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MAXIMAL ALGEBRAIC SUBGROUPS OF THE CREMONA GROUP
OF THREE VARIABLES

IMPRIMITIVE ALGEBRAIC SUBGROUPS OF
EXCEPTIONAL TYPE

HIROSHI UMEMURA

Enriques and Fano [4], [5] classified all the maximal connected alge-
braic subgroups of Cr3. Our aim is to give modern and rigorous proofs to
their results. In [10], we studied the primitive subgroups. In this paper,
we deal with exceptional imprimitive groups. The imprimitivity is an
analytic notion. The natural translation of the imprimitivity in algebraic
geometry is the de Jonquieres type operation (definition (2.1)). Every de
Jonquieres type operation is imprimitive. However, the difference of these
notions is subtle. The imprimitive algebraic operations in Cr3 which are
not of de Jonquieres type are rather exceptional; there are only 3 such
operations (theorem (3.26)). This paper together with [10] recovers all the
results on Cr3 of Enriques and Fano [4]. It remains only to reconstruct
Fano's classification [5] of the de Jonquieres type operations, which shall
be done in our forthcoming paper.

Our technique is rather old; the classification of 3 dimensional primi-
tive operations, a very easy part of invariant theory which are of 19th
century, combined with the theory of algebraic groups and transformation
spaces of A. Weil. As the 4 dimensional primitive law chunks of analytic
operations are classified, our method can be applied to the 4 dimensional
Cremona group Cr4. We use the notations and the conventions of [10].
Therefore all manifolds, analytic groups, algebraic varieties, etc. are defined
over C. The transformation spaces X of analytic or algebraic law chunk
or operation (G, X) are connected. However, a differences lies in the
language that we employ. Here is our French-English dictionary:
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French

groupuscule

morceau de loi d'operation

English

group germ
law chunk of operation

§ 1. Analytic preliminaries

We supply § 1 of [10]. We recall known facts and nothing is new in

this section. We work in the category of the complex manifolds. All

manifolds, analytic groups, etc. are analytic over C. For the definitions

of analytic group germ and law chunk of analytic operation, we refer to

[10].

DEFINITION 1.1. Let g be an Lie algebra and X a (connected) manifold.

A homomorphism a of Lie algebra g to the Lie algebra H°(X, Tx) of the

holomorphic vector fields on X is called an infinitesimal operation of g

on X. An infinitesimal operation is denoted by (g, X) without making a

precise. Let (g7, X') be another infinitesimal operation defined by cd\ g' ->

H°(X\ Tx,). A morphism (φ, f) of infinitesimal operations of (g, X) to (g', Xf)

consists of a morphism of Lie algebras φ: g —> g' and a morphism / of a

non-empty open subset of X to Xf such that f*a(D) = a'(φ{D)).

Let G be a analytic group germ, g its Lie algebra and X a manifold.

Let (G, X) be an law chunk of analytic operation. As we have seen in

[10], we can associate to (G, X) an infinitesimal operation of g on X. We

have a converse (corollaire 1, Ch. Ill, §5, n°7, Bourbaki [2]).

PROPOSITION 1.2. Suppose that X is paracompact. Let a : g -> H°(X, Tx)

be an infinitesimal operation of g on X. Then, there exists a unique law

chunk of analytic operation (G, X) such that the infinitesimal operation

associated to (G, X) is a.

When we consider law chunks, we are in local questions. Hence the

hypothesis that X is paracompact is not a serious condition. Proposition

1.2 and the following proposition show that to consider law chunk is

equivalent to consider infinitesimal operations.

PROPOSITION 1.3. Let (G, X), (G', X') be law chunks of analytic operation

and (g, X), (g', X') their infinitesimal operations. We have Hom law c h u n k s

((G, X), (G\ Xf)) ~ Hθm i n f l n l t e S i m ai operations^, %)> (&> -X"0)

See proposition 11, Ch. Ill, §4, n°7, Bourbaki [2].

Let a: g -> H°(X, Tx) be an infinitesimal operation. Let V be the sub-
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set of X consisting of x e X such that dim a(q)x is maximal. Then V is

an open set and X — V is an analytic set.

DEFINITION 1.4. Let (g, X) be an infinitesimal operation. We say that

(g, X) is generically transitive if there exists a point xeX such that a($)x =

Tx. The infinitesimal operation (g, X) is said to be generically intransitive

if (g, X) is not generically transitive. A law chunk of analytic operation

is generically transitive (resp. intransitive) by definition if its associated

infinitesimal operation is generically transitive (resp. intransitive). For

the definition of primitive (resp. imprimitive) law chunks we refer to § 1

in [10].

PROPOSITION 1.5. If (G,X) is generically intransitive and dimX> 2,
(G, X) is imprimitive.

Proof. The morphism a : g -> H\X, Tx) defines a system of vector
fields. On a non-empty open subset U of X, α(g)| C7 is a differential system
satisfying the integrability condition. Hence by the Frobenius theorem,
there exists locally the quotient W of X by the operation of G. Therefore,
we have a morphism of infinitesimal operations (g, X) -* (0, W) and the
dim W is equal to d = dimX— dimαr(g)(x) xeU. Hence, we get a mor-
phism of law chunks of analytic operation (G, X) -> (E, W) where E is the
unit group by proposition 1.3. This shows (G, X) is imprimitive.

Now we study the generically transitive case. Let G be an analytic
group and g its Lie algebra. Let H be a connected analytic subgroup of
G. The subgroup H is not necessarily closed and the quotient space G/H
does not always exist. But it exists locally by the Frobenius theorem.
In fact, H operates on G from the right and this operation defines on G
a differential system satisfying the integrability condition. Hence by the
Frobenius theorem the quotient space exists locally around the unit ele-
ment e. We denote this local quotient space by (G/H)'. The operation
from the left of G on G itself leaves this differential system invariant.
Hence, G operates locally on (G/Hy. We get a law chunk of analytic
operation (G, (G/H)'). The law chunk of analytic operation (G, (G/H)') is
uniquely determined up to local isomorphism.

LEMMA 1.6. Let G be an analytic group, X a manifold and (G, X)

be a generically transitive law chunk of analytic operation. Then there

exists an analytic subgroup H of G such that (G, X) is locally isomorphic
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to (G, (G/ff)').

Proof. Take a point xe X such that qx is equal to Tx. Let ζ be the

kernel g -> Tx and ϋΓ the connected analytic subgroup of G with Lie

algebra ϊj. Then the mapping g >-+ gx for ^ e G sufficiently close to e de-

fines a local morphism of law chunks of analytic operations of (G, G) to

(G, X). This morphism passes to the quotient (G, {GjH)f) and gives local

isomorphism of (G, (G/tf)') to (G, X).

PROPOSITION 1.7. Let G be an analytic group with Lie algebra g and

H be a connected analytic subgroup. Then the law chunk of analytic oper-

ation (G, (G/iϋΓ)') is primitive if and only if the Lie algebra § of H is

maximal, among the Lie subalgebras Q g.

Proof If ϊ) is not maximal, then let ϊ be a Lie algebra such that

ζ £ ϊ £ g. The argument above shows there exists a morphism of law

chunks of analytic operation (G, (G/tf)') -> (G, (G/K)') where K is the

connected analytic subgroup with Lie algebra ϊ. Hence (G, (G/H)') is im-

primitive. Conversely, if (G, (G/H)') is imprimitive, let (Id,/): (G,(GIH)')

—> (G, X) be a morphism of imprimitivity. Considering the image of /, we

may assume that / is a submersion hence (G, X) is generically transitive.

Therefore, we may assume, by lemma 1.6, that (G, X) = (G, (GjK)f) for a

connected analytic subgroup K C G. Furthermore, we may assume that

/ is defined at e e {GjH)' and is the natural projection (G/HY -> (G/K)' so

that the image /(e) of e e (G/ίf)' coincides with e e (GjK)'.

PROPOSITION 1.8. Let G be an analytic group and H be a closed analytic

subgroup of G. Let g, ζ be the Lie algebra of the subgroup G and H

respectively. Then the following conditions are equivalent:

( 1 ) The analytic operation (G, G/H) is primitive

( 2 ) There exists no Lie subalgebra ϊ of g such that ϊ) Q ϊ Q g.

Proof. If we notice that (G, G/H) is (locally) isomorphic to (G, G/ίί0)

as a law chunk of analytic operation, the proposition follows from propo-

sition (1.7).

§2. Algebraic preliminaries

In this section, we work in the category of algebraic varieties. When

we speak of open subsets, they are open evidently in Zariski topology.

Everything works analogously as in the analytic case. The algebraic
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counterpart of imprimitivity is de Jonquieres type transformation.

DEFINITION 2.1. Let G be an algebraic group germ and (G, X) a law

chunk of algebraic operation. We say that (G, X) is of de Jonquieres type

if there exist a law chunk of algebraic operation (G'? X'), a morphism of

law chunks of algebraic operation (<p, f): (G, X) -> (G\ X') and a (Zariski)

open subset U of X such that / is regular on U and 0 < dim f(U) < dim X.

PROPOSITION 2.2. Let (G, X) be an algebraic operation. The following

conditions are equivalent:

( 1 ) (G, X) is of de Jonquieres type.

( 2 ) There exist an algebraic operation (G', X'), a morphism of law

chunks of algebraic operation (φ, f) : (G, X) -» (G7, Xf) and a (Zariski) open

subset U of X such that f is regular on U and 0 < dim/(?7) < dimX

(3 ) There exist an algebraic operation (Gf, X') with Gf — G,a morphism

of law chunks of algebraic operation (φ, f) : (G, X) -> (G', X') and a (Zariski)

open subset U of X satisfying the same condition as in (2).

Proof. The implications (3) d> (2) φ (1) is trivial. The assertion (2)

follows from (1) by theorem 1, Rosenlicht [8]. To obtain (3) from (2), it

suffices to replace Gf by the image φ(G).

If a law chunk of algebraic operation (G, X) is of de Jonquieres type,

then its associated law chunk of analytic operation (Gan, Xan) is imprimitive.

As we shall see later there are law chunks of algebraic operations (G, X)

which are imprimitive but not of de Jonquieres type. But when X is

rational and of dimension 3, most of imprimitive law chunks of algebraic

operation are of de Jonquieres type.

THEOREM 2.3 (Rosenlicht [8]). Let G be an algebraic group and (G, X)

an algebraic operation. Then there exist an algebraic operation (G, Xf) and

a morphism (IdG, / ) : (G, X") -> (G, Xf) of law chunks of algebraic operation

and open set U c X such that f is generίcally surjective, f is regular on U

and such that, for any two points x, y e U, the image f(x) coincides with

f(y) if and only if x and y lie in an orbit of G.

The variety Xr is called the variety of G-orbits on X.

DEFINITION 2.4. We say that an algebraic operation (G, X) is gene-

rically intransitive if there does not exist an open orbit on X.

COROLLARY 2.5. Every generically intransitive algebraic operation on
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an algebraic variety of dimension > 2 is of de Jonquieres type.

COROLLARY 2.6. Every algebraic operation of solvable linear algebraic

groups on an algebraic variety of dimension > 2 is of de Jonquieres type.

Let G be a solvable algebraic group, X an algebraic variety of dimen-

sion > 2 and (G, X) be an algebraic operation. We may assume that the

map G -> Aut X defined by the operation is injective. Since G is solvable,

there exists a normal subgroup H of dimension 1 of G. Since the dimen-

sion of X > 2, the operation (H, X) is generically intransitive. Since H

is normal, G interchanges the orbits of H on X. Hence, if Xf is the

variety of iϊ-orbits on X, G acts rationally on Xr and we have natural

morphism (IdG, / ) : (G, X) -> (G, X') of law chunks of algebraic operation.

The following proposition shows that we can globalize a local algebraic

morphism of homogeneous spaces.

PROPOSITION 2.7 (Rosenlicht [8]). Let Gu G2 be algebraic groups and

Hu H2 be closed algebraic subgroups of Gu G2. Let (φ, f) : (Gu GJH^ —> (G2,

G2/H2) be a morphism of law chunks of algebraic operation. Then the

morphism φ and f are regular hence (φ,f) is a morphism of algebraic

operations.

COROLLARY 2.8. Let G be an algebraic group. Let H be a closed alge-

braic subgroup. The algebraic operation (G, G/H) is of de Jonquieres type

if and only if exists a closed algebraic subgroup K such that H C K and

dim H < dim K < dim G.

Proof of the Corollary. If (G, G/H) is of de Jonquieres type, there

exists an algebraic operation (G, Xf) and a morphism of law chunks of

algebraic operation (φ, f) : (G, GjH) —• (G, X') satisfying the conditions of

proposition 2.2. Since (G, GjH) is homogeneous, we may assume (G, X')

is a homogeneous space (G, G/K). Then, by proposition 2.6, (φ, f) is a

morphism of algebraic operations. Furthermore, we may assume the image

f(H) of the coset HeG/H is KeG/K. The subgroup K satisfies our

requirement. Conversely, if we have a closed algebraic subgroup K c G

such that H c K and dim H < dim K < dim G, the canonical map (G, GjH)

—> (G, G/K) satisfies the condition of definition 2.1.

Remark 2.9. So far, it seems to us that everything works analogously

in analytic category and algebraic category: We have a correspondence;

imprimitive <—> de Jonquieres type
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proposition 1.5 <—> corollary 2.5

proposition 1.7 <—> corollary 2.8.

But a big difference is that by Rosenlicht [8], a law chunk of algebraic

operation can be globalized but we can not always globalize a law chunk

of analytic operation. For example, there exist a simply connected analytic

group G with Lie algebra g and Lie subalgebra ζ such that the analytic

subgroup corresponding to ζ is not closed.

§3. Algebraic subgroups in Cr3

The Cremona group Crn of ^-variables is, by definition, the group of

all the birational automorphisms of the protective space Pn. The group

Crw is isomorphic to the group of all the C-automorphisms of the rational

function field C(XU , Xn) of ^-variables. To give a connected algebraic

subgroup of the Cremona group Cτn is equivalent to give a connected

algebraic group G, an algebraic variety X, an algebraic operation (G, X),

a birational map f:X > -+Pn such that

(3.1) the map G ->AutX induced by the operation (G, X) is injective (See

Umemura [10], theorem 1 Rosenlicht [8]). If we replace the birational

map / by another birational map f of X to Pn, we get another algebraic

subgroup Gf of CrTC conjugate to G. All the algebraic subgroups of Crn

conjugate to G is obtained in this manner. Hence, there is a 1-1 cor-

respondence between the conjugacy classes of the connected algebraic

subgroup of Crn and the local isomorphism classes of the algebraic oper-

ations (G, X) satisfying the condition (3.1) such that G is connected and

X is rational and n dimensional. As we are interested in the conjugacy

classes, we shall consider the algebraic operations. The following theorem

of Matsumura-Nishi estimates the dimension of the abelian part of an

algebraic group operating on a variety.

THEOREM 3.2 (Matsumura [7]). Let G be an algebraic group, (G, X) an

algebraic operation satisfying the condition (3.1) and G -> A a surjective

homomorphίsm of G to an abelian variety A. Then, the dimension of A

< the irregularity of X ( = the dimension of the Albanese variety of a non-

singular projectίve model of X).

When we treat rational varieties X, the irregularity is 0. It follows,

from the structure theorem of algebraic groups;
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COROLLARY 3.3. Let (G, -X") be an algebraic operation satisfying the

condition (3.1). If X is rational, the algebraic group G is linear.

PROPOSITION 3.4. Let G be a connected algebraic subgroup of Crn.

The following are equivalent

( 1 ) There exists a primitive algebraic operation (G, X) realizing the

subgroup G c Crn.

( 2 ) Every algebraic operation realizing the subgroup G c Crw is

primitive.

Proof. It is sufficient to show (2) is a consequence of (1). Let (G, Xr)

be an algebraic operation realizing the subgroup G c Crn. By corollary

p. 404 Rosenlicht [8], there exist open subsets U, Uf of X and X' which

are invariant and a isomorphism of algebraic operations (G, U) -> (G, Uf).

If (Gan, X/an) were imprimitive, (Gan, U/an) would be imprimitive since the

Zariski open subset U' is dense in the usual topology. Consequently (Gan,

Uan) would be imprimitive.

COROLLARY 3.5. Let G be a connected algebraic subgroup of Crw. The

following are equivalent:

( 1 ) There exists an imprimitive algebraic operation (G, X) realizing

the subgroup G c Crn.

( 2 ) Every algebraic operation realizing the subgroup G c Crw is im-

primitive.

DEFINITION 3.6. Let G be a connected algebraic subgroup of Crn. The

subgroup is said to be primitive (resp. imprimitive) if it satisfies the con-

ditions of proposition (3.4) (resp. corollary (3.5)).

THEOREM 3.7. Let G be a connected algebraic group, X a rational

variety of dimension 3 and (G, X) an algebraic operation satisfying the

condition (3.1). If (G, X) is imprimitive and the dimension of G > 4, then

(G, X) is of de Jonquίeres type.

Proof By proposition 1.2, corollary 3.3 corollary 2.5 and corollary

2.6 we may assume that G is linear, (G, X) has an open orbit and G is

not solvable. Then, the algebraic operation (G, X) is birationally isomor-

phic to a homogeneous space (G, G/H), hence we can assume (G, X) is a

homogeneous space (G, GjH). It is sufficient to show by Corollary 2.8 that

there exists an algebraic subgroup Hr such that (a) H QHr Q G, dim H

< d i m ϋ Γ / .
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LEMMA 3.8. Let N Φ {e} be a normal subgroup of G. Then, the sub-

group N is not contained in H.

Proof of the lemma. In fact if N c H, for g e G we have NgH = gNH

= gH. The subgroup N operates trivially on G\H, which contradicts the

hypothesis that (G, GjH) satisfies the condition 3.1.

It follows from the lemma that if N Φ {e} is a closed connected normal

algebraic subgroup of G, then HN is a closed algebraic subgroup of G

such that H C HN, dim H < dim HN, since the connected component

(HN)° = H°N° = H°N. Hence moreover if HN Φ G, the subgroup HN

satisfies the condition of corollary 2.8. Therefore, we may (and do) assume

that, (3.9) for any connected normal algebraic subgroup N Φ {e}, we have

NH = G. We study two cases separately.

Case (a). The group G is not semi-simple.

Let R be the radical of G and Ru the unipotent part of R. The sub-

groups R and Ru are connected and normal in G.

Subcase (a-1). Ru Φ {e}.

Let Z be the center of Ru. Since Ru Φ {e}, the dimension of Z is

positive. Let Z° be the connected component of Z. Since Ru is normal,

the center Z is normal in G. Therefore Z is normal in G. It follows

from our hypothesis (3.9) that Z°H = G. The group Z° is connected, com-

mutative and unipotent. Hence, the group Z° is isomorphic to Gr

a for

certain positive integer r. The equality Z°H = G shows that the com-

mutative algebraic group Z° operates on G\H transitively. The variety

Z°IH (Ί Z° is isomorphic to G/H. Since the operation (Z°, H/H Π Z°) = (Z°,

G/H) satisfies the condition (3.1) and Z° is abelian, the intersection H Π Z°

reduces to e. It follows that G = Z°H is the semi-direct product. Let Q,

3, ζ be the Lie algebras of G, Z, ϋΓ respectively. Then g = 3 Θ I) as a

vector space. The imprimitivity of the operation (G, G/iϊ) is equivalent

that the Lie subalgebra ϊ) C g is not maximal by proposition 1.8. Hence

there exists a proper Lie subalgebra ϊ of g such that ϊ) c ϊ c g. This is

equivalent to say that there exists a proper linear subspace 0 Φ a Q 5 such

that α is invariant through the adjoint action of ΐ). Since Z° is isomorphic

to Gr

a (in fact r = 3), the analytic subgroup A corresponding to a is alge-

braic. The group A is invariant by ad(ίf). Hence the subgroup AH

satisfies our requirement.
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Subcase (a-2). Ru = {e}.

Then the radical R is a torus Gr

m and G is reductive. Then the radical

R coincides with the center of G. From our assumption (3.9), G = RH

= G^ίf. It follows from our hypothesis (3.1) r = 3. An algebraic subgroup

K = (7mfl" satisfies the condition of corollary 2.8. Now it remains to ex-

amine

Case (b). The group G is semi-simple.

Let a : G -> G be the universal covering of G. Then it is known that

G and a are algebraic (theoreme 10, Chap. 8, Serre [7]). In fact a is finite.

We identify by a the Lie algebras of G and G. Let H be the inverse

image a'XH). Then evidently the variety G/H is isomorphic to G\H. It

is sufficient to construct an algebraic subgroup K! c G such that H Q K'

£ G, dim if < dim i?'. For, the image α(KΌ satisfy the condition of corollary

2.8 since a is finite. The operation (G, GjH) does not satisfy the condition

(3.1) but the kernel of the homomorphism G —> Ant(G/H) is the kernel of

a which is finite. Let ft be a connected normal subgroup of positive

dimension of G. Then by the same argument as at the biginning of the

proof of the theorem, we may assume

(3.9)' G = ftH; the group ft acts transitively on G/N.

By proposition 1.8, the imprimitivity of the operation (G, GjH) shows that

the Lie subalgebra ζ c g of H (resp. H) in G (resp. G) is not maximal.

Let ϊ be a Lie subalgebra of g such that Ij Q I Q g. Since the dimension

of GjH is 3, the dimension of the vector space g/ϊ is 1 or 2.

Subcase (b-1). There exists a Lie subalgebra f C g such that ζ C ϊ c

g, dim g/ϊ = 1.

LEMMA 3.10. The Lie subalgebra ϊ is algebraic; there exists a connected

algebraic subgroup K c G whose Lie algebra is ϊ.

Proof of the lemma. It follows from proposition 1.8 a law chunk

(G\ X') of analytic operation and a morphism of law chunks of analytic

operation (φ, f) : (G, GjN) -> (G', X7) such that the dimension of Xf = 1 and

the image / has positive dimension. By Lie [6], any one dimensional law

chunk of analytic operation is considered as a sub-law chunk of the analytic

operation (PGL2, Px). Hence, we may assume (G', X') = (PGL2, Pt) = (PGL2,

PGL2/B) where B is a Borel subgroup of PGL2. The subgroup B is alge-
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braic. Further, since (G, GjH) and (PGL2, P^ are homogeneous spaces, we

may assume that / is defined at the coset H e GjH and the image f(H) is

the coset B e PGL2jB. Since G is simply connected, the local homomorphism

φ can be extended to a homomorphism of analytic groups, which is also

denoted by φ. Set φ* g -> %l2 denote the Lie algebra homomorphism

induced by ψ and ft be the Lie algebra of B. Then the inverse image

φ~1ft(z=f) is the Lie algebra of the inverse image φ~\B) which is algebraic,

since φ is algebraic by theoreme 10, Chap. 8, Serre [9]. q.e.d.

Remark 3.11. Since g is semi-simple, φ* : g -> §>ϊ2 is surjective, the

inclusion ζ c ! implies H° C K.

Let ft be the connected component of the kernel of φ. Since dim G

> 4 > dim §ί2, the dimension of iV" is positive. The iV-orbits on GjH are

contained in the fibres of the canonical morphism GjH0 -> GjK = Pj hence

they are at most of dimension < 2. On the other hand the iV-orbits on

GjH are the images of the fj orbits on GjH° by the canonical morphism

GjH0 -> G/H. Since the morphism GjH0 -> G/AΓ is finite, the iV-orbits on

GjH are at most of dimension 2. Hence the operation of N on GjH is

not transitive. Subcase (b-1) never happens under the hypotheses (3.9)'.

Subcase (b-2). There does not exist any Lie subalgebra ϊ such that

ΐ) £ ϊ C G, dim g/ϊ = 1. But there exists a Lie subalgebra I such that

ϊ) C t £ g, dim β/t = 2.

This condition shows by proposition 1.8 that there exists a primitive

law chunk of analytic of operation (G', Xf) and a morphism of law chunks

of analytic operations (φ, f) : (Gαn, GjHan) -> (G', X7) such that 9 induces a

surjective morphism of Lie algebras of G and G'. By Lie [6], we know

all the primitive operation of dimension 2. Namely, the law chunk of

analytic operation (G', X7) is (locally isomorphic to) one of the following:

( i ) The full projective group (PGL3, P2)

(ii) The affine transformation group (TA2, A2)

(iii) The special affine transformation group (STA2, A2).

(affine transformations with determinant = 1).

This shows, in particular the law chunks of analytic operation (G', X')

can be extended to global analytic operations. Notice also the analytic

operations (i), (ii), (iii) are algebraic.

LEMMA 3.12. The law chunk of analytic operation (G', Xf) is locally

isomorphic to (PGL3, P2).
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Proof of the lemma. Since the morphism of analytic group germs φ

induces a surjective morphism of Lie algebras and the Lie group G is

semi-simple, the Lie group G/ is semi-simple. The Lie groups TAZ and

STA2 are not semi-simple. Hence the law chunk of analytic operation

(G\ X') is locally isomorphic to (PGL3, P2). q.e.d.

Now we have a morphism of law chunks of analytic operation (φ, f):

(Gan, GIHan) -* (PGLs, P2). Since G is a simply connected, the morphism

φ is not only a morphism of analytic group germs but also a morphism

of analytic groups. Let P be a parabolic subgroup of PGL3 consisting of

(# * *\
0 * * e PGL, hence (PGLZ, P2) ~ (PGLZ, PGLJP). Since we are
0 * */

dealing with homogeneous spaces, we may assume that the local morphism
/ is defined at the coset H e G/H and the image f(H) is the coset P e P2.

Let 3 be the Lie subalgebra of P and φ* : g -> §ϊs be the homomorphism

of Lie algebras induced by φ. The Lie subalgebra ϊ of g coincides with

φ^-Q!). By theoreme 10, Chap. 8, Serre [9], the morphism φ is algebraic.

Hence the algebraic subgroup φ~\P) of G corresponds to the Lie sub-

algebra [ = ^ϊXδ). Putting L = φ~ι(JP), we have H° c L because there is

an inclusion of Lie subalgebras ζ c ί . Now let Z7 be the canonical pro-

jection G/H° -» G/L = Glφ-\P) ~ PGLJP ~ P2. The map /' is a morphism

of algebraic variety G/H° onto P2. Then, we have a morphism of algebraic

operations (φ, f): (G, G/H°) -> (PGL3, P2). There is a canonical morphism

of algebraic operations (Id, g ) : (G, G/iϊ0) -> (G, G/#) induced by the inclu-

sion JH"0 a H. The morphism g of algebraic varieties is finite since H is

algebraic.

We have a following diagram;

(G, G/H°) ( P ' / } > (PGL3, fi)

I ( i d > § )

(G, G/fl)

The morphism (φ, f) can not be factorized by (ψ, g) in the category of the

algebraic operations but we can complete the diagram above to a commu-

tative diagram locally and analytically:

(Gan, (G/iί°)αn) (Ψ'n > {PGLT, P?)

I (id,*) »
(Gan,
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As the morphism φ is surjective, dim G > dim PGL3 = 8. Let us first study

the case dim G > 8. Then the kernel of φ has positive dimension. Let

iV" ψ {e} denote the connected component of the kernel of φ. Then flί leaves

fixed all the fibres of /'. Hence the connected normal subgroup N of

positive dimension does not act transitively. Since the projection g: GjH°

-> G/H is finite, ft does not act transitively on G/H which contradicts

our hypothesis (3.9)'. This subcase with dim G > 8 can not occur under

the hypotheses (3.9)'. It remains to treat the case dim (5 = 8. Then, the

Lie algebra g is isomorphic to £ί3 hence G = SL3. We may assume that

the morphism φ : SLZ = G —> PGL3 = SL3/center of SL3 is the canonical
/* * *\

projection. The Lie subalgebra I consists of the matrices 0 * * | . The
\0 * */

Lie algebra ϊj is a subalgebra of ί.

LEMMA 3.13. Assume G = SL3. ΓΛβλi one o/ Λ̂e following assertions

is true.

(1) The Lie subalgebra § is parabolic in g.
r/o

( 2 ) TΛβ Lie subalgebra I) coincides with < 0
l\0

f/0 * *\
Proo/ o/ the lemma. Putting n = < 0 0 0 e l

l\0 0 0/
we get an exact sequence;

(3.14) 0 • n ~ % I — > g7 • 0 .

Since dim n = 2, dim ζ = 5, dim I = 6, we have either

( i ) The Lie algebra ϊj Π n is one dimensional or

(ii) n c ζ .

Let us show the first case does not occur. If dim ϊj Π n = 1, then β(ly) — g.

The Lie algebra ϊj Π π is invariant by g;. But this is impossible because

n is an irreducible g-module. If n c 5, the image β(ίj) is a Lie subalgebra

of dimension 3 of gr. Hence the Lie algebra β(fy is one of the following;

f/0 0 0\ ) f/* 0 0\ )
l\0 * * j e g / > , < 0 \GQ>'\ where α is a Borel subalgebra of gl2. I t
l\0 * */ J l\0 α / J
follows from this that the Lie algebra ζ coincides with one of the following;
r/o * *\ w / * * *\ ]
< 10 * * I e §Γ3 >, < 10 e 3t3 >. The following lemma completes the
l\o * */ j l\o α / j
proof of the theorem.
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LEMMA 3.15. If dim G — SL3, then the algebraic subgroup H c SLZ is

contained in the parabolic subgroup L = < 10 * * r e SLΛ.

l\o * */ J
Proof of the lemma. By the inclusion of Lie subalgebras ίj c ί, we

have if0 C L. If we are in the first case of Lemma 3.13, then it is well
known that a parabolic subgroup is connected hence H = H° c L. In the

- ί/1 * *\ 1 - -
second case of lemma 3.13, £Γ° = < 0 * * j e SL3>. Let us assume H <χ L.

l\o * */ JThen there exists an element ί" Jj e SL8 of if, α e C, υ, ' w e C ' A e GL2

(
with w Φ 0. For any J3 e SL2, a matrix 0

\0

0 0\
belongs to H hence the

product ( βj Γ^ J[j = ί β ^ βAj e H varing B e SL2, ΰα; can be any

non-zero vector C2. Consider the canonical map

ψ : HIH° Π L c SL3/L = P2;

The calculation above shows that the image <p(H/H°) is not finite which
is a contradiction since H is an algebraic group.

COROLLARY 3.16.1. Let (G, GjH) be an algebraic homogeneous space
satisfying the condition (3.1) such that G/H is rational and of dimension 3.
// dim G > 4 and (G, G/H) is imprimίtive, then there is a closed (algebraic)
subgroup K £ G such that dim if < dim if and K/H is irreducible.

Proof. We have only to check the connectedness of K/H. Let us
examine the proof of the theorem. If G is solvable, then we have a con-
nected normal N subgroup of dimension 1. Then it is sufficient to put
K = HN. The variety K\H = HNjH = N/N Π H is irreducible. In case
(a), we have shown that there exists a connected normal subgroup N such
that K = HN. Hence for the same reason as above, the variety KjH is
irreducible. In case (b), we work with G rather than G. In this case it
is sufficient to check in G. In the cases (b-1) and (b-2) with dim G > 8,
we found a connected normal subgroup as above. In the case (b-2) with
G = SL3 we have shown that H is contained in the connected subgroup
L. Hence the variety LjH is irreducible.
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In the proof of the theorem, when we studied case (a-1) and (a-2),

we did not use the hypothesis that dim X = 3, dim G > 4. Hence we have,

COROLLARY 3.16.2. Let G be a connected algebraic group, X a rational

variety and (G, X) an algebraic operation satisfying the condition (3.1). If

(G, X) is imprimitive and G is not semi-simple, then (G, X) is of de Jonquieres

type.

We ask whether in Cr3 there is an imprimitive operation which is

not of de Jonquieres type.

By theorem 3.7, it is sufficient to study the imprimitive algebraic

operations (G, X) with dim G < 3. If G is solvable, the algebraic operation

(G, X) is of de Jonquieres type by corollary 2.6. Since an algebraic group

of dimension < 2 is solvable, the algebraic operation (G, X) is of de

Jonquieres type if dim G < 2. Thus we have to examine the operations

(G, X) such that G is semi-simple and of dimension 3, i.e. G is isomorphic

to SL2 or SOS. Moreover by corollary 2.5, (G, X) is of de Jonquieres type

if (G, X) is not generically transitive. Therefore it remains to study only

the homogeneous spaces (G, G/H) where G is SL2 or SO3. Since the

dimension of G and G/H coincide, H is a finite subgroup of G. For any

finite subgroup H of G ( = SL2, SO3), (Gan, GIHan) is isomorphic to (SL?,

SL%n) as a law chunk of analytic operation. Therefore by proposition 1.7,

(G, GjH) is imprimitive. We know all the finite subgroups in G. Since

there is a morphism of degree 2 of SL2 onto SO3, all the finite subgroups

of SO3 are the images of finite subgroups of SL2.

PROPOSITION 3.17 (Blichfeldt [1]). A finite subgroup Γ of SL2 is con-

jugate to one of the following;

(A) Cyclic group.

(B) Dihedral group. A subgroup generated by

(%'' ± ! - ) (_; 3- •=«••"" «*« »
(C) Tetrahedral group. A subgroup generated by

/( - 1 + 0/2 ( - 1 + 0/2\ (i 0 \
V (1 + 0/2 ( - 1 - 0/2/ ' Vθ - i)
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(D) Octahedral group. A subgroup generated by

/ ( - I + 0/2 ( - l + i)/2\ /(1 + 0//2" 0 \
V (1 + 0/2 ( - 1 - 0/2/ ' V 0 (1 - 0/VT/ '

(E) Icosahedral group. A subgroup generated by the tetrahedral group

and

( f/2 β-if) w h e r e β = JLΣLUL, γ = .
V - β - iγ - 1/2/ 4 ' 4

LEMMA 3.18. Lei Γ be a finite subgroup of the algebraic group G which

is isomorphίc to SL2 or SOZ. Then the quotient variety G/Γ is rational.

Proof. Let B be a Borel subgroup of G. Then the quotient variety

B\G is a projective rational curve hence Pt. We have a following commu-

tative diagram;

G >G/Γ

"I , I
The morphism Λ-: G->B\G is a principal B-bundle. Since Z7 is finite, the

set F = {xeB\G\xg = x for some g e f , ^ e } is closed. When G = SL2,

we may assume that the intersection of Γ with the center Z — {± J2} of

SL2 reduces to the unit element since if Γ 3 Z, considering the isogeny

φ\SU-> SL2/Z ~ SOZ, we get SL2/Γ - SOJφ(Γ). It follows from this as-

sumption Γ operates effectively on B\G = P1 hence F £ B\G = F1. The

group Γ operates on U — B\G — F freely and / is etale on U. Let X =

h~ι(U), then the group 71 operates freely on the principal B-bundle h : X

-> Ϊ7. By the descent theory, X//7 -> UjΓ is a principal B-bundle and XjΓ

is an open subset of G/Γ. Since B is solvable, the principal B-bundle

X/Γ —> Ϊ7/.Γ is locally trivial for the Zariski topology. Thus X/Γ is bira-

tional to Bχ(U/Γ). Since B = Gm Cα, JB is rational and (?7/Γ) is rational

by the Lύroth theorem. Therefore X/Γ is rational hence G/Γ is rational.

LEMMA 3.19. Let Γ be a finite subgroup of SL2. An algebraic operation

(SL2, SL2/Γ) is of de Jonquieres type if Γ is conjugate to one of the finite

subgroups (A), (B).

Proof. We may assume that Γ is one of the finite subgroups (A), (B).

If Γ is cyclic, the cyclic groups Γ is contained in K = <(? A \aeC*\.
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The natural projection (SL2, SL2/Γ) -> (SL2, SL2IK) shows that (SL2, SLJΓ)

is of de Jonquieres type. If Γ is dihedral, Γ is contained in a algebraic

subgroup generated by ί? _Λ ί - A, aeC*. The same argument shows

that (SL2, SL2jΓ) is of de Jonquieres type.

LEMMA 3.20. Let Γ be a finite subgroup of SL2. An algebraic oper-

ation (SL2, SL2/Γ) is not of de Jonquieres type if Γ is conjugate to one of

the finite subgroups (C), (D), (E).

Proof. We may assume that Γ is one of the finite subgroups (C), (D),

(E). It is sufficient to show that there is no proper algebraic subgroup

K of positive dimension containing Γ, by corollary 2.8. Suppose that

there exists such a K. Let ϊ be the Lie algebra of K. The Lie subalgebra

I is conjugate to {(j _ ° ) | α e c } , {(<> §\beή or {(« _§\a,beή.

(3.21) Assume that dim ϊ = 2.

Then, ί is conjugate to <(? _ ) α, 6eC>. Then if is a Borel subgroup.

As the algebraic subgroup K is conjugate to < (? _J α e C*, 6 e c\, Γ is

conjugate to a subgroup of triangular matrices. This shows that the

inclusion Γ c SL2 is not an irreducible representation. This is a contra-

diction. Since Γ is not contained in any two dimensional subgroup, Γ is

contained in the normalizer of a one-dimensional subgroup.

(3.22) Assume ϊ is conjugate to ί ^ bλ I b e c

The normalizer of the Lie subalgebra | ( Q Λ \beC> is a Borel subalgebra

consisting of all the upper triangular matrices of §ί2. Thus, Γ is contained

in a Borel subgroup. This is impossible as we have shown in (3.21).

(3.23) Assume ϊ is conjugate t o < ( ί _ J α e C L The connected compo-

nent K° is conjugate to Γ = ί(ίϊ °-ί)\ae C*\. The normalizer Nof Tis
l\v a / \ j

a subgroup generated by T and ( - Q].

We have an exact sequence;

1 > T > N > Z/2Z > 0 .

Since the group Γ is a subgroup of N and Γ is not cyclic, there exist a
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finite cyclic group A and an exact sequence;

1 > A > Γ > Z/2Z > 0 .

If we put Z = {± I2}, Z < Γ and ΓjZ is isomorphic to 2Ϊ4, ©4 or SI5 according

as Γ is tetrahedral, octahedral or icosahedral. (Blichfeldt [1]). Since these

groups are not cyclic, we have an exact sequence

1 y B > Γ/Z • Z/2Z > 0 ,

where B is a finite cyclic group. But the permutation groups 2ί4, ©4, 2ί5

can not be an extension of Z/2Z by a cyclic group.

LEMMA 3.24. Let Γ be a finite subgroup of SL2. Let π : SL2 -> SO3 be

a covering morphism of degree 2. Then, an algebraic operation (SL2, SL2jΓ)

is of de Jonquίeres type if and only if (SOZJ S03lπ(Γ)) is of de Jonquίeres

type.

Proof It is sufficient by corollary 2.8 to consider the image and the

inverse image of algebraic subgroups containing Γ or π(Γ).

(3.25) Here is a complete list of imprimitive algebraic operations which

are not of de Jonquieres type;

(SL2, SLJΓ), (SO3, SO3/π(Γ)) where Γ is the tetrahedral octahedral or

icosahedral subgroup of SL2.

Among the algebraic operations in (3.25), only (SO3, S03lπ(Γ)) satisfies

the condition (3.1). Therefore,

THEOREM 3.26. Every imprimitive connected algebraic group G in Cr3

is conjugate to one of the following algegraic operations.

(A) de Jonquieres type operations

(B) (SO3, SO3/Γ) where Γ is the tetrahedral, the octahedral or the

icosahedral subgroup of SO3.

LEMMA 3.27. The algebraic operation (SO3, SO3/π(Γ)) is not contained

in a primitive algebraic operation of Cr3 if Γ is either octahedral or icosa-

hedral.

Proof. Every primitive algebraic operation is contained in (PGLif P3)

or (PGL5, quadric CP4) by [10]. Suppose that (SO3, SO3/τr(Γ)) is an algebraic

suboperation of (PGL4, P3). The algebraic operation (PGLi9 P3) are linearized;

this is the projectification of a linear representations of SL4. Therefore,

there is a linear representation p : SL2 -> SL4 = SL(E) and a linear sub-
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space L c E of dimension 1 such that, for g e SL2, g belongs to Γ if and

only if ρ(g)(L) c L. In particular if g e Γ, then ρ(g)L c L. The SL2-module

i? is the direct sum of irreducible ιSL2-modules of dimension < 4, i.e. vector

spaces of the homogeneous polynomials of 2 variables of degree < 3. But

the group Γ has no semi-invariant of degree < 3 (neunter Abschnitt,

Weber [11]). Hence, the operation (SO3, SO3/π(Γ)) is not an algebraic sub-

operation of (PGLi9 P3). Assume now that (SO3, SOJΓ) is an algebraic

suboperation of (PSO5, quadric c P4). It follows that (SOZ, SOJΓ) is an

algebraic suboperation of (PGL5, P5). The same argument as above shows

that Γ has a semi-invariant of degree < 4. This is impossible for the

same reason as above.

PROPOSITION 3.28. Let Γ be the tetrahedral subgroup of SL2. Then

the algebraic operation (SO3, SOJπ(Γ)) is an algebraic suboperation of (SOb,

quadric c P4).

Proof. Let / = aQx\ + Aa^^ + 6a2xlxl + Aazxxx\ + a±x\.

Then, ί = 2(α0α4 — 4 ^ 3 + 3aξ) is invariant if we make a substitution

ΛeSL

p. 135, Clebsch [3]. By p. 275, Weber [11], Φ, = x\ + 2Λ/~^TX\X\ + x\ is in-

variant by Γ. Let us work on the projective space P4 = /*(#) where 1? is

the vector space of homogeneous polynomials in xu x2 of degree 4. Then

SL2 operates on E hence on P(E). Since there is no proper algebraic

subgroup of positive dimension containing Γ and since the tetrahedral

group and icosahedral group have no semi-invariant of degree < 4, the

SL2-orbit of Φι e P(E) is isomorphic to SLJΓ. We shall determine the

defining equation of the closure X in P(E). Since X is of dimension 3,

X is defined by a homogeneous polynomial in α0, aί9 , α6. Since for the

polynomial Φ19 i = 0 and i is invariant, i is a homogeneous polynomial in

α0, α1? , α6 vanishing on X. Hence, X is a non-singular quadric in P4.

Therefore (SOZ, SOJπ(Γ)) is an algebraic suboperation of (SO5, quadric CP4)

By summing up what we have done, we get

THEOREM 3.29. A connected algebraic subgroup of the Cremona group

Cr3 of three variables is conjugate to one of the following algebraic operations.

( 1 ) Primitive operations

s, quadric CP4).
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( 2 ) Imprimitive operations

(A) de Jonquieres type operations

(B) (SO3, SO3/Γ) where Γ is octahedral or icosahedral subgroup

of SO3.

There is no inclusion among the operations in (1) and (2-B).
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