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ON NON-ELLIPTIC BOUNDARY PROBLEMS

YOSHIO KATO

Introduction

The purpose of this paper is to study the boundary value problems
for the second order elliptic differential equation

( 1) AU= - ± dfafijU) + Σ bfiJJ +cU=F

in a bounded domain Ω in Rn (n >̂ 3) with the boundary condition

(2) BU = Σ"&U + βU = f

on the boundary Γ of Ω, where we assume that
1) for every x e Γ, the inequality

holds,
2) let (n^x), , nn(x)) be the exterior unit normal vector to Γ at x,

then the subset of Γ,

p — l r Λ P' V^ sy (r\n (r\ —

is a C°°-manifold of dimension n — 2,
3) at every point x e Γo, the n-vector (a^x), , an(x)) is not tangent

to Γo.
Here dt denotes djdxu ai3 is symmetric on Ω, and Γ is assumed to be

infinitely smooth and of dimension n — 1. We further assume that the
coefficients of the equations (1) and (2) are real-valued and infinitely
differentiable on Ω = Ω U Γ and Γ, respectively, and that there exists a
positive constant c0 such that
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(3) Σ«i,(x)ξtξj>co\ξ\*

holds for all x e Ώ and ξ e Rn.

This problem was investigated by Maljutov [6] on probability con-

siderations, by Egorov-Kondrat'ev [1] while they are developing some

ideas of Hδrmander [2], by Soga [7] and others. In the present paper we

shall try to solve the problem (l)-(2) by using the similar argument as

in [5].

If we set

<*'(*) = Σ (*i(x)nt(x),
i = l

the boundary condition (2) can be written in the form

(20 BU = af^~ + γ'U+βU = f
dn

with the suitable tangential vector field γ'. Using the conormal vector

field v = (vl9 - , vn) with

»j(x) = Σ atj(x)ni(x),
i = l

and setting

(4) —— = ao(x)-~- + ToU ( — - = 2 ] ^ _ _ J ,
an ov \ ov j=i dXj /

we can rewrite (20 as

(2") BU=a^- + γU+ βU = f
dv

with a — araQ and γ = a'γ0 + γ', where ao(x) is a positive C°°-function on

Γ and γ0 is also a tangential vector field. Assumptions 1), 2) and 3) yield

that a(x) vanishes only on Γo, that γ is transversal to Γo, and that the

boundary condition (2") is elliptic (i.e. satisfies the Lopatinsky condition)

on Γ except for Γo> that is, Γo is a singular manifold for the boundary

value problem (l)-(2). For the sake of simplicity, we assume that Γo

is connected. Following Egorov-Kondrat'ev we can then classify the

singular manifold Γo, by denoting Γ+(Γ_) = {xeΓ; a(x) > 0 (a(x) < 0)},

as follows;
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( I ) Γ_ = φ (i.e. a ^ 0 throughout Γ) or
Γ+ = φ (i.e. α ^ 0 throughout Γ),

(II) Γ+^φ, Γ_^ψφ and 7 is transversal from Γ _ to /\ on JPQ ,

(III) Γ+ ^ φ, Γ_ ^ φ and p is transversal from Γ+ to JΓ_ on Γo.

It is clear that JΓ0 is a closed manifold in case (II) or (III).
In Chapter 1, we reduce the boundary problem (l)-(2;/) to the

pseudo-differential equation (aS + γ + β)u = f on Γ (Proposition 1.2) and
introduce Hubert spaces in which solutions of the equation are seeked
by making use of the Lax-Milgram theorem. In Chapters 2, 3 and 4, we
consider the boundary conditions, according to cases (I), (II) and (III),
respectively. As in [5], we use the variational approach, and apply the
elliptic regularization. A special feature of the proofs is to introduce the
appropriate auxiliary functions h in the respective types (I), (II) and (III)
so that ha is positive on Γ\Γ0 and vanishes on Γθ9 etc. (see Lemmas 2.1
and 3.1), and to consider the equations Pu — f instead of the equation
(aS + γ + β)u = /, where P == h(aS + γ + β) in case (I), P = (aS + γ + β)h
in case (II) and P = h(aS + γ + β) in case (III). Fortunately, we can
choose in respective cases pseudo-differential operators H of order zero
so that (P + H)u = f are uniquely solvable for all / in some functional
spaces. If we set u = Kf, it can be proved that the equation Pu = f is
altered to the equation (1 — HK)g = f with u = Kg. In order to solve
the latter equation, it is sufficient to show that the operator HK is com-
pact (to apply the Riesz-Schauder theory).

In §§2.1, 3.1 and 4.1, we introduce h, H and treat (P + H)u = /.
The equation Pu = f is considered in §§ 2.2, 3.2 and 4.2. Sections 2.3, 3.3
and 4.3 are devoted to the uniqueness of solutions of Pu = /. Finally, in
§§ 2.4, 3.4 and 4.4, we return to the original problem (l)-(2) and prove
the uniqueness, the existence and the regularity.

For the more general case where the singular manifold Γo consists
of finite number of disjoint manifold of types (I), (II) and (III), we can
also formulate the similar results by virtue of the results obtained in the
respective types and their local character.

Recently, in [8] Winzell investigates the problem (l)-(2) (β — 0),
allowing Γo to be fairly complicated and to have a certain width.

Chapter 1. Preliminaries

1.0. Let Ω be a bounded domain of Rn with C°°-boundary Γ of dimen-
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sion rc — 1 and let A be the second order elliptic differential operator

described in Introduction. Here we assume that Ω is of the form Γ X (0,1)

near Γ and that A is defined and is elliptic in a larger domain Ωx with

C°°-boundary such that Ω d Ωx. Near Γ we choose a coordinate system

(x\ xn) such that xf e Γ and xn is a normal coordinate on x\ Let {α>Jf=1

be a finite open covering of Γ and κt be a C°°-coordinate transformation

y = / (̂x) such that ω* is mapped onto an open ball Bt in Jϊ^"1 with the

origin as center and ωt Π Γo onto {yι — 0} f] Bt if ωf Π Γo * 0, and such

that γ is transformed to 3/3yx on ω* such that ω* Π Γo ̂  ^. Let {Cjί-i be

a partition of unity subordinate to the covering {ωtγiatl such that ^(ζ;) = 0

in a neighborhood of ΓQ for all j .

Let Es (s: real) be a pseudo-differential operator on JS""1 defined by

(1.1) (Esύ)(y) = (2πy~n f

where

Λ(f )= f

Now i/s(Γ) is the usual Sobolev space with the norm

(8*0)

where, as well as in the below, v(y) denotes a function on Bj defined by

ΰ(y) = v(κ]\y)l veWfa)

and dσ is the Lebesgue measure on Γ.

1.1. Following [2], in a neighborhood of Γ we write the differential

operator A in (1) in the form A = Σ?=o AjDs

ni where Dn = i~Λdldxn (i =

V —1) and Aj is a differential operator of order 2 — j acting along the

parallel surface of Γ. Throughout this paper, we suppose the existence

of the Green kernel G (pseudo-differential operator on ΩJ of A for the

Dirichlet problem on Ωx. We denote by δ the surface measure on Γ.

Then according to [2, Sections 2.1 and 2.2], we can prove the following

PROPOSITION 1.1. (a) Let U be in HS(Ω) with real s so that A U= 0

in Ω. Then the restriction of D3

nU on Γ, Uj = D3

nU\Γy is well defined in
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HS_3_1/2(Γ) for j — 0,1, and U is written in the form

(1.2) U=i-it Σ GAj^MiuJ).

Furthermore, u0 and uγ satisfy

(1.3) Mo = QoUo + QiU, ,

where Qk(k — 0,1) are the pseudo-differential operators on Γ of order — k

defined by

(1.4) Qkv = i-1 Σ GA j+fc+1 Di(vδ)\Γ (k = 0,1).

(b) Lei Mj (j = 0,1) be in Hs_j_y2(Γ) (s real). If u0 and ux satisfy

(1.3), then the U given by (1.2) is a distribution in HS(Ω) such that AU = 0

in Ω, u0 = [/|Γ and wt = DnU\Γ. Moreover there exists a constant c > 0

5Mc/ι that

c^llC/IU ^ | |MO |U1 / 2 + H^IU^ ^ c||C/|U,

zi /ierβ || ||5)i? represents the norm in the usual Sobolev space HS(Ω).

(c) The Qt defined by (1.4) is actually elliptic and invertible, and the

operator

So = i-'QfKl - Qo)

is a pseudo-differential operator on Γ of order 1. Moreover there exist two

constants c[ > 0 and cr such that the inequality

(1.5)

holds for every φ e C°°(JΓ), where

(u, v) — \ uvdσ .

Proof. We refer to [2] for the proof of (a) and (b). Let π be a

pseudo-differential operator given by

π(φ) = G(φδ)\Γ , φeC~(Γ).

Then we can write

(1.6) Re(πφ, φ) = Re ί G(φδ) φδdx,
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noting that φδeH^φύ and G(φδ)eH1{Ω1). On the other hand, for any

/ e C 0 0 ^ ) , we have setting u = Gf

(1.7) Ref

with suitable constants c > 0, c' > 0. Let {/n}n=i be a sequence in

such that /w converges to φδ in H.X{Ω^) as τι—>oo. Applying (1.7) to f = fn

and letting τι to infinity, we obtain

Re ί CKφδ)-φδdx^c'Wφδ\U Ωl ^ c"I 11-1/2 >

with a constant c" > 0 independent of φ. It then follows from (1.6) that

the inequality

holds for every φ e C°°(Γ). This shows that π and hence Qx = i~ιπA2

are elliptic of order — 1 and invertible. Therefore the operator So =

i^QϊXl — Qo) is a pseudo-differential operator of order 1.

Now it easily follows that the principal symbol of So is given by

in a local coordinate system such that xn = 0 on Γ, if we denote by

τ+(x\ ξ') one root with positive imaginary part of the equation in t,

A2{x')f + A\{x\ ξ')t + A°0(x\ ξ0 = 0

where A\ and A°Q are the principal part of A^ and Ao with respect to ξ'f
respectively, of order 1 and 2. The inequality (1.5) immediately follows

from the fact that Re σQ(SQ) > 0.

1.2. Let ao(x) and γ0 be as given in (4) and set

S - ao(x)-\So - γ0).

Then it easily follows from (1.5) that there exist two constants cx > 0 and

M such that the inequality

( 1 # 8 ) Ώnΐ.QΛ A\ ^> n IIΛII2 _ 71/fll^l|2

holds for every φ e c°°(Γ). Moreover it follows that if U is in HS(Ω) and

satisfies AU = 0 in Ω, then u = U\Γ belongs to Hs_m(Γ) and dUjdv\Γ = Su,

and conversely if u is in Hs_ί/z(Γ), then there exists only one U in HS(Ω)
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such that AU — 0 in Ω, U\Γ = u and 3U/dv\Γ = Su. Thus we can prove

PROPOSITION 1.2. Solving in HS{Ω) the boundary problem (l)-(2) with

F — 0 is equivalent to finding solutions of the equation

(ocS + γ + β)u = f on Γ

in flr,_1/2(Γ).

It can be easily seen from (1.8) that the operator E = Re S + M (Re S

= (S + S*)/2) is formally self-adjoint and positive, where S* is the formally

adjoint of S. Hence there exists the square root θ of the closure of E

in L\Γ) and so we have

(1.9) ReS = θ2- M.

The θ is also regarded as a pseudo-differential operator of order 1/2 and

invertible. The norms ||0||i/2 and ||00||o are equivalent.

1.3. Let p be in C°°(Γ) so that p(x) ^ 0 on Γ. By %? and ^ 9 we

denote two Hubert spaces obtained by the completion of C°°(Γ) with

respect to the norms

(1.10) II

and

an)

respectively. It should be noted that ^p is isometric to the dual space

of %9 and that the multiplication mapping i ί κ φu with φ e C°°(Γ) is con-

tinuous on ΰU9 as well as on IF9.

Now let s be a real number. By %p

s and J^p we denote two Hubert

spaces obtained by the completion of C°°(Γ) with respect to the respective

norms

and

where T(

s

j)(j = 1, , £) are pseudo-differential operators on Γ of order s

( £ \ 1/2

Σj\\τ^uW + \\u\\lm)
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which are defined as follows. We can write the operator Es defined by

(1.1) in the form Es = fs — Fs where fs is properly supported, Fs has a

C°°-kernel and To is the identity, and further assume that for each j = 1,

• , £ there exists a compact subset Ks of Bό such that supp [Tsφ] C K3

for every φeC^iR71'1) whose support is contained in the compact set

supp [ζj(y)] of Bj. A pseudo-differential operator T[j) on Γ of order s is

defined by

(112) (T<»u)(x) ~ ί f&a)Mx))' Xeωj

\L.XΔJ {1 s U)\X) — \
y 0 , x & o)j

for each j = 1, , £.

It is easily seen that °llp = <%ξ and !FP — J^J, since T^u = ζόu. We

can further prove

PROPOSITION 1.3. For all real s,

is valid with the continuous injections.

Proof. First we note that there exist positive constants cl9 c2 such

that for all u e C°°(Γ)

r * " 1 I I 7 / 1 1 <Z I l l / y l l l <C r I I 7 7 I I r ~ 1 l l 7 y l l < Γ H I i y l l K < Γ r I I 7 7 I I
c i II u \ \ o ^ I I I u \ \ \ ^ c i l l w l l i / 2 > C 2 I I 2 * I I - 1 / 2 ^ I l l ^ l l l ^ C 2 l l ^ l l o

Then it easily follows that <%p

s 3 HS+1/2(Γ) and ^ p 3 HS(Γ) with continuous

injections. Now for u e C°°(Γ)9 we have

(1.13) ||κ||ϊ ^ const, ( g || Γ«>M|B + ||tt| |ϊ.1 / 2) ^ const.|||M|||Ϊ

and

\\u\\2

s_1/2 £ c o n s t . ( Σ | | T ^ u \ l U 2 + \\u\l_,) ^ const.|||u\\\? .

These imply HS(Γ) D φ ; and fl,_1/2 3 J f̂, respectively. Q.E.D.

Finally we state two propositions.

PROPOSITION 1.4. Let L be a first order differential operator on Γ with

C°°-coefficients. Then for every s, there exists a constant Cs > 0 such that

\\L(P)u\\s+ί/2£Cs\\\u\\\s

holds for every u e C°°(Γ)9 where p is the function introduced at the begin-

ning of this section.
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Proof. Let u e C"{Γ). Then by (1.13) and Lemma A.2, we have

\\L{p)u\\s>w ^ C\\ΘL(P)u\\s £ cφjT^θLQήuW, + \\θL(P)u\\s.u^

^ c(Σl|IO>)0Γ«>u||o + III*!!,.,,, + ||L0,)«||.)

£ C ( Σ Ill^alll + II«II.-,Λ + ll£fc>)«ll.)

where C denotes the various positive constants, from which we can con-

clude the proposition. Q.E.D.

PROPOSITION 1.5. Let L be the same as in the preceding proposition.

Then for every s, there exists a constant Cs > 0 such that

| |U 2 < Cs\\u\\s

holds for every u e C™(Γ).

Proof. It is enough to prove the inequality

|| |ΓίiUL09)M)||r^ const. || M||,

for j = 1, , ί. For any v e C°°(Γ), we have

(Tl%2L{p)u, v) = (θ-'T^1/2L{p)u, θv)

= (0-1 Tϋ\/2u, L(p)θv) + ([θ-> TΆ/2, L(p)]u9 θv).

Hence by Lemma A.2

\(T£1/2L(p)uy v)\ ̂  const. (\\u\\s\WJθv\\Q + | |tt| |,.1 / 2 | |ι;| |o)

< const. ||u\\s\\\v\\\,

which completes the proof.

Chapter 2. The case of type (I)

2.0. In this chapter, we suppose the manifold Γo to be of type (I).

For simplicity, we assume a ^ 0 throughout Γ. This case was treated

also in [4], but the formulation has a little difference.

2.1. The following lemma is nothing but Lemma 4 in [4].

LEMMA 2.1. There exists a function h in ^(Γ) such that h> 0 on Γ

and
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iγ*(h) + hβ = 1 on Γo,

where γ* is the adjoint of γ defined by the identity

γU'Όdσ = u-γ*υdσ, u, veC°°(Γ).

Proof. First note that there exists C°°-function b(x) on Γ such that
γ* = — γ + b(x). Then, we have only to find h such that — γ(h) +
(b + 2β)h = 2 on Γo, which is written by the transformation y = fcj(x) as
- dh/dy, + (b + 2β)h = 2 in B7 when ωό Π Γ0^φ. Let h = h} be a posi-
tive solution of this equation. We then define as hj(x) = hjiic^x)). On
the other hand, on ωj such that ω5 Π Γo = ^, we define ^(x) = 1. The
function & = 2 > i Cĵ i on Γ is the desired one. Q.E.D.

We are going to consider the equation

h(aS +r + β)u = f

instead of treating the equation (aS + γ + β)u = /. Introducing a bilinear
form

Q[u, v] = (h(aS +γ + β)u, v),

we have by (1.9), after simple calculation,

Re Q[u, u] = (haθu, θu)

(2.1) + ((JBMfl- + [^ S^ 5*]

+ ((ir*(Λ) + A^M, M)

for u e CTO(Γ), where [A, B] = AB - BA. Since Λα > 0 on Γ\Γ0, it follows
from Lemma 2.1 that there exist a constant R > 0 such that

(2.2) £/*α: + ir*(Λ) + hβ > 0 on Γ .

Let i ϊ be a pseudo-differential operator on Γ defined by

H=Rha ' S~f
and set, for ε such that 0 < ε ^ 1,

Qλu, v] = Q[u, v] + (Hu, υ) + ε((S + M)u, v).

Then it easily follows from (1.9), (2.1) and (2.2) that there exists two
positive constants c2, C independent of ε such that



NON-ELLIPTIC BOUNDARY PROBLEMS 11

(ReQe[u, u]^c2\\\u\\f + e\\θu\\l

\\Qλu,v]\^C\\u\\m\\v\\1/2,

for all u,veH1/2(Γ). Here and throughout this section, |||zι||| and \\\f\\\'

mean norms (1.10) and (1.11), respectively, with p = ha. The Lax-Milgram

theorem guarantees the existence of ue e H1/2(Γ) for every fe C°°(Γ) such that

Q.[u.9ϋ\ = (f9ϋ), veHm(Γ).

Substitution υ = uε gives us the inequality

(2.4) \\\uε\\\£C0[

with a constant Co > 0 not depending on ε. Since uε is a weak solution

of the elliptic equation, we can assert ue e C°°(Γ)f which satisfies the

equation

(2.5) {h(aS +γ + β) + H+ε(S + M)}uε = / on Γ.

THEOREM 2.1. Let s^\. For every fe ^h

s

a we can find one and only

one u e °ll\a satisfying the equation

{h(aS + γ + β) + H}u = f on Γ .

Moreover the inequality

holds with a constant Cs > 0 independent of f

Proof First suppose fe C°°(Γ) and substitute u = T{

s

j)us (see (1.12)

for T[j)) in (2.3). Then we have, for j = 1, . , £, by (2.5)

^ e | | | 2 + ε\\θTPu.\\0 ̂  ReQε

= Re ({aS + γ + β + h-'H + εh~\S + M)}TiJ)ut9 hT™u.)

+ Re([{ •}, T ^ ] M .

+ Re(|j8 + /i"1// +

+ Re(X,+ Ys + Zj)

^ |||ΓίΛA-1/||Π||Γ^M.||| + Re(X, + 7, +

with

X, = QaS, T<»]u., AΓ«>«.),
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In this section, we denote generally by C various constants independent
of ε, 0 < ε <J 1, and write, for brevity, as u = ue and T = T(

S

J) in the below.
Since

X. = (e-*[S, T]uy θhaTu) + ([a, T]Su, hTu)

it easily follows from Lemmas A.I and A.2 that

\X,\ ̂  C||H||,-1/2(||λα0Γκ||o + \\f£θTu\\0 + \\u\\s_m).

Accordingly, for every δ > 0 there exists a constant Cδ > 0 such that

|X,|^S||V7^0Tu||§+ Cδ\\u\\U/2.

Similarly, since

YJ = (θ-1[etr1S,T]u,θhTu)f

we obtain

\Yj\ £ εC\\u\\s.ί/2\\θTu\\0 £ e(δ\\ΘTu\\l + Cδ\\u\\U/2) .

Thus we have

+ δε\\ΘTu\\l + Cδ\\u\\U/2

which implies

\\\Tu\f ^ C(\\\Tf\\r + \\u\\U/2

Consequently,

(2.6) llluHB ̂  C(|||/|||? + \\ufs.m + ±

Now we shall show the existence of a constant Cδ for any δ > 0 such
that

(2.7) Σ R e Z ^ 3 | | | t t | | | ; + C , | | κ | | ϊ . 1 / 2 .

On o)j such that ω3 f] Γo^ φf the operator [γ, T] is transformed by κ^to

Ί Γ 4. f - ^ - Γ 9 Fir 4. T 9 ^
J 3yi L3yi J ^
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since T = T[j) and [d/dyl9 Es] = 0. Hence we have

From the fact that γ(ζj) = 0 in some neighborhood of Γo, it follows by

(1.13) that

HKOII* £ C\\hau\\s £ C(f \\Thau\\0 + \\u\\s_1/2)

(2.8) ? . (
£ C[Σ\\haTu\\0 + | |w| | f-, / 8J.

Using the interpolation inequality, we can assert the existence of Cδ, for

any δ > 0, such that

| | r ( ζ > | | s ^ δΣ\\θhaTu\\0 + C,||u|| f_1/2.
i = l

On the other hand, on ω3 such that ω; Π Γo = φ we can immediately ob-

tain

Since ζj as well as γ(ζ3) vanishes near Γo, we can estimate \\γ(ζj)u\\s and

\ζjU\\s as in (2.8). Thus we can establish (2.7), and hence (2.6) becomes

[f s ^ 1/2, it then follows from (2.4) and the interpolation inequality that

for any δ > 0 there exists a constant Cδ > 0 such that

\\u\\s_1/2^δ\\\u\\\s+ Cδ\

which together with (2.9) implies the inequality

:2.io) \\\us\\\s £ co

for all s I> 1/2 with a constant Cs > 0 independent of ε and /, where we

3ut again u = uε.

By (2.10), we can choose a sequence εt > ε2 > —> 0 such that utf

converges in C°°(Γ). Let u be the limit function. Then we have from

;2.5) and (2.10)

VH)u = f on Γ

let fe^a(s JΞ> 1/2) and choose fj in C°°(Γ) so that fj-+f in tFh

s

a as
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j - * o o . We have just proved that, for each fj9 there exists UjeC^ζΓ)

satisfying (2.11) with u = uό and / = fό. It is not hard to prove that the

sequence us has a limit u belonging to %\a and satisfying (2.11).

To complete the proof, we must show the uniqueness. Let u be a

solution in °lί\a{s :> 1/2) of the equation {h(aS + γ + β) + H}u = 0 on Γ.

It follows from Proposition 1.3 that u e H1/2(Γ). Hence, by (2.3) with e = 0,

we have

0 = (h(aS + γ + β)u + Hu, u) = Q0[u, u] = c2\\\uψ.

This implies u = 0.

2.2. If we write the solution u in Theorem 2.1 as u = Kf, then K is

a continuous mapping of !Fh

s

a into ΦJ* (s ̂  1/2) and satisfies

(h(aS + γ + β) + H)K = 1 on jFf .

Proposition 1.3 guarantees that K is also a continuous mapping of HS(Γ)

(s ^ 1/2) into itself. Let / be in HS(Γ). If geHs(Γ) and satisfies

(2.12) (l-HK)g = f,

then u = Iζg satisfies

(2.13) h(aS+ γ + β)u = f.

Conversely, if ueHs(Γ) and satisfies (2.13), we have h(aS + γ + β)u + Hu

= f+Hu. Therefore u = K(f + Hu). Put g = f+ Hu. Then Λ(^S + γ

+ β)Kg = f. So we have (2.12). Thus it is enough to treat the equation

(2.12) in order to solve the equation (2.13). If geHs(Γ), then KgeW?.

Using Proposition 1.4, Lemmas A.I and A.2, we have HKge Hs+m(Γ).

Moreover it easily follows that HK is a continuous mapping of HS(Γ)

into HS+1/2(Γ). Accordingly, HK is a compact operator on HS(Γ). Applying

the Riesz-Schauder theory, we can establish the main theorem of this

section.

THEOREM 2.2. (i) Let s ^ 1/2 and fe HS(Γ). Then the equation (2.13)

admits a solution u e HS(Γ) if and only if f is orthogonal to a finite-dimen-

sional subspaces 2VS of HS(Γ), which has the same dimension as N = {ue

HS(Γ); (aS+ γ + β)u = 0}. (ii) Every solution u e Hs(Γ)(s ^ 1/2) of (2.13)

belongs to Ht(Γ) if fe Ht(Γ) with t > s.

Proof. For the proof of (i), see pp. 284-5 of [9]. So we shall prove
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only (ii). Let / be in Ht{Γ) with t > s. If u e HS(Γ) and satisfies (2.13),

then h(aS + γ + β)u + Hu = f + Hu. By Proposition 1.5 (p = ha), we have

H u e ^h

sίin. T h e r e f o r e u = Kf+ K H u e Ht(Γ) i f t^s + 1/2, a n d u e

HS+U2(Γ) if t > s + 1/2. If the later takes place, we have only to repeat

the above process. Q.E.D.

Remark 2.1. The dimension of N is independent of s. In fact, by

virtue of Theorem 2.2 (ii), we have N c C^iΓ).

2.3. We shall study the possibility of d imiV=0 in the preceding

theorem. For this purpose we first state a lemma which is similar to

Lemma 2 in [4]. Using Lemma 2.1, we can easily prove it.

LEMMA 2.2. We can find a function q(x) e C°°(Ω) satisfying

( i ) q(x) > 0 in Ω and q(x) = h(x)a(x) on Γ,

(ii) there exist two positive constants k and d such that

k dis (x, Γ) £ q(x) in Ωd = {xe Ώ; dis (x, Γ)< d},

(iii) the inequality

2 ov 2

holds on Γ with a constant c3 > 0.

Now we consider a bilinear form

B[U, V] = f (± atfltU djqV) + ± bidiU.~qV + c

+ h(γu + βu) vdσ ,
J r

with u = U\Γ and v = V\Γ. Integrating by part, we obtain

(2.14) B[U, V] =[ qAU Vdx + f hίa^ + γu + βu)-vdσ.
JΩ JΓ \ dp I

On the other hand, by (3) we have

ReJB[C7, U] = Re f qiΣa.jdjU-dJJ + Σb&U Π + cUU)dx
J Q

+ i . f ΣaiβtqdjiUtydx + f (—γ*(h) + hβ)u Udσ
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^ £l\\pdU\\lΩ+ [ (c - μ)\pUfdx + A ί A0q-\U\2dx
2 ' JΩ 2 Jo

J A 2 dv 2

where μ is a constant, p(x) = Vq(x)9

S,e = Σ f
.7 = 1 J

It then follows from Lemma 2.2 and Lemma A.3 that there exist two

constants c4 > 0 and λ0 such that

(2.15) ReB[U, U] ^ c4||p3E7|βfί, - λo\\pU\\lΩ + c8 | |κ|β

for all U e C°(Ώ).

Denote by Sλ the operator S corresponding to the operator Aλ = A

+ λ . Then we have

THEOREM 2.3. Let N(λ) = {ue HS(Γ)(s^ 1/2) (aSx + γ + β)u = 0}. Then

άimN(X) = 0 for all λ ^ λ0.

Proof. In view of Theorem 2.2 (ii), we can immediately prove that

Nλ c C°°(Γ). Let U be a C°°-solution of the Dirichlet problem; AλU = 0

in Ω and U = u on Γ with u e iV(Λ). From Proposition 1.2, it follows

adU/dv + γU+ βU = 0 on Γ. This implies U= 0, if we apply (2.14) and

(2.15) with this U. So we have u = 0.

2,4. Finally we return to the original problem (l)-(2). Corresponding

to Theorem 2.2, we can state

THEOREM 2.4. (i) Let s ^ 0 and (F,f) belong to HS(Ω) X Hs+m(Γ).

Then the problem

in Ω

, . _ , , _ _ , on Γ
dv

admits a solution Ue HS+1(Ω) if and only if (F,f) is orthogonal to a finite-

dimensional subspace of HS(Ω) x Hs+ί/2(Γ), and the space of solutions of

(2.16) with F = f=0 has the finite dimension, (ii) // (F, f) e Ht(Ω) X

Ht+1/2(Γ) (t> s ^ 0), every solution UeHs+1(Ω) of (2.15) belongs to Ht+ι{Ω\
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Proof, (i) Let V = VF be the unique solution in HS+2(Ω) of the

Dirichlet problem; AV = F in Ω and F = 0 o n Γ . Then 1/ = dV/dv\Γ is

in Hs+ί/2(Γ) and the inequality

(2.17) \\vf\\s+m^C\\V\\s+2,Ω^C\\F\\s,Ω

holds for every F e HS(Ω). Applying Theorem 2.2 (i), we can find a solution

ueHs+ί/2(Γ) of the equation

(2.18) (aS + γ + j8) u = / - αi/

if and only if /ι(/— αι/) is orthogonal to iV5+1/2.

Let u be a solution in Hs+ί/2(Γ) of (2.18). It then follows from Propo-

sitions 1.1 and 1.2 that a solution W of the Dirichlet problem, AW = 0

in β and W = w on Γ, satisfies

(2.19) a^- + γW + βW = / - αι/

on Γ. We can easily see that U = V + W satisfies (2.16). Conversely,

let UeHs+1(Ω) be a solution of the problem (2.16) and V = VF he the

same function as above. Then it follows that W= U — V satisfies AW

= 0 in Ω and (2.19). Hence u = W\Γ is in Hs+m(Γ) and satisfies (2.18).

Thus we showed the problem (2.16) admits a solution in HS+1(Ω) if and

only if h(f — aυ') is orthogonal to Ns+1/2, By (2.17), the linear mapping

(F, f) H->/-αϋ' is a continuous operator of HS(Ω) X Hs+ί/2(Γ) into H$+U2(Γ).

Hence there exists a finite number of linear functional Φt on HS(Ω) X

Hs+m(Γ) such that (2.16) admits a solution in Hs+ί(Ω) if and only if

φ.(F, f) = 0 for all i. Now if U satisfies (2.16) with F = 0 and/ = 0, then

we have (aS + γ + β)u — 0 (w = C/|Γ). These complete the proof of (i).

(ii) Let (F,f)eHt(Ω) x Ht+1/2(Γ) and U be a solution in Hs+ί(Ω) of

(2.16) Set W= U- V. Here V = VF and note that Ve HM(Ω). Then

a; = ψ | Γ satisfies (2.18), where / — at/ belongs to Ht+ί/2(Γ). According to

Theorem 2.2 (ii), we have w e Ht+1/2(Γ), which proves WeHt+1(Ω). Hence

UeHt+ί(Ω). Q.E.D.

As a corollary of Theorems 2.3 and 2.4, we can prove

THEOREM 2.5. Let λ0 be the number introduced in (2.15) and λ be any

real number such that λ^λQ. Then for every (F,f)eHs(Ω)χHs+1/2(Γ)

(s >̂ 0), we can find one and only one UeHs+ί(Ω) satisfying
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in Ω

< 2 2 0 > \a™- + rU+βU = f onΓ.
dv

Moreover the inequality

\\U\\,+ltΩ £ C9(\\F\\,,0 + \\f\UJ

holds with a suitable constant Cs > 0.

Proof. Let λ ;> λ0. Theorem 2.2 with S = Sλ and Theorem 2.3 guar-

antee that for every (F,f)eH£Ω) X Hs+ί/2(Γ) (s ̂  0), the equation (2.20)

has one and only one solution U in HS+1(Ω). Now we set W = U — V.

Then it follows that w = W\Γ satisfies (2.18) and is estimated by

\\w\\$+ί/2 £ c o n s t . H / - αι/ | | , + 1 / ί ^ const . ( | |F | | . f β + | | / % + 1 / 2 ) .

Therefore by (2.17), we have

l|tf||.+i.a ^ | | ^ | U + 1 ^ + \\W\\i+lt0 ^ const.(||F\\,%0 + \\W\\s+1/2),

which completes the proof.

Chapter 3. The case of type (II)

3.0. This chapter is devoted to the manifold Γo of type (II). Suppose

that Γo is a closed manifold which devides Γ into two open sets Γ_, Γ+

so that a < 0 on Γ_, a > 0 on Γ+ and a = 0 on Γo. We then consider

the boundary condition (2/7) with γ transversal from Γ_ to Γ+ on Γo.

3.1. After Lemma 2.1, we first introduce an auxiliary function h.

Note that this h is different from h in Lemma 2.1.

LEMMA 3.1. There exists a function h in C°°(Γ) such that

( i ) h<0 on Γ_, h>0 on Γ + and h = 0 on Γo,

(ii) γ(h) = 1 near Γo,

(iii) on ω; such that ^ (Ί Γo ^ ^, Λ(#) is transformed to y1 by ιcj9 i.e.

— Jι o n the ball Bj in R71'1 with the origin as center.

Proof. Setting y = ΛΓ/X), we define

Hx) = Σ U

where hό{x) = yx on ωj such t h a t ωά (Ί Γ o ^ φ, = 1 on α>, such t h a t α^ C
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Γ+ and = — 1 on ωό such that ω3 C Γ_. Then (i) and (iii) are obvious.

Since ^(ζ^) = 0 near Γo and γ{h3) = 1 on ωs for all j such that ωj Π Γo =*F

φ9 we have γ(h) = Σ]=λ ζtf(h^ = 1 near Γo, which prove (ii). Q.E.D.

Now we consider the equation

(aS + γ + β)hu = /

instead of (aS + γ + β)u = f. We can then obtain similar results as in

Theorems 2.1, 2.2 and 2.3. To do so, we introduce a bilinear form

Q[u, v] = ((haS +hγ + βo)u9 v),

where β0 is defined by

(aS + γ + β)h = haS + hγ + β0,

i.e., β0 = γ(h) + hβ + a[S, h]. By the same way as in (2.1), we have

Re Q[u, u] = (haθu, θu)

(3.1,

LEMMA 3.2. There exist two positive constants R and c such that

((Rha + ir(h) + \hb + hβ)u, u) - |(α[S, h]u, u)\ ̂  c\\ u\\l, u e C~(Γ),

where b is a C°°-function on Γ defined by γ* = —γ + 6.

Proof. Since Λα > 0 in Γ\Γ0, γ(h) = 1 on ΓQ and Λ = 0 on ΓQ, we

can find two positive constants Ro and c such that

hβ ^ 2c on Γ .

Accordingly, we have

I (((Bo + Rx)ha + iγ(h) + \hb + hβ)u, ύ)\ ̂  2C||M||J + Rx ^ ha\ufdσ

where V is a neighborhood of Γo and Rx is any positive constant. Taking

V as Vδ = {xeΓ; \a(x)\ < δ} for δ > 0, we can establish, for all M e C~(Γ\

(3.2)
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£ ^||u||β(ί||iί| |β + max\a\-\\u\\0>Γ_rι)
Γ

£ 2K0δ\\u\\l + ^ m a x M
4δ r

where Ko is positive constant such that

\\[S, h]u\\0 ̂  K0\\u\\0, ueC°°(Γ).

Choosing δ = c/2K0 and

4δmiτιΓ_Vδ(μh)

we can conclude the lemma, with R = Ro + Rlt Q.E.D.

Let H be a pseudo-differential operator on Γ defined by

H=Rha f
and set, for ε such that 0 < ε ^ 1,

Q.[u, v] = Q[u, v] + (Hu, v) + ε((S + M)u, v).

It then follows from (3.1) that

LRe Q,[u, u] = (haffu, θύ) + l(^f*{h) + k±JL + Rhcλu, u) + ε\\θu\\0

^ (haθu, θu) + ((Rha + —γ(h) + —Kb + hβ\u9 u\

Therefore, by Lemma 3.2 we have

<3.3) neQε[u, u] ^ (haθu,θu) + C||M||? + e\\θu\\l ^ c2|||ω|||2 +

with a suitable constant c2 > 0. Using the same argument as in § 2, we

can obtain uε e C°°(Γ) for every fe C°°(Γ) such that |||M.||| ^ C0|||/||Γ and

(3.4) {(aS + r + β)h + H+e(S+ M)}ue = / on Γ .

THEOREM 3.1. Let s ^ 1/2. For every fe ^h

s

a we can find one and only

one u e °tt\a satisfying the equation

{(aS +γ + β)h + H}u =f on Γ .

Moreover the inequality
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holds with a constant Cs > 0 independent of f.

Proof. Suppose fe C°°(Γ) and substitute u = T(

s

j)uε(s ^ 1/2) in (3.3),

which we write, for simplicity, as Tu in the below. If we go through the

same procedure as in the proof of Theorem 2.1, it follows from (3.4) that

for each j = 1, , ί

c,\\Tut + e\\ΘTu\\l ^ Re (Tf, Tu) + Re ([β0 + H + εM, T]u, Tu)

+ Re ([haS + hγ + εS, T]u, Tu)

^ |||Γ/||ΠUTa||| + Re(X, + Y, + Z3) + C\\u\U/2

with

Xs = ([haS, T]u, Tu)

7, = ([εS, T]u, Tu) ,

Zj = {[hγ, T]u, Tu)

and that for every δ > 0 there exists a constant Cδ > 0 such that

(3.5)

Cδ\\u\\U,

\Yj\ £ ε(δ\\θTu\\l + Cδ\\u\\U/2)

72

\(h[γ,T]u,Tu)\£δ\\\uWs+Cδ\\u\\U/2

from which we can easily deduce

(3.6) | | |κ| | |;.^ C(|||/|||;2 + \\u\\U/2 + ΈLeΣ([h, T]γu, Tu)).

Here and in the following, the letters C, Co, Q stand for positive con-

stants.

Now we shall estimate the last term of (3.6). On ω5 such that α>; Γ)

ΓQ ^ φ, the operator [h, T{

s

j)]γ is transformed by iCj to

(3.7)

= s(—YE^^J + p.d.O. of order s - 1.
V3yj/

Since S, = (1 - ΔΛES.,(ΔV) = ZU^^Y), we have
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([Λ, T]γu, Tu) = s f (AVE,.

\Jj\dy + OQ\u\\,\\u\\,j

where J3 is the Jacobian of the mapping tcj and dσ = \Jj\dy on ωA. Con-

sequently

Now for j such that ω3 f] Γo = φ, we can immediately obtain

, Γ] rκ, Tu)\ £ C(\\ζjU\\s + ||Ml

Thus we can obtain the inequality similar to (2.7) by the same argument

as in (2.8). Combining this inequality with (3.6), we obtain

where we wrote again u = ue.

To complete the proof, we have only to proceed likewise in Theorem

2.1.

3.2. Let K be a continuous mapping of &\« into <%h

s

a (s ^ 1/2) such

that

{(aS+γ + β)h + H}Kf=f, fe&h

s".

This K is well defined by Theorem 3.1. By the same way as in Theorem

2.2, we can apply the Riesz-Schauder theory to the equation

(1 - HK)u = f

and can deduce

THEOREM 3.2. (i) Let s ^ 1/2 and feHs(Γ). Then the equation

(3.8) (aS+ γ + β)hu = / on Γ

admits a solution u e HS(Γ) if and only if f is orthogonal to a finite-dimen-

sional subspace ftfs of H$(Γ), which has the same dimension as N =

{u e HS(Γ); (aS+ γ + β)hu = 0}. (ii) Every solution u e HS(Γ) (s ^ 1/2) of

(3.8) belongs to Ht(Γ) if feHt(Γ) with t > s.
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Remark 3.1. The null space N is independent of s and is contained

in C"(Γ).

3.3. We shall investigate the possibility of dim N = 0 in Theorem 3.2.

For this purpose, we introduce auxiliary functions q0, qx in ί2, associated

with the function h defined in Lemma 3.1. Corresponding to Lemma 2.2,

we can state

LEMMA 3.3. Let V be a neighborhood of Γo and Kλ be a positive

constant Then we can find two functions qQ(x) and qx{x) in C°°(5), satisfying

for j = 0, 1,

( i ) qj(x) > 0 in Ω and qs(x) = \h{x)a{x) on Γ,

(ii) there exist two positive constants k and d such that

k dis (x, Γ) ^ qo(x) in Ωd = {x e Ώ; dis (*, Γ) < d)

(iii)o there exists a constant c3 > 0 such that the inequality

holds on Γ.

(iiiX dqjdv >̂ 0 on Γ and for every u e CM(Γ)

Jr 2 dι>

For the proof, we have only to note

λγ(h) + λ-hb + hβ = — on Γo,
Δ Δ Δ

which follows from Lemma 3.1.

Setting q(x) = qo(x) + q^x), we consider bilinear form

B[U, V] = f ( £ atfijU.d&V) + Σ b$iU.~qV+ cU

+ I Mhu) + hβu + a[S, h]u)vdσ
J r

with u = U\Γ and v = V\Γ. Integrating by part, we have

(3.9) B[U, V] = f qAU- Vdx + [ (ha~ + a[S, h]u + γ(hύ) + hβu)vdσ.
JΩ J r\ dv J

On the other hand, it follows from (3), Lemma A.3, Lemma 3.3 and (3.2)
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that there exist constants c4 > 0 and λ0 such that

ReB[U9 U] = Re f q( Σ a^djU-ΘJJ + Σ bfiJJ- U + cUϋ)dx
JΩ \i,j = l i=l /

+ 4" f Σ
2 JOi,j = l

+ Re ί (r(/ικ)
J r

+ ί (c

+ f ί-5-?2- + hJr\2 dv 2

ίί + a[S, h]u)ΰdσ ^ ϋ

+ 1 f A,q-\Ufdx
2 J β

hβ)\ufdσ

Jr 2 9v JJ"

f ^r^\ufdσ -
Jr 2 dv 43

Taking, in Lemma 3.3, V= V, with δ = c3l4K0 and Kx = iζ,max r |α|/45,

we obtain, for all Z7e C~(fi),

(3.11)

THEOREM 3.3. Lei iV(̂ ) = {ueHs(Γ) (s ^ 1/2); (αrSf, + γ + β)hu = 0}.

Then dim iV( i) = 0 for all λ ^ λ0.

Proof. Let w e iV(Λ). By the same argument as in Theorem 2.3, we

can first establish u e C°°(Γ). The solution ί/ of the Dirichlet problem,

AλU = 0 in Ω and Z7= u on Z7, is in C°°(ί2) and satisfies hadU/dv + f(/m)

+ /έβw + «[&, h]u = 0, because haSλu + f(/m) + /î w + ^[8^, /ι]w = 0 on Γ.

Therefore, by (3.9) we have

B[U, V] + λ ί gί/Vd* = 0

for all Ve C°°(Ω). Applying (3.11) to this U, we have u = 0. Q.E.D.

3.4. We return again to the problem (l)-(2). We shall say a function

U contained in Hs+ί(Ω) to vanish on Γo, if there exists Uι^Ht+m(Γ) such

that U = hux on Γ. In that case we write briefly U = 0 on Γo.

THEOREM 3.4. (i) Let s ^ O ami (F,/) belong to Hs(Ω)χHs+1/2(Γ).
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Then the problem

(3.12)

AU=F in Ω

a-- + γU+βU=f on Γ
dv

C7=0 on Γo

admits a solution Ue HShί(Ω) if and only if (F,f) is orthogonal to a finite

dimensional subspace of HS(Ω) X HS+U2(Γ), and the space of solutions of

(3.12) with F = f=O has the finite dimension, (ii) If (F,f)eHt(Ω)χ

Ht + 1/2(Γ) (t> s ^ 0), every solution Ue HS+1(Ω) of (3.12) belongs to Ht+1(Ω).

The proof is established by similar argument as in the proof of

Theorem 2.4.

Now we can state a uniqueness theorem as a corollary of Theorems

3.3 and 3.4.

THEOREM 3.5. Let λ0 be the number appearing in (3.11) and λ be any

number such that λ ^ λQ. Then for every (F,f) e HS(Ω) X HSλl/2{Γ) (s ^ 0),

we can find one and only one Ue HS+1(Ω) satisfying

λ)U=F in Ω

+ γU+ βU=f on Γ
dv

=0 on Γ o .

Moreover the inequality

holds with a suitable constant Cs > 0.

Chapter 4. The case of type (III)

4.0. In this final chapter, we consider the manifold Γo of type (III).

Suppose that Γo is a closed manifold which devides Γ into two open sets

JΓ_, Γ+ SO that a < 0 on Γ_, a > 0 on Γ + and a = 0 on Γo, and that the

tangential vector field — γ is transversal from Γ + to Γ_ on Γo. So that

we can assume that a, γ and β are the same things as in § 3. Then we

must treat the boundary condition

a— -γU+ βU = f on Γ ,
dv
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that is, solve the equation

γ + β)u = f on Γ.

To do so we consider the equation

(4.1) h(aS - r + β)u = f

instead of it, with the same function h as the one defined in Lemma 3.1,

and shall give a solution u in H0(Γ) which is smooth in Γ\Γ0.

4.1. We first study the equation (4.1) and set

a simple calculation gives

(4.2) Re Q[u, u) = {haθu, θu) + {f^ha, θ], θ\ + [ha,S-S*] _

Since γ(h) = 1 near Γo (see Lemma 3.1), there exists a constant R > 0

such that

(4.3) Rha + —γ(h) + hβ - —bh > 0 on Γ .

Let H be a pseudo-differential operator on Γ defined by

h*M - W«,0\, θ) _ [ha, S- S*\

and set, for ε such that 0 < ε <̂  1,

Qλu, v] = Q[u, v] + (Hu, v) + e((S + M)u, v).

It then follows from (4.2) and (4.3) that there exists a constant c2 > 0

such that

(4.4) Re Q.[u, u] ^ C2 | | |H|| |2 + e||0u|B .

Accordingly, for every fe C°°(Γ) we can find uεe C°°(Γ) satisfying

{h(aS - γ + β) + H + e(S + M)}uε =f on Γ

and

(4.5) I I I M I ^
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with a constant Co > 0 not depending on e.

We now introduce sequences $ m / 2 and <#"TO/2 (m = 0, 1, 2, •) of sub-

spaces of °tiha and ^ha, respectively; 4m/2 and # m / 2 are the Hubert spaces

obtained by the completion of C°°(Γ) with respect to the norms

7m/2 — \/Lx \WIV " Ί I I I / 2

\l/2

(Σ \WU

and

respectively. It is easily seen that

with continuous injections. Then we can state

THEOREM 4.1. Let m be a non-nagatίve integer. For every fe < m̂/2>

we can find one and only one ue$m/2 satisfying the equation

{h(aS - γ + β) + H}u = f on Γ .

and the inequality

\W/m/2 ^ v̂ m/2\\/ )/m/2

with a constant Cm/2 > 0 independent of /. Moreover the u is unique in

Proof. Suppose first fe C°°(Γ) and substitute u = T(

s

j)(hmuε) (s = m/2)

in (4.4). Writting, for simplicity, T(

s

j) as T and uε as u9 we have, for

j= 1, -- ,A

c2|||T/ιm^|||2 + ε\\θThmu\\l £ ΈίeQε[Thmu, Thmu]

= Re({h(aS - γ + β) + H + ε(S + M)}Thmu, Thmu)

= Re (Thm{ }u, Thmu) + Re ([{ }, Thm]u, Thmu)

= Re(Thmf, Thmu) + Ue([hβ + H, Thm]u, Thmu)

+ Re ([haS - hγ + εS, Thm]u, Thmu) = I + II + ΠI.

First we shall estimate the second term II of the right hand side which

is written as ΊleAj. Rewritting as

[hβ + H, Thm] = [hβ + H, T]hm + T[H, hm]
m - l

= [hβ + H, T]hm +TΣ H*-mh»,
fc 0
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we have

(4.6) Re A, = Re (θ[hβ + H, Thm]u, θ'ιThnu) ^ C((u))U/2,

where Hk-m is a pseudo-differential operator of order k — m and, as well

as in the following, C, Co, Cl9 denote positive constants not depending

on ε.

Now we shall estimate the third term III. To do so we represent this

term as the sum of Re Xj9 Re Y, and Re Zj9 where

Xj = ([haS, Thm]u, Thmu),

y, = ([eS, Thm]u, Thmu),

Zj= - ([hh Thm]u, Thru).

Since

Xj = (Tha[S, hm]u, Thmu) + ([haS, T]hmu, Thmu)

and the second term has the same form as X5 in § 3, we have only

calculate the first. Noting that

with pseudo-differential operators S1+fc_m of order 1 + k — m, we obtain

Re(Tha[S,hm]u,Thmu)

^ Re X;1 {(TSί+k_mhku, haThmu) + (Θ[T, ha]Sί+k_mhku, Θ-χThmu)}

= Ee °Σ (θ-'TSi+k-mhku, haθThmu) + O(((u))l1/2)
k=0

(m-1
Σ \\hku\\k/2\\haθThmu\\0 + ((u))U/2) .

This and (3.5) show that for every δ there exists a constant Cδ > 0 such

that

(4.7) ReXj^δ\\ <JhaθTh™u% + Cδ((u))lί/2.

By the same argument as in the above, we can obtain, for every δ > 0,

(4.8) Re Y5 ^ ε(δ\\ΘTh™u\\l + Cδ((u))U/2)

with a constant Cδ > 0.

Finally we consider Zj which is written as
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Zj= - ([hγ, T]hmu, Thmu) - (Th[γ, hm]u, Thmu)

= - ([A, T]γhmu, Thmu) - (h[γ, T]hmu, Thmu)

- m(Thmu, Thmu) - m(T(γ(h) - ΐ)hmu, Thmu).

Consequently

ReZ, £ - Re ([A, T]γhmu, Thmύ) - m||T%ww||^

+ \(h[γ, T]hmu, Thmu) + C\\(r(h) - \)h™u\\s \\h™u\\s.

It then follows from (3.5) and the fact that γ(h) = 1 near Γo that for every

d > 0 there exists a constant Cδ > 0 such that

(4.9) EeZj ^ - Re ([A, T]γhmu, Thmu) -

+ i|||A»M|||; + C,||A-M||J.^.

By (3.7) we have, for j such that ωj f] Γo^ φ,

= ~ s ί

+

-sSSJI^-τs.2(ζ,^) u,|*
+ O(||A-u||,||A-u||,_1).

Since

||Γ'ΛA-«||ϊ = J Jvfs.£jyTΰ\2\JJ\dy +

we have by (4.9)

j ̂  (β - m) j4,f._1(£JyΓS)IVil<ίy + C||Λ~M||.|IΛ-Z*||,_1

+ δHI hmuE+C,II ATOw||=_I/2.

Accordingly, for any 5 > 0 there exists another constant Cδ > 0 such that
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(4.10) ReZ, £ δ\\\h«u\\\) + Cδ\\h™u\\U/2

by taking account of s — m = — m/2. This remain valid also for j such

that ωs ΓΊ Γo = 0. Thus it follows from (4.6), (4.7), (4.8) and (4.10) that

is valid for all s ~ m/2 (m = 0,1, 2, ). By (4.5) and induction on m,

we obtain

for all s = m/2 (m = 0,1, 2, ), with a constant Cs > 0 not depending

on ε.

Let m be fixed. Then it follows from the theorem of Banach-Sacks

that there exists a decreasing sequence ε1? ε2, converging to zero such

that

n

n

converges to some u in $s (s = m/2). Accordingly the u satisfies

(411) ί { k ( a S -T + β) + H}u = f on Γ

Now let feβ's and choose fs in C°°(Γ) so that fj->f in # , as ; -> oo.

For each /̂ , we can find Uj in $ , satisfying (4.11) with / = /i# As is easily

seen, u3 converges in $s a s j ->oo and the limit u satisfies (4.11).

Finally we shall prove the uniqueness of u in H0(Γ). To do so, we

consider the dual problem

(4.12)

Let g be in C~(Γ). Then, by (4.4), we can find vε e C°°(Γ) such that

{(aS - γ + β)*h + H + ε(S* + M)}vε = g on Γ

and HI ϋ,HI ^ CoIll̂ llî  with a constant Co independent of ε. Substitute u =
T{

s

j)vε (s real ^ 1/2) in (4.4). Then following the same argument as in the

proof of Theorem 3.1, we can derive the inequality

Thus we can prove that for every g e ^h

s

a there exists one and only one
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v e ^ a satisfying (4.12). Furthermore the result of Theorem 3.2 remains

valid for the equation (aS — γ + β)*hv = g.

Now let u be in H0(Γ) and satisfy {h(aS - γ + β) + H}u = 0 on Γ.

This means that

(u, {(aS - γ + β)*h + H}v) = 0

for all v e C°°(Γ). Hence we have (α, g) = 0 for all g e C°°(Γ). Thus the

proof of Theorem 4.1 is completed.

4.2. Let m be a non-negative integer. By ^fs{Γ) (s = m/2) we denote

the Hubert space obtained by the completion of C°°(Γ) with respect to

the norm

1/2

It easily follows from Proposition 1.3 that for all s = m/2

(4.13) # , 3 ^S(Γ) 3 4S

is valid and the injections are continuous. Using Theorem 4.1, we can

define a continuous mapping K oΐ & s into $ s such that

Hence (4.13) guarantees that K is also a continuous mapping of

into itself. Thus we have only to consider the equation

(1 - HK)g = /

in order to solve the original equation

(4.14)

THEOREM 4.2. (i) Let m be a non-negative integer and f be in ^fs(Γ)

(s = m/2). Then the equation (4.14) admits a solution u e Jf,(Γ) if and only

if f is orthogonal to a finite-dimensional subspace Ns of <^S(Γ) which has

the same dimension as N = {ueJ4?s(Γ); h(aS — γ + β)u = 0}. (ii) Every

solution u in Jfs(Γ) (s = m/2) of (4.14) belongs to jft(Γ) if fe^ft{Γ) (t =

£/2) with integer £ > m.

Proof. In order to show (i), it is sufficient to prove the compactness

of the operator HK on ^S{Γ), where s = m/2. If g e Jί?s(Γ), then Kg e 4S,

that is, hkKg e ^1% for k = 0, 1, , m. Hence we have
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hkHKg = HhkKg + [hk, H]Kg = HhkKg - g Ht-JίKg,

where Hik is a pseudo-differential operator of order i — k. Proposition

1.4 implies hkHKge H(k+1)/2(Γ) for k = 0, 1, , my from which it follows

that HK is a compact operator on Jf S(Γ).

(ii) If w is in ^ S ( Γ ) (s = m/2) and satisfy (4.14), then H(aS - γ + β)u

+ Hu = f + Hu. By Proposition 1.5, we have Hue#s+ί/2, since hkue

Hk/2(Γ) for & = 0, 1, , m and

hkHu = Hhku - ΣH^h'u.

Therefore u = Kf + KHu e ά?t{Γ) iΐt^m + l. If & > m + 1, u e JP9+i/2(Γ)

After repeating this argument, we obtain u e tfm{Γ). Q.E.D.

Remark 4.1. The null space AT is independent of s and is contained

in Πm-i ̂ m/iiΓ), which easily follows from Theorem 4.2 (ii).

4.3. We shall again study the possibility of dimiV= 0 in Theorem

4.2. To do so we first introduce a C°°-function q(x) in Ω in like manner

as in Lemmas 2.2 and 3.2.

LEMMA 4.2. We can find a function q(x) in C°°(Ω) satisfying (i) and

(ii) of Lemma 2.2, and

(iii) the inequality

1 dq ^
2 dv 2 2

holds on Γ with a constant c3 > 0, where h is the function introduced in

Lemma 3.1.

Now we consider a bilinear form

B[U, V] = ί (± aJtU.dJqV) + ± bfitU-W+ cUqV)dx
J Ω \i,j = l ΐ = l

+ ί ( - hγ(u) + hβu)vdσ ,
J Γ

u and v being the restrictions of U and V on Γ, respectively. Similar

calculation as in (2.14) and (2.15) leads to

(4.15) B[U, V] = f qAUVdx + f (ha™- - hγ{u) + hβu)ϋdσ
J Ω J r \ dv
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and

(4.16) ReB[U, V] ^ c<\\pdU\l0 - 20\\pU\\lΩ + cΛ\\u\\l

for all U and V in C°°(Ω), where c4 is a positive constant, p = V q and

λ0 is a real number.

THEOREM 4.3. Let N(λ) = {u e 3fm/2(Γ) (m integer :> 0); h(aS2 - γ + β)u

= 0}. Then dim iV(λ) = 0 for all λ ^ λ0.

Proof. First we prove that if v is in HS(Γ) (s I> 1/2) and satisfies

(aSΛ - λ + j8)*Aι; = 0 with ^ ;> ^0, then u = 0. It is obvious that υ e C°°(Γ)

(see the final part of Proof of Theorem 4.1). Let V be in C°°(Ω), and

satisfy AλV — 0 in Ω and V — υ on Γ. It then follows from (4.15) that

for every Ue C°°(S) such that AJJ = 0 in β

(4.17) B[U, V] + λ [ qUVdx= (h(aSλ -γ + β)u, v)
J Ώ

where u = C7|Γ. Taking F a s ?7 in (4.17) and applying (4.16) for U = V,

we have υ = 0. Accordingly, for every g e C°°(Γ), we can find i; e C°°(Γ)

so that (αφ - r + β)* Λ ^ = S (cf Theorem 3.2). Now let M e iV(̂ ). We

then have

0 = (u, (aSλ - γ + β)*hυ) = (u, g).

Hence u = 0.

4.4 Let η{x) be a C°°-function in Ωγ such that ^(x) = h{xf on JΓ and

η(x) > 0 in β. For every non-negative integer m and real number μ, we

denote by 3^m%μ{Ω) the Hubert space obtained by the completion of C°°(Ω)

with respect to the norm

l,μ,Ω \Z

1/2

Then it is easily seen that if UeJfm,μ(Ω), then dsUeJ^miμ^(Ω) for j = 1,

• , 7i. Moreover we can prove that if μ > 1/2, then the restriction on

Γ of UeJfm,μ(Ω) is in ^ m ( Γ ) , by using the following

PROPOSITION 4.1. Let k be an integer :> 1. Then there exists a constant

Ck > 0 such that the inequality

(4.18)
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holds for every u e C°°(Γ).

Proof. It is sufficient to prove (4.18) when u has its support in ω}

such that ω5 Π Γo ̂  φ. Then, by the transformation y = κj(x)9 the inequality

(4.18) is altered to

(4.19) llyΛ-i/*,*.-! ^ ck(\\Φ\\*-i.κ*^ + \\ylφ\kn«-ι),

where φ(y) — u(ιcγ(y)). Integrating by part, we have

IWIIl-v.,*.-* = f (l + \ξ\Ύ-1/2^^dξ
J aξj dξ

= - f l(2k - &

fc-1/2)

dφ

dζ.

dξ

Accordingly, by the Schwarz inequality,

WyM-i* ^ i^k - i)W\\k-A\yA-i +

where we omit the suffix Rnl. This immediately implies (4.19), and hence

(4.18) is proved.

Now we can state

THEOREM 4.4. (i) Let m be a non-negative integer and (F,f) belong

to 34?m/Ω)χjem(Γ). Then the problem

(AU=F in Ω

(4.20)

dv
-γU+ βU) = hf on Γ

admits a solution U in JfmΛ/2(Ω) if and only if (F,f) is orthogonal to a

finite-dimensional subspace of 34?miQ(Ω)χ2ί?m(Γ) and the space of solutions

in Jfmil/2(Ω) of (4.20) with F = f = 0 has the finite dimension, (ii) If (F, f)

belongs to Jf Λ0(β) x ^f £(Γ) (£ integer > m), then Ue^£jί/2(Ω).

Proof (cf. Proof of Theorem 2.4). (i) Let (F, f) be in ̂ f ro,0(β) X Jfm(Γ).

By V we mean a solution in H2(Ω) of the Dirichlet problem; AV = F in

Ω and V = 0 an Γ. Since we have

A(V«V) = η*F+ [A,f]V=ykF+P1f
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for k >̂ 1 (Po = 0 if k = 1), with some differential operators Pt (i = 0,1)

of order ί, it then follows from (2.17) that

wv\\m ^ c(\\η

kF\\k + wf-'vw,.^ + \\f-2v\\k^2).

Accordingly we have

(4.21)

This implies Ve^m,2(Ω). Hence dV/dv e 2?mΛ{Ω) and so ι/ = dVjdυ\Γ is in

). As a matter of fact, we can obtain the inequality

h**υ\\k, veC~(Γ),

applying (4.18) with u = h2k~2v. From this the inequality

(4.22) <ι/>»^C||V|Uflfί?

is easily derived. Accordingly, Theorem 4.2 (i) guarantees that the equation

(4.23) h(aS - γ + β)w = h(f - aυ')

admits a solution w in Jfm(Γ) if and only if h(f — aυ') is orthogonal to

it..
Let w be a solution in J^m(Γ) of (4.23). It then follows from Propo-

sitions 1.1 and 1.2 that the distribution on Ωu

(4.24) W = r 1 Σ Σ GAi+fc+1Z)i(ιι;fcί) (u;0 = w, wx = iSow)
j Q k QΣ Σ
j=Qk=Q

belongs to 3^mΛ/2{Ω)9 and satisfies AW = 0 in Ω, W= w on Γ and

(4.25) hίa^W- + rW + βψ) = h(f - aι/)
\ dv I

on Γ, In fact, we have

fW = r 1 Σ ϊί{GAue+Mvk(i0ιδ) + b]\

= »•' Σ Σ {GA^DIWWJ) +
j 0 £ 0 L

where P_^ (i = ^ + 2, , ̂  + k + 1) are pseudo-differential operators on

Ωx of order — j . Following [2, Section 2.1], we can obtain
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with a suitable constant Cfc. Accordingly

(4.26) \\W\\m^Ω < C(w)m ,

which immediately implies WeJfmtl/2(Ω). Thus it follows that U= V +

W is in Jfw,1/2(β) and satisfies (4.20). Conversely, let UβJf?mtl/2(Ω) be a

solution of (4.20). Then W= U - V satisfies AW = 0 in Ω and (4.25),

and hence w = W\Γ satisfies (4.23). Since ^e/ f f l )1/2(i3)cff1/2(fl), we have,

by Proposition 1.1 (a), w e H0(Γ) = jfo(Γ). Therefore Theorem 4.2 (ii)

guarantees w e 34?m(Γ), since right hand side of (4.23) is contained in

j4?m(Γ). Thus we could show that the problem (4.20) admits a solution in

^m,m(Ω) if and only if h(f — avf) is orthogonal to ftm. Now if U is in

JfmMiΨ) and satisfies (4.20) with F = f = 0, as we have seen above, u —

Z7|Γ belongs to J^m(Γ) and satisfies h(aS — γ + β)u = 0. These complete

the proof of (i).

(ii) Let (F,/) e ^ , 0 ( β ) X <^XO and U be a solution in J^m,ί/2(Ω) of

(4.20). Set W= U- V. Note that Veά?m,2(Ω). Then w = Ψ | Γ satisfies

(4.23) whose right hand side belongs to ^ / Γ ) . Therefore in virtue of

Theorem 4.2 (ii), we have w e 3f£(Γ), which together with (4.26) proves

t / e J ί W f l ) . Q.E.D.

As a corollary of Theorems 4.3 and 4.4, we can state

THEOREM 4.5. Let λQ be the number introduced in (4.16) and λ be any

real number such that λ ^ λ0. Then for every (F, f) e <2fm,0(£?) X Jfm(Γ) (m

integer^ 0), we can find one and only one UeJfmA/2(Ω) satisfying

f(A + X)U= F in

\hίa— -γU+ βU\U=hf on Γ .

Moreover the inequality

(4.27) l|tf|Li/w ^ Cm(||fΊ|m,0,fl + </>J .

holds with a suitable constant Cm > 0.

Proof. The first half of the theorem is obvious. We only prove (4.27).

Let V and υ be the same as in the proof of the preceding theorem and

w be a solution in Jfn(Γ) of (4.23). Then we can write as U = V + W,

where W is defined by (4.24). Consequently, we have by (4.21), (4.22) and

(4.26)
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,i/2,a < \\V\\mtl/itΩ + \\W\\ntί/2t0 ^ \\V\\m,ί/2,Ω + Cx(w)m

) ^ C,(||F|U,Ofχ,

Appendix

LEMMA A.I (see Lemma 1 in [5]). Let f(x) be in C°°(ί2m) and P be a

pseudo-differential operator on Rm of order t. Then there exist pseudo-

differential operators Pj (j = 1, , m) and Q on Rm of order t — 1 and

t — 2, respectively, such that

LEMMA A.2 (see Lemma A.I in [3]). Let f(x) be in C0°°(i?
w) such that

f(x) ^ 0 in Rm. Then

l<2Kύfix), xeRm U = 1, .- , m ) ,
dXj

where

Kj = sup
dx)

•(*)

LEMMA A.3 (see Lemma 3 in [4]). Let Ω be a bounded domain in Rm

with C°° boundary of dimension m — 1 and let q(x) be in C°°(Ω) such that

q(x) > 0 in Ω and C dis (x, Γ) ^ q(x) in Ωd = [x e Ώ; dis (x, Γ) < d} with

suitable constant C > 0 and d > 0. Then for any δ > 0 there exists a

constant Cδ > 0 such that

\\U\\li0 ^ δ\\pdU\\li0 + C8\\pU\\l, Ue C-(fl),

where p = V q .
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