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SOME NOTES ON THE THEORY OF HOLOMORPHIC CURVES

JUNJI SUZUKI AND NOBUSHIGE TODA

§ 1. Introduction

In this paper, we shall give some notes on the order functions of
holomorphic curves and, applying these facts, we may formulate the theory
of holomorphic curves more precisely than those in Ahlfors [2], Cowen
and Griffiths [4], Weyl [7] or Wu [8] in several cases.

Let x: \z\ < R-*Pn(C) (n ^ 1, 0 < R ^ oo) be a non-degenerate holo-
morphic curve and xp be the associated curve of rank p of x (p = 1, ,
n; x1 = x).

Let

be a reduced representation of x where xu , xn+1 are holomorphic func-
tions in \z\ < R without common zero for all and

Xp = [X, dX/dz, , dp-1X/dzp~1] (p = 1, , ή)

the osculating p-element of X (X1 = X) (see Weyl [7]), which is a repres-
entation of xp. Let Tp(r) be the order function of xp (p = 1, , ή). Then
it is known that

(1) Vp(r) + {Γp+1(r) - 2Tp(r) + Tp_fr)} = Ω,(r) - Ωp(r0) (r0 £ r <R)

where r0 is a fixed positive number, Vp(r) is the valence in \z\ < r of the
stationary points of rank p of x and

* W = ^~ Γ l o 2 i\χp+1\ \X*-ι\I\Xpf\dθ (z = re")

(Weyl [71, p. 123).
In the theory of holomorphic curves, it is essential to evaluate Ωp in

terms of Tp. For example,
"When R = oo, for any number a > 1, the inequality
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2Ωp(r) ^ a log Γ,(r) - 2 log r + 0(1)

holds except for r of an open set E c fr0, oo) such that

r-'dr < oo ."ί
(See Weyl [7], Chapter III.)

There is a similar result for R < oo (Weyl [7], Chapter IV).
We note that, in this paper, we always use r = \z\ as the independent

variable instead of logr. (cf. Weyl [7], Wu [8].)
In the proof of the defect relations for holomorphic curves, this esti-

mate of Ωp plays a fundamental role and necessarily it comes out excep-
tional sets in many inequalities of which we are in need to prove the
defect relations. (See Ahlfors [2], Weyl [7] etc.)

On the other hand, in the Nevanlinna theory of meromorphic func-
tions in \z\ < R (Hayman [5], Nevanlinna [6]), the second fundamental
theorem tells us that, for a non-constant meromorphic function f(z) in
\z\ < R, the exceptional set does not come out if the order of / is finite
and the defect relation holds either
(I) for any non-constant meromorphic function when R = oo, or
(II) for any meromorphic function / such that

lim sup T(r, /)/log (R - r) ' 1 = oo

when R < oo.
For the systems of holomorphic functions in \z\ < R, similar results

are known (Cartan [3]).
In this paper, after the model of the case of meromorphic functions

stated above, we shall remove the exceptional sets in the case of holo-
morphic curves applying the method used in Ahlfors [1] when Tx{r) is of
finite order and weaken "the hypothesis if" (Weyl [7], p. 201) in the case
of R < oo.

We will use the notation used in Weyl [7] in the main.

§ 2. Lemmas

We prepare some lemmas for later use.

LEMMA 1. Let f(r) be a function defined on [r0, R) with continuous

non-negative derivative and f(r0) ^ 1. Then for any numbers a > 1 and
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(I) when R — oo, the inequality

fir) £ {f{r)Yr^

holds except in an open set E c [r0, oo) such that

ί r'-Wr £(a- I)"1

JE

(II) when R < oo, the inequality

f'(r) ^ {f(r)Y(R - r)-'-1

holds except in an open set E c [r0, J?) si/c/i ίΛαί

f (# - Γ)-"-1^ ^ (a - I)"1 .

(See Weyl (7] p. 155 and p. 197.)

LEMMA 2. Let two functions f(r) and F(r) be given on [r0, R) (r0 > 0)
such that f(r) is continuous and

1 + log (rlr0) + Γ {(log r - log t) exp (f(t))}ltdt ̂ F(r) (r0 ^ r <\R) .

Then, for any numbers a > 1 and μ ̂  0,
(I) when R = oo,

/(r) ^ «2 log F{r) + μ{« + 1) log r

/or a/Z r ^ r0 except in an open set E c [r0, oo) sz/cΛ ί/iaί

ί rft~1dr^2(a- I)" 1 ;

(Π) wΛera J? < oo,

/(r) ^ a2 log ίXr) + 0ι + l)(a + 1) log (i? - r)"1 + (a + 1) log r

/or all r in [r0, R) except in an open set E c [r0, J2) swcΛ that

ί C R - r ) - " " 1 ^ ^ 2(a - I ) " 1 .

We may prove this lemma as in Weyl [7], p. 156 or p. 197 using
Lemma 1.

DEFINITION. We say that a holomorphic curve x in \z\ < R is admis-
sible if either R = oo and Λ: is non-degenerate, or if R < oo, x is non-
degenerate and the following condition holds:
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(2) lim Tp(r) = <~ (p = l, , n ) .

Note that, if R = oo and x is non-degenerate, the condition (2) holds.

(See Weyl [7].)

LEMMA 3. For any admissible curve x in \z\ < i?, the following in-

equality holds for all r in [R09 R) (r0 <^ Ro):

1 + log (r/r0) + Γ {(log r - log t) exp (2Ωp(t))}/tdt ̂  2Tp(r)
J To

where Ωp(t) = Ωp(t) + log(£/r0) and i?0 depends on the curve. (See Weyl

[71, p. 154 and p. 196.)

From now on in § 2 and § 3, we assume that all curves in our mind

are admissible.

Applying Lemmas 1 and 2 to our curves, we obtain the following by

Lemma 3.

PROPOSITION 1. For any numbers a > 1 and μ >̂ 0,

(I) when R = oo, the inequality

2Ωp(r) ^ a2 log Tp(r) + μ(a + 1) log r + 0(1)

holds for all r^R0 except in an open set E C [Ro, oo) such that

f rμ~xdr < oo
JE

(Π) wΛera i2 < oo, the inequality

2Ωp(r) ^ a' log Tp{r) + (μ + 1)(* + 1) log (B - r)" 1 + 0(1)

holds for all r in [Ro9 R) except in an open set E c [Ro, R) such that

ί (R - r)-μ-ιdr < oo .
JE

(See Weyl [7], p. 198.)

Using this proposition, we obtain the following as in Weyl [7].

PROPOSITION 2. For any numbers ε > 0 and μ I> 0, there exists an rt

such that

(I) when R = oo,

( 3) Γp+1(r) < (1 + 1/p + e ) 2 » + O(log r),
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( 4) Tp^(r) < (1 + l/(/ι + 1 - p) + ε)Tp(r) + O(log r)

for all r^>rx except in an open set E c [ru oo) such that

f
JE

f rμ~'dr < oo
E

(II) when R < oo,

( 5) Tp+ί(r) < (1 + IIP + e)Γp(r) + O (log (B - r)"1) ,

( 6) Tp_,{r) < (1 + l/(n + 1 - p) + e)Γp(r) + O (log (JR - r)"1)

/or α/Z r e [rl9 R) except in an open set E C [rl9 R) such that

(R - rY^dr < oo .ί
JE

§3. Theorems and applications

In this section, we are going to investigate the orders of Tp(r) and

improve Propositions 1 and 2.

The order ρp of Tp(r) is defined by

lim sup log Tp(r)/log r = pp (R = oo)
r-*oo

or

lim sup log Γp(r)/log (R - r)" 1 = p, (i? < oo)

and the lower order λp of Γp(r) by

lim inf log Tp(r)lϊog r = λp (R = oo)

r-*oo

or

lim inf log Tp(r)/log (R - r)" 1 = λp (R < oo) .

THEOREM 1. AZZ Tp(r) are of the same order.

Proof. When JR = oo, this was proved by Ahlfors [2]. We prove this

theorem when R < oo applying the method used in Ahlfors [1].

Now, let ρp be finite, then for any p > pp, there is an r 2 ( ^ Γj) such

that, for all r 6 [r2, R)9

Tp(r) £ O((R - r)-') .

Here, we apply Proposition 2, (II), (5).
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( i) When r § E and r2 <L r < R, we have

Tp+1(r) <S O((R - r ) - ' ) .

(ii) When reE and r2 <L r < R, let r' be the right hand end point of the

maximal interval included in E and containing r. Then, putting μ = p,

we have

(R - r')-p - (B - r)-» ^ p ί (i? - r ) " ' - 1 ^ = 0(1)
J E

so that

(R - rO"' ^ (R - r ) - ' + 0(1)

and

log (R - r')-1 = log (Λ - r)" 1 + 0(1).

T^+iίr) being increasing and r'$E,

Tp+1(r) ^ Tp+ι(r') rg 0((R - r')~p) ^ 0((R - r)"0 + 0(1)

= 0((Λ - r ) - ) .

By (i) and (ii), for all r sufficiently near R

Γ p t l (r) < 0{(R - r ) - ' ) .

This means pp+ί ^ p. As /? is arbitrarily greater than ^p, we obtain pp+ί

^ /?p. Similarly, we obtain pp-x^ ρp applying (6). It follows that, if one

of pp is finite, then all pp are finite and same. This means also that if

one of pp is infinite, then all ρp are infinite. That is, all Tp(r) are of the

same order.

THEOREM 2. All Tp(r) are of the same lower order.

Proof. (I) R = oo. We have only to prove the case when one of

Tp(r) is of positive or infinite lower order. Otherwise, all Tp(r) are of

lower order zero.

Now, let λp be positive or infinite. Then, for any 0 < λ < λp, there

is an r3(;> r j such that

Tp(r) ^r> (r ^ r 3 ) .

We apply Proposition 2, (I), (3).

(i) For r$E and r ^ r3,
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ra ^ (1 + l/(p - 1) + ε)T9Λr) + O (log r) .

(ii) For r e E and r >̂ r3, let f be the left hand end point of the maximal

interval included in E and containing r. Then, putting μ — λ, we have

rλ _ P = * Γ t'-'dt^λ ί ^efc = 0(1) ,
Jf J E

so that

rλ^rx+ 0(1) .

As f §E for sufficiently large r and Tp_x(r) is increasing,

f' ^ (1 + l/(p - 1) + ε)Tp.0) + O (log f)

^ (1 + l/(p - 1) + e ) ^ . ^ ) + O (log r)

and

r̂  £ (1 + l/(p - 1) + ε)Tp.1(r)+ O (log r) + 0(1) .

By (i) and (ii), for all sufficiently large r,

ra ^ (1 + l/(p - 1) + e ) ^ . ^ ) + O (log r) + 0(1) .

This means λ ^ Xp.t. As Λ < λp and >? is arbitrary, we have λp ^ λp^t.
Similarly, using (4) instead of (3), we have λp 5g λp+1. It follows that, if
one of λp is not zero, then all λp are not zero and same.
(II) R < oo. We can prove this theorem by using Proposition 2, (Π) as
in the case R = oo.

THEOREM 3. If Tx(r) is of finite order, then, for any number a > 1,

(I) when R = oo, the inequality

2Ωp(r) ^ a2 log Tp(r) + O (log r) + 0(1)

holds for all sufficiently large values r;
(II) when R < oo, ίΛe inequality

2Ωp(r) ^ α* log Tp{r) + O (log (B - r)"1) + 0(1)

Λo/cJs for all r sufficiently near R.

Proof. (I) R — oo. Let Tλ(r) be of finite order px. Then, by Theorem
1, all Tp(r) are of order px. Thus, for any p > ρu there is an r 4 ( ^ Ro)
such that
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and for any p-ad Ap (Weyl [7]), as

Np(r, Ap) g Tp(r) + Cp ,

Cp being independent of Ap (Ahlfors [2], p. 7 or Wu [8], p. 105),

( 7 ) np(r, Ap) log 2 £ £ ' np(t, Ap)jtdt ^ Np(2r, A») = O(r')

for r I> r4. Now, putting μ — p in Proposition 1,

( 8) 2Ωp(r) ^ «2 log Γp(r) + p(a + 1) log r + 0(1)

for all r ^> Ro except in an open set E c [Rσ9 σo) such that

Γ r ' - ^ r < oo .
J E

For r e E and r 2> r4, let f be the right hand end point of the maximal

interval included in E and containing r. Then,

(9 ) P - rp = p Γ ί''-1^ .̂  ̂  J r-1* = 0(1)

and

(10) logf = l o g r + 0(1).

Further, by (7) and (9),

Np(r, Ap) - Np(r, A*) = £ np(t, A^tdt ^ θ ( £ ί'"1*) = 0(1) ,

that is,

As

Ap

(Ahlfors [2], p. 8 or Wu [8], p. 107) and 0(1) is independent of Ap,

(11) Tp{f) £ Tp(r) + 0(1) .

On the other hand, by (1), we have the equality:

V,(r) + TVΛr) + Tp+ι{r) + log φ0 = Ωp(r) - Ωp(r0) + 2Tp(r)
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and this shows that

2Γp(r) + Ωp(r)

is increasing. Thus, we have

2 7 » + Ωp(r) £ 2Tp(r) + Ωp(f) ,

so that by (11),

ΩP(r) £ Ωp(r) + 0(1) .

As reE, by (8), (10) and (11), we have

2Ωp(r) ^ a2 log Tp{r) + p(a + 1) log r + 0(1) .

Thus, for any r ^ r4, the inequality

2Ωp(r) ^ a2 log Γp(r) + O (log r) + 0(1)

holds.

(II) R < oo. We can carry out the proof parallel to the case R = oo.

Corresponding to Proposition 2, we have

COROLLARY 1. If Ti(r) is α/ finite order, for any ε > 0, ί/iere is an r5

swc/i

( I ) ί̂ /iβM R = oo,

p + 1(r) < (1 + 1/p + e)Γp(r) + O (log r) ,

^(r) < (1 + l/(n + 1 - p) + ε)Tp(r) + O (log r)

/or a// r ^ r5;

(II) w /iβλi R < oo,

2;+.(r) < (1 + l/p + β)Γp(r) + O (log (R - /•)-) ,

+ O(log(i? - r)"J)

/or aZZ r e [r5) J?).

When i? = oo, it is well-known (see Wu [8]) that if the original curve

x is transcendental:

lim Γ1(r)/log r = oo ,
r—oo

then all the associated curves xp are also transcendental.

Similarly to this fact, we give the following for J? < oo.
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THEOREM 4. When R is finite, if

(12) lim sup T^/log (R - r)"1 = oo ,

r-*R

then there exists a sequence {sn} outside an exceptional set E such that

lim sn = R

n-*oo

and

lim TVOO/log (R - sj-1 = oo (p = 1, 2, . , ή).

Proof When the order of Tx{r) {— pt) is finite, we have the result

easily by Corollary 1. When the order of Tx(r) is infinite, then T2(r), ,

Tn(r) are also of order infinite by Theorem 1. In this case, we apply

Proposition 2, (Π), (6) for μ = 0. First of all, we note that
pi = lim sup log Tx(r)l\og (R - r)"1 = oo .

r-*R

In fact, suppose that pi is finite. For any r e E sufficiently near R, let tx

be the left hand end point of the maximal interval I included in E and

containing f and t2 the right hand end point of L Then, tu t2ξE and

log (R - t2y
ι - log (R - O' 1 = Γ (# - r)" 1*- ^ ί (R - r)~ιdr = 0(1),

log CR -1,)- 1 < log (i? - f)-1 < log (JS - t2y
ι.

From this and Tx(r) being increasing, we have the following:

-Q-'^logTif

and

lim log (R — ίJ'Vlog (R — Q'1 = 1

so that

lim sup log Tffifiog (R — f)"1 <̂  lim sup log TΊ(r)/log (-R — r)"1 = ^ί.
f-*R

This means that the order of Tx{r) is finite. This is a contradiction. p[

must be oo. " ^ = oo" means that there is a sequence {sn} C [ΓJ, R) — E

such that sn-+ R (n -> oo) and
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Applying this fact to Proposition 2, (II), (6) for p = 2, , n, we have

the desired result.

COROLLARY 2. " The hypothesis H" in Weyl [7], p. 201 may be changed

by the following:

"When R is finite,

x is admissible and limsup T^jlogiR — r)" 1 = oo ."
r-*R
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