-invariant of degree < 4. This is impossible for the
same reason as above.

ProposiTioN 3.28. Let I' be the tetrahedral subgroup of SL,. Then
the algebraic operation (SO,, SO,/z(I")) is an algebraic suboperation of (SO,
quadric C P,).

Proof. Let f= apxi + 4a,x3x, + 6a,x2x; 4+ 4a.x,x% + a,x;5.

Then, i = 2(a,a, — 4a,a, -+ 3al) is invariant if we make a substitution

X X
(x;) . A(x;) . AeSL,,

p. 135, Clebsch [3]. By p. 275, Weber [11], @, = x! + 24/ — 3 &2 + xiis in-
variant by I'. Let us work on the projective space P, = P(E) where E is
the vector space of homogeneous polynomials in x,, x, of degree 4. Then
SL, operates on E hence on P(E). Since there is no proper algebraic
subgroup of positive dimension containing I’ and since the tetrahedral
group and icosahedral group have no semi-invariant of degree < 4, the
SL,-orbit of @, ¢ P(E) is isomorphic to SL,/I". We shall determine the
defining equation of the closure X in P(E). Since X is of dimension 3,
X is defined by a homogeneous polynomial in a,, a,, - - -, @. Since for the
polynomial @,, i = 0 and i is invariant, i is a homogeneous polynomial in
@, @y, - - -, @, vanishing on X. Hence, X is a non-singular quadric in P,
Therefore (SO,, SO,/z(I")) is an algebraic suboperation of (SO;, quadric CP,)
By summing up what we have done, we get

THEOREM 3.29. A connected algebraic subgroup of the Cremona group
Cr, of three variables is conjugate to one of the following algebraic operations.
(1) Primitive operations
(PGL,, P,)), (PSO,, quadric CP,).
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(2) Imprimitive operations

(A) de Jonquiéres type operations
B) (SO, SO,/I") where I' is octahedral or icosahedral subgroup
of SO,.

There is no inclusion among the operations in (1) and (2-B).
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