P. Jiménez Guerra and B. Rodríguez-Salinas Nagoya Math. J. Vol. 85 (1982), 81-86

STRICTLY LOCALIZABLE MEASURES

P. JIMÉNEZ GUERRA AND B. RODRÍGUEZ-SALINAS

Introduction

In this paper it is proved that every locally strictly localizable Radon measure of type (\mathcal{H}) , is strictly localizable, from where it follows immediately the existence of lifting for these measures.

R. Ryan states in [9] that a complete measure has a lifting if and only if it is strictly localizable. The existence of lifting for the Lebesgue measure in \mathbb{R}^n has been proved by von Neumann [4] and for general σ -finite measures by D. Maharam [3]. A. and C. Ionescu Tulcea [2] have proved the existence of lifting for positive Radon measures in locally compact spaces, and L. Schwartz [10] has solved the problem for locally finite Radon measures (of type (\mathcal{K})) in arbitrary topological Hausdorff spaces.

B. Rodríguez-Salinas and P. Jiménez Guerra [7] and [8] have proved that every locally σ -finite Radon measure of type (\mathcal{H}) is strictly localizable, result which is an immediate consequence of the Maharam's theorem and of the theorem 2 in this paper (see Corollary 3).

Proposition 4 allows to extend, for locally strictly localizable Radon measures of type (\mathcal{H}) , many results which are known for finite Radon measures of type (\mathcal{H}) .

The results concerning the existence of different types of liftings for locally σ -finite Radon measures of type (\mathcal{H}), that were obtained by Rodríguez-Salinas in [6], can be easily extended for locally strictly localizable Radon measures of type (\mathcal{H}), using Theorem 2 and Proposition 4 of this work.

Notations and fundamentals

We will denote by E an arbitrary topological space (Hausdorff or not) and by \mathcal{H} a class of closed subsets of E. If μ is a Radon measure of

Received July 16, 1979.

type (\mathcal{H}) on E and $A \subset E$ we will denote by μ_A the Radon measure of type (\mathcal{H}_A) on A, induced by the measure μ (see Theorem 78 of [7]).

By μ -compact set and Radon measure of type (\mathcal{H}) we will understand the same as in [5].

A Radon measure μ of type (\mathcal{H}) on a topological space E is strictly localizable (Definition 8, p. 16 and 17 of [2]) if and only if there exists a family \mathscr{C} of μ -measurable disjoint subsets of E, with positive and finite measure which verify one of the two following equivalent conditions:

 $M_{\scriptscriptstyle \rm I}$. $\sup{\{\tilde K\colon K\!\in\!\mathscr C\}}=E$ (where $\tilde K$ is the equivalence class of the set K with respect to the equivalence relation:

$$A \equiv B \Leftrightarrow \mu'(A \wedge B) = 0$$

being A and B μ -measurable subsets of E).

 M_2 . For every set $A \subset E$ with $\mu'(A) < + \infty$, there is a countable subset $\mathscr{C}_A \subset \mathscr{C}$ such that $A - \bigcup_{K \in \mathscr{C}_A} K$ is μ -negligible.

From now on we will say that $\mathscr C$ is a family of strict localizability for μ and we will denote by $\overline{\mathscr C}$ the set $\bigcup_{\kappa \in \mathscr C} K$.

LEMMA 1. If μ is a locally strictly localizable Radon measure of type (\mathscr{H}) on E, G is an open subset of E such that $\mu(E-G)>0$ and \mathscr{C} is a family of strict localizability for μ_G , then there exists an open subset G' of E and a family \mathscr{C}' of strict localizability for $\mu_{G'}$, such that $\mathscr{C} \subset \mathscr{C}'$ and G is strictly contained in G'.

Proof. We have that $\mu(E-G)>0$, then there exists a set $H\in \mathcal{H}$ of measure $\mu(H)>0$, such that $H\subset E-G$. Since H is μ -comact, μ is locally strictly localizable and $\mu(H)>0$, it is easily deduced the existence of an open subset U of E such that μ_U is strictly localizable and $\mu(U\cap H)>0$. Evidently, G is strictly contained in $G'=G\cup U$.

Let \mathscr{D} be a family of strict localizability for μ_{U} . For every subset \mathscr{S} $\subset \mathscr{D}$ we set

$$\mathscr{S}' = \{K - G \colon K \in \mathscr{S}\}\$$

and

$$\mathscr{S}^{\prime\prime}=\{K^{\prime}\in\mathscr{S}^{\prime}\colon\,\mu(K^{\prime})>0\}$$
 .

We will prove now that $\mathscr{C}^* = \mathscr{C} \cup \mathscr{D}''$ is a family of strict localizability for $\mu_{\mathcal{G}'}$ for which it is enough to verify that \mathscr{C}^* satisfies M_2 .

If $A\subset G'$ and $\dot{\mu_{G'}}(A)<+\infty$ then $\dot{\mu_{G}}(A\cap G)$ and $\dot{\mu_{U}}(A\cap U)$ are finite

and there exist two countable subsets $\mathscr{C}_{A} \subset \mathscr{C}$ and $\mathscr{D}_{A} \subset \mathscr{D}$ such that

$$\mu_{c}(A \cap G - \overline{\mathscr{C}}_{4}) = 0$$

and

$$\mu_{U}(A \cap U - \bar{\mathcal{D}}_{A}) = 0$$
.

So, $\mathscr{C}_A^* = \mathscr{C}_A \cup \mathscr{D}_A''$ is a countable subfamily of \mathscr{C}^* which verifies:

$$egin{aligned} \dot{\mu_{G'}}(A-\widetilde{\mathscr{C}}_A^*) &\leq \dot{\mu_{G'}}(A\cap G-\widetilde{\mathscr{C}}_A^*) + \dot{\mu_{G'}}[A\cap (U-G)-\widetilde{\mathscr{C}}_A^*] \ &\leq \dot{\mu_{G'}}(A\cap G-\widetilde{\mathscr{C}}_A) + \dot{\mu_{U}}[A\cap (U-G)-\widetilde{\mathscr{D}}_A''] \ &\leq \dot{\mu_{G'}}(A\cap G-\widetilde{\mathscr{C}}_A) + \dot{\mu_{U}}[A\cap (U-G)-\widetilde{\mathscr{D}}_A] \ &\leq \dot{\mu_{G}}(A\cap G-\widetilde{\mathscr{C}}_A) + \dot{\mu_{U}}(A\cap U-\widetilde{\mathscr{D}}_A) \ &= 0 \end{aligned}$$

and, consequently, \mathscr{C}^* verifies M_2 and the lemma is proved because $\mathscr{C} \subset \mathscr{C}^*$ by construction.

It should be notice that it follows from M_2 that for every $H \in \mathcal{H}$ there exists a family $\mathscr{S}_{\scriptscriptstyle{A}} \subset \mathscr{D}_{\scriptscriptstyle{A}}$ such that

$$\mu(A \cap U \cap H - \mathcal{F}_A) = 0$$

and

$$egin{aligned} \dot{\mu_U}[A \,\cap\, (U-G) \,\cap\, H \,\cap\, ar{\mathscr{F}}_{\scriptscriptstyle A}] &= \dot{\mu_U}[A \,\cap\, (U-G) \,\cap\, H \,\cap\, ar{\mathscr{F}}_{\scriptscriptstyle A}'] \ &= \sum\limits_{K \in \mathscr{F}_{\scriptscriptstyle A}'} \dot{\mu_U}[A \,\cap\, (U-G) \,\cap\, H \,\cap\, K] \ &= \sum\limits_{K \in \mathscr{F}_{\scriptscriptstyle A}'} \dot{\mu_U}[A \,\cap\, (U-G) \,\cap\, H \,\cap\, ar{\mathscr{F}}_{\scriptscriptstyle A}''] \;, \end{aligned}$$

therefore the inequality

$$\dot{\mu_U}[(A \cap (U-G) - \overline{\mathscr{D}}_{A}^{\prime\prime}) \cap H] < \dot{\mu_U}[(A \cap (U-G) - \overline{\mathscr{D}}_{A}) \cap H]$$

holds, and it follows from Theorem 74.2 of [7] that

$$\dot{\mu_{\scriptscriptstyle U}}[A\,\cap\,(U-\mathit{G})-ar{\mathscr{D}}_{\scriptscriptstyle A}^{\prime\prime}]\leq\dot{\mu_{\scriptscriptstyle U}}[A\,\cap\,(U-\mathit{G})-ar{\mathscr{D}}_{\scriptscriptstyle A}]\;.$$

Theorem 2. Every locally strictly localizable Radon measure of type (\mathcal{H}) on E, is strictly localizable.

Proof. Let μ be a locally strictly localizable Radon measure of type (\mathcal{H}) on E and let us consider the set \mathcal{A} of all pairs (G, \mathcal{C}) where G is an open subset of E, such that μ_G is strictly localizable and \mathcal{C} is a family

of strict localizability for μ_{G} . We consider in \mathscr{A} the following order:

$$(G_1,\mathscr{C}_1) \leq (G_2,\mathscr{C}_2) \Leftrightarrow G_1 \subset G_2 \text{ and } \mathscr{C}_1 \subset \mathscr{C}_2.$$

We will see that if $\{(G_i, \mathscr{C}_i)\}_{i\in I}$ is a chain in (\mathscr{A}, \leq) then $\mathscr{C} = \bigcup_{i\in I} \mathscr{C}_i$ is a family of strict localizability for μ_G , being $G = \bigcup_{i\in I} G_i$, and therefore (\mathscr{A}, \leq) is inductive.

If $A \subset G$ and $\mu_{G}(A) < + \infty$ then A is μ_{G} -compact and there is a countable subset I' of I such that

$$\mu_{\scriptscriptstyle G}(A-\bigcup\limits_{i\in I'}G_i)=0$$
 .

For every $i \in I'$ we have that $\mu_{G_i}(A \cap G_i) < + \infty$ and there exists a countable subfamily \mathscr{C}_i^* of \mathscr{C}_i such that

$$\mu_{G_i}(A \cap G_i - \overline{\mathscr{C}}_i^*) = 0$$

holds. Consequently $\mathscr{C}^* = \bigcup_{i \in I'} \mathscr{C}_i^*$ is a countable subset of \mathscr{C} such that

$$\dot{\mu_G}(A - \overline{\mathscr{C}}^*) = \dot{\mu_G}[(A \cap \bigcup_{i \in I'} G_i) - \overline{\mathscr{C}}^*]$$

$$\leq \sum_{i \in I'} \mu_{G_i}(A \cap G_i - \overline{\mathscr{C}}_i^*)$$

$$= 0$$

and M_2 holds. Therefore $\mathscr C$ is a family of strict localizability for μ_G and $(G,\mathscr C)\in\mathscr A$.

From Zorn's axiom it is deduced the existence of a maximal element $(G, \mathscr{C}) \in \mathscr{A}$ and it follows from Lemma 1 that E - G is μ -negligible.

Corollary 3. Every locally σ -finite Radon measure of type (\mathcal{H}) on E is strictly localizable.

Proof. It is an immediate consequence of Theorem 2, because every σ -finite measure is strictly localizable.

PROPOSITION 4. Let μ be a Radon measure of type (\mathcal{H}) on E and \mathcal{C} a family of strict localizability for μ , then we have:

4.1. If $A \subset E$ is such that $A \cap K$ is μ -negligible for all $K \in \mathcal{C}$, then A is μ -negligible.

4.2. If $A \subset E$ is such that $A \cap K$ is μ_K -measurable for all $K \in \mathcal{C}$, then A is μ -measurable.

Proof. 4.1. For every $H \in \mathcal{H}$ there exists a countable subclass \mathscr{C}_H of \mathscr{C} such that $\mu(H - \overline{\mathscr{C}}_H) = 0$ and

$$\mu(A \cap \mathscr{C} \cap H) \leq \sum_{K \in \mathscr{C}_H} \mu(A \cap K \cap H) \\
= 0$$

holds. Therefore it follows from Theorem 74.2 of [7] that

$$\mu'(A \cap \overline{\mathscr{C}}) = \sup \{ \mu'(A \cap \overline{\mathscr{C}} \cap H) \colon H \in \mathscr{H} \}$$

$$= 0$$

and $\mu'(A) = 0$.

4.2. For every $H \in \mathcal{H}$ there exists a countable subclass \mathcal{C}_H of \mathcal{C} such that $\mu(H - \overline{\mathcal{C}}_H) = 0$. Consequently,

$$\begin{split} \mu(H) &= \mu(H \cap \overline{\mathscr{C}}_H) \\ &= \sum_{K \in \mathscr{C}_H} \mu(H \cap K) \\ &= \sum_{K \in \mathscr{C}_H} [\mu'(H \cap K \cap A) + \mu'((H - A) \cap K)] \\ &= \mu'(H \cap A) + \mu'(H - A) \end{split}$$

and it follows from Theorem 75.2 of [7] that A is μ -measurable.

Remark 5. If μ is a Radon measure of type (\mathcal{H}) and \mathscr{C} is a family of strict localizability for μ , then there exists a family \mathscr{C}' , of strict localizability for μ , such that $\mathscr{C}' \subset \mathscr{H}$ and every $K' \in \mathscr{C}'$ is contained in some $K \in \mathscr{C}$,

REFERENCES

- [1] Chatterji, S. D., Desintegration of measures and liftings, Proc. of the Symposium on vector and operator valued measures and applications, Acad. Press, New York (1973), 69-83.
- [2] Ionescu Tulcea, A. and C., Topics in the theory of lifting, Springer, Berlin, 1969.
- [3] Maharam, D., On a theorem of von Neuman, Proc. Amer. Math. Soc., 9 (1958), 187-994.
- [4] Neumann von, J., Algebraische Reprasentaten der Funktionen bis auf eine Menge von Masse Null, J. Crelle, 165 (1931), 109-115.
- [5] Rodríguez-Salinas, B., Teoría de la medida sobre los espacios topológicos no localmente compactos, Rev. Mat. Hispano-Amer., (4), 32 (1973), 257-274.
- [6] —, μ-espacios de Suslin y Lusin. Propiedad del lifting fuerte, Rev. R. Acad. Ci. Madrid, 72 (1978), 541-557.
- [7] Rodríguez-Salinas, B. and P. Jiménez Guerra, Medidas de Radon de tipo (*H*) en espacios topológicos arbitrarios, Mem. R. Acad. Ci. Madrid, t. X, 1979.
- [8] —, Espacios de Radon de tipo (*H*), Rev. R. Acad. Ci. Madrid, **69** (1975), 761-774.
- [9] Ryan, R., Representative sets and direct sums, Proc. Amer. Math. Soc., 15 (1964), 387-390.

- [10] Schwartz, L., Radon measures on arbitrary topological spaces and cylindrical measures, Oxford University Press, 1973.
- [11] Segal, I. E., Equivalences of measure spaces, Amer. J. Math., 73 (1951), 275-313.

Dpto. de Teoría de Funciones Facultad de C. Matemáticas Universidad Complutense Madrid-3 (SPAIN)